You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

583 lines
16KB

  1. /*
  2. * (c) 2001 Fabrice Bellard
  3. * 2007 Marc Hoffman <marc.hoffman@analog.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file dct-test.c
  23. * DCT test. (c) 2001 Fabrice Bellard.
  24. * Started from sample code by Juan J. Sierralta P.
  25. */
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <string.h>
  29. #include <sys/time.h>
  30. #include <unistd.h>
  31. #include <math.h>
  32. #include "libavutil/common.h"
  33. #include "simple_idct.h"
  34. #include "faandct.h"
  35. #include "faanidct.h"
  36. #include "i386/idct_xvid.h"
  37. #undef printf
  38. #undef random
  39. void *fast_memcpy(void *a, const void *b, size_t c){return memcpy(a,b,c);};
  40. /* reference fdct/idct */
  41. extern void fdct(DCTELEM *block);
  42. extern void idct(DCTELEM *block);
  43. extern void init_fdct();
  44. extern void ff_mmx_idct(DCTELEM *data);
  45. extern void ff_mmxext_idct(DCTELEM *data);
  46. extern void odivx_idct_c (short *block);
  47. // BFIN
  48. extern void ff_bfin_idct (DCTELEM *block) ;
  49. extern void ff_bfin_fdct (DCTELEM *block) ;
  50. // ALTIVEC
  51. extern void fdct_altivec (DCTELEM *block);
  52. //extern void idct_altivec (DCTELEM *block);?? no routine
  53. struct algo {
  54. const char *name;
  55. enum { FDCT, IDCT } is_idct;
  56. void (* func) (DCTELEM *block);
  57. void (* ref) (DCTELEM *block);
  58. enum formattag { NO_PERM,MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM, SSE2_PERM } format;
  59. int mm_support;
  60. };
  61. #ifndef FAAN_POSTSCALE
  62. #define FAAN_SCALE SCALE_PERM
  63. #else
  64. #define FAAN_SCALE NO_PERM
  65. #endif
  66. static int cpu_flags;
  67. struct algo algos[] = {
  68. {"REF-DBL", 0, fdct, fdct, NO_PERM},
  69. {"FAAN", 0, ff_faandct, fdct, FAAN_SCALE},
  70. {"FAANI", 1, ff_faanidct, idct, NO_PERM},
  71. {"IJG-AAN-INT", 0, fdct_ifast, fdct, SCALE_PERM},
  72. {"IJG-LLM-INT", 0, ff_jpeg_fdct_islow, fdct, NO_PERM},
  73. {"REF-DBL", 1, idct, idct, NO_PERM},
  74. {"INT", 1, j_rev_dct, idct, MMX_PERM},
  75. {"SIMPLE-C", 1, ff_simple_idct, idct, NO_PERM},
  76. #ifdef HAVE_MMX
  77. {"MMX", 0, ff_fdct_mmx, fdct, NO_PERM, MM_MMX},
  78. #ifdef HAVE_MMX2
  79. {"MMX2", 0, ff_fdct_mmx2, fdct, NO_PERM, MM_MMXEXT},
  80. #endif
  81. #ifdef CONFIG_GPL
  82. {"LIBMPEG2-MMX", 1, ff_mmx_idct, idct, MMX_PERM, MM_MMX},
  83. {"LIBMPEG2-MMXEXT", 1, ff_mmxext_idct, idct, MMX_PERM, MM_MMXEXT},
  84. #endif
  85. {"SIMPLE-MMX", 1, ff_simple_idct_mmx, idct, MMX_SIMPLE_PERM, MM_MMX},
  86. {"XVID-MMX", 1, ff_idct_xvid_mmx, idct, NO_PERM, MM_MMX},
  87. {"XVID-MMX2", 1, ff_idct_xvid_mmx2, idct, NO_PERM, MM_MMXEXT},
  88. {"XVID-SSE2", 1, ff_idct_xvid_sse2, idct, SSE2_PERM, MM_SSE2},
  89. #endif
  90. #ifdef HAVE_ALTIVEC
  91. {"altivecfdct", 0, fdct_altivec, fdct, NO_PERM, MM_ALTIVEC},
  92. #endif
  93. #ifdef ARCH_BFIN
  94. {"BFINfdct", 0, ff_bfin_fdct, fdct, NO_PERM},
  95. {"BFINidct", 1, ff_bfin_idct, idct, NO_PERM},
  96. #endif
  97. { 0 }
  98. };
  99. #define AANSCALE_BITS 12
  100. static const unsigned short aanscales[64] = {
  101. /* precomputed values scaled up by 14 bits */
  102. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  103. 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
  104. 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
  105. 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
  106. 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
  107. 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
  108. 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
  109. 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
  110. };
  111. uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
  112. int64_t gettime(void)
  113. {
  114. struct timeval tv;
  115. gettimeofday(&tv,NULL);
  116. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  117. }
  118. #define NB_ITS 20000
  119. #define NB_ITS_SPEED 50000
  120. static short idct_mmx_perm[64];
  121. static short idct_simple_mmx_perm[64]={
  122. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  123. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  124. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  125. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  126. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  127. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  128. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  129. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  130. };
  131. static const uint8_t idct_sse2_row_perm[8] = {0, 4, 1, 5, 2, 6, 3, 7};
  132. void idct_mmx_init(void)
  133. {
  134. int i;
  135. /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
  136. for (i = 0; i < 64; i++) {
  137. idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  138. // idct_simple_mmx_perm[i] = simple_block_permute_op(i);
  139. }
  140. }
  141. static DCTELEM block[64] __attribute__ ((aligned (16)));
  142. static DCTELEM block1[64] __attribute__ ((aligned (8)));
  143. static DCTELEM block_org[64] __attribute__ ((aligned (8)));
  144. static inline void mmx_emms(void)
  145. {
  146. #ifdef HAVE_MMX
  147. if (cpu_flags & MM_MMX)
  148. asm volatile ("emms\n\t");
  149. #endif
  150. }
  151. void dct_error(const char *name, int is_idct,
  152. void (*fdct_func)(DCTELEM *block),
  153. void (*fdct_ref)(DCTELEM *block), int form, int test)
  154. {
  155. int it, i, scale;
  156. int err_inf, v;
  157. int64_t err2, ti, ti1, it1;
  158. int64_t sysErr[64], sysErrMax=0;
  159. int maxout=0;
  160. int blockSumErrMax=0, blockSumErr;
  161. srandom(0);
  162. err_inf = 0;
  163. err2 = 0;
  164. for(i=0; i<64; i++) sysErr[i]=0;
  165. for(it=0;it<NB_ITS;it++) {
  166. for(i=0;i<64;i++)
  167. block1[i] = 0;
  168. switch(test){
  169. case 0:
  170. for(i=0;i<64;i++)
  171. block1[i] = (random() % 512) -256;
  172. if (is_idct){
  173. fdct(block1);
  174. for(i=0;i<64;i++)
  175. block1[i]>>=3;
  176. }
  177. break;
  178. case 1:{
  179. int num= (random()%10)+1;
  180. for(i=0;i<num;i++)
  181. block1[random()%64] = (random() % 512) -256;
  182. }break;
  183. case 2:
  184. block1[0]= (random()%4096)-2048;
  185. block1[63]= (block1[0]&1)^1;
  186. break;
  187. }
  188. #if 0 // simulate mismatch control
  189. { int sum=0;
  190. for(i=0;i<64;i++)
  191. sum+=block1[i];
  192. if((sum&1)==0) block1[63]^=1;
  193. }
  194. #endif
  195. for(i=0; i<64; i++)
  196. block_org[i]= block1[i];
  197. if (form == MMX_PERM) {
  198. for(i=0;i<64;i++)
  199. block[idct_mmx_perm[i]] = block1[i];
  200. } else if (form == MMX_SIMPLE_PERM) {
  201. for(i=0;i<64;i++)
  202. block[idct_simple_mmx_perm[i]] = block1[i];
  203. } else if (form == SSE2_PERM) {
  204. for(i=0; i<64; i++)
  205. block[(i&0x38) | idct_sse2_row_perm[i&7]] = block1[i];
  206. } else {
  207. for(i=0; i<64; i++)
  208. block[i]= block1[i];
  209. }
  210. #if 0 // simulate mismatch control for tested IDCT but not the ref
  211. { int sum=0;
  212. for(i=0;i<64;i++)
  213. sum+=block[i];
  214. if((sum&1)==0) block[63]^=1;
  215. }
  216. #endif
  217. fdct_func(block);
  218. mmx_emms();
  219. if (form == SCALE_PERM) {
  220. for(i=0; i<64; i++) {
  221. scale = 8*(1 << (AANSCALE_BITS + 11)) / aanscales[i];
  222. block[i] = (block[i] * scale /*+ (1<<(AANSCALE_BITS-1))*/) >> AANSCALE_BITS;
  223. }
  224. }
  225. fdct_ref(block1);
  226. blockSumErr=0;
  227. for(i=0;i<64;i++) {
  228. v = abs(block[i] - block1[i]);
  229. if (v > err_inf)
  230. err_inf = v;
  231. err2 += v * v;
  232. sysErr[i] += block[i] - block1[i];
  233. blockSumErr += v;
  234. if( abs(block[i])>maxout) maxout=abs(block[i]);
  235. }
  236. if(blockSumErrMax < blockSumErr) blockSumErrMax= blockSumErr;
  237. #if 0 // print different matrix pairs
  238. if(blockSumErr){
  239. printf("\n");
  240. for(i=0; i<64; i++){
  241. if((i&7)==0) printf("\n");
  242. printf("%4d ", block_org[i]);
  243. }
  244. for(i=0; i<64; i++){
  245. if((i&7)==0) printf("\n");
  246. printf("%4d ", block[i] - block1[i]);
  247. }
  248. }
  249. #endif
  250. }
  251. for(i=0; i<64; i++) sysErrMax= FFMAX(sysErrMax, FFABS(sysErr[i]));
  252. #if 1 // dump systematic errors
  253. for(i=0; i<64; i++){
  254. if(i%8==0) printf("\n");
  255. printf("%5d ", (int)sysErr[i]);
  256. }
  257. printf("\n");
  258. #endif
  259. printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
  260. is_idct ? "IDCT" : "DCT",
  261. name, err_inf, (double)err2 / NB_ITS / 64.0, (double)sysErrMax / NB_ITS, maxout, blockSumErrMax);
  262. #if 1 //Speed test
  263. /* speed test */
  264. for(i=0;i<64;i++)
  265. block1[i] = 0;
  266. switch(test){
  267. case 0:
  268. for(i=0;i<64;i++)
  269. block1[i] = (random() % 512) -256;
  270. if (is_idct){
  271. fdct(block1);
  272. for(i=0;i<64;i++)
  273. block1[i]>>=3;
  274. }
  275. break;
  276. case 1:{
  277. case 2:
  278. block1[0] = (random() % 512) -256;
  279. block1[1] = (random() % 512) -256;
  280. block1[2] = (random() % 512) -256;
  281. block1[3] = (random() % 512) -256;
  282. }break;
  283. }
  284. if (form == MMX_PERM) {
  285. for(i=0;i<64;i++)
  286. block[idct_mmx_perm[i]] = block1[i];
  287. } else if(form == MMX_SIMPLE_PERM) {
  288. for(i=0;i<64;i++)
  289. block[idct_simple_mmx_perm[i]] = block1[i];
  290. } else {
  291. for(i=0; i<64; i++)
  292. block[i]= block1[i];
  293. }
  294. ti = gettime();
  295. it1 = 0;
  296. do {
  297. for(it=0;it<NB_ITS_SPEED;it++) {
  298. for(i=0; i<64; i++)
  299. block[i]= block1[i];
  300. // memcpy(block, block1, sizeof(DCTELEM) * 64);
  301. // do not memcpy especially not fastmemcpy because it does movntq !!!
  302. fdct_func(block);
  303. }
  304. it1 += NB_ITS_SPEED;
  305. ti1 = gettime() - ti;
  306. } while (ti1 < 1000000);
  307. mmx_emms();
  308. printf("%s %s: %0.1f kdct/s\n",
  309. is_idct ? "IDCT" : "DCT",
  310. name, (double)it1 * 1000.0 / (double)ti1);
  311. #endif
  312. }
  313. static uint8_t img_dest[64] __attribute__ ((aligned (8)));
  314. static uint8_t img_dest1[64] __attribute__ ((aligned (8)));
  315. void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
  316. {
  317. static int init;
  318. static double c8[8][8];
  319. static double c4[4][4];
  320. double block1[64], block2[64], block3[64];
  321. double s, sum, v;
  322. int i, j, k;
  323. if (!init) {
  324. init = 1;
  325. for(i=0;i<8;i++) {
  326. sum = 0;
  327. for(j=0;j<8;j++) {
  328. s = (i==0) ? sqrt(1.0/8.0) : sqrt(1.0/4.0);
  329. c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
  330. sum += c8[i][j] * c8[i][j];
  331. }
  332. }
  333. for(i=0;i<4;i++) {
  334. sum = 0;
  335. for(j=0;j<4;j++) {
  336. s = (i==0) ? sqrt(1.0/4.0) : sqrt(1.0/2.0);
  337. c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
  338. sum += c4[i][j] * c4[i][j];
  339. }
  340. }
  341. }
  342. /* butterfly */
  343. s = 0.5 * sqrt(2.0);
  344. for(i=0;i<4;i++) {
  345. for(j=0;j<8;j++) {
  346. block1[8*(2*i)+j] = (block[8*(2*i)+j] + block[8*(2*i+1)+j]) * s;
  347. block1[8*(2*i+1)+j] = (block[8*(2*i)+j] - block[8*(2*i+1)+j]) * s;
  348. }
  349. }
  350. /* idct8 on lines */
  351. for(i=0;i<8;i++) {
  352. for(j=0;j<8;j++) {
  353. sum = 0;
  354. for(k=0;k<8;k++)
  355. sum += c8[k][j] * block1[8*i+k];
  356. block2[8*i+j] = sum;
  357. }
  358. }
  359. /* idct4 */
  360. for(i=0;i<8;i++) {
  361. for(j=0;j<4;j++) {
  362. /* top */
  363. sum = 0;
  364. for(k=0;k<4;k++)
  365. sum += c4[k][j] * block2[8*(2*k)+i];
  366. block3[8*(2*j)+i] = sum;
  367. /* bottom */
  368. sum = 0;
  369. for(k=0;k<4;k++)
  370. sum += c4[k][j] * block2[8*(2*k+1)+i];
  371. block3[8*(2*j+1)+i] = sum;
  372. }
  373. }
  374. /* clamp and store the result */
  375. for(i=0;i<8;i++) {
  376. for(j=0;j<8;j++) {
  377. v = block3[8*i+j];
  378. if (v < 0)
  379. v = 0;
  380. else if (v > 255)
  381. v = 255;
  382. dest[i * linesize + j] = (int)rint(v);
  383. }
  384. }
  385. }
  386. void idct248_error(const char *name,
  387. void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block))
  388. {
  389. int it, i, it1, ti, ti1, err_max, v;
  390. srandom(0);
  391. /* just one test to see if code is correct (precision is less
  392. important here) */
  393. err_max = 0;
  394. for(it=0;it<NB_ITS;it++) {
  395. /* XXX: use forward transform to generate values */
  396. for(i=0;i<64;i++)
  397. block1[i] = (random() % 256) - 128;
  398. block1[0] += 1024;
  399. for(i=0; i<64; i++)
  400. block[i]= block1[i];
  401. idct248_ref(img_dest1, 8, block);
  402. for(i=0; i<64; i++)
  403. block[i]= block1[i];
  404. idct248_put(img_dest, 8, block);
  405. for(i=0;i<64;i++) {
  406. v = abs((int)img_dest[i] - (int)img_dest1[i]);
  407. if (v == 255)
  408. printf("%d %d\n", img_dest[i], img_dest1[i]);
  409. if (v > err_max)
  410. err_max = v;
  411. }
  412. #if 0
  413. printf("ref=\n");
  414. for(i=0;i<8;i++) {
  415. int j;
  416. for(j=0;j<8;j++) {
  417. printf(" %3d", img_dest1[i*8+j]);
  418. }
  419. printf("\n");
  420. }
  421. printf("out=\n");
  422. for(i=0;i<8;i++) {
  423. int j;
  424. for(j=0;j<8;j++) {
  425. printf(" %3d", img_dest[i*8+j]);
  426. }
  427. printf("\n");
  428. }
  429. #endif
  430. }
  431. printf("%s %s: err_inf=%d\n",
  432. 1 ? "IDCT248" : "DCT248",
  433. name, err_max);
  434. ti = gettime();
  435. it1 = 0;
  436. do {
  437. for(it=0;it<NB_ITS_SPEED;it++) {
  438. for(i=0; i<64; i++)
  439. block[i]= block1[i];
  440. // memcpy(block, block1, sizeof(DCTELEM) * 64);
  441. // do not memcpy especially not fastmemcpy because it does movntq !!!
  442. idct248_put(img_dest, 8, block);
  443. }
  444. it1 += NB_ITS_SPEED;
  445. ti1 = gettime() - ti;
  446. } while (ti1 < 1000000);
  447. mmx_emms();
  448. printf("%s %s: %0.1f kdct/s\n",
  449. 1 ? "IDCT248" : "DCT248",
  450. name, (double)it1 * 1000.0 / (double)ti1);
  451. }
  452. void help(void)
  453. {
  454. printf("dct-test [-i] [<test-number>]\n"
  455. "test-number 0 -> test with random matrixes\n"
  456. " 1 -> test with random sparse matrixes\n"
  457. " 2 -> do 3. test from mpeg4 std\n"
  458. "-i test IDCT implementations\n"
  459. "-4 test IDCT248 implementations\n");
  460. }
  461. int main(int argc, char **argv)
  462. {
  463. int test_idct = 0, test_248_dct = 0;
  464. int c,i;
  465. int test=1;
  466. cpu_flags = mm_support();
  467. init_fdct();
  468. idct_mmx_init();
  469. for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i;
  470. for(i=0;i<MAX_NEG_CROP;i++) {
  471. cropTbl[i] = 0;
  472. cropTbl[i + MAX_NEG_CROP + 256] = 255;
  473. }
  474. for(;;) {
  475. c = getopt(argc, argv, "ih4");
  476. if (c == -1)
  477. break;
  478. switch(c) {
  479. case 'i':
  480. test_idct = 1;
  481. break;
  482. case '4':
  483. test_248_dct = 1;
  484. break;
  485. default :
  486. case 'h':
  487. help();
  488. return 0;
  489. }
  490. }
  491. if(optind <argc) test= atoi(argv[optind]);
  492. printf("ffmpeg DCT/IDCT test\n");
  493. if (test_248_dct) {
  494. idct248_error("SIMPLE-C", ff_simple_idct248_put);
  495. } else {
  496. for (i=0;algos[i].name;i++)
  497. if (algos[i].is_idct == test_idct && !(~cpu_flags & algos[i].mm_support)) {
  498. dct_error (algos[i].name, algos[i].is_idct, algos[i].func, algos[i].ref, algos[i].format, test);
  499. }
  500. }
  501. return 0;
  502. }