You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1471 lines
54KB

  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file aac.c
  24. * AAC decoder
  25. * @author Oded Shimon ( ods15 ods15 dyndns org )
  26. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  27. */
  28. /*
  29. * supported tools
  30. *
  31. * Support? Name
  32. * N (code in SoC repo) gain control
  33. * Y block switching
  34. * Y window shapes - standard
  35. * N window shapes - Low Delay
  36. * Y filterbank - standard
  37. * N (code in SoC repo) filterbank - Scalable Sample Rate
  38. * Y Temporal Noise Shaping
  39. * N (code in SoC repo) Long Term Prediction
  40. * Y intensity stereo
  41. * Y channel coupling
  42. * N frequency domain prediction
  43. * Y Perceptual Noise Substitution
  44. * Y Mid/Side stereo
  45. * N Scalable Inverse AAC Quantization
  46. * N Frequency Selective Switch
  47. * N upsampling filter
  48. * Y quantization & coding - AAC
  49. * N quantization & coding - TwinVQ
  50. * N quantization & coding - BSAC
  51. * N AAC Error Resilience tools
  52. * N Error Resilience payload syntax
  53. * N Error Protection tool
  54. * N CELP
  55. * N Silence Compression
  56. * N HVXC
  57. * N HVXC 4kbits/s VR
  58. * N Structured Audio tools
  59. * N Structured Audio Sample Bank Format
  60. * N MIDI
  61. * N Harmonic and Individual Lines plus Noise
  62. * N Text-To-Speech Interface
  63. * N (in progress) Spectral Band Replication
  64. * Y (not in this code) Layer-1
  65. * Y (not in this code) Layer-2
  66. * Y (not in this code) Layer-3
  67. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  68. * N (planned) Parametric Stereo
  69. * N Direct Stream Transfer
  70. *
  71. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  72. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  73. Parametric Stereo.
  74. */
  75. #include "avcodec.h"
  76. #include "bitstream.h"
  77. #include "dsputil.h"
  78. #include "lpc.h"
  79. #include "aac.h"
  80. #include "aactab.h"
  81. #include "aacdectab.h"
  82. #include "mpeg4audio.h"
  83. #include <assert.h>
  84. #include <errno.h>
  85. #include <math.h>
  86. #include <string.h>
  87. static VLC vlc_scalefactors;
  88. static VLC vlc_spectral[11];
  89. /**
  90. * Configure output channel order based on the current program configuration element.
  91. *
  92. * @param che_pos current channel position configuration
  93. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  94. *
  95. * @return Returns error status. 0 - OK, !0 - error
  96. */
  97. static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  98. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
  99. AVCodecContext *avctx = ac->avccontext;
  100. int i, type, channels = 0;
  101. if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
  102. return 0; /* no change */
  103. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  104. /* Allocate or free elements depending on if they are in the
  105. * current program configuration.
  106. *
  107. * Set up default 1:1 output mapping.
  108. *
  109. * For a 5.1 stream the output order will be:
  110. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  111. */
  112. for(i = 0; i < MAX_ELEM_ID; i++) {
  113. for(type = 0; type < 4; type++) {
  114. if(che_pos[type][i]) {
  115. if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
  116. return AVERROR(ENOMEM);
  117. if(type != TYPE_CCE) {
  118. ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
  119. if(type == TYPE_CPE) {
  120. ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
  121. }
  122. }
  123. } else
  124. av_freep(&ac->che[type][i]);
  125. }
  126. }
  127. avctx->channels = channels;
  128. return 0;
  129. }
  130. /**
  131. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  132. *
  133. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  134. * @param sce_map mono (Single Channel Element) map
  135. * @param type speaker type/position for these channels
  136. */
  137. static void decode_channel_map(enum ChannelPosition *cpe_map,
  138. enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
  139. while(n--) {
  140. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  141. map[get_bits(gb, 4)] = type;
  142. }
  143. }
  144. /**
  145. * Decode program configuration element; reference: table 4.2.
  146. *
  147. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  148. *
  149. * @return Returns error status. 0 - OK, !0 - error
  150. */
  151. static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  152. GetBitContext * gb) {
  153. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
  154. skip_bits(gb, 2); // object_type
  155. ac->m4ac.sampling_index = get_bits(gb, 4);
  156. if(ac->m4ac.sampling_index > 11) {
  157. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  158. return -1;
  159. }
  160. ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
  161. num_front = get_bits(gb, 4);
  162. num_side = get_bits(gb, 4);
  163. num_back = get_bits(gb, 4);
  164. num_lfe = get_bits(gb, 2);
  165. num_assoc_data = get_bits(gb, 3);
  166. num_cc = get_bits(gb, 4);
  167. if (get_bits1(gb))
  168. skip_bits(gb, 4); // mono_mixdown_tag
  169. if (get_bits1(gb))
  170. skip_bits(gb, 4); // stereo_mixdown_tag
  171. if (get_bits1(gb))
  172. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  173. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  174. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  175. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  176. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  177. skip_bits_long(gb, 4 * num_assoc_data);
  178. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  179. align_get_bits(gb);
  180. /* comment field, first byte is length */
  181. skip_bits_long(gb, 8 * get_bits(gb, 8));
  182. return 0;
  183. }
  184. /**
  185. * Set up channel positions based on a default channel configuration
  186. * as specified in table 1.17.
  187. *
  188. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  189. *
  190. * @return Returns error status. 0 - OK, !0 - error
  191. */
  192. static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  193. int channel_config)
  194. {
  195. if(channel_config < 1 || channel_config > 7) {
  196. av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  197. channel_config);
  198. return -1;
  199. }
  200. /* default channel configurations:
  201. *
  202. * 1ch : front center (mono)
  203. * 2ch : L + R (stereo)
  204. * 3ch : front center + L + R
  205. * 4ch : front center + L + R + back center
  206. * 5ch : front center + L + R + back stereo
  207. * 6ch : front center + L + R + back stereo + LFE
  208. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  209. */
  210. if(channel_config != 2)
  211. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  212. if(channel_config > 1)
  213. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  214. if(channel_config == 4)
  215. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  216. if(channel_config > 4)
  217. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  218. = AAC_CHANNEL_BACK; // back stereo
  219. if(channel_config > 5)
  220. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  221. if(channel_config == 7)
  222. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  223. return 0;
  224. }
  225. /**
  226. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  227. *
  228. * @return Returns error status. 0 - OK, !0 - error
  229. */
  230. static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
  231. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  232. int extension_flag, ret;
  233. if(get_bits1(gb)) { // frameLengthFlag
  234. av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
  235. return -1;
  236. }
  237. if (get_bits1(gb)) // dependsOnCoreCoder
  238. skip_bits(gb, 14); // coreCoderDelay
  239. extension_flag = get_bits1(gb);
  240. if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
  241. ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
  242. skip_bits(gb, 3); // layerNr
  243. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  244. if (channel_config == 0) {
  245. skip_bits(gb, 4); // element_instance_tag
  246. if((ret = decode_pce(ac, new_che_pos, gb)))
  247. return ret;
  248. } else {
  249. if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
  250. return ret;
  251. }
  252. if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
  253. return ret;
  254. if (extension_flag) {
  255. switch (ac->m4ac.object_type) {
  256. case AOT_ER_BSAC:
  257. skip_bits(gb, 5); // numOfSubFrame
  258. skip_bits(gb, 11); // layer_length
  259. break;
  260. case AOT_ER_AAC_LC:
  261. case AOT_ER_AAC_LTP:
  262. case AOT_ER_AAC_SCALABLE:
  263. case AOT_ER_AAC_LD:
  264. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  265. * aacScalefactorDataResilienceFlag
  266. * aacSpectralDataResilienceFlag
  267. */
  268. break;
  269. }
  270. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  271. }
  272. return 0;
  273. }
  274. /**
  275. * Decode audio specific configuration; reference: table 1.13.
  276. *
  277. * @param data pointer to AVCodecContext extradata
  278. * @param data_size size of AVCCodecContext extradata
  279. *
  280. * @return Returns error status. 0 - OK, !0 - error
  281. */
  282. static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
  283. GetBitContext gb;
  284. int i;
  285. init_get_bits(&gb, data, data_size * 8);
  286. if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
  287. return -1;
  288. if(ac->m4ac.sampling_index > 11) {
  289. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  290. return -1;
  291. }
  292. skip_bits_long(&gb, i);
  293. switch (ac->m4ac.object_type) {
  294. case AOT_AAC_LC:
  295. if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
  296. return -1;
  297. break;
  298. default:
  299. av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  300. ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
  301. return -1;
  302. }
  303. return 0;
  304. }
  305. /**
  306. * linear congruential pseudorandom number generator
  307. *
  308. * @param previous_val pointer to the current state of the generator
  309. *
  310. * @return Returns a 32-bit pseudorandom integer
  311. */
  312. static av_always_inline int lcg_random(int previous_val) {
  313. return previous_val * 1664525 + 1013904223;
  314. }
  315. static av_cold int aac_decode_init(AVCodecContext * avccontext) {
  316. AACContext * ac = avccontext->priv_data;
  317. int i;
  318. ac->avccontext = avccontext;
  319. if (avccontext->extradata_size <= 0 ||
  320. decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
  321. return -1;
  322. avccontext->sample_fmt = SAMPLE_FMT_S16;
  323. avccontext->sample_rate = ac->m4ac.sample_rate;
  324. avccontext->frame_size = 1024;
  325. AAC_INIT_VLC_STATIC( 0, 144);
  326. AAC_INIT_VLC_STATIC( 1, 114);
  327. AAC_INIT_VLC_STATIC( 2, 188);
  328. AAC_INIT_VLC_STATIC( 3, 180);
  329. AAC_INIT_VLC_STATIC( 4, 172);
  330. AAC_INIT_VLC_STATIC( 5, 140);
  331. AAC_INIT_VLC_STATIC( 6, 168);
  332. AAC_INIT_VLC_STATIC( 7, 114);
  333. AAC_INIT_VLC_STATIC( 8, 262);
  334. AAC_INIT_VLC_STATIC( 9, 248);
  335. AAC_INIT_VLC_STATIC(10, 384);
  336. dsputil_init(&ac->dsp, avccontext);
  337. ac->random_state = 0x1f2e3d4c;
  338. // -1024 - Compensate wrong IMDCT method.
  339. // 32768 - Required to scale values to the correct range for the bias method
  340. // for float to int16 conversion.
  341. if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
  342. ac->add_bias = 385.0f;
  343. ac->sf_scale = 1. / (-1024. * 32768.);
  344. ac->sf_offset = 0;
  345. } else {
  346. ac->add_bias = 0.0f;
  347. ac->sf_scale = 1. / -1024.;
  348. ac->sf_offset = 60;
  349. }
  350. #ifndef CONFIG_HARDCODED_TABLES
  351. for (i = 0; i < 316; i++)
  352. ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
  353. #endif /* CONFIG_HARDCODED_TABLES */
  354. INIT_VLC_STATIC(&vlc_scalefactors, 7, sizeof(ff_aac_scalefactor_code)/sizeof(ff_aac_scalefactor_code[0]),
  355. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  356. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  357. 352);
  358. ff_mdct_init(&ac->mdct, 11, 1);
  359. ff_mdct_init(&ac->mdct_small, 8, 1);
  360. // window initialization
  361. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  362. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  363. ff_sine_window_init(ff_sine_1024, 1024);
  364. ff_sine_window_init(ff_sine_128, 128);
  365. return 0;
  366. }
  367. /**
  368. * Skip data_stream_element; reference: table 4.10.
  369. */
  370. static void skip_data_stream_element(GetBitContext * gb) {
  371. int byte_align = get_bits1(gb);
  372. int count = get_bits(gb, 8);
  373. if (count == 255)
  374. count += get_bits(gb, 8);
  375. if (byte_align)
  376. align_get_bits(gb);
  377. skip_bits_long(gb, 8 * count);
  378. }
  379. /**
  380. * Decode Individual Channel Stream info; reference: table 4.6.
  381. *
  382. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  383. */
  384. static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
  385. if (get_bits1(gb)) {
  386. av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
  387. memset(ics, 0, sizeof(IndividualChannelStream));
  388. return -1;
  389. }
  390. ics->window_sequence[1] = ics->window_sequence[0];
  391. ics->window_sequence[0] = get_bits(gb, 2);
  392. ics->use_kb_window[1] = ics->use_kb_window[0];
  393. ics->use_kb_window[0] = get_bits1(gb);
  394. ics->num_window_groups = 1;
  395. ics->group_len[0] = 1;
  396. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  397. int i;
  398. ics->max_sfb = get_bits(gb, 4);
  399. for (i = 0; i < 7; i++) {
  400. if (get_bits1(gb)) {
  401. ics->group_len[ics->num_window_groups-1]++;
  402. } else {
  403. ics->num_window_groups++;
  404. ics->group_len[ics->num_window_groups-1] = 1;
  405. }
  406. }
  407. ics->num_windows = 8;
  408. ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
  409. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  410. ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
  411. } else {
  412. ics->max_sfb = get_bits(gb, 6);
  413. ics->num_windows = 1;
  414. ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
  415. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  416. ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
  417. if (get_bits1(gb)) {
  418. av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
  419. memset(ics, 0, sizeof(IndividualChannelStream));
  420. return -1;
  421. }
  422. }
  423. if(ics->max_sfb > ics->num_swb) {
  424. av_log(ac->avccontext, AV_LOG_ERROR,
  425. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  426. ics->max_sfb, ics->num_swb);
  427. memset(ics, 0, sizeof(IndividualChannelStream));
  428. return -1;
  429. }
  430. return 0;
  431. }
  432. /**
  433. * Decode band types (section_data payload); reference: table 4.46.
  434. *
  435. * @param band_type array of the used band type
  436. * @param band_type_run_end array of the last scalefactor band of a band type run
  437. *
  438. * @return Returns error status. 0 - OK, !0 - error
  439. */
  440. static int decode_band_types(AACContext * ac, enum BandType band_type[120],
  441. int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
  442. int g, idx = 0;
  443. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  444. for (g = 0; g < ics->num_window_groups; g++) {
  445. int k = 0;
  446. while (k < ics->max_sfb) {
  447. uint8_t sect_len = k;
  448. int sect_len_incr;
  449. int sect_band_type = get_bits(gb, 4);
  450. if (sect_band_type == 12) {
  451. av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
  452. return -1;
  453. }
  454. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
  455. sect_len += sect_len_incr;
  456. sect_len += sect_len_incr;
  457. if (sect_len > ics->max_sfb) {
  458. av_log(ac->avccontext, AV_LOG_ERROR,
  459. "Number of bands (%d) exceeds limit (%d).\n",
  460. sect_len, ics->max_sfb);
  461. return -1;
  462. }
  463. for (; k < sect_len; k++) {
  464. band_type [idx] = sect_band_type;
  465. band_type_run_end[idx++] = sect_len;
  466. }
  467. }
  468. }
  469. return 0;
  470. }
  471. /**
  472. * Decode scalefactors; reference: table 4.47.
  473. *
  474. * @param global_gain first scalefactor value as scalefactors are differentially coded
  475. * @param band_type array of the used band type
  476. * @param band_type_run_end array of the last scalefactor band of a band type run
  477. * @param sf array of scalefactors or intensity stereo positions
  478. *
  479. * @return Returns error status. 0 - OK, !0 - error
  480. */
  481. static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
  482. unsigned int global_gain, IndividualChannelStream * ics,
  483. enum BandType band_type[120], int band_type_run_end[120]) {
  484. const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
  485. int g, i, idx = 0;
  486. int offset[3] = { global_gain, global_gain - 90, 100 };
  487. int noise_flag = 1;
  488. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  489. for (g = 0; g < ics->num_window_groups; g++) {
  490. for (i = 0; i < ics->max_sfb;) {
  491. int run_end = band_type_run_end[idx];
  492. if (band_type[idx] == ZERO_BT) {
  493. for(; i < run_end; i++, idx++)
  494. sf[idx] = 0.;
  495. }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  496. for(; i < run_end; i++, idx++) {
  497. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  498. if(offset[2] > 255U) {
  499. av_log(ac->avccontext, AV_LOG_ERROR,
  500. "%s (%d) out of range.\n", sf_str[2], offset[2]);
  501. return -1;
  502. }
  503. sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
  504. }
  505. }else if(band_type[idx] == NOISE_BT) {
  506. for(; i < run_end; i++, idx++) {
  507. if(noise_flag-- > 0)
  508. offset[1] += get_bits(gb, 9) - 256;
  509. else
  510. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  511. if(offset[1] > 255U) {
  512. av_log(ac->avccontext, AV_LOG_ERROR,
  513. "%s (%d) out of range.\n", sf_str[1], offset[1]);
  514. return -1;
  515. }
  516. sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset];
  517. }
  518. }else {
  519. for(; i < run_end; i++, idx++) {
  520. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  521. if(offset[0] > 255U) {
  522. av_log(ac->avccontext, AV_LOG_ERROR,
  523. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  524. return -1;
  525. }
  526. sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
  527. }
  528. }
  529. }
  530. }
  531. return 0;
  532. }
  533. /**
  534. * Decode pulse data; reference: table 4.7.
  535. */
  536. static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
  537. int i, pulse_swb;
  538. pulse->num_pulse = get_bits(gb, 2) + 1;
  539. pulse_swb = get_bits(gb, 6);
  540. if (pulse_swb >= num_swb)
  541. return -1;
  542. pulse->pos[0] = swb_offset[pulse_swb];
  543. pulse->pos[0] += get_bits(gb, 5);
  544. if (pulse->pos[0] > 1023)
  545. return -1;
  546. pulse->amp[0] = get_bits(gb, 4);
  547. for (i = 1; i < pulse->num_pulse; i++) {
  548. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
  549. if (pulse->pos[i] > 1023)
  550. return -1;
  551. pulse->amp[i] = get_bits(gb, 4);
  552. }
  553. return 0;
  554. }
  555. /**
  556. * Decode Temporal Noise Shaping data; reference: table 4.48.
  557. *
  558. * @return Returns error status. 0 - OK, !0 - error
  559. */
  560. static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
  561. GetBitContext * gb, const IndividualChannelStream * ics) {
  562. int w, filt, i, coef_len, coef_res, coef_compress;
  563. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  564. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  565. for (w = 0; w < ics->num_windows; w++) {
  566. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  567. coef_res = get_bits1(gb);
  568. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  569. int tmp2_idx;
  570. tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
  571. if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
  572. av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
  573. tns->order[w][filt], tns_max_order);
  574. tns->order[w][filt] = 0;
  575. return -1;
  576. }
  577. if (tns->order[w][filt]) {
  578. tns->direction[w][filt] = get_bits1(gb);
  579. coef_compress = get_bits1(gb);
  580. coef_len = coef_res + 3 - coef_compress;
  581. tmp2_idx = 2*coef_compress + coef_res;
  582. for (i = 0; i < tns->order[w][filt]; i++)
  583. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  584. }
  585. }
  586. }
  587. }
  588. return 0;
  589. }
  590. /**
  591. * Decode Mid/Side data; reference: table 4.54.
  592. *
  593. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  594. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  595. * [3] reserved for scalable AAC
  596. */
  597. static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
  598. int ms_present) {
  599. int idx;
  600. if (ms_present == 1) {
  601. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  602. cpe->ms_mask[idx] = get_bits1(gb);
  603. } else if (ms_present == 2) {
  604. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  605. }
  606. }
  607. /**
  608. * Decode spectral data; reference: table 4.50.
  609. * Dequantize and scale spectral data; reference: 4.6.3.3.
  610. *
  611. * @param coef array of dequantized, scaled spectral data
  612. * @param sf array of scalefactors or intensity stereo positions
  613. * @param pulse_present set if pulses are present
  614. * @param pulse pointer to pulse data struct
  615. * @param band_type array of the used band type
  616. *
  617. * @return Returns error status. 0 - OK, !0 - error
  618. */
  619. static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
  620. int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
  621. int i, k, g, idx = 0;
  622. const int c = 1024/ics->num_windows;
  623. const uint16_t * offsets = ics->swb_offset;
  624. float *coef_base = coef;
  625. for (g = 0; g < ics->num_windows; g++)
  626. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
  627. for (g = 0; g < ics->num_window_groups; g++) {
  628. for (i = 0; i < ics->max_sfb; i++, idx++) {
  629. const int cur_band_type = band_type[idx];
  630. const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
  631. const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
  632. int group;
  633. if (cur_band_type == ZERO_BT) {
  634. for (group = 0; group < ics->group_len[g]; group++) {
  635. memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
  636. }
  637. }else if (cur_band_type == NOISE_BT) {
  638. const float scale = sf[idx] / ((offsets[i+1] - offsets[i]) * PNS_MEAN_ENERGY);
  639. for (group = 0; group < ics->group_len[g]; group++) {
  640. for (k = offsets[i]; k < offsets[i+1]; k++) {
  641. ac->random_state = lcg_random(ac->random_state);
  642. coef[group*128+k] = ac->random_state * scale;
  643. }
  644. }
  645. }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
  646. for (group = 0; group < ics->group_len[g]; group++) {
  647. for (k = offsets[i]; k < offsets[i+1]; k += dim) {
  648. const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
  649. const int coef_tmp_idx = (group << 7) + k;
  650. const float *vq_ptr;
  651. int j;
  652. if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
  653. av_log(ac->avccontext, AV_LOG_ERROR,
  654. "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
  655. cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
  656. return -1;
  657. }
  658. vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
  659. if (is_cb_unsigned) {
  660. for (j = 0; j < dim; j++)
  661. if (vq_ptr[j])
  662. coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
  663. }else {
  664. for (j = 0; j < dim; j++)
  665. coef[coef_tmp_idx + j] = 1.0f;
  666. }
  667. if (cur_band_type == ESC_BT) {
  668. for (j = 0; j < 2; j++) {
  669. if (vq_ptr[j] == 64.0f) {
  670. int n = 4;
  671. /* The total length of escape_sequence must be < 22 bits according
  672. to the specification (i.e. max is 11111111110xxxxxxxxxx). */
  673. while (get_bits1(gb) && n < 15) n++;
  674. if(n == 15) {
  675. av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  676. return -1;
  677. }
  678. n = (1<<n) + get_bits(gb, n);
  679. coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
  680. }else
  681. coef[coef_tmp_idx + j] *= vq_ptr[j];
  682. }
  683. }else
  684. for (j = 0; j < dim; j++)
  685. coef[coef_tmp_idx + j] *= vq_ptr[j];
  686. for (j = 0; j < dim; j++)
  687. coef[coef_tmp_idx + j] *= sf[idx];
  688. }
  689. }
  690. }
  691. }
  692. coef += ics->group_len[g]<<7;
  693. }
  694. if (pulse_present) {
  695. idx = 0;
  696. for(i = 0; i < pulse->num_pulse; i++){
  697. float co = coef_base[ pulse->pos[i] ];
  698. while(offsets[idx + 1] <= pulse->pos[i])
  699. idx++;
  700. if (band_type[idx] != NOISE_BT && sf[idx]) {
  701. float ico = -pulse->amp[i];
  702. if (co) {
  703. co /= sf[idx];
  704. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  705. }
  706. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  707. }
  708. }
  709. }
  710. return 0;
  711. }
  712. /**
  713. * Decode an individual_channel_stream payload; reference: table 4.44.
  714. *
  715. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  716. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  717. *
  718. * @return Returns error status. 0 - OK, !0 - error
  719. */
  720. static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
  721. Pulse pulse;
  722. TemporalNoiseShaping * tns = &sce->tns;
  723. IndividualChannelStream * ics = &sce->ics;
  724. float * out = sce->coeffs;
  725. int global_gain, pulse_present = 0;
  726. /* This assignment is to silence a GCC warning about the variable being used
  727. * uninitialized when in fact it always is.
  728. */
  729. pulse.num_pulse = 0;
  730. global_gain = get_bits(gb, 8);
  731. if (!common_window && !scale_flag) {
  732. if (decode_ics_info(ac, ics, gb, 0) < 0)
  733. return -1;
  734. }
  735. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  736. return -1;
  737. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  738. return -1;
  739. pulse_present = 0;
  740. if (!scale_flag) {
  741. if ((pulse_present = get_bits1(gb))) {
  742. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  743. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  744. return -1;
  745. }
  746. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  747. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  748. return -1;
  749. }
  750. }
  751. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  752. return -1;
  753. if (get_bits1(gb)) {
  754. av_log_missing_feature(ac->avccontext, "SSR", 1);
  755. return -1;
  756. }
  757. }
  758. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  759. return -1;
  760. return 0;
  761. }
  762. /**
  763. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  764. */
  765. static void apply_mid_side_stereo(ChannelElement * cpe) {
  766. const IndividualChannelStream * ics = &cpe->ch[0].ics;
  767. float *ch0 = cpe->ch[0].coeffs;
  768. float *ch1 = cpe->ch[1].coeffs;
  769. int g, i, k, group, idx = 0;
  770. const uint16_t * offsets = ics->swb_offset;
  771. for (g = 0; g < ics->num_window_groups; g++) {
  772. for (i = 0; i < ics->max_sfb; i++, idx++) {
  773. if (cpe->ms_mask[idx] &&
  774. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  775. for (group = 0; group < ics->group_len[g]; group++) {
  776. for (k = offsets[i]; k < offsets[i+1]; k++) {
  777. float tmp = ch0[group*128 + k] - ch1[group*128 + k];
  778. ch0[group*128 + k] += ch1[group*128 + k];
  779. ch1[group*128 + k] = tmp;
  780. }
  781. }
  782. }
  783. }
  784. ch0 += ics->group_len[g]*128;
  785. ch1 += ics->group_len[g]*128;
  786. }
  787. }
  788. /**
  789. * intensity stereo decoding; reference: 4.6.8.2.3
  790. *
  791. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  792. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  793. * [3] reserved for scalable AAC
  794. */
  795. static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
  796. const IndividualChannelStream * ics = &cpe->ch[1].ics;
  797. SingleChannelElement * sce1 = &cpe->ch[1];
  798. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  799. const uint16_t * offsets = ics->swb_offset;
  800. int g, group, i, k, idx = 0;
  801. int c;
  802. float scale;
  803. for (g = 0; g < ics->num_window_groups; g++) {
  804. for (i = 0; i < ics->max_sfb;) {
  805. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  806. const int bt_run_end = sce1->band_type_run_end[idx];
  807. for (; i < bt_run_end; i++, idx++) {
  808. c = -1 + 2 * (sce1->band_type[idx] - 14);
  809. if (ms_present)
  810. c *= 1 - 2 * cpe->ms_mask[idx];
  811. scale = c * sce1->sf[idx];
  812. for (group = 0; group < ics->group_len[g]; group++)
  813. for (k = offsets[i]; k < offsets[i+1]; k++)
  814. coef1[group*128 + k] = scale * coef0[group*128 + k];
  815. }
  816. } else {
  817. int bt_run_end = sce1->band_type_run_end[idx];
  818. idx += bt_run_end - i;
  819. i = bt_run_end;
  820. }
  821. }
  822. coef0 += ics->group_len[g]*128;
  823. coef1 += ics->group_len[g]*128;
  824. }
  825. }
  826. /**
  827. * Decode a channel_pair_element; reference: table 4.4.
  828. *
  829. * @param elem_id Identifies the instance of a syntax element.
  830. *
  831. * @return Returns error status. 0 - OK, !0 - error
  832. */
  833. static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
  834. int i, ret, common_window, ms_present = 0;
  835. ChannelElement * cpe;
  836. cpe = ac->che[TYPE_CPE][elem_id];
  837. common_window = get_bits1(gb);
  838. if (common_window) {
  839. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  840. return -1;
  841. i = cpe->ch[1].ics.use_kb_window[0];
  842. cpe->ch[1].ics = cpe->ch[0].ics;
  843. cpe->ch[1].ics.use_kb_window[1] = i;
  844. ms_present = get_bits(gb, 2);
  845. if(ms_present == 3) {
  846. av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  847. return -1;
  848. } else if(ms_present)
  849. decode_mid_side_stereo(cpe, gb, ms_present);
  850. }
  851. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  852. return ret;
  853. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  854. return ret;
  855. if (common_window && ms_present)
  856. apply_mid_side_stereo(cpe);
  857. apply_intensity_stereo(cpe, ms_present);
  858. return 0;
  859. }
  860. /**
  861. * Decode coupling_channel_element; reference: table 4.8.
  862. *
  863. * @param elem_id Identifies the instance of a syntax element.
  864. *
  865. * @return Returns error status. 0 - OK, !0 - error
  866. */
  867. static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
  868. int num_gain = 0;
  869. int c, g, sfb, ret;
  870. int sign;
  871. float scale;
  872. SingleChannelElement * sce = &che->ch[0];
  873. ChannelCoupling * coup = &che->coup;
  874. coup->coupling_point = 2*get_bits1(gb);
  875. coup->num_coupled = get_bits(gb, 3);
  876. for (c = 0; c <= coup->num_coupled; c++) {
  877. num_gain++;
  878. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  879. coup->id_select[c] = get_bits(gb, 4);
  880. if (coup->type[c] == TYPE_CPE) {
  881. coup->ch_select[c] = get_bits(gb, 2);
  882. if (coup->ch_select[c] == 3)
  883. num_gain++;
  884. } else
  885. coup->ch_select[c] = 1;
  886. }
  887. coup->coupling_point += get_bits1(gb);
  888. if (coup->coupling_point == 2) {
  889. av_log(ac->avccontext, AV_LOG_ERROR,
  890. "Independently switched CCE with 'invalid' domain signalled.\n");
  891. memset(coup, 0, sizeof(ChannelCoupling));
  892. return -1;
  893. }
  894. sign = get_bits(gb, 1);
  895. scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
  896. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  897. return ret;
  898. for (c = 0; c < num_gain; c++) {
  899. int idx = 0;
  900. int cge = 1;
  901. int gain = 0;
  902. float gain_cache = 1.;
  903. if (c) {
  904. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  905. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  906. gain_cache = pow(scale, gain);
  907. }
  908. for (g = 0; g < sce->ics.num_window_groups; g++) {
  909. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  910. if (sce->band_type[idx] != ZERO_BT) {
  911. if (!cge) {
  912. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  913. if (t) {
  914. int s = 1;
  915. if (sign) {
  916. s -= 2 * (t & 0x1);
  917. t >>= 1;
  918. }
  919. gain += t;
  920. gain_cache = pow(scale, gain) * s;
  921. }
  922. }
  923. coup->gain[c][idx] = gain_cache;
  924. }
  925. }
  926. }
  927. }
  928. return 0;
  929. }
  930. /**
  931. * Decode Spectral Band Replication extension data; reference: table 4.55.
  932. *
  933. * @param crc flag indicating the presence of CRC checksum
  934. * @param cnt length of TYPE_FIL syntactic element in bytes
  935. *
  936. * @return Returns number of bytes consumed from the TYPE_FIL element.
  937. */
  938. static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
  939. // TODO : sbr_extension implementation
  940. av_log_missing_feature(ac->avccontext, "SBR", 0);
  941. skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
  942. return cnt;
  943. }
  944. /**
  945. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  946. *
  947. * @return Returns number of bytes consumed.
  948. */
  949. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
  950. int i;
  951. int num_excl_chan = 0;
  952. do {
  953. for (i = 0; i < 7; i++)
  954. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  955. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  956. return num_excl_chan / 7;
  957. }
  958. /**
  959. * Decode dynamic range information; reference: table 4.52.
  960. *
  961. * @param cnt length of TYPE_FIL syntactic element in bytes
  962. *
  963. * @return Returns number of bytes consumed.
  964. */
  965. static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
  966. int n = 1;
  967. int drc_num_bands = 1;
  968. int i;
  969. /* pce_tag_present? */
  970. if(get_bits1(gb)) {
  971. che_drc->pce_instance_tag = get_bits(gb, 4);
  972. skip_bits(gb, 4); // tag_reserved_bits
  973. n++;
  974. }
  975. /* excluded_chns_present? */
  976. if(get_bits1(gb)) {
  977. n += decode_drc_channel_exclusions(che_drc, gb);
  978. }
  979. /* drc_bands_present? */
  980. if (get_bits1(gb)) {
  981. che_drc->band_incr = get_bits(gb, 4);
  982. che_drc->interpolation_scheme = get_bits(gb, 4);
  983. n++;
  984. drc_num_bands += che_drc->band_incr;
  985. for (i = 0; i < drc_num_bands; i++) {
  986. che_drc->band_top[i] = get_bits(gb, 8);
  987. n++;
  988. }
  989. }
  990. /* prog_ref_level_present? */
  991. if (get_bits1(gb)) {
  992. che_drc->prog_ref_level = get_bits(gb, 7);
  993. skip_bits1(gb); // prog_ref_level_reserved_bits
  994. n++;
  995. }
  996. for (i = 0; i < drc_num_bands; i++) {
  997. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  998. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  999. n++;
  1000. }
  1001. return n;
  1002. }
  1003. /**
  1004. * Decode extension data (incomplete); reference: table 4.51.
  1005. *
  1006. * @param cnt length of TYPE_FIL syntactic element in bytes
  1007. *
  1008. * @return Returns number of bytes consumed
  1009. */
  1010. static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
  1011. int crc_flag = 0;
  1012. int res = cnt;
  1013. switch (get_bits(gb, 4)) { // extension type
  1014. case EXT_SBR_DATA_CRC:
  1015. crc_flag++;
  1016. case EXT_SBR_DATA:
  1017. res = decode_sbr_extension(ac, gb, crc_flag, cnt);
  1018. break;
  1019. case EXT_DYNAMIC_RANGE:
  1020. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1021. break;
  1022. case EXT_FILL:
  1023. case EXT_FILL_DATA:
  1024. case EXT_DATA_ELEMENT:
  1025. default:
  1026. skip_bits_long(gb, 8*cnt - 4);
  1027. break;
  1028. };
  1029. return res;
  1030. }
  1031. /**
  1032. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1033. *
  1034. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1035. * @param coef spectral coefficients
  1036. */
  1037. static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
  1038. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1039. int w, filt, m, i;
  1040. int bottom, top, order, start, end, size, inc;
  1041. float lpc[TNS_MAX_ORDER];
  1042. for (w = 0; w < ics->num_windows; w++) {
  1043. bottom = ics->num_swb;
  1044. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1045. top = bottom;
  1046. bottom = FFMAX(0, top - tns->length[w][filt]);
  1047. order = tns->order[w][filt];
  1048. if (order == 0)
  1049. continue;
  1050. // tns_decode_coef
  1051. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1052. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1053. end = ics->swb_offset[FFMIN( top, mmm)];
  1054. if ((size = end - start) <= 0)
  1055. continue;
  1056. if (tns->direction[w][filt]) {
  1057. inc = -1; start = end - 1;
  1058. } else {
  1059. inc = 1;
  1060. }
  1061. start += w * 128;
  1062. // ar filter
  1063. for (m = 0; m < size; m++, start += inc)
  1064. for (i = 1; i <= FFMIN(m, order); i++)
  1065. coef[start] -= coef[start - i*inc] * lpc[i-1];
  1066. }
  1067. }
  1068. }
  1069. /**
  1070. * Conduct IMDCT and windowing.
  1071. */
  1072. static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
  1073. IndividualChannelStream * ics = &sce->ics;
  1074. float * in = sce->coeffs;
  1075. float * out = sce->ret;
  1076. float * saved = sce->saved;
  1077. const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1078. const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1079. const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1080. float * buf = ac->buf_mdct;
  1081. DECLARE_ALIGNED(16, float, temp[128]);
  1082. int i;
  1083. // imdct
  1084. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1085. if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
  1086. av_log(ac->avccontext, AV_LOG_WARNING,
  1087. "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
  1088. "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
  1089. for (i = 0; i < 1024; i += 128)
  1090. ff_imdct_half(&ac->mdct_small, buf + i, in + i);
  1091. } else
  1092. ff_imdct_half(&ac->mdct, buf, in);
  1093. /* window overlapping
  1094. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1095. * and long to short transitions are considered to be short to short
  1096. * transitions. This leaves just two cases (long to long and short to short)
  1097. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1098. */
  1099. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1100. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1101. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
  1102. } else {
  1103. for (i = 0; i < 448; i++)
  1104. out[i] = saved[i] + ac->add_bias;
  1105. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1106. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
  1107. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
  1108. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
  1109. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
  1110. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
  1111. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1112. } else {
  1113. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
  1114. for (i = 576; i < 1024; i++)
  1115. out[i] = buf[i-512] + ac->add_bias;
  1116. }
  1117. }
  1118. // buffer update
  1119. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1120. for (i = 0; i < 64; i++)
  1121. saved[i] = temp[64 + i] - ac->add_bias;
  1122. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
  1123. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
  1124. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
  1125. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1126. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1127. memcpy( saved, buf + 512, 448 * sizeof(float));
  1128. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1129. } else { // LONG_STOP or ONLY_LONG
  1130. memcpy( saved, buf + 512, 512 * sizeof(float));
  1131. }
  1132. }
  1133. /**
  1134. * Apply dependent channel coupling (applied before IMDCT).
  1135. *
  1136. * @param index index into coupling gain array
  1137. */
  1138. static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
  1139. IndividualChannelStream * ics = &cc->ch[0].ics;
  1140. const uint16_t * offsets = ics->swb_offset;
  1141. float * dest = sce->coeffs;
  1142. const float * src = cc->ch[0].coeffs;
  1143. int g, i, group, k, idx = 0;
  1144. if(ac->m4ac.object_type == AOT_AAC_LTP) {
  1145. av_log(ac->avccontext, AV_LOG_ERROR,
  1146. "Dependent coupling is not supported together with LTP\n");
  1147. return;
  1148. }
  1149. for (g = 0; g < ics->num_window_groups; g++) {
  1150. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1151. if (cc->ch[0].band_type[idx] != ZERO_BT) {
  1152. for (group = 0; group < ics->group_len[g]; group++) {
  1153. for (k = offsets[i]; k < offsets[i+1]; k++) {
  1154. // XXX dsputil-ize
  1155. dest[group*128+k] += cc->coup.gain[index][idx] * src[group*128+k];
  1156. }
  1157. }
  1158. }
  1159. }
  1160. dest += ics->group_len[g]*128;
  1161. src += ics->group_len[g]*128;
  1162. }
  1163. }
  1164. /**
  1165. * Apply independent channel coupling (applied after IMDCT).
  1166. *
  1167. * @param index index into coupling gain array
  1168. */
  1169. static void apply_independent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
  1170. int i;
  1171. for (i = 0; i < 1024; i++)
  1172. sce->ret[i] += cc->coup.gain[index][0] * (cc->ch[0].ret[i] - ac->add_bias);
  1173. }
  1174. /**
  1175. * channel coupling transformation interface
  1176. *
  1177. * @param index index into coupling gain array
  1178. * @param apply_coupling_method pointer to (in)dependent coupling function
  1179. */
  1180. static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
  1181. void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index))
  1182. {
  1183. int c;
  1184. int index = 0;
  1185. ChannelCoupling * coup = &cc->coup;
  1186. for (c = 0; c <= coup->num_coupled; c++) {
  1187. if (ac->che[coup->type[c]][coup->id_select[c]]) {
  1188. if (coup->ch_select[c] != 2) {
  1189. apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[0], cc, index);
  1190. if (coup->ch_select[c] != 0)
  1191. index++;
  1192. }
  1193. if (coup->ch_select[c] != 1)
  1194. apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[1], cc, index++);
  1195. } else {
  1196. av_log(ac->avccontext, AV_LOG_ERROR,
  1197. "coupling target %sE[%d] not available\n",
  1198. coup->type[c] == TYPE_CPE ? "CP" : "SC", coup->id_select[c]);
  1199. break;
  1200. }
  1201. }
  1202. }
  1203. /**
  1204. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1205. */
  1206. static void spectral_to_sample(AACContext * ac) {
  1207. int i, type;
  1208. for (i = 0; i < MAX_ELEM_ID; i++) {
  1209. for(type = 0; type < 4; type++) {
  1210. ChannelElement *che = ac->che[type][i];
  1211. if(che) {
  1212. if(che->coup.coupling_point == BEFORE_TNS)
  1213. apply_channel_coupling(ac, che, apply_dependent_coupling);
  1214. if(che->ch[0].tns.present)
  1215. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1216. if(che->ch[1].tns.present)
  1217. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1218. if(che->coup.coupling_point == BETWEEN_TNS_AND_IMDCT)
  1219. apply_channel_coupling(ac, che, apply_dependent_coupling);
  1220. imdct_and_windowing(ac, &che->ch[0]);
  1221. if(type == TYPE_CPE)
  1222. imdct_and_windowing(ac, &che->ch[1]);
  1223. if(che->coup.coupling_point == AFTER_IMDCT)
  1224. apply_channel_coupling(ac, che, apply_independent_coupling);
  1225. }
  1226. }
  1227. }
  1228. }
  1229. static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
  1230. AACContext * ac = avccontext->priv_data;
  1231. GetBitContext gb;
  1232. enum RawDataBlockType elem_type;
  1233. int err, elem_id, data_size_tmp;
  1234. init_get_bits(&gb, buf, buf_size*8);
  1235. // parse
  1236. while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
  1237. elem_id = get_bits(&gb, 4);
  1238. err = -1;
  1239. if(elem_type == TYPE_SCE && elem_id == 1 &&
  1240. !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
  1241. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  1242. instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
  1243. encountered such a stream, transfer the LFE[0] element to SCE[1] */
  1244. ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
  1245. ac->che[TYPE_LFE][0] = NULL;
  1246. }
  1247. if(elem_type < TYPE_DSE) {
  1248. if(!ac->che[elem_type][elem_id])
  1249. return -1;
  1250. if(elem_type != TYPE_CCE)
  1251. ac->che[elem_type][elem_id]->coup.coupling_point = 4;
  1252. }
  1253. switch (elem_type) {
  1254. case TYPE_SCE:
  1255. err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
  1256. break;
  1257. case TYPE_CPE:
  1258. err = decode_cpe(ac, &gb, elem_id);
  1259. break;
  1260. case TYPE_CCE:
  1261. err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
  1262. break;
  1263. case TYPE_LFE:
  1264. err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
  1265. break;
  1266. case TYPE_DSE:
  1267. skip_data_stream_element(&gb);
  1268. err = 0;
  1269. break;
  1270. case TYPE_PCE:
  1271. {
  1272. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1273. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1274. if((err = decode_pce(ac, new_che_pos, &gb)))
  1275. break;
  1276. err = output_configure(ac, ac->che_pos, new_che_pos);
  1277. break;
  1278. }
  1279. case TYPE_FIL:
  1280. if (elem_id == 15)
  1281. elem_id += get_bits(&gb, 8) - 1;
  1282. while (elem_id > 0)
  1283. elem_id -= decode_extension_payload(ac, &gb, elem_id);
  1284. err = 0; /* FIXME */
  1285. break;
  1286. default:
  1287. err = -1; /* should not happen, but keeps compiler happy */
  1288. break;
  1289. }
  1290. if(err)
  1291. return err;
  1292. }
  1293. spectral_to_sample(ac);
  1294. if (!ac->is_saved) {
  1295. ac->is_saved = 1;
  1296. *data_size = 0;
  1297. return buf_size;
  1298. }
  1299. data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
  1300. if(*data_size < data_size_tmp) {
  1301. av_log(avccontext, AV_LOG_ERROR,
  1302. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  1303. *data_size, data_size_tmp);
  1304. return -1;
  1305. }
  1306. *data_size = data_size_tmp;
  1307. ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
  1308. return buf_size;
  1309. }
  1310. static av_cold int aac_decode_close(AVCodecContext * avccontext) {
  1311. AACContext * ac = avccontext->priv_data;
  1312. int i, type;
  1313. for (i = 0; i < MAX_ELEM_ID; i++) {
  1314. for(type = 0; type < 4; type++)
  1315. av_freep(&ac->che[type][i]);
  1316. }
  1317. ff_mdct_end(&ac->mdct);
  1318. ff_mdct_end(&ac->mdct_small);
  1319. return 0 ;
  1320. }
  1321. AVCodec aac_decoder = {
  1322. "aac",
  1323. CODEC_TYPE_AUDIO,
  1324. CODEC_ID_AAC,
  1325. sizeof(AACContext),
  1326. aac_decode_init,
  1327. NULL,
  1328. aac_decode_close,
  1329. aac_decode_frame,
  1330. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  1331. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1332. };