You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1379 lines
39KB

  1. /*
  2. * The simplest AC3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file ac3enc.c
  23. * The simplest AC3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "crc.h"
  30. #include "ac3.h"
  31. typedef struct AC3EncodeContext {
  32. PutBitContext pb;
  33. int nb_channels;
  34. int nb_all_channels;
  35. int lfe_channel;
  36. int bit_rate;
  37. unsigned int sample_rate;
  38. unsigned int bitstream_id;
  39. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. unsigned int frame_size; /* current frame size in words */
  41. unsigned int bits_written;
  42. unsigned int samples_written;
  43. int sr_shift;
  44. unsigned int frame_size_code;
  45. unsigned int sr_code; /* frequency */
  46. unsigned int channel_mode;
  47. int lfe;
  48. unsigned int bitstream_mode;
  49. short last_samples[AC3_MAX_CHANNELS][256];
  50. unsigned int chbwcod[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  54. AC3BitAllocParameters bit_alloc;
  55. int coarse_snr_offset;
  56. int fast_gain_code[AC3_MAX_CHANNELS];
  57. int fine_snr_offset[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. } AC3EncodeContext;
  61. static int16_t costab[64];
  62. static int16_t sintab[64];
  63. static int16_t fft_rev[512];
  64. static int16_t xcos1[128];
  65. static int16_t xsin1[128];
  66. #define MDCT_NBITS 9
  67. #define N (1 << MDCT_NBITS)
  68. /* new exponents are sent if their Norm 1 exceed this number */
  69. #define EXP_DIFF_THRESHOLD 1000
  70. static void fft_init(int ln);
  71. static inline int16_t fix15(float a)
  72. {
  73. int v;
  74. v = (int)(a * (float)(1 << 15));
  75. if (v < -32767)
  76. v = -32767;
  77. else if (v > 32767)
  78. v = 32767;
  79. return v;
  80. }
  81. typedef struct IComplex {
  82. short re,im;
  83. } IComplex;
  84. static void fft_init(int ln)
  85. {
  86. int i, j, m, n;
  87. float alpha;
  88. n = 1 << ln;
  89. for(i=0;i<(n/2);i++) {
  90. alpha = 2 * M_PI * (float)i / (float)n;
  91. costab[i] = fix15(cos(alpha));
  92. sintab[i] = fix15(sin(alpha));
  93. }
  94. for(i=0;i<n;i++) {
  95. m=0;
  96. for(j=0;j<ln;j++) {
  97. m |= ((i >> j) & 1) << (ln-j-1);
  98. }
  99. fft_rev[i]=m;
  100. }
  101. }
  102. /* butter fly op */
  103. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  104. {\
  105. int ax, ay, bx, by;\
  106. bx=pre1;\
  107. by=pim1;\
  108. ax=qre1;\
  109. ay=qim1;\
  110. pre = (bx + ax) >> 1;\
  111. pim = (by + ay) >> 1;\
  112. qre = (bx - ax) >> 1;\
  113. qim = (by - ay) >> 1;\
  114. }
  115. #define MUL16(a,b) ((a) * (b))
  116. #define CMUL(pre, pim, are, aim, bre, bim) \
  117. {\
  118. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  119. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  120. }
  121. /* do a 2^n point complex fft on 2^ln points. */
  122. static void fft(IComplex *z, int ln)
  123. {
  124. int j, l, np, np2;
  125. int nblocks, nloops;
  126. register IComplex *p,*q;
  127. int tmp_re, tmp_im;
  128. np = 1 << ln;
  129. /* reverse */
  130. for(j=0;j<np;j++) {
  131. int k;
  132. k = fft_rev[j];
  133. if (k < j)
  134. FFSWAP(IComplex, z[k], z[j]);
  135. }
  136. /* pass 0 */
  137. p=&z[0];
  138. j=(np >> 1);
  139. do {
  140. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  141. p[0].re, p[0].im, p[1].re, p[1].im);
  142. p+=2;
  143. } while (--j != 0);
  144. /* pass 1 */
  145. p=&z[0];
  146. j=np >> 2;
  147. do {
  148. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  149. p[0].re, p[0].im, p[2].re, p[2].im);
  150. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  151. p[1].re, p[1].im, p[3].im, -p[3].re);
  152. p+=4;
  153. } while (--j != 0);
  154. /* pass 2 .. ln-1 */
  155. nblocks = np >> 3;
  156. nloops = 1 << 2;
  157. np2 = np >> 1;
  158. do {
  159. p = z;
  160. q = z + nloops;
  161. for (j = 0; j < nblocks; ++j) {
  162. BF(p->re, p->im, q->re, q->im,
  163. p->re, p->im, q->re, q->im);
  164. p++;
  165. q++;
  166. for(l = nblocks; l < np2; l += nblocks) {
  167. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  168. BF(p->re, p->im, q->re, q->im,
  169. p->re, p->im, tmp_re, tmp_im);
  170. p++;
  171. q++;
  172. }
  173. p += nloops;
  174. q += nloops;
  175. }
  176. nblocks = nblocks >> 1;
  177. nloops = nloops << 1;
  178. } while (nblocks != 0);
  179. }
  180. /* do a 512 point mdct */
  181. static void mdct512(int32_t *out, int16_t *in)
  182. {
  183. int i, re, im, re1, im1;
  184. int16_t rot[N];
  185. IComplex x[N/4];
  186. /* shift to simplify computations */
  187. for(i=0;i<N/4;i++)
  188. rot[i] = -in[i + 3*N/4];
  189. for(i=N/4;i<N;i++)
  190. rot[i] = in[i - N/4];
  191. /* pre rotation */
  192. for(i=0;i<N/4;i++) {
  193. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  194. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  195. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  196. }
  197. fft(x, MDCT_NBITS - 2);
  198. /* post rotation */
  199. for(i=0;i<N/4;i++) {
  200. re = x[i].re;
  201. im = x[i].im;
  202. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  203. out[2*i] = im1;
  204. out[N/2-1-2*i] = re1;
  205. }
  206. }
  207. /* XXX: use another norm ? */
  208. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  209. {
  210. int sum, i;
  211. sum = 0;
  212. for(i=0;i<n;i++) {
  213. sum += abs(exp1[i] - exp2[i]);
  214. }
  215. return sum;
  216. }
  217. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  218. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  219. int ch, int is_lfe)
  220. {
  221. int i, j;
  222. int exp_diff;
  223. /* estimate if the exponent variation & decide if they should be
  224. reused in the next frame */
  225. exp_strategy[0][ch] = EXP_NEW;
  226. for(i=1;i<NB_BLOCKS;i++) {
  227. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  228. #ifdef DEBUG
  229. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  230. #endif
  231. if (exp_diff > EXP_DIFF_THRESHOLD)
  232. exp_strategy[i][ch] = EXP_NEW;
  233. else
  234. exp_strategy[i][ch] = EXP_REUSE;
  235. }
  236. if (is_lfe)
  237. return;
  238. /* now select the encoding strategy type : if exponents are often
  239. recoded, we use a coarse encoding */
  240. i = 0;
  241. while (i < NB_BLOCKS) {
  242. j = i + 1;
  243. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  244. j++;
  245. switch(j - i) {
  246. case 1:
  247. exp_strategy[i][ch] = EXP_D45;
  248. break;
  249. case 2:
  250. case 3:
  251. exp_strategy[i][ch] = EXP_D25;
  252. break;
  253. default:
  254. exp_strategy[i][ch] = EXP_D15;
  255. break;
  256. }
  257. i = j;
  258. }
  259. }
  260. /* set exp[i] to min(exp[i], exp1[i]) */
  261. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  262. {
  263. int i;
  264. for(i=0;i<n;i++) {
  265. if (exp1[i] < exp[i])
  266. exp[i] = exp1[i];
  267. }
  268. }
  269. /* update the exponents so that they are the ones the decoder will
  270. decode. Return the number of bits used to code the exponents */
  271. static int encode_exp(uint8_t encoded_exp[N/2],
  272. uint8_t exp[N/2],
  273. int nb_exps,
  274. int exp_strategy)
  275. {
  276. int group_size, nb_groups, i, j, k, exp_min;
  277. uint8_t exp1[N/2];
  278. switch(exp_strategy) {
  279. case EXP_D15:
  280. group_size = 1;
  281. break;
  282. case EXP_D25:
  283. group_size = 2;
  284. break;
  285. default:
  286. case EXP_D45:
  287. group_size = 4;
  288. break;
  289. }
  290. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  291. /* for each group, compute the minimum exponent */
  292. exp1[0] = exp[0]; /* DC exponent is handled separately */
  293. k = 1;
  294. for(i=1;i<=nb_groups;i++) {
  295. exp_min = exp[k];
  296. assert(exp_min >= 0 && exp_min <= 24);
  297. for(j=1;j<group_size;j++) {
  298. if (exp[k+j] < exp_min)
  299. exp_min = exp[k+j];
  300. }
  301. exp1[i] = exp_min;
  302. k += group_size;
  303. }
  304. /* constraint for DC exponent */
  305. if (exp1[0] > 15)
  306. exp1[0] = 15;
  307. /* Decrease the delta between each groups to within 2
  308. * so that they can be differentially encoded */
  309. for (i=1;i<=nb_groups;i++)
  310. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  311. for (i=nb_groups-1;i>=0;i--)
  312. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  313. /* now we have the exponent values the decoder will see */
  314. encoded_exp[0] = exp1[0];
  315. k = 1;
  316. for(i=1;i<=nb_groups;i++) {
  317. for(j=0;j<group_size;j++) {
  318. encoded_exp[k+j] = exp1[i];
  319. }
  320. k += group_size;
  321. }
  322. #if defined(DEBUG)
  323. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  324. for(i=0;i<=nb_groups * group_size;i++) {
  325. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  326. }
  327. av_log(NULL, AV_LOG_DEBUG, "\n");
  328. #endif
  329. return 4 + (nb_groups / 3) * 7;
  330. }
  331. /* return the size in bits taken by the mantissa */
  332. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  333. {
  334. int bits, mant, i;
  335. bits = 0;
  336. for(i=0;i<nb_coefs;i++) {
  337. mant = m[i];
  338. switch(mant) {
  339. case 0:
  340. /* nothing */
  341. break;
  342. case 1:
  343. /* 3 mantissa in 5 bits */
  344. if (s->mant1_cnt == 0)
  345. bits += 5;
  346. if (++s->mant1_cnt == 3)
  347. s->mant1_cnt = 0;
  348. break;
  349. case 2:
  350. /* 3 mantissa in 7 bits */
  351. if (s->mant2_cnt == 0)
  352. bits += 7;
  353. if (++s->mant2_cnt == 3)
  354. s->mant2_cnt = 0;
  355. break;
  356. case 3:
  357. bits += 3;
  358. break;
  359. case 4:
  360. /* 2 mantissa in 7 bits */
  361. if (s->mant4_cnt == 0)
  362. bits += 7;
  363. if (++s->mant4_cnt == 2)
  364. s->mant4_cnt = 0;
  365. break;
  366. case 14:
  367. bits += 14;
  368. break;
  369. case 15:
  370. bits += 16;
  371. break;
  372. default:
  373. bits += mant - 1;
  374. break;
  375. }
  376. }
  377. return bits;
  378. }
  379. static void bit_alloc_masking(AC3EncodeContext *s,
  380. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  381. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  382. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  383. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  384. {
  385. int blk, ch;
  386. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  387. for(blk=0; blk<NB_BLOCKS; blk++) {
  388. for(ch=0;ch<s->nb_all_channels;ch++) {
  389. if(exp_strategy[blk][ch] == EXP_REUSE) {
  390. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  391. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  392. } else {
  393. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  394. s->nb_coefs[ch],
  395. psd[blk][ch], band_psd[blk][ch]);
  396. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  397. 0, s->nb_coefs[ch],
  398. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  399. ch == s->lfe_channel,
  400. DBA_NONE, 0, NULL, NULL, NULL,
  401. mask[blk][ch]);
  402. }
  403. }
  404. }
  405. }
  406. static int bit_alloc(AC3EncodeContext *s,
  407. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  408. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  409. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  410. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  411. {
  412. int i, ch;
  413. int snr_offset;
  414. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  415. /* compute size */
  416. for(i=0;i<NB_BLOCKS;i++) {
  417. s->mant1_cnt = 0;
  418. s->mant2_cnt = 0;
  419. s->mant4_cnt = 0;
  420. for(ch=0;ch<s->nb_all_channels;ch++) {
  421. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  422. s->nb_coefs[ch], snr_offset,
  423. s->bit_alloc.floor, bap[i][ch]);
  424. frame_bits += compute_mantissa_size(s, bap[i][ch],
  425. s->nb_coefs[ch]);
  426. }
  427. }
  428. #if 0
  429. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  430. coarse_snr_offset, fine_snr_offset, frame_bits,
  431. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  432. #endif
  433. return 16 * s->frame_size - frame_bits;
  434. }
  435. #define SNR_INC1 4
  436. static int compute_bit_allocation(AC3EncodeContext *s,
  437. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  438. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  439. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  440. int frame_bits)
  441. {
  442. int i, ch;
  443. int coarse_snr_offset, fine_snr_offset;
  444. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  445. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  446. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  447. static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  448. /* init default parameters */
  449. s->slow_decay_code = 2;
  450. s->fast_decay_code = 1;
  451. s->slow_gain_code = 1;
  452. s->db_per_bit_code = 2;
  453. s->floor_code = 4;
  454. for(ch=0;ch<s->nb_all_channels;ch++)
  455. s->fast_gain_code[ch] = 4;
  456. /* compute real values */
  457. s->bit_alloc.sr_code = s->sr_code;
  458. s->bit_alloc.sr_shift = s->sr_shift;
  459. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  460. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  461. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  462. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  463. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  464. /* header size */
  465. frame_bits += 65;
  466. // if (s->channel_mode == 2)
  467. // frame_bits += 2;
  468. frame_bits += frame_bits_inc[s->channel_mode];
  469. /* audio blocks */
  470. for(i=0;i<NB_BLOCKS;i++) {
  471. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  472. if (s->channel_mode == AC3_CHMODE_STEREO) {
  473. frame_bits++; /* rematstr */
  474. if(i==0) frame_bits += 4;
  475. }
  476. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  477. if (s->lfe)
  478. frame_bits++; /* lfeexpstr */
  479. for(ch=0;ch<s->nb_channels;ch++) {
  480. if (exp_strategy[i][ch] != EXP_REUSE)
  481. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  482. }
  483. frame_bits++; /* baie */
  484. frame_bits++; /* snr */
  485. frame_bits += 2; /* delta / skip */
  486. }
  487. frame_bits++; /* cplinu for block 0 */
  488. /* bit alloc info */
  489. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  490. /* csnroffset[6] */
  491. /* (fsnoffset[4] + fgaincod[4]) * c */
  492. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  493. /* auxdatae, crcrsv */
  494. frame_bits += 2;
  495. /* CRC */
  496. frame_bits += 16;
  497. /* calculate psd and masking curve before doing bit allocation */
  498. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  499. /* now the big work begins : do the bit allocation. Modify the snr
  500. offset until we can pack everything in the requested frame size */
  501. coarse_snr_offset = s->coarse_snr_offset;
  502. while (coarse_snr_offset >= 0 &&
  503. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  504. coarse_snr_offset -= SNR_INC1;
  505. if (coarse_snr_offset < 0) {
  506. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  507. return -1;
  508. }
  509. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  510. bit_alloc(s, mask, psd, bap1, frame_bits,
  511. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  512. coarse_snr_offset += SNR_INC1;
  513. memcpy(bap, bap1, sizeof(bap1));
  514. }
  515. while ((coarse_snr_offset + 1) <= 63 &&
  516. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  517. coarse_snr_offset++;
  518. memcpy(bap, bap1, sizeof(bap1));
  519. }
  520. fine_snr_offset = 0;
  521. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  522. bit_alloc(s, mask, psd, bap1, frame_bits,
  523. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  524. fine_snr_offset += SNR_INC1;
  525. memcpy(bap, bap1, sizeof(bap1));
  526. }
  527. while ((fine_snr_offset + 1) <= 15 &&
  528. bit_alloc(s, mask, psd, bap1, frame_bits,
  529. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  530. fine_snr_offset++;
  531. memcpy(bap, bap1, sizeof(bap1));
  532. }
  533. s->coarse_snr_offset = coarse_snr_offset;
  534. for(ch=0;ch<s->nb_all_channels;ch++)
  535. s->fine_snr_offset[ch] = fine_snr_offset;
  536. #if defined(DEBUG_BITALLOC)
  537. {
  538. int j;
  539. for(i=0;i<6;i++) {
  540. for(ch=0;ch<s->nb_all_channels;ch++) {
  541. printf("Block #%d Ch%d:\n", i, ch);
  542. printf("bap=");
  543. for(j=0;j<s->nb_coefs[ch];j++) {
  544. printf("%d ",bap[i][ch][j]);
  545. }
  546. printf("\n");
  547. }
  548. }
  549. }
  550. #endif
  551. return 0;
  552. }
  553. static int AC3_encode_init(AVCodecContext *avctx)
  554. {
  555. int freq = avctx->sample_rate;
  556. int bitrate = avctx->bit_rate;
  557. int channels = avctx->channels;
  558. AC3EncodeContext *s = avctx->priv_data;
  559. int i, j, ch;
  560. float alpha;
  561. int bw_code;
  562. static const uint8_t channel_mode_defs[6] = {
  563. 0x01, /* C */
  564. 0x02, /* L R */
  565. 0x03, /* L C R */
  566. 0x06, /* L R SL SR */
  567. 0x07, /* L C R SL SR */
  568. 0x07, /* L C R SL SR (+LFE) */
  569. };
  570. avctx->frame_size = AC3_FRAME_SIZE;
  571. ac3_common_init();
  572. /* number of channels */
  573. if (channels < 1 || channels > 6)
  574. return -1;
  575. s->channel_mode = channel_mode_defs[channels - 1];
  576. s->lfe = (channels == 6) ? 1 : 0;
  577. s->nb_all_channels = channels;
  578. s->nb_channels = channels > 5 ? 5 : channels;
  579. s->lfe_channel = s->lfe ? 5 : -1;
  580. /* frequency */
  581. for(i=0;i<3;i++) {
  582. for(j=0;j<3;j++)
  583. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  584. goto found;
  585. }
  586. return -1;
  587. found:
  588. s->sample_rate = freq;
  589. s->sr_shift = i;
  590. s->sr_code = j;
  591. s->bitstream_id = 8 + s->sr_shift;
  592. s->bitstream_mode = 0; /* complete main audio service */
  593. /* bitrate & frame size */
  594. for(i=0;i<19;i++) {
  595. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  596. break;
  597. }
  598. if (i == 19)
  599. return -1;
  600. s->bit_rate = bitrate;
  601. s->frame_size_code = i << 1;
  602. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  603. s->bits_written = 0;
  604. s->samples_written = 0;
  605. s->frame_size = s->frame_size_min;
  606. /* bit allocation init */
  607. if(avctx->cutoff) {
  608. /* calculate bandwidth based on user-specified cutoff frequency */
  609. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  610. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  611. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  612. } else {
  613. /* use default bandwidth setting */
  614. /* XXX: should compute the bandwidth according to the frame
  615. size, so that we avoid anoying high freq artefacts */
  616. bw_code = 50;
  617. }
  618. for(ch=0;ch<s->nb_channels;ch++) {
  619. /* bandwidth for each channel */
  620. s->chbwcod[ch] = bw_code;
  621. s->nb_coefs[ch] = bw_code * 3 + 73;
  622. }
  623. if (s->lfe) {
  624. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  625. }
  626. /* initial snr offset */
  627. s->coarse_snr_offset = 40;
  628. /* mdct init */
  629. fft_init(MDCT_NBITS - 2);
  630. for(i=0;i<N/4;i++) {
  631. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  632. xcos1[i] = fix15(-cos(alpha));
  633. xsin1[i] = fix15(-sin(alpha));
  634. }
  635. avctx->coded_frame= avcodec_alloc_frame();
  636. avctx->coded_frame->key_frame= 1;
  637. return 0;
  638. }
  639. /* output the AC3 frame header */
  640. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  641. {
  642. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  643. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  644. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  645. put_bits(&s->pb, 2, s->sr_code);
  646. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  647. put_bits(&s->pb, 5, s->bitstream_id);
  648. put_bits(&s->pb, 3, s->bitstream_mode);
  649. put_bits(&s->pb, 3, s->channel_mode);
  650. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  651. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  652. if (s->channel_mode & 0x04)
  653. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  654. if (s->channel_mode == AC3_CHMODE_STEREO)
  655. put_bits(&s->pb, 2, 0); /* surround not indicated */
  656. put_bits(&s->pb, 1, s->lfe); /* LFE */
  657. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  658. put_bits(&s->pb, 1, 0); /* no compression control word */
  659. put_bits(&s->pb, 1, 0); /* no lang code */
  660. put_bits(&s->pb, 1, 0); /* no audio production info */
  661. put_bits(&s->pb, 1, 0); /* no copyright */
  662. put_bits(&s->pb, 1, 1); /* original bitstream */
  663. put_bits(&s->pb, 1, 0); /* no time code 1 */
  664. put_bits(&s->pb, 1, 0); /* no time code 2 */
  665. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  666. }
  667. /* symetric quantization on 'levels' levels */
  668. static inline int sym_quant(int c, int e, int levels)
  669. {
  670. int v;
  671. if (c >= 0) {
  672. v = (levels * (c << e)) >> 24;
  673. v = (v + 1) >> 1;
  674. v = (levels >> 1) + v;
  675. } else {
  676. v = (levels * ((-c) << e)) >> 24;
  677. v = (v + 1) >> 1;
  678. v = (levels >> 1) - v;
  679. }
  680. assert (v >= 0 && v < levels);
  681. return v;
  682. }
  683. /* asymetric quantization on 2^qbits levels */
  684. static inline int asym_quant(int c, int e, int qbits)
  685. {
  686. int lshift, m, v;
  687. lshift = e + qbits - 24;
  688. if (lshift >= 0)
  689. v = c << lshift;
  690. else
  691. v = c >> (-lshift);
  692. /* rounding */
  693. v = (v + 1) >> 1;
  694. m = (1 << (qbits-1));
  695. if (v >= m)
  696. v = m - 1;
  697. assert(v >= -m);
  698. return v & ((1 << qbits)-1);
  699. }
  700. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
  701. frame */
  702. static void output_audio_block(AC3EncodeContext *s,
  703. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  704. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  705. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  706. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  707. int8_t global_exp[AC3_MAX_CHANNELS],
  708. int block_num)
  709. {
  710. int ch, nb_groups, group_size, i, baie, rbnd;
  711. uint8_t *p;
  712. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  713. int exp0, exp1;
  714. int mant1_cnt, mant2_cnt, mant4_cnt;
  715. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  716. int delta0, delta1, delta2;
  717. for(ch=0;ch<s->nb_channels;ch++)
  718. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  719. for(ch=0;ch<s->nb_channels;ch++)
  720. put_bits(&s->pb, 1, 1); /* no dither */
  721. put_bits(&s->pb, 1, 0); /* no dynamic range */
  722. if (block_num == 0) {
  723. /* for block 0, even if no coupling, we must say it. This is a
  724. waste of bit :-) */
  725. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  726. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  727. } else {
  728. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  729. }
  730. if (s->channel_mode == AC3_CHMODE_STEREO)
  731. {
  732. if(block_num==0)
  733. {
  734. /* first block must define rematrixing (rematstr) */
  735. put_bits(&s->pb, 1, 1);
  736. /* dummy rematrixing rematflg(1:4)=0 */
  737. for (rbnd=0;rbnd<4;rbnd++)
  738. put_bits(&s->pb, 1, 0);
  739. }
  740. else
  741. {
  742. /* no matrixing (but should be used in the future) */
  743. put_bits(&s->pb, 1, 0);
  744. }
  745. }
  746. #if defined(DEBUG)
  747. {
  748. static int count = 0;
  749. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  750. }
  751. #endif
  752. /* exponent strategy */
  753. for(ch=0;ch<s->nb_channels;ch++) {
  754. put_bits(&s->pb, 2, exp_strategy[ch]);
  755. }
  756. if (s->lfe) {
  757. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  758. }
  759. for(ch=0;ch<s->nb_channels;ch++) {
  760. if (exp_strategy[ch] != EXP_REUSE)
  761. put_bits(&s->pb, 6, s->chbwcod[ch]);
  762. }
  763. /* exponents */
  764. for (ch = 0; ch < s->nb_all_channels; ch++) {
  765. switch(exp_strategy[ch]) {
  766. case EXP_REUSE:
  767. continue;
  768. case EXP_D15:
  769. group_size = 1;
  770. break;
  771. case EXP_D25:
  772. group_size = 2;
  773. break;
  774. default:
  775. case EXP_D45:
  776. group_size = 4;
  777. break;
  778. }
  779. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  780. p = encoded_exp[ch];
  781. /* first exponent */
  782. exp1 = *p++;
  783. put_bits(&s->pb, 4, exp1);
  784. /* next ones are delta encoded */
  785. for(i=0;i<nb_groups;i++) {
  786. /* merge three delta in one code */
  787. exp0 = exp1;
  788. exp1 = p[0];
  789. p += group_size;
  790. delta0 = exp1 - exp0 + 2;
  791. exp0 = exp1;
  792. exp1 = p[0];
  793. p += group_size;
  794. delta1 = exp1 - exp0 + 2;
  795. exp0 = exp1;
  796. exp1 = p[0];
  797. p += group_size;
  798. delta2 = exp1 - exp0 + 2;
  799. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  800. }
  801. if (ch != s->lfe_channel)
  802. put_bits(&s->pb, 2, 0); /* no gain range info */
  803. }
  804. /* bit allocation info */
  805. baie = (block_num == 0);
  806. put_bits(&s->pb, 1, baie);
  807. if (baie) {
  808. put_bits(&s->pb, 2, s->slow_decay_code);
  809. put_bits(&s->pb, 2, s->fast_decay_code);
  810. put_bits(&s->pb, 2, s->slow_gain_code);
  811. put_bits(&s->pb, 2, s->db_per_bit_code);
  812. put_bits(&s->pb, 3, s->floor_code);
  813. }
  814. /* snr offset */
  815. put_bits(&s->pb, 1, baie); /* always present with bai */
  816. if (baie) {
  817. put_bits(&s->pb, 6, s->coarse_snr_offset);
  818. for(ch=0;ch<s->nb_all_channels;ch++) {
  819. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  820. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  821. }
  822. }
  823. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  824. put_bits(&s->pb, 1, 0); /* no data to skip */
  825. /* mantissa encoding : we use two passes to handle the grouping. A
  826. one pass method may be faster, but it would necessitate to
  827. modify the output stream. */
  828. /* first pass: quantize */
  829. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  830. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  831. for (ch = 0; ch < s->nb_all_channels; ch++) {
  832. int b, c, e, v;
  833. for(i=0;i<s->nb_coefs[ch];i++) {
  834. c = mdct_coefs[ch][i];
  835. e = encoded_exp[ch][i] - global_exp[ch];
  836. b = bap[ch][i];
  837. switch(b) {
  838. case 0:
  839. v = 0;
  840. break;
  841. case 1:
  842. v = sym_quant(c, e, 3);
  843. switch(mant1_cnt) {
  844. case 0:
  845. qmant1_ptr = &qmant[ch][i];
  846. v = 9 * v;
  847. mant1_cnt = 1;
  848. break;
  849. case 1:
  850. *qmant1_ptr += 3 * v;
  851. mant1_cnt = 2;
  852. v = 128;
  853. break;
  854. default:
  855. *qmant1_ptr += v;
  856. mant1_cnt = 0;
  857. v = 128;
  858. break;
  859. }
  860. break;
  861. case 2:
  862. v = sym_quant(c, e, 5);
  863. switch(mant2_cnt) {
  864. case 0:
  865. qmant2_ptr = &qmant[ch][i];
  866. v = 25 * v;
  867. mant2_cnt = 1;
  868. break;
  869. case 1:
  870. *qmant2_ptr += 5 * v;
  871. mant2_cnt = 2;
  872. v = 128;
  873. break;
  874. default:
  875. *qmant2_ptr += v;
  876. mant2_cnt = 0;
  877. v = 128;
  878. break;
  879. }
  880. break;
  881. case 3:
  882. v = sym_quant(c, e, 7);
  883. break;
  884. case 4:
  885. v = sym_quant(c, e, 11);
  886. switch(mant4_cnt) {
  887. case 0:
  888. qmant4_ptr = &qmant[ch][i];
  889. v = 11 * v;
  890. mant4_cnt = 1;
  891. break;
  892. default:
  893. *qmant4_ptr += v;
  894. mant4_cnt = 0;
  895. v = 128;
  896. break;
  897. }
  898. break;
  899. case 5:
  900. v = sym_quant(c, e, 15);
  901. break;
  902. case 14:
  903. v = asym_quant(c, e, 14);
  904. break;
  905. case 15:
  906. v = asym_quant(c, e, 16);
  907. break;
  908. default:
  909. v = asym_quant(c, e, b - 1);
  910. break;
  911. }
  912. qmant[ch][i] = v;
  913. }
  914. }
  915. /* second pass : output the values */
  916. for (ch = 0; ch < s->nb_all_channels; ch++) {
  917. int b, q;
  918. for(i=0;i<s->nb_coefs[ch];i++) {
  919. q = qmant[ch][i];
  920. b = bap[ch][i];
  921. switch(b) {
  922. case 0:
  923. break;
  924. case 1:
  925. if (q != 128)
  926. put_bits(&s->pb, 5, q);
  927. break;
  928. case 2:
  929. if (q != 128)
  930. put_bits(&s->pb, 7, q);
  931. break;
  932. case 3:
  933. put_bits(&s->pb, 3, q);
  934. break;
  935. case 4:
  936. if (q != 128)
  937. put_bits(&s->pb, 7, q);
  938. break;
  939. case 14:
  940. put_bits(&s->pb, 14, q);
  941. break;
  942. case 15:
  943. put_bits(&s->pb, 16, q);
  944. break;
  945. default:
  946. put_bits(&s->pb, b - 1, q);
  947. break;
  948. }
  949. }
  950. }
  951. }
  952. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  953. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  954. {
  955. unsigned int c;
  956. c = 0;
  957. while (a) {
  958. if (a & 1)
  959. c ^= b;
  960. a = a >> 1;
  961. b = b << 1;
  962. if (b & (1 << 16))
  963. b ^= poly;
  964. }
  965. return c;
  966. }
  967. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  968. {
  969. unsigned int r;
  970. r = 1;
  971. while (n) {
  972. if (n & 1)
  973. r = mul_poly(r, a, poly);
  974. a = mul_poly(a, a, poly);
  975. n >>= 1;
  976. }
  977. return r;
  978. }
  979. /* compute log2(max(abs(tab[]))) */
  980. static int log2_tab(int16_t *tab, int n)
  981. {
  982. int i, v;
  983. v = 0;
  984. for(i=0;i<n;i++) {
  985. v |= abs(tab[i]);
  986. }
  987. return av_log2(v);
  988. }
  989. static void lshift_tab(int16_t *tab, int n, int lshift)
  990. {
  991. int i;
  992. if (lshift > 0) {
  993. for(i=0;i<n;i++) {
  994. tab[i] <<= lshift;
  995. }
  996. } else if (lshift < 0) {
  997. lshift = -lshift;
  998. for(i=0;i<n;i++) {
  999. tab[i] >>= lshift;
  1000. }
  1001. }
  1002. }
  1003. /* fill the end of the frame and compute the two crcs */
  1004. static int output_frame_end(AC3EncodeContext *s)
  1005. {
  1006. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  1007. uint8_t *frame;
  1008. frame_size = s->frame_size; /* frame size in words */
  1009. /* align to 8 bits */
  1010. flush_put_bits(&s->pb);
  1011. /* add zero bytes to reach the frame size */
  1012. frame = s->pb.buf;
  1013. n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
  1014. assert(n >= 0);
  1015. if(n>0)
  1016. memset(pbBufPtr(&s->pb), 0, n);
  1017. /* Now we must compute both crcs : this is not so easy for crc1
  1018. because it is at the beginning of the data... */
  1019. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1020. crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1021. frame + 4, 2 * frame_size_58 - 4));
  1022. /* XXX: could precompute crc_inv */
  1023. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1024. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1025. AV_WB16(frame+2,crc1);
  1026. crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1027. frame + 2 * frame_size_58,
  1028. (frame_size - frame_size_58) * 2 - 2));
  1029. AV_WB16(frame+2*frame_size-2,crc2);
  1030. // printf("n=%d frame_size=%d\n", n, frame_size);
  1031. return frame_size * 2;
  1032. }
  1033. static int AC3_encode_frame(AVCodecContext *avctx,
  1034. unsigned char *frame, int buf_size, void *data)
  1035. {
  1036. AC3EncodeContext *s = avctx->priv_data;
  1037. int16_t *samples = data;
  1038. int i, j, k, v, ch;
  1039. int16_t input_samples[N];
  1040. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1041. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1042. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1043. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1044. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1045. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1046. int frame_bits;
  1047. frame_bits = 0;
  1048. for(ch=0;ch<s->nb_all_channels;ch++) {
  1049. /* fixed mdct to the six sub blocks & exponent computation */
  1050. for(i=0;i<NB_BLOCKS;i++) {
  1051. int16_t *sptr;
  1052. int sinc;
  1053. /* compute input samples */
  1054. memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
  1055. sinc = s->nb_all_channels;
  1056. sptr = samples + (sinc * (N/2) * i) + ch;
  1057. for(j=0;j<N/2;j++) {
  1058. v = *sptr;
  1059. input_samples[j + N/2] = v;
  1060. s->last_samples[ch][j] = v;
  1061. sptr += sinc;
  1062. }
  1063. /* apply the MDCT window */
  1064. for(j=0;j<N/2;j++) {
  1065. input_samples[j] = MUL16(input_samples[j],
  1066. ff_ac3_window[j]) >> 15;
  1067. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1068. ff_ac3_window[j]) >> 15;
  1069. }
  1070. /* Normalize the samples to use the maximum available
  1071. precision */
  1072. v = 14 - log2_tab(input_samples, N);
  1073. if (v < 0)
  1074. v = 0;
  1075. exp_samples[i][ch] = v - 9;
  1076. lshift_tab(input_samples, N, v);
  1077. /* do the MDCT */
  1078. mdct512(mdct_coef[i][ch], input_samples);
  1079. /* compute "exponents". We take into account the
  1080. normalization there */
  1081. for(j=0;j<N/2;j++) {
  1082. int e;
  1083. v = abs(mdct_coef[i][ch][j]);
  1084. if (v == 0)
  1085. e = 24;
  1086. else {
  1087. e = 23 - av_log2(v) + exp_samples[i][ch];
  1088. if (e >= 24) {
  1089. e = 24;
  1090. mdct_coef[i][ch][j] = 0;
  1091. }
  1092. }
  1093. exp[i][ch][j] = e;
  1094. }
  1095. }
  1096. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1097. /* compute the exponents as the decoder will see them. The
  1098. EXP_REUSE case must be handled carefully : we select the
  1099. min of the exponents */
  1100. i = 0;
  1101. while (i < NB_BLOCKS) {
  1102. j = i + 1;
  1103. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1104. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1105. j++;
  1106. }
  1107. frame_bits += encode_exp(encoded_exp[i][ch],
  1108. exp[i][ch], s->nb_coefs[ch],
  1109. exp_strategy[i][ch]);
  1110. /* copy encoded exponents for reuse case */
  1111. for(k=i+1;k<j;k++) {
  1112. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1113. s->nb_coefs[ch] * sizeof(uint8_t));
  1114. }
  1115. i = j;
  1116. }
  1117. }
  1118. /* adjust for fractional frame sizes */
  1119. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1120. s->bits_written -= s->bit_rate;
  1121. s->samples_written -= s->sample_rate;
  1122. }
  1123. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1124. s->bits_written += s->frame_size * 16;
  1125. s->samples_written += AC3_FRAME_SIZE;
  1126. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1127. /* everything is known... let's output the frame */
  1128. output_frame_header(s, frame);
  1129. for(i=0;i<NB_BLOCKS;i++) {
  1130. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1131. bap[i], mdct_coef[i], exp_samples[i], i);
  1132. }
  1133. return output_frame_end(s);
  1134. }
  1135. static int AC3_encode_close(AVCodecContext *avctx)
  1136. {
  1137. av_freep(&avctx->coded_frame);
  1138. return 0;
  1139. }
  1140. #if 0
  1141. /*************************************************************************/
  1142. /* TEST */
  1143. #undef random
  1144. #define FN (N/4)
  1145. void fft_test(void)
  1146. {
  1147. IComplex in[FN], in1[FN];
  1148. int k, n, i;
  1149. float sum_re, sum_im, a;
  1150. /* FFT test */
  1151. for(i=0;i<FN;i++) {
  1152. in[i].re = random() % 65535 - 32767;
  1153. in[i].im = random() % 65535 - 32767;
  1154. in1[i] = in[i];
  1155. }
  1156. fft(in, 7);
  1157. /* do it by hand */
  1158. for(k=0;k<FN;k++) {
  1159. sum_re = 0;
  1160. sum_im = 0;
  1161. for(n=0;n<FN;n++) {
  1162. a = -2 * M_PI * (n * k) / FN;
  1163. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1164. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1165. }
  1166. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1167. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1168. }
  1169. }
  1170. void mdct_test(void)
  1171. {
  1172. int16_t input[N];
  1173. int32_t output[N/2];
  1174. float input1[N];
  1175. float output1[N/2];
  1176. float s, a, err, e, emax;
  1177. int i, k, n;
  1178. for(i=0;i<N;i++) {
  1179. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1180. input1[i] = input[i];
  1181. }
  1182. mdct512(output, input);
  1183. /* do it by hand */
  1184. for(k=0;k<N/2;k++) {
  1185. s = 0;
  1186. for(n=0;n<N;n++) {
  1187. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1188. s += input1[n] * cos(a);
  1189. }
  1190. output1[k] = -2 * s / N;
  1191. }
  1192. err = 0;
  1193. emax = 0;
  1194. for(i=0;i<N/2;i++) {
  1195. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1196. e = output[i] - output1[i];
  1197. if (e > emax)
  1198. emax = e;
  1199. err += e * e;
  1200. }
  1201. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1202. }
  1203. void test_ac3(void)
  1204. {
  1205. AC3EncodeContext ctx;
  1206. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1207. short samples[AC3_FRAME_SIZE];
  1208. int ret, i;
  1209. AC3_encode_init(&ctx, 44100, 64000, 1);
  1210. fft_test();
  1211. mdct_test();
  1212. for(i=0;i<AC3_FRAME_SIZE;i++)
  1213. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1214. ret = AC3_encode_frame(&ctx, frame, samples);
  1215. printf("ret=%d\n", ret);
  1216. }
  1217. #endif
  1218. AVCodec ac3_encoder = {
  1219. "ac3",
  1220. CODEC_TYPE_AUDIO,
  1221. CODEC_ID_AC3,
  1222. sizeof(AC3EncodeContext),
  1223. AC3_encode_init,
  1224. AC3_encode_frame,
  1225. AC3_encode_close,
  1226. NULL,
  1227. };