You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

502 lines
17KB

  1. /*
  2. * Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/audioconvert.h"
  25. #define C30DB M_SQRT2
  26. #define C15DB 1.189207115
  27. #define C__0DB 1.0
  28. #define C_15DB 0.840896415
  29. #define C_30DB M_SQRT1_2
  30. #define C_45DB 0.594603558
  31. #define C_60DB 0.5
  32. //TODO split options array out?
  33. #define OFFSET(x) offsetof(SwrContext,x)
  34. static const AVOption options[]={
  35. {"ich", "input channel count", OFFSET( in.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 1, SWR_CH_MAX, 0},
  36. {"och", "output channel count", OFFSET(out.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 1, SWR_CH_MAX, 0},
  37. {"uch", "used channel count", OFFSET(used_ch_count ), AV_OPT_TYPE_INT, {.dbl=0}, 0, SWR_CH_MAX, 0},
  38. {"isr", "input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  39. {"osr", "output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  40. //{"ip" , "input planar" , OFFSET( in.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  41. //{"op" , "output planar" , OFFSET(out.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  42. {"isf", "input sample format", OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  43. {"osf", "output sample format", OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  44. {"tsf", "internal sample format", OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_NONE}, -1, AV_SAMPLE_FMT_FLT, 0},
  45. {"icl", "input channel layout" , OFFSET( in_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  46. {"ocl", "output channel layout", OFFSET(out_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  47. {"clev", "center mix level" , OFFSET(clev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  48. {"slev", "sourround mix level" , OFFSET(slev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  49. {"rmvol", "rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, -1000, 1000, 0},
  50. {"flags", NULL , OFFSET(flags) , AV_OPT_TYPE_FLAGS, {.dbl=0}, 0, UINT_MAX, 0, "flags"},
  51. {"res", "force resampling", 0, AV_OPT_TYPE_CONST, {.dbl=SWR_FLAG_RESAMPLE}, INT_MIN, INT_MAX, 0, "flags"},
  52. {0}
  53. };
  54. static const char* context_to_name(void* ptr) {
  55. return "SWR";
  56. }
  57. static const AVClass av_class = {
  58. .class_name = "SwrContext",
  59. .item_name = context_to_name,
  60. .option = options,
  61. .version = LIBAVUTIL_VERSION_INT,
  62. .log_level_offset_offset = OFFSET(log_level_offset),
  63. .parent_log_context_offset = OFFSET(log_ctx),
  64. };
  65. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  66. const AudioData * in_param, int in_count);
  67. SwrContext *swr_alloc(void){
  68. SwrContext *s= av_mallocz(sizeof(SwrContext));
  69. if(s){
  70. s->av_class= &av_class;
  71. av_opt_set_defaults2(s, 0, 0);
  72. }
  73. return s;
  74. }
  75. SwrContext *swr_alloc2(struct SwrContext *s, int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  76. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  77. const int *channel_map, int log_offset, void *log_ctx){
  78. if(!s) s= swr_alloc();
  79. if(!s) return NULL;
  80. s->log_level_offset= log_offset;
  81. s->log_ctx= log_ctx;
  82. av_set_int(s, "ocl", out_ch_layout);
  83. av_set_int(s, "osf", out_sample_fmt);
  84. av_set_int(s, "osr", out_sample_rate);
  85. av_set_int(s, "icl", in_ch_layout);
  86. av_set_int(s, "isf", in_sample_fmt);
  87. av_set_int(s, "isr", in_sample_rate);
  88. s->channel_map = channel_map;
  89. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  90. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  91. s->int_sample_fmt = AV_SAMPLE_FMT_S16;
  92. return s;
  93. }
  94. static void free_temp(AudioData *a){
  95. av_free(a->data);
  96. memset(a, 0, sizeof(*a));
  97. }
  98. void swr_free(SwrContext **ss){
  99. SwrContext *s= *ss;
  100. if(s){
  101. free_temp(&s->postin);
  102. free_temp(&s->midbuf);
  103. free_temp(&s->preout);
  104. free_temp(&s->in_buffer);
  105. swr_audio_convert_free(&s-> in_convert);
  106. swr_audio_convert_free(&s->out_convert);
  107. swr_audio_convert_free(&s->full_convert);
  108. swr_resample_free(&s->resample);
  109. }
  110. av_freep(ss);
  111. }
  112. int swr_init(SwrContext *s){
  113. s->in_buffer_index= 0;
  114. s->in_buffer_count= 0;
  115. s->resample_in_constraint= 0;
  116. free_temp(&s->postin);
  117. free_temp(&s->midbuf);
  118. free_temp(&s->preout);
  119. free_temp(&s->in_buffer);
  120. swr_audio_convert_free(&s-> in_convert);
  121. swr_audio_convert_free(&s->out_convert);
  122. swr_audio_convert_free(&s->full_convert);
  123. s-> in.planar= s-> in_sample_fmt >= 0x100;
  124. s->out.planar= s->out_sample_fmt >= 0x100;
  125. s-> in_sample_fmt &= 0xFF;
  126. s->out_sample_fmt &= 0xFF;
  127. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  128. av_log(s, AV_LOG_ERROR, "Requested sample format %s is invalid\n", av_get_sample_fmt_name(s->in_sample_fmt));
  129. return AVERROR(EINVAL);
  130. }
  131. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  132. av_log(s, AV_LOG_ERROR, "Requested sample format %s is invalid\n", av_get_sample_fmt_name(s->out_sample_fmt));
  133. return AVERROR(EINVAL);
  134. }
  135. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16
  136. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLT){
  137. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, only float & S16 is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  138. return AVERROR(EINVAL);
  139. }
  140. //FIXME should we allow/support using FLT on material that doesnt need it ?
  141. if(s->in_sample_fmt <= AV_SAMPLE_FMT_S16 || s->int_sample_fmt==AV_SAMPLE_FMT_S16){
  142. s->int_sample_fmt= AV_SAMPLE_FMT_S16;
  143. }else
  144. s->int_sample_fmt= AV_SAMPLE_FMT_FLT;
  145. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  146. s->resample = swr_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, 16, 10, 0, 0.8);
  147. }else
  148. swr_resample_free(&s->resample);
  149. if(s->int_sample_fmt != AV_SAMPLE_FMT_S16 && s->resample){
  150. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16 currently\n"); //FIXME
  151. return -1;
  152. }
  153. if(!s->used_ch_count)
  154. s->used_ch_count= s->in.ch_count;
  155. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  156. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  157. s-> in_ch_layout= 0;
  158. }
  159. if(!s-> in_ch_layout)
  160. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  161. if(!s->out_ch_layout)
  162. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  163. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0;
  164. #define RSC 1 //FIXME finetune
  165. if(!s-> in.ch_count)
  166. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  167. if(!s->used_ch_count)
  168. s->used_ch_count= s->in.ch_count;
  169. if(!s->out.ch_count)
  170. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  171. av_assert0(s-> in.ch_count);
  172. av_assert0(s->used_ch_count);
  173. av_assert0(s->out.ch_count);
  174. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  175. s-> in.bps= av_get_bits_per_sample_fmt(s-> in_sample_fmt)/8;
  176. s->int_bps= av_get_bits_per_sample_fmt(s->int_sample_fmt)/8;
  177. s->out.bps= av_get_bits_per_sample_fmt(s->out_sample_fmt)/8;
  178. if(!s->resample && !s->rematrix && !s->channel_map){
  179. s->full_convert = swr_audio_convert_alloc(s->out_sample_fmt,
  180. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  181. return 0;
  182. }
  183. s->in_convert = swr_audio_convert_alloc(s->int_sample_fmt,
  184. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  185. s->out_convert= swr_audio_convert_alloc(s->out_sample_fmt,
  186. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  187. s->postin= s->in;
  188. s->preout= s->out;
  189. s->midbuf= s->in;
  190. s->in_buffer= s->in;
  191. if(s->channel_map){
  192. s->postin.ch_count=
  193. s->midbuf.ch_count=
  194. s->in_buffer.ch_count= s->used_ch_count;
  195. }
  196. if(!s->resample_first){
  197. s->midbuf.ch_count= s->out.ch_count;
  198. s->in_buffer.ch_count = s->out.ch_count;
  199. }
  200. s->in_buffer.bps = s->postin.bps = s->midbuf.bps = s->preout.bps = s->int_bps;
  201. s->in_buffer.planar = s->postin.planar = s->midbuf.planar = s->preout.planar = 1;
  202. if(s->rematrix && swr_rematrix_init(s)<0)
  203. return -1;
  204. return 0;
  205. }
  206. static int realloc_audio(AudioData *a, int count){
  207. int i, countb;
  208. AudioData old;
  209. if(a->count >= count)
  210. return 0;
  211. count*=2;
  212. countb= FFALIGN(count*a->bps, 32);
  213. old= *a;
  214. av_assert0(a->planar);
  215. av_assert0(a->bps);
  216. av_assert0(a->ch_count);
  217. a->data= av_malloc(countb*a->ch_count);
  218. if(!a->data)
  219. return AVERROR(ENOMEM);
  220. for(i=0; i<a->ch_count; i++){
  221. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  222. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  223. }
  224. av_free(old.data);
  225. a->count= count;
  226. return 1;
  227. }
  228. static void copy(AudioData *out, AudioData *in,
  229. int count){
  230. av_assert0(out->planar == in->planar);
  231. av_assert0(out->bps == in->bps);
  232. av_assert0(out->ch_count == in->ch_count);
  233. if(out->planar){
  234. int ch;
  235. for(ch=0; ch<out->ch_count; ch++)
  236. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  237. }else
  238. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  239. }
  240. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  241. int i;
  242. if(out->planar){
  243. for(i=0; i<out->ch_count; i++)
  244. out->ch[i]= in_arg[i];
  245. }else{
  246. for(i=0; i<out->ch_count; i++)
  247. out->ch[i]= in_arg[0] + i*out->bps;
  248. }
  249. }
  250. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  251. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  252. AudioData *postin, *midbuf, *preout;
  253. int ret/*, in_max*/;
  254. AudioData * in= &s->in;
  255. AudioData *out= &s->out;
  256. AudioData preout_tmp, midbuf_tmp;
  257. if(!s->resample){
  258. if(in_count > out_count)
  259. return -1;
  260. out_count = in_count;
  261. }
  262. if(!in_arg){
  263. if(s->in_buffer_count){
  264. AudioData *a= &s->in_buffer;
  265. int i, j, ret;
  266. if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  267. return ret;
  268. av_assert0(a->planar);
  269. for(i=0; i<a->ch_count; i++){
  270. for(j=0; j<s->in_buffer_count; j++){
  271. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  272. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  273. }
  274. }
  275. s->in_buffer_count += (s->in_buffer_count+1)/2;
  276. s->resample_in_constraint = 0;
  277. }else{
  278. return 0;
  279. }
  280. }else
  281. fill_audiodata(in , (void*)in_arg);
  282. fill_audiodata(out, out_arg);
  283. if(s->full_convert){
  284. av_assert0(!s->resample);
  285. swr_audio_convert(s->full_convert, out, in, in_count);
  286. return out_count;
  287. }
  288. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  289. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  290. if((ret=realloc_audio(&s->postin, in_count))<0)
  291. return ret;
  292. if(s->resample_first){
  293. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  294. if((ret=realloc_audio(&s->midbuf, out_count))<0)
  295. return ret;
  296. }else{
  297. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  298. if((ret=realloc_audio(&s->midbuf, in_count))<0)
  299. return ret;
  300. }
  301. if((ret=realloc_audio(&s->preout, out_count))<0)
  302. return ret;
  303. postin= &s->postin;
  304. midbuf_tmp= s->midbuf;
  305. midbuf= &midbuf_tmp;
  306. preout_tmp= s->preout;
  307. preout= &preout_tmp;
  308. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar)
  309. postin= in;
  310. if(s->resample_first ? !s->resample : !s->rematrix)
  311. midbuf= postin;
  312. if(s->resample_first ? !s->rematrix : !s->resample)
  313. preout= midbuf;
  314. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  315. if(preout==in){
  316. out_count= FFMIN(out_count, in_count); //TODO check at teh end if this is needed or redundant
  317. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  318. copy(out, in, out_count);
  319. return out_count;
  320. }
  321. else if(preout==postin) preout= midbuf= postin= out;
  322. else if(preout==midbuf) preout= midbuf= out;
  323. else preout= out;
  324. }
  325. if(in != postin){
  326. swr_audio_convert(s->in_convert, postin, in, in_count);
  327. }
  328. if(s->resample_first){
  329. if(postin != midbuf)
  330. out_count= resample(s, midbuf, out_count, postin, in_count);
  331. if(midbuf != preout)
  332. swr_rematrix(s, preout, midbuf, out_count, preout==out);
  333. }else{
  334. if(postin != midbuf)
  335. swr_rematrix(s, midbuf, postin, in_count, midbuf==out);
  336. if(midbuf != preout)
  337. out_count= resample(s, preout, out_count, midbuf, in_count);
  338. }
  339. if(preout != out){
  340. //FIXME packed doesnt need more than 1 chan here!
  341. swr_audio_convert(s->out_convert, out, preout, out_count);
  342. }
  343. if(!in_arg)
  344. s->in_buffer_count = 0;
  345. return out_count;
  346. }
  347. /**
  348. *
  349. * out may be equal in.
  350. */
  351. static void buf_set(AudioData *out, AudioData *in, int count){
  352. if(in->planar){
  353. int ch;
  354. for(ch=0; ch<out->ch_count; ch++)
  355. out->ch[ch]= in->ch[ch] + count*out->bps;
  356. }else
  357. out->ch[0]= in->ch[0] + count*out->ch_count*out->bps;
  358. }
  359. /**
  360. *
  361. * @return number of samples output per channel
  362. */
  363. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  364. const AudioData * in_param, int in_count){
  365. AudioData in, out, tmp;
  366. int ret_sum=0;
  367. int border=0;
  368. tmp=out=*out_param;
  369. in = *in_param;
  370. do{
  371. int ret, size, consumed;
  372. if(!s->resample_in_constraint && s->in_buffer_count){
  373. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  374. ret= swr_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  375. out_count -= ret;
  376. ret_sum += ret;
  377. buf_set(&out, &out, ret);
  378. s->in_buffer_count -= consumed;
  379. s->in_buffer_index += consumed;
  380. if(!in_count)
  381. break;
  382. if(s->in_buffer_count <= border){
  383. buf_set(&in, &in, -s->in_buffer_count);
  384. in_count += s->in_buffer_count;
  385. s->in_buffer_count=0;
  386. s->in_buffer_index=0;
  387. border = 0;
  388. }
  389. }
  390. if(in_count && !s->in_buffer_count){
  391. s->in_buffer_index=0;
  392. ret= swr_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  393. out_count -= ret;
  394. ret_sum += ret;
  395. buf_set(&out, &out, ret);
  396. in_count -= consumed;
  397. buf_set(&in, &in, consumed);
  398. }
  399. //TODO is this check sane considering the advanced copy avoidance below
  400. size= s->in_buffer_index + s->in_buffer_count + in_count;
  401. if( size > s->in_buffer.count
  402. && s->in_buffer_count + in_count <= s->in_buffer_index){
  403. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  404. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  405. s->in_buffer_index=0;
  406. }else
  407. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  408. return ret;
  409. if(in_count){
  410. int count= in_count;
  411. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  412. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  413. copy(&tmp, &in, /*in_*/count);
  414. s->in_buffer_count += count;
  415. in_count -= count;
  416. border += count;
  417. buf_set(&in, &in, count);
  418. s->resample_in_constraint= 0;
  419. if(s->in_buffer_count != count || in_count)
  420. continue;
  421. }
  422. break;
  423. }while(1);
  424. s->resample_in_constraint= !!out_count;
  425. return ret_sum;
  426. }