You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8636 lines
323KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. */
  22. /**
  23. * @file h264.c
  24. * H.264 / AVC / MPEG4 part10 codec.
  25. * @author Michael Niedermayer <michaelni@gmx.at>
  26. */
  27. #include "common.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264data.h"
  32. #include "golomb.h"
  33. #include "cabac.h"
  34. //#undef NDEBUG
  35. #include <assert.h>
  36. #define interlaced_dct interlaced_dct_is_a_bad_name
  37. #define mb_intra mb_intra_isnt_initalized_see_mb_type
  38. #define LUMA_DC_BLOCK_INDEX 25
  39. #define CHROMA_DC_BLOCK_INDEX 26
  40. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  41. #define COEFF_TOKEN_VLC_BITS 8
  42. #define TOTAL_ZEROS_VLC_BITS 9
  43. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  44. #define RUN_VLC_BITS 3
  45. #define RUN7_VLC_BITS 6
  46. #define MAX_SPS_COUNT 32
  47. #define MAX_PPS_COUNT 256
  48. #define MAX_MMCO_COUNT 66
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #ifdef ALLOW_INTERLACE
  53. #define MB_MBAFF h->mb_mbaff
  54. #define MB_FIELD h->mb_field_decoding_flag
  55. #define FRAME_MBAFF h->mb_aff_frame
  56. #else
  57. #define MB_MBAFF 0
  58. #define MB_FIELD 0
  59. #define FRAME_MBAFF 0
  60. #undef IS_INTERLACED
  61. #define IS_INTERLACED(mb_type) 0
  62. #endif
  63. /**
  64. * Sequence parameter set
  65. */
  66. typedef struct SPS{
  67. int profile_idc;
  68. int level_idc;
  69. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  70. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  71. int poc_type; ///< pic_order_cnt_type
  72. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  73. int delta_pic_order_always_zero_flag;
  74. int offset_for_non_ref_pic;
  75. int offset_for_top_to_bottom_field;
  76. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  77. int ref_frame_count; ///< num_ref_frames
  78. int gaps_in_frame_num_allowed_flag;
  79. int mb_width; ///< frame_width_in_mbs_minus1 + 1
  80. int mb_height; ///< frame_height_in_mbs_minus1 + 1
  81. int frame_mbs_only_flag;
  82. int mb_aff; ///<mb_adaptive_frame_field_flag
  83. int direct_8x8_inference_flag;
  84. int crop; ///< frame_cropping_flag
  85. int crop_left; ///< frame_cropping_rect_left_offset
  86. int crop_right; ///< frame_cropping_rect_right_offset
  87. int crop_top; ///< frame_cropping_rect_top_offset
  88. int crop_bottom; ///< frame_cropping_rect_bottom_offset
  89. int vui_parameters_present_flag;
  90. AVRational sar;
  91. int timing_info_present_flag;
  92. uint32_t num_units_in_tick;
  93. uint32_t time_scale;
  94. int fixed_frame_rate_flag;
  95. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  96. int bitstream_restriction_flag;
  97. int num_reorder_frames;
  98. int scaling_matrix_present;
  99. uint8_t scaling_matrix4[6][16];
  100. uint8_t scaling_matrix8[2][64];
  101. }SPS;
  102. /**
  103. * Picture parameter set
  104. */
  105. typedef struct PPS{
  106. unsigned int sps_id;
  107. int cabac; ///< entropy_coding_mode_flag
  108. int pic_order_present; ///< pic_order_present_flag
  109. int slice_group_count; ///< num_slice_groups_minus1 + 1
  110. int mb_slice_group_map_type;
  111. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  112. int weighted_pred; ///< weighted_pred_flag
  113. int weighted_bipred_idc;
  114. int init_qp; ///< pic_init_qp_minus26 + 26
  115. int init_qs; ///< pic_init_qs_minus26 + 26
  116. int chroma_qp_index_offset;
  117. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  118. int constrained_intra_pred; ///< constrained_intra_pred_flag
  119. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  120. int transform_8x8_mode; ///< transform_8x8_mode_flag
  121. uint8_t scaling_matrix4[6][16];
  122. uint8_t scaling_matrix8[2][64];
  123. }PPS;
  124. /**
  125. * Memory management control operation opcode.
  126. */
  127. typedef enum MMCOOpcode{
  128. MMCO_END=0,
  129. MMCO_SHORT2UNUSED,
  130. MMCO_LONG2UNUSED,
  131. MMCO_SHORT2LONG,
  132. MMCO_SET_MAX_LONG,
  133. MMCO_RESET,
  134. MMCO_LONG,
  135. } MMCOOpcode;
  136. /**
  137. * Memory management control operation.
  138. */
  139. typedef struct MMCO{
  140. MMCOOpcode opcode;
  141. int short_frame_num;
  142. int long_index;
  143. } MMCO;
  144. /**
  145. * H264Context
  146. */
  147. typedef struct H264Context{
  148. MpegEncContext s;
  149. int nal_ref_idc;
  150. int nal_unit_type;
  151. uint8_t *rbsp_buffer;
  152. unsigned int rbsp_buffer_size;
  153. /**
  154. * Used to parse AVC variant of h264
  155. */
  156. int is_avc; ///< this flag is != 0 if codec is avc1
  157. int got_avcC; ///< flag used to parse avcC data only once
  158. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  159. int chroma_qp; //QPc
  160. int prev_mb_skipped;
  161. int next_mb_skipped;
  162. //prediction stuff
  163. int chroma_pred_mode;
  164. int intra16x16_pred_mode;
  165. int top_mb_xy;
  166. int left_mb_xy[2];
  167. int8_t intra4x4_pred_mode_cache[5*8];
  168. int8_t (*intra4x4_pred_mode)[8];
  169. void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
  170. void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
  171. void (*pred8x8 [4+3])(uint8_t *src, int stride);
  172. void (*pred16x16[4+3])(uint8_t *src, int stride);
  173. unsigned int topleft_samples_available;
  174. unsigned int top_samples_available;
  175. unsigned int topright_samples_available;
  176. unsigned int left_samples_available;
  177. uint8_t (*top_borders[2])[16+2*8];
  178. uint8_t left_border[2*(17+2*9)];
  179. /**
  180. * non zero coeff count cache.
  181. * is 64 if not available.
  182. */
  183. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
  184. uint8_t (*non_zero_count)[16];
  185. /**
  186. * Motion vector cache.
  187. */
  188. DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
  189. DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
  190. #define LIST_NOT_USED -1 //FIXME rename?
  191. #define PART_NOT_AVAILABLE -2
  192. /**
  193. * is 1 if the specific list MV&references are set to 0,0,-2.
  194. */
  195. int mv_cache_clean[2];
  196. /**
  197. * number of neighbors (top and/or left) that used 8x8 dct
  198. */
  199. int neighbor_transform_size;
  200. /**
  201. * block_offset[ 0..23] for frame macroblocks
  202. * block_offset[24..47] for field macroblocks
  203. */
  204. int block_offset[2*(16+8)];
  205. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  206. uint32_t *mb2b8_xy;
  207. int b_stride; //FIXME use s->b4_stride
  208. int b8_stride;
  209. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  210. int mb_uvlinesize;
  211. int emu_edge_width;
  212. int emu_edge_height;
  213. int halfpel_flag;
  214. int thirdpel_flag;
  215. int unknown_svq3_flag;
  216. int next_slice_index;
  217. SPS sps_buffer[MAX_SPS_COUNT];
  218. SPS sps; ///< current sps
  219. PPS pps_buffer[MAX_PPS_COUNT];
  220. /**
  221. * current pps
  222. */
  223. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  224. uint32_t dequant4_buffer[6][52][16];
  225. uint32_t dequant8_buffer[2][52][64];
  226. uint32_t (*dequant4_coeff[6])[16];
  227. uint32_t (*dequant8_coeff[2])[64];
  228. int dequant_coeff_pps; ///< reinit tables when pps changes
  229. int slice_num;
  230. uint8_t *slice_table_base;
  231. uint8_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  232. int slice_type;
  233. int slice_type_fixed;
  234. //interlacing specific flags
  235. int mb_aff_frame;
  236. int mb_field_decoding_flag;
  237. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  238. unsigned int sub_mb_type[4];
  239. //POC stuff
  240. int poc_lsb;
  241. int poc_msb;
  242. int delta_poc_bottom;
  243. int delta_poc[2];
  244. int frame_num;
  245. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  246. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  247. int frame_num_offset; ///< for POC type 2
  248. int prev_frame_num_offset; ///< for POC type 2
  249. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  250. /**
  251. * frame_num for frames or 2*frame_num for field pics.
  252. */
  253. int curr_pic_num;
  254. /**
  255. * max_frame_num or 2*max_frame_num for field pics.
  256. */
  257. int max_pic_num;
  258. //Weighted pred stuff
  259. int use_weight;
  260. int use_weight_chroma;
  261. int luma_log2_weight_denom;
  262. int chroma_log2_weight_denom;
  263. int luma_weight[2][48];
  264. int luma_offset[2][48];
  265. int chroma_weight[2][48][2];
  266. int chroma_offset[2][48][2];
  267. int implicit_weight[48][48];
  268. //deblock
  269. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  270. int slice_alpha_c0_offset;
  271. int slice_beta_offset;
  272. int redundant_pic_count;
  273. int direct_spatial_mv_pred;
  274. int dist_scale_factor[16];
  275. int dist_scale_factor_field[32];
  276. int map_col_to_list0[2][16];
  277. int map_col_to_list0_field[2][32];
  278. /**
  279. * num_ref_idx_l0/1_active_minus1 + 1
  280. */
  281. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  282. unsigned int list_count;
  283. Picture *short_ref[32];
  284. Picture *long_ref[32];
  285. Picture default_ref_list[2][32];
  286. Picture ref_list[2][48]; ///< 0..15: frame refs, 16..47: mbaff field refs
  287. Picture *delayed_pic[18]; //FIXME size?
  288. Picture *delayed_output_pic;
  289. /**
  290. * memory management control operations buffer.
  291. */
  292. MMCO mmco[MAX_MMCO_COUNT];
  293. int mmco_index;
  294. int long_ref_count; ///< number of actual long term references
  295. int short_ref_count; ///< number of actual short term references
  296. //data partitioning
  297. GetBitContext intra_gb;
  298. GetBitContext inter_gb;
  299. GetBitContext *intra_gb_ptr;
  300. GetBitContext *inter_gb_ptr;
  301. DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
  302. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not to large or ensure that there is some unused stuff after mb
  303. /**
  304. * Cabac
  305. */
  306. CABACContext cabac;
  307. uint8_t cabac_state[460];
  308. int cabac_init_idc;
  309. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  310. uint16_t *cbp_table;
  311. int cbp;
  312. int top_cbp;
  313. int left_cbp;
  314. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  315. uint8_t *chroma_pred_mode_table;
  316. int last_qscale_diff;
  317. int16_t (*mvd_table[2])[2];
  318. DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
  319. uint8_t *direct_table;
  320. uint8_t direct_cache[5*8];
  321. uint8_t zigzag_scan[16];
  322. uint8_t zigzag_scan8x8[64];
  323. uint8_t zigzag_scan8x8_cavlc[64];
  324. uint8_t field_scan[16];
  325. uint8_t field_scan8x8[64];
  326. uint8_t field_scan8x8_cavlc[64];
  327. const uint8_t *zigzag_scan_q0;
  328. const uint8_t *zigzag_scan8x8_q0;
  329. const uint8_t *zigzag_scan8x8_cavlc_q0;
  330. const uint8_t *field_scan_q0;
  331. const uint8_t *field_scan8x8_q0;
  332. const uint8_t *field_scan8x8_cavlc_q0;
  333. int x264_build;
  334. }H264Context;
  335. static VLC coeff_token_vlc[4];
  336. static VLC chroma_dc_coeff_token_vlc;
  337. static VLC total_zeros_vlc[15];
  338. static VLC chroma_dc_total_zeros_vlc[3];
  339. static VLC run_vlc[6];
  340. static VLC run7_vlc;
  341. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  342. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  343. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  344. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  345. static av_always_inline uint32_t pack16to32(int a, int b){
  346. #ifdef WORDS_BIGENDIAN
  347. return (b&0xFFFF) + (a<<16);
  348. #else
  349. return (a&0xFFFF) + (b<<16);
  350. #endif
  351. }
  352. const uint8_t ff_rem6[52]={
  353. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  354. };
  355. const uint8_t ff_div6[52]={
  356. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  357. };
  358. /**
  359. * fill a rectangle.
  360. * @param h height of the rectangle, should be a constant
  361. * @param w width of the rectangle, should be a constant
  362. * @param size the size of val (1 or 4), should be a constant
  363. */
  364. static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
  365. uint8_t *p= (uint8_t*)vp;
  366. assert(size==1 || size==4);
  367. assert(w<=4);
  368. w *= size;
  369. stride *= size;
  370. assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
  371. assert((stride&(w-1))==0);
  372. if(w==2){
  373. const uint16_t v= size==4 ? val : val*0x0101;
  374. *(uint16_t*)(p + 0*stride)= v;
  375. if(h==1) return;
  376. *(uint16_t*)(p + 1*stride)= v;
  377. if(h==2) return;
  378. *(uint16_t*)(p + 2*stride)=
  379. *(uint16_t*)(p + 3*stride)= v;
  380. }else if(w==4){
  381. const uint32_t v= size==4 ? val : val*0x01010101;
  382. *(uint32_t*)(p + 0*stride)= v;
  383. if(h==1) return;
  384. *(uint32_t*)(p + 1*stride)= v;
  385. if(h==2) return;
  386. *(uint32_t*)(p + 2*stride)=
  387. *(uint32_t*)(p + 3*stride)= v;
  388. }else if(w==8){
  389. //gcc can't optimize 64bit math on x86_32
  390. #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
  391. const uint64_t v= val*0x0100000001ULL;
  392. *(uint64_t*)(p + 0*stride)= v;
  393. if(h==1) return;
  394. *(uint64_t*)(p + 1*stride)= v;
  395. if(h==2) return;
  396. *(uint64_t*)(p + 2*stride)=
  397. *(uint64_t*)(p + 3*stride)= v;
  398. }else if(w==16){
  399. const uint64_t v= val*0x0100000001ULL;
  400. *(uint64_t*)(p + 0+0*stride)=
  401. *(uint64_t*)(p + 8+0*stride)=
  402. *(uint64_t*)(p + 0+1*stride)=
  403. *(uint64_t*)(p + 8+1*stride)= v;
  404. if(h==2) return;
  405. *(uint64_t*)(p + 0+2*stride)=
  406. *(uint64_t*)(p + 8+2*stride)=
  407. *(uint64_t*)(p + 0+3*stride)=
  408. *(uint64_t*)(p + 8+3*stride)= v;
  409. #else
  410. *(uint32_t*)(p + 0+0*stride)=
  411. *(uint32_t*)(p + 4+0*stride)= val;
  412. if(h==1) return;
  413. *(uint32_t*)(p + 0+1*stride)=
  414. *(uint32_t*)(p + 4+1*stride)= val;
  415. if(h==2) return;
  416. *(uint32_t*)(p + 0+2*stride)=
  417. *(uint32_t*)(p + 4+2*stride)=
  418. *(uint32_t*)(p + 0+3*stride)=
  419. *(uint32_t*)(p + 4+3*stride)= val;
  420. }else if(w==16){
  421. *(uint32_t*)(p + 0+0*stride)=
  422. *(uint32_t*)(p + 4+0*stride)=
  423. *(uint32_t*)(p + 8+0*stride)=
  424. *(uint32_t*)(p +12+0*stride)=
  425. *(uint32_t*)(p + 0+1*stride)=
  426. *(uint32_t*)(p + 4+1*stride)=
  427. *(uint32_t*)(p + 8+1*stride)=
  428. *(uint32_t*)(p +12+1*stride)= val;
  429. if(h==2) return;
  430. *(uint32_t*)(p + 0+2*stride)=
  431. *(uint32_t*)(p + 4+2*stride)=
  432. *(uint32_t*)(p + 8+2*stride)=
  433. *(uint32_t*)(p +12+2*stride)=
  434. *(uint32_t*)(p + 0+3*stride)=
  435. *(uint32_t*)(p + 4+3*stride)=
  436. *(uint32_t*)(p + 8+3*stride)=
  437. *(uint32_t*)(p +12+3*stride)= val;
  438. #endif
  439. }else
  440. assert(0);
  441. assert(h==4);
  442. }
  443. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  444. MpegEncContext * const s = &h->s;
  445. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  446. int topleft_xy, top_xy, topright_xy, left_xy[2];
  447. int topleft_type, top_type, topright_type, left_type[2];
  448. int left_block[8];
  449. int i;
  450. //FIXME deblocking could skip the intra and nnz parts.
  451. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
  452. return;
  453. //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
  454. top_xy = mb_xy - s->mb_stride;
  455. topleft_xy = top_xy - 1;
  456. topright_xy= top_xy + 1;
  457. left_xy[1] = left_xy[0] = mb_xy-1;
  458. left_block[0]= 0;
  459. left_block[1]= 1;
  460. left_block[2]= 2;
  461. left_block[3]= 3;
  462. left_block[4]= 7;
  463. left_block[5]= 10;
  464. left_block[6]= 8;
  465. left_block[7]= 11;
  466. if(FRAME_MBAFF){
  467. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  468. const int top_pair_xy = pair_xy - s->mb_stride;
  469. const int topleft_pair_xy = top_pair_xy - 1;
  470. const int topright_pair_xy = top_pair_xy + 1;
  471. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  472. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  473. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  474. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  475. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  476. const int bottom = (s->mb_y & 1);
  477. tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  478. if (bottom
  479. ? !curr_mb_frame_flag // bottom macroblock
  480. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  481. ) {
  482. top_xy -= s->mb_stride;
  483. }
  484. if (bottom
  485. ? !curr_mb_frame_flag // bottom macroblock
  486. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  487. ) {
  488. topleft_xy -= s->mb_stride;
  489. }
  490. if (bottom
  491. ? !curr_mb_frame_flag // bottom macroblock
  492. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  493. ) {
  494. topright_xy -= s->mb_stride;
  495. }
  496. if (left_mb_frame_flag != curr_mb_frame_flag) {
  497. left_xy[1] = left_xy[0] = pair_xy - 1;
  498. if (curr_mb_frame_flag) {
  499. if (bottom) {
  500. left_block[0]= 2;
  501. left_block[1]= 2;
  502. left_block[2]= 3;
  503. left_block[3]= 3;
  504. left_block[4]= 8;
  505. left_block[5]= 11;
  506. left_block[6]= 8;
  507. left_block[7]= 11;
  508. } else {
  509. left_block[0]= 0;
  510. left_block[1]= 0;
  511. left_block[2]= 1;
  512. left_block[3]= 1;
  513. left_block[4]= 7;
  514. left_block[5]= 10;
  515. left_block[6]= 7;
  516. left_block[7]= 10;
  517. }
  518. } else {
  519. left_xy[1] += s->mb_stride;
  520. //left_block[0]= 0;
  521. left_block[1]= 2;
  522. left_block[2]= 0;
  523. left_block[3]= 2;
  524. //left_block[4]= 7;
  525. left_block[5]= 10;
  526. left_block[6]= 7;
  527. left_block[7]= 10;
  528. }
  529. }
  530. }
  531. h->top_mb_xy = top_xy;
  532. h->left_mb_xy[0] = left_xy[0];
  533. h->left_mb_xy[1] = left_xy[1];
  534. if(for_deblock){
  535. topleft_type = 0;
  536. topright_type = 0;
  537. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  538. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  539. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  540. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  541. int list;
  542. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  543. for(i=0; i<16; i++)
  544. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  545. for(list=0; list<h->list_count; list++){
  546. if(USES_LIST(mb_type,list)){
  547. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  548. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  549. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  550. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  551. dst[0] = src[0];
  552. dst[1] = src[1];
  553. dst[2] = src[2];
  554. dst[3] = src[3];
  555. }
  556. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  557. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  558. ref += h->b8_stride;
  559. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  560. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  561. }else{
  562. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  563. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  564. }
  565. }
  566. }
  567. }else{
  568. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  569. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  570. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  571. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  572. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  573. }
  574. if(IS_INTRA(mb_type)){
  575. h->topleft_samples_available=
  576. h->top_samples_available=
  577. h->left_samples_available= 0xFFFF;
  578. h->topright_samples_available= 0xEEEA;
  579. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  580. h->topleft_samples_available= 0xB3FF;
  581. h->top_samples_available= 0x33FF;
  582. h->topright_samples_available= 0x26EA;
  583. }
  584. for(i=0; i<2; i++){
  585. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  586. h->topleft_samples_available&= 0xDF5F;
  587. h->left_samples_available&= 0x5F5F;
  588. }
  589. }
  590. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  591. h->topleft_samples_available&= 0x7FFF;
  592. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  593. h->topright_samples_available&= 0xFBFF;
  594. if(IS_INTRA4x4(mb_type)){
  595. if(IS_INTRA4x4(top_type)){
  596. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  597. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  598. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  599. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  600. }else{
  601. int pred;
  602. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  603. pred= -1;
  604. else{
  605. pred= 2;
  606. }
  607. h->intra4x4_pred_mode_cache[4+8*0]=
  608. h->intra4x4_pred_mode_cache[5+8*0]=
  609. h->intra4x4_pred_mode_cache[6+8*0]=
  610. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  611. }
  612. for(i=0; i<2; i++){
  613. if(IS_INTRA4x4(left_type[i])){
  614. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  615. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  616. }else{
  617. int pred;
  618. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  619. pred= -1;
  620. else{
  621. pred= 2;
  622. }
  623. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  624. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  625. }
  626. }
  627. }
  628. }
  629. /*
  630. 0 . T T. T T T T
  631. 1 L . .L . . . .
  632. 2 L . .L . . . .
  633. 3 . T TL . . . .
  634. 4 L . .L . . . .
  635. 5 L . .. . . . .
  636. */
  637. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  638. if(top_type){
  639. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  640. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  641. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  642. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  643. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  644. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  645. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  646. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  647. }else{
  648. h->non_zero_count_cache[4+8*0]=
  649. h->non_zero_count_cache[5+8*0]=
  650. h->non_zero_count_cache[6+8*0]=
  651. h->non_zero_count_cache[7+8*0]=
  652. h->non_zero_count_cache[1+8*0]=
  653. h->non_zero_count_cache[2+8*0]=
  654. h->non_zero_count_cache[1+8*3]=
  655. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  656. }
  657. for (i=0; i<2; i++) {
  658. if(left_type[i]){
  659. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  660. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  661. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  662. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  663. }else{
  664. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  665. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  666. h->non_zero_count_cache[0+8*1 + 8*i]=
  667. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  668. }
  669. }
  670. if( h->pps.cabac ) {
  671. // top_cbp
  672. if(top_type) {
  673. h->top_cbp = h->cbp_table[top_xy];
  674. } else if(IS_INTRA(mb_type)) {
  675. h->top_cbp = 0x1C0;
  676. } else {
  677. h->top_cbp = 0;
  678. }
  679. // left_cbp
  680. if (left_type[0]) {
  681. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  682. } else if(IS_INTRA(mb_type)) {
  683. h->left_cbp = 0x1C0;
  684. } else {
  685. h->left_cbp = 0;
  686. }
  687. if (left_type[0]) {
  688. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  689. }
  690. if (left_type[1]) {
  691. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  692. }
  693. }
  694. #if 1
  695. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  696. int list;
  697. for(list=0; list<h->list_count; list++){
  698. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  699. /*if(!h->mv_cache_clean[list]){
  700. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  701. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  702. h->mv_cache_clean[list]= 1;
  703. }*/
  704. continue;
  705. }
  706. h->mv_cache_clean[list]= 0;
  707. if(USES_LIST(top_type, list)){
  708. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  709. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  710. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  711. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  712. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  713. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  714. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  715. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  716. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  717. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  718. }else{
  719. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  720. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  721. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  722. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  723. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  724. }
  725. for(i=0; i<2; i++){
  726. int cache_idx = scan8[0] - 1 + i*2*8;
  727. if(USES_LIST(left_type[i], list)){
  728. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  729. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  730. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  731. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  732. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  733. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  734. }else{
  735. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  736. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  737. h->ref_cache[list][cache_idx ]=
  738. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  739. }
  740. }
  741. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  742. continue;
  743. if(USES_LIST(topleft_type, list)){
  744. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  745. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
  746. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  747. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  748. }else{
  749. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  750. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  751. }
  752. if(USES_LIST(topright_type, list)){
  753. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  754. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  755. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  756. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  757. }else{
  758. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  759. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  760. }
  761. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  762. continue;
  763. h->ref_cache[list][scan8[5 ]+1] =
  764. h->ref_cache[list][scan8[7 ]+1] =
  765. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  766. h->ref_cache[list][scan8[4 ]] =
  767. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  768. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  769. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  770. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  771. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  772. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  773. if( h->pps.cabac ) {
  774. /* XXX beurk, Load mvd */
  775. if(USES_LIST(top_type, list)){
  776. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  777. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  778. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  779. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  780. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  781. }else{
  782. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  783. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  784. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  785. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  786. }
  787. if(USES_LIST(left_type[0], list)){
  788. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  789. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  790. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  791. }else{
  792. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  793. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  794. }
  795. if(USES_LIST(left_type[1], list)){
  796. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  797. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  798. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  799. }else{
  800. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  801. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  802. }
  803. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  804. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  805. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  806. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  807. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  808. if(h->slice_type == B_TYPE){
  809. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  810. if(IS_DIRECT(top_type)){
  811. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  812. }else if(IS_8X8(top_type)){
  813. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  814. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  815. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  816. }else{
  817. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  818. }
  819. if(IS_DIRECT(left_type[0]))
  820. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  821. else if(IS_8X8(left_type[0]))
  822. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  823. else
  824. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  825. if(IS_DIRECT(left_type[1]))
  826. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  827. else if(IS_8X8(left_type[1]))
  828. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  829. else
  830. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  831. }
  832. }
  833. if(FRAME_MBAFF){
  834. #define MAP_MVS\
  835. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  836. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  837. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  838. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  839. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  840. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  841. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  842. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  843. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  844. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  845. if(MB_FIELD){
  846. #define MAP_F2F(idx, mb_type)\
  847. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  848. h->ref_cache[list][idx] <<= 1;\
  849. h->mv_cache[list][idx][1] /= 2;\
  850. h->mvd_cache[list][idx][1] /= 2;\
  851. }
  852. MAP_MVS
  853. #undef MAP_F2F
  854. }else{
  855. #define MAP_F2F(idx, mb_type)\
  856. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  857. h->ref_cache[list][idx] >>= 1;\
  858. h->mv_cache[list][idx][1] <<= 1;\
  859. h->mvd_cache[list][idx][1] <<= 1;\
  860. }
  861. MAP_MVS
  862. #undef MAP_F2F
  863. }
  864. }
  865. }
  866. }
  867. #endif
  868. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  869. }
  870. static inline void write_back_intra_pred_mode(H264Context *h){
  871. MpegEncContext * const s = &h->s;
  872. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  873. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  874. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  875. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  876. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  877. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  878. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  879. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  880. }
  881. /**
  882. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  883. */
  884. static inline int check_intra4x4_pred_mode(H264Context *h){
  885. MpegEncContext * const s = &h->s;
  886. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  887. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  888. int i;
  889. if(!(h->top_samples_available&0x8000)){
  890. for(i=0; i<4; i++){
  891. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  892. if(status<0){
  893. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  894. return -1;
  895. } else if(status){
  896. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  897. }
  898. }
  899. }
  900. if(!(h->left_samples_available&0x8000)){
  901. for(i=0; i<4; i++){
  902. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  903. if(status<0){
  904. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  905. return -1;
  906. } else if(status){
  907. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  908. }
  909. }
  910. }
  911. return 0;
  912. } //FIXME cleanup like next
  913. /**
  914. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  915. */
  916. static inline int check_intra_pred_mode(H264Context *h, int mode){
  917. MpegEncContext * const s = &h->s;
  918. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  919. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  920. if(mode > 6U) {
  921. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  922. return -1;
  923. }
  924. if(!(h->top_samples_available&0x8000)){
  925. mode= top[ mode ];
  926. if(mode<0){
  927. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  928. return -1;
  929. }
  930. }
  931. if(!(h->left_samples_available&0x8000)){
  932. mode= left[ mode ];
  933. if(mode<0){
  934. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  935. return -1;
  936. }
  937. }
  938. return mode;
  939. }
  940. /**
  941. * gets the predicted intra4x4 prediction mode.
  942. */
  943. static inline int pred_intra_mode(H264Context *h, int n){
  944. const int index8= scan8[n];
  945. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  946. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  947. const int min= FFMIN(left, top);
  948. tprintf("mode:%d %d min:%d\n", left ,top, min);
  949. if(min<0) return DC_PRED;
  950. else return min;
  951. }
  952. static inline void write_back_non_zero_count(H264Context *h){
  953. MpegEncContext * const s = &h->s;
  954. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  955. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  956. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  957. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  958. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  959. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  960. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  961. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  962. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  963. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  964. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  965. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  966. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  967. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  968. if(FRAME_MBAFF){
  969. // store all luma nnzs, for deblocking
  970. int v = 0, i;
  971. for(i=0; i<16; i++)
  972. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  973. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  974. }
  975. }
  976. /**
  977. * gets the predicted number of non zero coefficients.
  978. * @param n block index
  979. */
  980. static inline int pred_non_zero_count(H264Context *h, int n){
  981. const int index8= scan8[n];
  982. const int left= h->non_zero_count_cache[index8 - 1];
  983. const int top = h->non_zero_count_cache[index8 - 8];
  984. int i= left + top;
  985. if(i<64) i= (i+1)>>1;
  986. tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  987. return i&31;
  988. }
  989. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  990. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  991. /* there is no consistent mapping of mvs to neighboring locations that will
  992. * make mbaff happy, so we can't move all this logic to fill_caches */
  993. if(FRAME_MBAFF){
  994. MpegEncContext *s = &h->s;
  995. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  996. const int16_t *mv;
  997. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  998. *C = h->mv_cache[list][scan8[0]-2];
  999. if(!MB_FIELD
  1000. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  1001. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  1002. if(IS_INTERLACED(mb_types[topright_xy])){
  1003. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  1004. const int x4 = X4, y4 = Y4;\
  1005. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  1006. if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
  1007. return LIST_NOT_USED;\
  1008. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  1009. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  1010. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  1011. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  1012. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  1013. }
  1014. }
  1015. if(topright_ref == PART_NOT_AVAILABLE
  1016. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  1017. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  1018. if(!MB_FIELD
  1019. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  1020. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  1021. }
  1022. if(MB_FIELD
  1023. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  1024. && i >= scan8[0]+8){
  1025. // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
  1026. SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  1027. }
  1028. }
  1029. #undef SET_DIAG_MV
  1030. }
  1031. if(topright_ref != PART_NOT_AVAILABLE){
  1032. *C= h->mv_cache[list][ i - 8 + part_width ];
  1033. return topright_ref;
  1034. }else{
  1035. tprintf("topright MV not available\n");
  1036. *C= h->mv_cache[list][ i - 8 - 1 ];
  1037. return h->ref_cache[list][ i - 8 - 1 ];
  1038. }
  1039. }
  1040. /**
  1041. * gets the predicted MV.
  1042. * @param n the block index
  1043. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  1044. * @param mx the x component of the predicted motion vector
  1045. * @param my the y component of the predicted motion vector
  1046. */
  1047. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  1048. const int index8= scan8[n];
  1049. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  1050. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  1051. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  1052. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  1053. const int16_t * C;
  1054. int diagonal_ref, match_count;
  1055. assert(part_width==1 || part_width==2 || part_width==4);
  1056. /* mv_cache
  1057. B . . A T T T T
  1058. U . . L . . , .
  1059. U . . L . . . .
  1060. U . . L . . , .
  1061. . . . L . . . .
  1062. */
  1063. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  1064. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  1065. tprintf("pred_motion match_count=%d\n", match_count);
  1066. if(match_count > 1){ //most common
  1067. *mx= mid_pred(A[0], B[0], C[0]);
  1068. *my= mid_pred(A[1], B[1], C[1]);
  1069. }else if(match_count==1){
  1070. if(left_ref==ref){
  1071. *mx= A[0];
  1072. *my= A[1];
  1073. }else if(top_ref==ref){
  1074. *mx= B[0];
  1075. *my= B[1];
  1076. }else{
  1077. *mx= C[0];
  1078. *my= C[1];
  1079. }
  1080. }else{
  1081. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  1082. *mx= A[0];
  1083. *my= A[1];
  1084. }else{
  1085. *mx= mid_pred(A[0], B[0], C[0]);
  1086. *my= mid_pred(A[1], B[1], C[1]);
  1087. }
  1088. }
  1089. tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  1090. }
  1091. /**
  1092. * gets the directionally predicted 16x8 MV.
  1093. * @param n the block index
  1094. * @param mx the x component of the predicted motion vector
  1095. * @param my the y component of the predicted motion vector
  1096. */
  1097. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  1098. if(n==0){
  1099. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  1100. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  1101. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  1102. if(top_ref == ref){
  1103. *mx= B[0];
  1104. *my= B[1];
  1105. return;
  1106. }
  1107. }else{
  1108. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  1109. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  1110. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  1111. if(left_ref == ref){
  1112. *mx= A[0];
  1113. *my= A[1];
  1114. return;
  1115. }
  1116. }
  1117. //RARE
  1118. pred_motion(h, n, 4, list, ref, mx, my);
  1119. }
  1120. /**
  1121. * gets the directionally predicted 8x16 MV.
  1122. * @param n the block index
  1123. * @param mx the x component of the predicted motion vector
  1124. * @param my the y component of the predicted motion vector
  1125. */
  1126. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  1127. if(n==0){
  1128. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  1129. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  1130. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  1131. if(left_ref == ref){
  1132. *mx= A[0];
  1133. *my= A[1];
  1134. return;
  1135. }
  1136. }else{
  1137. const int16_t * C;
  1138. int diagonal_ref;
  1139. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  1140. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  1141. if(diagonal_ref == ref){
  1142. *mx= C[0];
  1143. *my= C[1];
  1144. return;
  1145. }
  1146. }
  1147. //RARE
  1148. pred_motion(h, n, 2, list, ref, mx, my);
  1149. }
  1150. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  1151. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  1152. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  1153. tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  1154. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  1155. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  1156. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  1157. *mx = *my = 0;
  1158. return;
  1159. }
  1160. pred_motion(h, 0, 4, 0, 0, mx, my);
  1161. return;
  1162. }
  1163. static inline void direct_dist_scale_factor(H264Context * const h){
  1164. const int poc = h->s.current_picture_ptr->poc;
  1165. const int poc1 = h->ref_list[1][0].poc;
  1166. int i;
  1167. for(i=0; i<h->ref_count[0]; i++){
  1168. int poc0 = h->ref_list[0][i].poc;
  1169. int td = clip(poc1 - poc0, -128, 127);
  1170. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  1171. h->dist_scale_factor[i] = 256;
  1172. }else{
  1173. int tb = clip(poc - poc0, -128, 127);
  1174. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1175. h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
  1176. }
  1177. }
  1178. if(FRAME_MBAFF){
  1179. for(i=0; i<h->ref_count[0]; i++){
  1180. h->dist_scale_factor_field[2*i] =
  1181. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  1182. }
  1183. }
  1184. }
  1185. static inline void direct_ref_list_init(H264Context * const h){
  1186. MpegEncContext * const s = &h->s;
  1187. Picture * const ref1 = &h->ref_list[1][0];
  1188. Picture * const cur = s->current_picture_ptr;
  1189. int list, i, j;
  1190. if(cur->pict_type == I_TYPE)
  1191. cur->ref_count[0] = 0;
  1192. if(cur->pict_type != B_TYPE)
  1193. cur->ref_count[1] = 0;
  1194. for(list=0; list<2; list++){
  1195. cur->ref_count[list] = h->ref_count[list];
  1196. for(j=0; j<h->ref_count[list]; j++)
  1197. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  1198. }
  1199. if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
  1200. return;
  1201. for(list=0; list<2; list++){
  1202. for(i=0; i<ref1->ref_count[list]; i++){
  1203. const int poc = ref1->ref_poc[list][i];
  1204. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  1205. for(j=0; j<h->ref_count[list]; j++)
  1206. if(h->ref_list[list][j].poc == poc){
  1207. h->map_col_to_list0[list][i] = j;
  1208. break;
  1209. }
  1210. }
  1211. }
  1212. if(FRAME_MBAFF){
  1213. for(list=0; list<2; list++){
  1214. for(i=0; i<ref1->ref_count[list]; i++){
  1215. j = h->map_col_to_list0[list][i];
  1216. h->map_col_to_list0_field[list][2*i] = 2*j;
  1217. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  1218. }
  1219. }
  1220. }
  1221. }
  1222. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  1223. MpegEncContext * const s = &h->s;
  1224. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  1225. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1226. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1227. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  1228. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  1229. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  1230. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  1231. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  1232. const int is_b8x8 = IS_8X8(*mb_type);
  1233. unsigned int sub_mb_type;
  1234. int i8, i4;
  1235. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  1236. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  1237. /* FIXME save sub mb types from previous frames (or derive from MVs)
  1238. * so we know exactly what block size to use */
  1239. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  1240. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1241. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  1242. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1243. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  1244. }else{
  1245. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1246. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1247. }
  1248. if(!is_b8x8)
  1249. *mb_type |= MB_TYPE_DIRECT2;
  1250. if(MB_FIELD)
  1251. *mb_type |= MB_TYPE_INTERLACED;
  1252. tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  1253. if(h->direct_spatial_mv_pred){
  1254. int ref[2];
  1255. int mv[2][2];
  1256. int list;
  1257. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  1258. /* ref = min(neighbors) */
  1259. for(list=0; list<2; list++){
  1260. int refa = h->ref_cache[list][scan8[0] - 1];
  1261. int refb = h->ref_cache[list][scan8[0] - 8];
  1262. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  1263. if(refc == -2)
  1264. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  1265. ref[list] = refa;
  1266. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  1267. ref[list] = refb;
  1268. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  1269. ref[list] = refc;
  1270. if(ref[list] < 0)
  1271. ref[list] = -1;
  1272. }
  1273. if(ref[0] < 0 && ref[1] < 0){
  1274. ref[0] = ref[1] = 0;
  1275. mv[0][0] = mv[0][1] =
  1276. mv[1][0] = mv[1][1] = 0;
  1277. }else{
  1278. for(list=0; list<2; list++){
  1279. if(ref[list] >= 0)
  1280. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  1281. else
  1282. mv[list][0] = mv[list][1] = 0;
  1283. }
  1284. }
  1285. if(ref[1] < 0){
  1286. *mb_type &= ~MB_TYPE_P0L1;
  1287. sub_mb_type &= ~MB_TYPE_P0L1;
  1288. }else if(ref[0] < 0){
  1289. *mb_type &= ~MB_TYPE_P0L0;
  1290. sub_mb_type &= ~MB_TYPE_P0L0;
  1291. }
  1292. if(IS_16X16(*mb_type)){
  1293. int a=0, b=0;
  1294. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  1295. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  1296. if(!IS_INTRA(mb_type_col)
  1297. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  1298. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  1299. && (h->x264_build>33 || !h->x264_build)))){
  1300. if(ref[0] > 0)
  1301. a= pack16to32(mv[0][0],mv[0][1]);
  1302. if(ref[1] > 0)
  1303. b= pack16to32(mv[1][0],mv[1][1]);
  1304. }else{
  1305. a= pack16to32(mv[0][0],mv[0][1]);
  1306. b= pack16to32(mv[1][0],mv[1][1]);
  1307. }
  1308. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  1309. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  1310. }else{
  1311. for(i8=0; i8<4; i8++){
  1312. const int x8 = i8&1;
  1313. const int y8 = i8>>1;
  1314. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1315. continue;
  1316. h->sub_mb_type[i8] = sub_mb_type;
  1317. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1318. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1319. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1320. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1321. /* col_zero_flag */
  1322. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1323. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1324. && (h->x264_build>33 || !h->x264_build)))){
  1325. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1326. if(IS_SUB_8X8(sub_mb_type)){
  1327. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1328. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1329. if(ref[0] == 0)
  1330. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1331. if(ref[1] == 0)
  1332. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1333. }
  1334. }else
  1335. for(i4=0; i4<4; i4++){
  1336. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1337. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1338. if(ref[0] == 0)
  1339. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1340. if(ref[1] == 0)
  1341. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1342. }
  1343. }
  1344. }
  1345. }
  1346. }
  1347. }else{ /* direct temporal mv pred */
  1348. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1349. const int *dist_scale_factor = h->dist_scale_factor;
  1350. if(FRAME_MBAFF){
  1351. if(IS_INTERLACED(*mb_type)){
  1352. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1353. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1354. dist_scale_factor = h->dist_scale_factor_field;
  1355. }
  1356. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1357. /* FIXME assumes direct_8x8_inference == 1 */
  1358. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1359. int mb_types_col[2];
  1360. int y_shift;
  1361. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1362. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1363. | (*mb_type & MB_TYPE_INTERLACED);
  1364. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1365. if(IS_INTERLACED(*mb_type)){
  1366. /* frame to field scaling */
  1367. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1368. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1369. if(s->mb_y&1){
  1370. l1ref0 -= 2*h->b8_stride;
  1371. l1ref1 -= 2*h->b8_stride;
  1372. l1mv0 -= 4*h->b_stride;
  1373. l1mv1 -= 4*h->b_stride;
  1374. }
  1375. y_shift = 0;
  1376. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1377. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1378. && !is_b8x8)
  1379. *mb_type |= MB_TYPE_16x8;
  1380. else
  1381. *mb_type |= MB_TYPE_8x8;
  1382. }else{
  1383. /* field to frame scaling */
  1384. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1385. * but in MBAFF, top and bottom POC are equal */
  1386. int dy = (s->mb_y&1) ? 1 : 2;
  1387. mb_types_col[0] =
  1388. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1389. l1ref0 += dy*h->b8_stride;
  1390. l1ref1 += dy*h->b8_stride;
  1391. l1mv0 += 2*dy*h->b_stride;
  1392. l1mv1 += 2*dy*h->b_stride;
  1393. y_shift = 2;
  1394. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1395. && !is_b8x8)
  1396. *mb_type |= MB_TYPE_16x16;
  1397. else
  1398. *mb_type |= MB_TYPE_8x8;
  1399. }
  1400. for(i8=0; i8<4; i8++){
  1401. const int x8 = i8&1;
  1402. const int y8 = i8>>1;
  1403. int ref0, scale;
  1404. const int16_t (*l1mv)[2]= l1mv0;
  1405. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1406. continue;
  1407. h->sub_mb_type[i8] = sub_mb_type;
  1408. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1409. if(IS_INTRA(mb_types_col[y8])){
  1410. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1411. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1412. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1413. continue;
  1414. }
  1415. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1416. if(ref0 >= 0)
  1417. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1418. else{
  1419. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1420. l1mv= l1mv1;
  1421. }
  1422. scale = dist_scale_factor[ref0];
  1423. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1424. {
  1425. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1426. int my_col = (mv_col[1]<<y_shift)/2;
  1427. int mx = (scale * mv_col[0] + 128) >> 8;
  1428. int my = (scale * my_col + 128) >> 8;
  1429. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1430. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1431. }
  1432. }
  1433. return;
  1434. }
  1435. }
  1436. /* one-to-one mv scaling */
  1437. if(IS_16X16(*mb_type)){
  1438. int ref, mv0, mv1;
  1439. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1440. if(IS_INTRA(mb_type_col)){
  1441. ref=mv0=mv1=0;
  1442. }else{
  1443. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1444. : map_col_to_list0[1][l1ref1[0]];
  1445. const int scale = dist_scale_factor[ref0];
  1446. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1447. int mv_l0[2];
  1448. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1449. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1450. ref= ref0;
  1451. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1452. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1453. }
  1454. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1455. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1456. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1457. }else{
  1458. for(i8=0; i8<4; i8++){
  1459. const int x8 = i8&1;
  1460. const int y8 = i8>>1;
  1461. int ref0, scale;
  1462. const int16_t (*l1mv)[2]= l1mv0;
  1463. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1464. continue;
  1465. h->sub_mb_type[i8] = sub_mb_type;
  1466. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1467. if(IS_INTRA(mb_type_col)){
  1468. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1469. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1470. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1471. continue;
  1472. }
  1473. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1474. if(ref0 >= 0)
  1475. ref0 = map_col_to_list0[0][ref0];
  1476. else{
  1477. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1478. l1mv= l1mv1;
  1479. }
  1480. scale = dist_scale_factor[ref0];
  1481. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1482. if(IS_SUB_8X8(sub_mb_type)){
  1483. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1484. int mx = (scale * mv_col[0] + 128) >> 8;
  1485. int my = (scale * mv_col[1] + 128) >> 8;
  1486. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1487. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1488. }else
  1489. for(i4=0; i4<4; i4++){
  1490. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1491. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1492. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1493. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1494. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1495. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1496. }
  1497. }
  1498. }
  1499. }
  1500. }
  1501. static inline void write_back_motion(H264Context *h, int mb_type){
  1502. MpegEncContext * const s = &h->s;
  1503. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1504. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1505. int list;
  1506. if(!USES_LIST(mb_type, 0))
  1507. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1508. for(list=0; list<h->list_count; list++){
  1509. int y;
  1510. if(!USES_LIST(mb_type, list))
  1511. continue;
  1512. for(y=0; y<4; y++){
  1513. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1514. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1515. }
  1516. if( h->pps.cabac ) {
  1517. if(IS_SKIP(mb_type))
  1518. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1519. else
  1520. for(y=0; y<4; y++){
  1521. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1522. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1523. }
  1524. }
  1525. {
  1526. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1527. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1528. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1529. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1530. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1531. }
  1532. }
  1533. if(h->slice_type == B_TYPE && h->pps.cabac){
  1534. if(IS_8X8(mb_type)){
  1535. uint8_t *direct_table = &h->direct_table[b8_xy];
  1536. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1537. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1538. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1539. }
  1540. }
  1541. }
  1542. /**
  1543. * Decodes a network abstraction layer unit.
  1544. * @param consumed is the number of bytes used as input
  1545. * @param length is the length of the array
  1546. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1547. * @returns decoded bytes, might be src+1 if no escapes
  1548. */
  1549. static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
  1550. int i, si, di;
  1551. uint8_t *dst;
  1552. // src[0]&0x80; //forbidden bit
  1553. h->nal_ref_idc= src[0]>>5;
  1554. h->nal_unit_type= src[0]&0x1F;
  1555. src++; length--;
  1556. #if 0
  1557. for(i=0; i<length; i++)
  1558. printf("%2X ", src[i]);
  1559. #endif
  1560. for(i=0; i+1<length; i+=2){
  1561. if(src[i]) continue;
  1562. if(i>0 && src[i-1]==0) i--;
  1563. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1564. if(src[i+2]!=3){
  1565. /* startcode, so we must be past the end */
  1566. length=i;
  1567. }
  1568. break;
  1569. }
  1570. }
  1571. if(i>=length-1){ //no escaped 0
  1572. *dst_length= length;
  1573. *consumed= length+1; //+1 for the header
  1574. return src;
  1575. }
  1576. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
  1577. dst= h->rbsp_buffer;
  1578. if (dst == NULL){
  1579. return NULL;
  1580. }
  1581. //printf("decoding esc\n");
  1582. si=di=0;
  1583. while(si<length){
  1584. //remove escapes (very rare 1:2^22)
  1585. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1586. if(src[si+2]==3){ //escape
  1587. dst[di++]= 0;
  1588. dst[di++]= 0;
  1589. si+=3;
  1590. continue;
  1591. }else //next start code
  1592. break;
  1593. }
  1594. dst[di++]= src[si++];
  1595. }
  1596. *dst_length= di;
  1597. *consumed= si + 1;//+1 for the header
  1598. //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
  1599. return dst;
  1600. }
  1601. /**
  1602. * identifies the exact end of the bitstream
  1603. * @return the length of the trailing, or 0 if damaged
  1604. */
  1605. static int decode_rbsp_trailing(uint8_t *src){
  1606. int v= *src;
  1607. int r;
  1608. tprintf("rbsp trailing %X\n", v);
  1609. for(r=1; r<9; r++){
  1610. if(v&1) return r;
  1611. v>>=1;
  1612. }
  1613. return 0;
  1614. }
  1615. /**
  1616. * idct tranforms the 16 dc values and dequantize them.
  1617. * @param qp quantization parameter
  1618. */
  1619. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1620. #define stride 16
  1621. int i;
  1622. int temp[16]; //FIXME check if this is a good idea
  1623. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1624. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1625. //memset(block, 64, 2*256);
  1626. //return;
  1627. for(i=0; i<4; i++){
  1628. const int offset= y_offset[i];
  1629. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1630. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1631. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1632. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1633. temp[4*i+0]= z0+z3;
  1634. temp[4*i+1]= z1+z2;
  1635. temp[4*i+2]= z1-z2;
  1636. temp[4*i+3]= z0-z3;
  1637. }
  1638. for(i=0; i<4; i++){
  1639. const int offset= x_offset[i];
  1640. const int z0= temp[4*0+i] + temp[4*2+i];
  1641. const int z1= temp[4*0+i] - temp[4*2+i];
  1642. const int z2= temp[4*1+i] - temp[4*3+i];
  1643. const int z3= temp[4*1+i] + temp[4*3+i];
  1644. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1645. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1646. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1647. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1648. }
  1649. }
  1650. #if 0
  1651. /**
  1652. * dct tranforms the 16 dc values.
  1653. * @param qp quantization parameter ??? FIXME
  1654. */
  1655. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1656. // const int qmul= dequant_coeff[qp][0];
  1657. int i;
  1658. int temp[16]; //FIXME check if this is a good idea
  1659. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1660. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1661. for(i=0; i<4; i++){
  1662. const int offset= y_offset[i];
  1663. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1664. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1665. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1666. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1667. temp[4*i+0]= z0+z3;
  1668. temp[4*i+1]= z1+z2;
  1669. temp[4*i+2]= z1-z2;
  1670. temp[4*i+3]= z0-z3;
  1671. }
  1672. for(i=0; i<4; i++){
  1673. const int offset= x_offset[i];
  1674. const int z0= temp[4*0+i] + temp[4*2+i];
  1675. const int z1= temp[4*0+i] - temp[4*2+i];
  1676. const int z2= temp[4*1+i] - temp[4*3+i];
  1677. const int z3= temp[4*1+i] + temp[4*3+i];
  1678. block[stride*0 +offset]= (z0 + z3)>>1;
  1679. block[stride*2 +offset]= (z1 + z2)>>1;
  1680. block[stride*8 +offset]= (z1 - z2)>>1;
  1681. block[stride*10+offset]= (z0 - z3)>>1;
  1682. }
  1683. }
  1684. #endif
  1685. #undef xStride
  1686. #undef stride
  1687. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1688. const int stride= 16*2;
  1689. const int xStride= 16;
  1690. int a,b,c,d,e;
  1691. a= block[stride*0 + xStride*0];
  1692. b= block[stride*0 + xStride*1];
  1693. c= block[stride*1 + xStride*0];
  1694. d= block[stride*1 + xStride*1];
  1695. e= a-b;
  1696. a= a+b;
  1697. b= c-d;
  1698. c= c+d;
  1699. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1700. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1701. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1702. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1703. }
  1704. #if 0
  1705. static void chroma_dc_dct_c(DCTELEM *block){
  1706. const int stride= 16*2;
  1707. const int xStride= 16;
  1708. int a,b,c,d,e;
  1709. a= block[stride*0 + xStride*0];
  1710. b= block[stride*0 + xStride*1];
  1711. c= block[stride*1 + xStride*0];
  1712. d= block[stride*1 + xStride*1];
  1713. e= a-b;
  1714. a= a+b;
  1715. b= c-d;
  1716. c= c+d;
  1717. block[stride*0 + xStride*0]= (a+c);
  1718. block[stride*0 + xStride*1]= (e+b);
  1719. block[stride*1 + xStride*0]= (a-c);
  1720. block[stride*1 + xStride*1]= (e-b);
  1721. }
  1722. #endif
  1723. /**
  1724. * gets the chroma qp.
  1725. */
  1726. static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
  1727. return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
  1728. }
  1729. //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
  1730. //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
  1731. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
  1732. int i;
  1733. const int * const quant_table= quant_coeff[qscale];
  1734. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1735. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1736. const unsigned int threshold2= (threshold1<<1);
  1737. int last_non_zero;
  1738. if(seperate_dc){
  1739. if(qscale<=18){
  1740. //avoid overflows
  1741. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1742. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1743. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1744. int level= block[0]*quant_coeff[qscale+18][0];
  1745. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1746. if(level>0){
  1747. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1748. block[0]= level;
  1749. }else{
  1750. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1751. block[0]= -level;
  1752. }
  1753. // last_non_zero = i;
  1754. }else{
  1755. block[0]=0;
  1756. }
  1757. }else{
  1758. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1759. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1760. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1761. int level= block[0]*quant_table[0];
  1762. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1763. if(level>0){
  1764. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1765. block[0]= level;
  1766. }else{
  1767. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1768. block[0]= -level;
  1769. }
  1770. // last_non_zero = i;
  1771. }else{
  1772. block[0]=0;
  1773. }
  1774. }
  1775. last_non_zero= 0;
  1776. i=1;
  1777. }else{
  1778. last_non_zero= -1;
  1779. i=0;
  1780. }
  1781. for(; i<16; i++){
  1782. const int j= scantable[i];
  1783. int level= block[j]*quant_table[j];
  1784. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1785. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1786. if(((unsigned)(level+threshold1))>threshold2){
  1787. if(level>0){
  1788. level= (bias + level)>>QUANT_SHIFT;
  1789. block[j]= level;
  1790. }else{
  1791. level= (bias - level)>>QUANT_SHIFT;
  1792. block[j]= -level;
  1793. }
  1794. last_non_zero = i;
  1795. }else{
  1796. block[j]=0;
  1797. }
  1798. }
  1799. return last_non_zero;
  1800. }
  1801. static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
  1802. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1803. ((uint32_t*)(src+0*stride))[0]= a;
  1804. ((uint32_t*)(src+1*stride))[0]= a;
  1805. ((uint32_t*)(src+2*stride))[0]= a;
  1806. ((uint32_t*)(src+3*stride))[0]= a;
  1807. }
  1808. static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
  1809. ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
  1810. ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
  1811. ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
  1812. ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
  1813. }
  1814. static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1815. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
  1816. + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
  1817. ((uint32_t*)(src+0*stride))[0]=
  1818. ((uint32_t*)(src+1*stride))[0]=
  1819. ((uint32_t*)(src+2*stride))[0]=
  1820. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1821. }
  1822. static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1823. const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
  1824. ((uint32_t*)(src+0*stride))[0]=
  1825. ((uint32_t*)(src+1*stride))[0]=
  1826. ((uint32_t*)(src+2*stride))[0]=
  1827. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1828. }
  1829. static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1830. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
  1831. ((uint32_t*)(src+0*stride))[0]=
  1832. ((uint32_t*)(src+1*stride))[0]=
  1833. ((uint32_t*)(src+2*stride))[0]=
  1834. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1835. }
  1836. static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1837. ((uint32_t*)(src+0*stride))[0]=
  1838. ((uint32_t*)(src+1*stride))[0]=
  1839. ((uint32_t*)(src+2*stride))[0]=
  1840. ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
  1841. }
  1842. #define LOAD_TOP_RIGHT_EDGE\
  1843. const int t4= topright[0];\
  1844. const int t5= topright[1];\
  1845. const int t6= topright[2];\
  1846. const int t7= topright[3];\
  1847. #define LOAD_LEFT_EDGE\
  1848. const int l0= src[-1+0*stride];\
  1849. const int l1= src[-1+1*stride];\
  1850. const int l2= src[-1+2*stride];\
  1851. const int l3= src[-1+3*stride];\
  1852. #define LOAD_TOP_EDGE\
  1853. const int t0= src[ 0-1*stride];\
  1854. const int t1= src[ 1-1*stride];\
  1855. const int t2= src[ 2-1*stride];\
  1856. const int t3= src[ 3-1*stride];\
  1857. static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
  1858. const int lt= src[-1-1*stride];
  1859. LOAD_TOP_EDGE
  1860. LOAD_LEFT_EDGE
  1861. src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
  1862. src[0+2*stride]=
  1863. src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
  1864. src[0+1*stride]=
  1865. src[1+2*stride]=
  1866. src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
  1867. src[0+0*stride]=
  1868. src[1+1*stride]=
  1869. src[2+2*stride]=
  1870. src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1871. src[1+0*stride]=
  1872. src[2+1*stride]=
  1873. src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1874. src[2+0*stride]=
  1875. src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1876. src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1877. }
  1878. static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
  1879. LOAD_TOP_EDGE
  1880. LOAD_TOP_RIGHT_EDGE
  1881. // LOAD_LEFT_EDGE
  1882. src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
  1883. src[1+0*stride]=
  1884. src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
  1885. src[2+0*stride]=
  1886. src[1+1*stride]=
  1887. src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
  1888. src[3+0*stride]=
  1889. src[2+1*stride]=
  1890. src[1+2*stride]=
  1891. src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
  1892. src[3+1*stride]=
  1893. src[2+2*stride]=
  1894. src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
  1895. src[3+2*stride]=
  1896. src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
  1897. src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
  1898. }
  1899. static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
  1900. const int lt= src[-1-1*stride];
  1901. LOAD_TOP_EDGE
  1902. LOAD_LEFT_EDGE
  1903. const __attribute__((unused)) int unu= l3;
  1904. src[0+0*stride]=
  1905. src[1+2*stride]=(lt + t0 + 1)>>1;
  1906. src[1+0*stride]=
  1907. src[2+2*stride]=(t0 + t1 + 1)>>1;
  1908. src[2+0*stride]=
  1909. src[3+2*stride]=(t1 + t2 + 1)>>1;
  1910. src[3+0*stride]=(t2 + t3 + 1)>>1;
  1911. src[0+1*stride]=
  1912. src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1913. src[1+1*stride]=
  1914. src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1915. src[2+1*stride]=
  1916. src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1917. src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1918. src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1919. src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1920. }
  1921. static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
  1922. LOAD_TOP_EDGE
  1923. LOAD_TOP_RIGHT_EDGE
  1924. const __attribute__((unused)) int unu= t7;
  1925. src[0+0*stride]=(t0 + t1 + 1)>>1;
  1926. src[1+0*stride]=
  1927. src[0+2*stride]=(t1 + t2 + 1)>>1;
  1928. src[2+0*stride]=
  1929. src[1+2*stride]=(t2 + t3 + 1)>>1;
  1930. src[3+0*stride]=
  1931. src[2+2*stride]=(t3 + t4+ 1)>>1;
  1932. src[3+2*stride]=(t4 + t5+ 1)>>1;
  1933. src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1934. src[1+1*stride]=
  1935. src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1936. src[2+1*stride]=
  1937. src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
  1938. src[3+1*stride]=
  1939. src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
  1940. src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
  1941. }
  1942. static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
  1943. LOAD_LEFT_EDGE
  1944. src[0+0*stride]=(l0 + l1 + 1)>>1;
  1945. src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1946. src[2+0*stride]=
  1947. src[0+1*stride]=(l1 + l2 + 1)>>1;
  1948. src[3+0*stride]=
  1949. src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1950. src[2+1*stride]=
  1951. src[0+2*stride]=(l2 + l3 + 1)>>1;
  1952. src[3+1*stride]=
  1953. src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
  1954. src[3+2*stride]=
  1955. src[1+3*stride]=
  1956. src[0+3*stride]=
  1957. src[2+2*stride]=
  1958. src[2+3*stride]=
  1959. src[3+3*stride]=l3;
  1960. }
  1961. static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
  1962. const int lt= src[-1-1*stride];
  1963. LOAD_TOP_EDGE
  1964. LOAD_LEFT_EDGE
  1965. const __attribute__((unused)) int unu= t3;
  1966. src[0+0*stride]=
  1967. src[2+1*stride]=(lt + l0 + 1)>>1;
  1968. src[1+0*stride]=
  1969. src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1970. src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1971. src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1972. src[0+1*stride]=
  1973. src[2+2*stride]=(l0 + l1 + 1)>>1;
  1974. src[1+1*stride]=
  1975. src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1976. src[0+2*stride]=
  1977. src[2+3*stride]=(l1 + l2+ 1)>>1;
  1978. src[1+2*stride]=
  1979. src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1980. src[0+3*stride]=(l2 + l3 + 1)>>1;
  1981. src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1982. }
  1983. void ff_pred16x16_vertical_c(uint8_t *src, int stride){
  1984. int i;
  1985. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1986. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1987. const uint32_t c= ((uint32_t*)(src-stride))[2];
  1988. const uint32_t d= ((uint32_t*)(src-stride))[3];
  1989. for(i=0; i<16; i++){
  1990. ((uint32_t*)(src+i*stride))[0]= a;
  1991. ((uint32_t*)(src+i*stride))[1]= b;
  1992. ((uint32_t*)(src+i*stride))[2]= c;
  1993. ((uint32_t*)(src+i*stride))[3]= d;
  1994. }
  1995. }
  1996. void ff_pred16x16_horizontal_c(uint8_t *src, int stride){
  1997. int i;
  1998. for(i=0; i<16; i++){
  1999. ((uint32_t*)(src+i*stride))[0]=
  2000. ((uint32_t*)(src+i*stride))[1]=
  2001. ((uint32_t*)(src+i*stride))[2]=
  2002. ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
  2003. }
  2004. }
  2005. void ff_pred16x16_dc_c(uint8_t *src, int stride){
  2006. int i, dc=0;
  2007. for(i=0;i<16; i++){
  2008. dc+= src[-1+i*stride];
  2009. }
  2010. for(i=0;i<16; i++){
  2011. dc+= src[i-stride];
  2012. }
  2013. dc= 0x01010101*((dc + 16)>>5);
  2014. for(i=0; i<16; i++){
  2015. ((uint32_t*)(src+i*stride))[0]=
  2016. ((uint32_t*)(src+i*stride))[1]=
  2017. ((uint32_t*)(src+i*stride))[2]=
  2018. ((uint32_t*)(src+i*stride))[3]= dc;
  2019. }
  2020. }
  2021. static void pred16x16_left_dc_c(uint8_t *src, int stride){
  2022. int i, dc=0;
  2023. for(i=0;i<16; i++){
  2024. dc+= src[-1+i*stride];
  2025. }
  2026. dc= 0x01010101*((dc + 8)>>4);
  2027. for(i=0; i<16; i++){
  2028. ((uint32_t*)(src+i*stride))[0]=
  2029. ((uint32_t*)(src+i*stride))[1]=
  2030. ((uint32_t*)(src+i*stride))[2]=
  2031. ((uint32_t*)(src+i*stride))[3]= dc;
  2032. }
  2033. }
  2034. static void pred16x16_top_dc_c(uint8_t *src, int stride){
  2035. int i, dc=0;
  2036. for(i=0;i<16; i++){
  2037. dc+= src[i-stride];
  2038. }
  2039. dc= 0x01010101*((dc + 8)>>4);
  2040. for(i=0; i<16; i++){
  2041. ((uint32_t*)(src+i*stride))[0]=
  2042. ((uint32_t*)(src+i*stride))[1]=
  2043. ((uint32_t*)(src+i*stride))[2]=
  2044. ((uint32_t*)(src+i*stride))[3]= dc;
  2045. }
  2046. }
  2047. void ff_pred16x16_128_dc_c(uint8_t *src, int stride){
  2048. int i;
  2049. for(i=0; i<16; i++){
  2050. ((uint32_t*)(src+i*stride))[0]=
  2051. ((uint32_t*)(src+i*stride))[1]=
  2052. ((uint32_t*)(src+i*stride))[2]=
  2053. ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
  2054. }
  2055. }
  2056. static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
  2057. int i, j, k;
  2058. int a;
  2059. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  2060. const uint8_t * const src0 = src+7-stride;
  2061. const uint8_t *src1 = src+8*stride-1;
  2062. const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
  2063. int H = src0[1] - src0[-1];
  2064. int V = src1[0] - src2[ 0];
  2065. for(k=2; k<=8; ++k) {
  2066. src1 += stride; src2 -= stride;
  2067. H += k*(src0[k] - src0[-k]);
  2068. V += k*(src1[0] - src2[ 0]);
  2069. }
  2070. if(svq3){
  2071. H = ( 5*(H/4) ) / 16;
  2072. V = ( 5*(V/4) ) / 16;
  2073. /* required for 100% accuracy */
  2074. i = H; H = V; V = i;
  2075. }else{
  2076. H = ( 5*H+32 ) >> 6;
  2077. V = ( 5*V+32 ) >> 6;
  2078. }
  2079. a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
  2080. for(j=16; j>0; --j) {
  2081. int b = a;
  2082. a += V;
  2083. for(i=-16; i<0; i+=4) {
  2084. src[16+i] = cm[ (b ) >> 5 ];
  2085. src[17+i] = cm[ (b+ H) >> 5 ];
  2086. src[18+i] = cm[ (b+2*H) >> 5 ];
  2087. src[19+i] = cm[ (b+3*H) >> 5 ];
  2088. b += 4*H;
  2089. }
  2090. src += stride;
  2091. }
  2092. }
  2093. void ff_pred16x16_plane_c(uint8_t *src, int stride){
  2094. pred16x16_plane_compat_c(src, stride, 0);
  2095. }
  2096. void ff_pred8x8_vertical_c(uint8_t *src, int stride){
  2097. int i;
  2098. const uint32_t a= ((uint32_t*)(src-stride))[0];
  2099. const uint32_t b= ((uint32_t*)(src-stride))[1];
  2100. for(i=0; i<8; i++){
  2101. ((uint32_t*)(src+i*stride))[0]= a;
  2102. ((uint32_t*)(src+i*stride))[1]= b;
  2103. }
  2104. }
  2105. void ff_pred8x8_horizontal_c(uint8_t *src, int stride){
  2106. int i;
  2107. for(i=0; i<8; i++){
  2108. ((uint32_t*)(src+i*stride))[0]=
  2109. ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
  2110. }
  2111. }
  2112. void ff_pred8x8_128_dc_c(uint8_t *src, int stride){
  2113. int i;
  2114. for(i=0; i<8; i++){
  2115. ((uint32_t*)(src+i*stride))[0]=
  2116. ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
  2117. }
  2118. }
  2119. static void pred8x8_left_dc_c(uint8_t *src, int stride){
  2120. int i;
  2121. int dc0, dc2;
  2122. dc0=dc2=0;
  2123. for(i=0;i<4; i++){
  2124. dc0+= src[-1+i*stride];
  2125. dc2+= src[-1+(i+4)*stride];
  2126. }
  2127. dc0= 0x01010101*((dc0 + 2)>>2);
  2128. dc2= 0x01010101*((dc2 + 2)>>2);
  2129. for(i=0; i<4; i++){
  2130. ((uint32_t*)(src+i*stride))[0]=
  2131. ((uint32_t*)(src+i*stride))[1]= dc0;
  2132. }
  2133. for(i=4; i<8; i++){
  2134. ((uint32_t*)(src+i*stride))[0]=
  2135. ((uint32_t*)(src+i*stride))[1]= dc2;
  2136. }
  2137. }
  2138. static void pred8x8_top_dc_c(uint8_t *src, int stride){
  2139. int i;
  2140. int dc0, dc1;
  2141. dc0=dc1=0;
  2142. for(i=0;i<4; i++){
  2143. dc0+= src[i-stride];
  2144. dc1+= src[4+i-stride];
  2145. }
  2146. dc0= 0x01010101*((dc0 + 2)>>2);
  2147. dc1= 0x01010101*((dc1 + 2)>>2);
  2148. for(i=0; i<4; i++){
  2149. ((uint32_t*)(src+i*stride))[0]= dc0;
  2150. ((uint32_t*)(src+i*stride))[1]= dc1;
  2151. }
  2152. for(i=4; i<8; i++){
  2153. ((uint32_t*)(src+i*stride))[0]= dc0;
  2154. ((uint32_t*)(src+i*stride))[1]= dc1;
  2155. }
  2156. }
  2157. void ff_pred8x8_dc_c(uint8_t *src, int stride){
  2158. int i;
  2159. int dc0, dc1, dc2, dc3;
  2160. dc0=dc1=dc2=0;
  2161. for(i=0;i<4; i++){
  2162. dc0+= src[-1+i*stride] + src[i-stride];
  2163. dc1+= src[4+i-stride];
  2164. dc2+= src[-1+(i+4)*stride];
  2165. }
  2166. dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
  2167. dc0= 0x01010101*((dc0 + 4)>>3);
  2168. dc1= 0x01010101*((dc1 + 2)>>2);
  2169. dc2= 0x01010101*((dc2 + 2)>>2);
  2170. for(i=0; i<4; i++){
  2171. ((uint32_t*)(src+i*stride))[0]= dc0;
  2172. ((uint32_t*)(src+i*stride))[1]= dc1;
  2173. }
  2174. for(i=4; i<8; i++){
  2175. ((uint32_t*)(src+i*stride))[0]= dc2;
  2176. ((uint32_t*)(src+i*stride))[1]= dc3;
  2177. }
  2178. }
  2179. void ff_pred8x8_plane_c(uint8_t *src, int stride){
  2180. int j, k;
  2181. int a;
  2182. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  2183. const uint8_t * const src0 = src+3-stride;
  2184. const uint8_t *src1 = src+4*stride-1;
  2185. const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
  2186. int H = src0[1] - src0[-1];
  2187. int V = src1[0] - src2[ 0];
  2188. for(k=2; k<=4; ++k) {
  2189. src1 += stride; src2 -= stride;
  2190. H += k*(src0[k] - src0[-k]);
  2191. V += k*(src1[0] - src2[ 0]);
  2192. }
  2193. H = ( 17*H+16 ) >> 5;
  2194. V = ( 17*V+16 ) >> 5;
  2195. a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
  2196. for(j=8; j>0; --j) {
  2197. int b = a;
  2198. a += V;
  2199. src[0] = cm[ (b ) >> 5 ];
  2200. src[1] = cm[ (b+ H) >> 5 ];
  2201. src[2] = cm[ (b+2*H) >> 5 ];
  2202. src[3] = cm[ (b+3*H) >> 5 ];
  2203. src[4] = cm[ (b+4*H) >> 5 ];
  2204. src[5] = cm[ (b+5*H) >> 5 ];
  2205. src[6] = cm[ (b+6*H) >> 5 ];
  2206. src[7] = cm[ (b+7*H) >> 5 ];
  2207. src += stride;
  2208. }
  2209. }
  2210. #define SRC(x,y) src[(x)+(y)*stride]
  2211. #define PL(y) \
  2212. const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
  2213. #define PREDICT_8x8_LOAD_LEFT \
  2214. const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
  2215. + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
  2216. PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
  2217. const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
  2218. #define PT(x) \
  2219. const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2220. #define PREDICT_8x8_LOAD_TOP \
  2221. const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
  2222. + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
  2223. PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
  2224. const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
  2225. + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
  2226. #define PTR(x) \
  2227. t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2228. #define PREDICT_8x8_LOAD_TOPRIGHT \
  2229. int t8, t9, t10, t11, t12, t13, t14, t15; \
  2230. if(has_topright) { \
  2231. PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
  2232. t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
  2233. } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
  2234. #define PREDICT_8x8_LOAD_TOPLEFT \
  2235. const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
  2236. #define PREDICT_8x8_DC(v) \
  2237. int y; \
  2238. for( y = 0; y < 8; y++ ) { \
  2239. ((uint32_t*)src)[0] = \
  2240. ((uint32_t*)src)[1] = v; \
  2241. src += stride; \
  2242. }
  2243. static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2244. {
  2245. PREDICT_8x8_DC(0x80808080);
  2246. }
  2247. static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2248. {
  2249. PREDICT_8x8_LOAD_LEFT;
  2250. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
  2251. PREDICT_8x8_DC(dc);
  2252. }
  2253. static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2254. {
  2255. PREDICT_8x8_LOAD_TOP;
  2256. const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
  2257. PREDICT_8x8_DC(dc);
  2258. }
  2259. static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2260. {
  2261. PREDICT_8x8_LOAD_LEFT;
  2262. PREDICT_8x8_LOAD_TOP;
  2263. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
  2264. +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
  2265. PREDICT_8x8_DC(dc);
  2266. }
  2267. static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2268. {
  2269. PREDICT_8x8_LOAD_LEFT;
  2270. #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
  2271. ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
  2272. ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
  2273. #undef ROW
  2274. }
  2275. static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2276. {
  2277. int y;
  2278. PREDICT_8x8_LOAD_TOP;
  2279. src[0] = t0;
  2280. src[1] = t1;
  2281. src[2] = t2;
  2282. src[3] = t3;
  2283. src[4] = t4;
  2284. src[5] = t5;
  2285. src[6] = t6;
  2286. src[7] = t7;
  2287. for( y = 1; y < 8; y++ )
  2288. *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
  2289. }
  2290. static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2291. {
  2292. PREDICT_8x8_LOAD_TOP;
  2293. PREDICT_8x8_LOAD_TOPRIGHT;
  2294. SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
  2295. SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
  2296. SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
  2297. SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
  2298. SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
  2299. SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2300. SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
  2301. SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
  2302. SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
  2303. SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
  2304. SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
  2305. SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
  2306. SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
  2307. SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
  2308. SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
  2309. }
  2310. static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2311. {
  2312. PREDICT_8x8_LOAD_TOP;
  2313. PREDICT_8x8_LOAD_LEFT;
  2314. PREDICT_8x8_LOAD_TOPLEFT;
  2315. SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
  2316. SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2317. SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
  2318. SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2319. SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
  2320. SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2321. SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
  2322. SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2323. SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
  2324. SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
  2325. SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
  2326. SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
  2327. SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
  2328. SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2329. SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2330. }
  2331. static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2332. {
  2333. PREDICT_8x8_LOAD_TOP;
  2334. PREDICT_8x8_LOAD_LEFT;
  2335. PREDICT_8x8_LOAD_TOPLEFT;
  2336. SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
  2337. SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2338. SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
  2339. SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2340. SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
  2341. SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2342. SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2343. SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
  2344. SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
  2345. SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
  2346. SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
  2347. SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
  2348. SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
  2349. SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
  2350. SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
  2351. SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
  2352. SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
  2353. SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
  2354. SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
  2355. SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
  2356. SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2357. SRC(7,0)= (t6 + t7 + 1) >> 1;
  2358. }
  2359. static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2360. {
  2361. PREDICT_8x8_LOAD_TOP;
  2362. PREDICT_8x8_LOAD_LEFT;
  2363. PREDICT_8x8_LOAD_TOPLEFT;
  2364. SRC(0,7)= (l6 + l7 + 1) >> 1;
  2365. SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
  2366. SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
  2367. SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
  2368. SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
  2369. SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
  2370. SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
  2371. SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
  2372. SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
  2373. SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
  2374. SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
  2375. SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
  2376. SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
  2377. SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
  2378. SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
  2379. SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
  2380. SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
  2381. SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
  2382. SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
  2383. SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
  2384. SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
  2385. SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
  2386. }
  2387. static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2388. {
  2389. PREDICT_8x8_LOAD_TOP;
  2390. PREDICT_8x8_LOAD_TOPRIGHT;
  2391. SRC(0,0)= (t0 + t1 + 1) >> 1;
  2392. SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
  2393. SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
  2394. SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
  2395. SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
  2396. SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
  2397. SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
  2398. SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
  2399. SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
  2400. SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2401. SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
  2402. SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2403. SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
  2404. SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
  2405. SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
  2406. SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
  2407. SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
  2408. SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
  2409. SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
  2410. SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
  2411. SRC(7,6)= (t10 + t11 + 1) >> 1;
  2412. SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
  2413. }
  2414. static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2415. {
  2416. PREDICT_8x8_LOAD_LEFT;
  2417. SRC(0,0)= (l0 + l1 + 1) >> 1;
  2418. SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
  2419. SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
  2420. SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
  2421. SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
  2422. SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
  2423. SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
  2424. SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
  2425. SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
  2426. SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
  2427. SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
  2428. SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
  2429. SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
  2430. SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
  2431. SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
  2432. SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
  2433. SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
  2434. SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
  2435. }
  2436. #undef PREDICT_8x8_LOAD_LEFT
  2437. #undef PREDICT_8x8_LOAD_TOP
  2438. #undef PREDICT_8x8_LOAD_TOPLEFT
  2439. #undef PREDICT_8x8_LOAD_TOPRIGHT
  2440. #undef PREDICT_8x8_DC
  2441. #undef PTR
  2442. #undef PT
  2443. #undef PL
  2444. #undef SRC
  2445. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  2446. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2447. int src_x_offset, int src_y_offset,
  2448. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  2449. MpegEncContext * const s = &h->s;
  2450. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  2451. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  2452. const int luma_xy= (mx&3) + ((my&3)<<2);
  2453. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  2454. uint8_t * src_cb, * src_cr;
  2455. int extra_width= h->emu_edge_width;
  2456. int extra_height= h->emu_edge_height;
  2457. int emu=0;
  2458. const int full_mx= mx>>2;
  2459. const int full_my= my>>2;
  2460. const int pic_width = 16*s->mb_width;
  2461. const int pic_height = 16*s->mb_height >> MB_MBAFF;
  2462. if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
  2463. return;
  2464. if(mx&7) extra_width -= 3;
  2465. if(my&7) extra_height -= 3;
  2466. if( full_mx < 0-extra_width
  2467. || full_my < 0-extra_height
  2468. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  2469. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  2470. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  2471. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  2472. emu=1;
  2473. }
  2474. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  2475. if(!square){
  2476. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  2477. }
  2478. if(s->flags&CODEC_FLAG_GRAY) return;
  2479. if(MB_MBAFF){
  2480. // chroma offset when predicting from a field of opposite parity
  2481. my += 2 * ((s->mb_y & 1) - (h->ref_cache[list][scan8[n]] & 1));
  2482. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  2483. }
  2484. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  2485. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  2486. if(emu){
  2487. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2488. src_cb= s->edge_emu_buffer;
  2489. }
  2490. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  2491. if(emu){
  2492. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2493. src_cr= s->edge_emu_buffer;
  2494. }
  2495. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  2496. }
  2497. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  2498. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2499. int x_offset, int y_offset,
  2500. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2501. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2502. int list0, int list1){
  2503. MpegEncContext * const s = &h->s;
  2504. qpel_mc_func *qpix_op= qpix_put;
  2505. h264_chroma_mc_func chroma_op= chroma_put;
  2506. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  2507. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  2508. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  2509. x_offset += 8*s->mb_x;
  2510. y_offset += 8*(s->mb_y >> MB_MBAFF);
  2511. if(list0){
  2512. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  2513. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  2514. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2515. qpix_op, chroma_op);
  2516. qpix_op= qpix_avg;
  2517. chroma_op= chroma_avg;
  2518. }
  2519. if(list1){
  2520. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  2521. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  2522. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2523. qpix_op, chroma_op);
  2524. }
  2525. }
  2526. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  2527. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2528. int x_offset, int y_offset,
  2529. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2530. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  2531. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  2532. int list0, int list1){
  2533. MpegEncContext * const s = &h->s;
  2534. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  2535. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  2536. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  2537. x_offset += 8*s->mb_x;
  2538. y_offset += 8*(s->mb_y >> MB_MBAFF);
  2539. if(list0 && list1){
  2540. /* don't optimize for luma-only case, since B-frames usually
  2541. * use implicit weights => chroma too. */
  2542. uint8_t *tmp_cb = s->obmc_scratchpad;
  2543. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  2544. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  2545. int refn0 = h->ref_cache[0][ scan8[n] ];
  2546. int refn1 = h->ref_cache[1][ scan8[n] ];
  2547. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  2548. dest_y, dest_cb, dest_cr,
  2549. x_offset, y_offset, qpix_put, chroma_put);
  2550. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  2551. tmp_y, tmp_cb, tmp_cr,
  2552. x_offset, y_offset, qpix_put, chroma_put);
  2553. if(h->use_weight == 2){
  2554. int weight0 = h->implicit_weight[refn0][refn1];
  2555. int weight1 = 64 - weight0;
  2556. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  2557. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  2558. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  2559. }else{
  2560. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  2561. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  2562. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  2563. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2564. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  2565. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  2566. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2567. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  2568. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  2569. }
  2570. }else{
  2571. int list = list1 ? 1 : 0;
  2572. int refn = h->ref_cache[list][ scan8[n] ];
  2573. Picture *ref= &h->ref_list[list][refn];
  2574. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  2575. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2576. qpix_put, chroma_put);
  2577. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  2578. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  2579. if(h->use_weight_chroma){
  2580. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2581. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  2582. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2583. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  2584. }
  2585. }
  2586. }
  2587. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  2588. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2589. int x_offset, int y_offset,
  2590. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2591. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2592. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  2593. int list0, int list1){
  2594. if((h->use_weight==2 && list0 && list1
  2595. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  2596. || h->use_weight==1)
  2597. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2598. x_offset, y_offset, qpix_put, chroma_put,
  2599. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  2600. else
  2601. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2602. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  2603. }
  2604. static inline void prefetch_motion(H264Context *h, int list){
  2605. /* fetch pixels for estimated mv 4 macroblocks ahead
  2606. * optimized for 64byte cache lines */
  2607. MpegEncContext * const s = &h->s;
  2608. const int refn = h->ref_cache[list][scan8[0]];
  2609. if(refn >= 0){
  2610. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  2611. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  2612. uint8_t **src= h->ref_list[list][refn].data;
  2613. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  2614. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  2615. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  2616. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  2617. }
  2618. }
  2619. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2620. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  2621. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  2622. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  2623. MpegEncContext * const s = &h->s;
  2624. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2625. const int mb_type= s->current_picture.mb_type[mb_xy];
  2626. assert(IS_INTER(mb_type));
  2627. prefetch_motion(h, 0);
  2628. if(IS_16X16(mb_type)){
  2629. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  2630. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  2631. &weight_op[0], &weight_avg[0],
  2632. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2633. }else if(IS_16X8(mb_type)){
  2634. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  2635. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2636. &weight_op[1], &weight_avg[1],
  2637. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2638. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  2639. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2640. &weight_op[1], &weight_avg[1],
  2641. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2642. }else if(IS_8X16(mb_type)){
  2643. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  2644. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2645. &weight_op[2], &weight_avg[2],
  2646. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2647. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  2648. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2649. &weight_op[2], &weight_avg[2],
  2650. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2651. }else{
  2652. int i;
  2653. assert(IS_8X8(mb_type));
  2654. for(i=0; i<4; i++){
  2655. const int sub_mb_type= h->sub_mb_type[i];
  2656. const int n= 4*i;
  2657. int x_offset= (i&1)<<2;
  2658. int y_offset= (i&2)<<1;
  2659. if(IS_SUB_8X8(sub_mb_type)){
  2660. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2661. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2662. &weight_op[3], &weight_avg[3],
  2663. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2664. }else if(IS_SUB_8X4(sub_mb_type)){
  2665. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2666. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2667. &weight_op[4], &weight_avg[4],
  2668. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2669. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  2670. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2671. &weight_op[4], &weight_avg[4],
  2672. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2673. }else if(IS_SUB_4X8(sub_mb_type)){
  2674. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2675. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2676. &weight_op[5], &weight_avg[5],
  2677. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2678. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  2679. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2680. &weight_op[5], &weight_avg[5],
  2681. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2682. }else{
  2683. int j;
  2684. assert(IS_SUB_4X4(sub_mb_type));
  2685. for(j=0; j<4; j++){
  2686. int sub_x_offset= x_offset + 2*(j&1);
  2687. int sub_y_offset= y_offset + (j&2);
  2688. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  2689. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2690. &weight_op[6], &weight_avg[6],
  2691. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2692. }
  2693. }
  2694. }
  2695. }
  2696. prefetch_motion(h, 1);
  2697. }
  2698. static void decode_init_vlc(){
  2699. static int done = 0;
  2700. if (!done) {
  2701. int i;
  2702. done = 1;
  2703. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  2704. &chroma_dc_coeff_token_len [0], 1, 1,
  2705. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  2706. for(i=0; i<4; i++){
  2707. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  2708. &coeff_token_len [i][0], 1, 1,
  2709. &coeff_token_bits[i][0], 1, 1, 1);
  2710. }
  2711. for(i=0; i<3; i++){
  2712. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  2713. &chroma_dc_total_zeros_len [i][0], 1, 1,
  2714. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  2715. }
  2716. for(i=0; i<15; i++){
  2717. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  2718. &total_zeros_len [i][0], 1, 1,
  2719. &total_zeros_bits[i][0], 1, 1, 1);
  2720. }
  2721. for(i=0; i<6; i++){
  2722. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  2723. &run_len [i][0], 1, 1,
  2724. &run_bits[i][0], 1, 1, 1);
  2725. }
  2726. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  2727. &run_len [6][0], 1, 1,
  2728. &run_bits[6][0], 1, 1, 1);
  2729. }
  2730. }
  2731. /**
  2732. * Sets the intra prediction function pointers.
  2733. */
  2734. static void init_pred_ptrs(H264Context *h){
  2735. // MpegEncContext * const s = &h->s;
  2736. h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
  2737. h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
  2738. h->pred4x4[DC_PRED ]= pred4x4_dc_c;
  2739. h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
  2740. h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
  2741. h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
  2742. h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
  2743. h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
  2744. h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
  2745. h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
  2746. h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
  2747. h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
  2748. h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
  2749. h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
  2750. h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
  2751. h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
  2752. h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
  2753. h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
  2754. h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
  2755. h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
  2756. h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
  2757. h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
  2758. h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
  2759. h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
  2760. h->pred8x8[DC_PRED8x8 ]= ff_pred8x8_dc_c;
  2761. h->pred8x8[VERT_PRED8x8 ]= ff_pred8x8_vertical_c;
  2762. h->pred8x8[HOR_PRED8x8 ]= ff_pred8x8_horizontal_c;
  2763. h->pred8x8[PLANE_PRED8x8 ]= ff_pred8x8_plane_c;
  2764. h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
  2765. h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
  2766. h->pred8x8[DC_128_PRED8x8 ]= ff_pred8x8_128_dc_c;
  2767. h->pred16x16[DC_PRED8x8 ]= ff_pred16x16_dc_c;
  2768. h->pred16x16[VERT_PRED8x8 ]= ff_pred16x16_vertical_c;
  2769. h->pred16x16[HOR_PRED8x8 ]= ff_pred16x16_horizontal_c;
  2770. h->pred16x16[PLANE_PRED8x8 ]= ff_pred16x16_plane_c;
  2771. h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
  2772. h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
  2773. h->pred16x16[DC_128_PRED8x8 ]= ff_pred16x16_128_dc_c;
  2774. }
  2775. static void free_tables(H264Context *h){
  2776. av_freep(&h->intra4x4_pred_mode);
  2777. av_freep(&h->chroma_pred_mode_table);
  2778. av_freep(&h->cbp_table);
  2779. av_freep(&h->mvd_table[0]);
  2780. av_freep(&h->mvd_table[1]);
  2781. av_freep(&h->direct_table);
  2782. av_freep(&h->non_zero_count);
  2783. av_freep(&h->slice_table_base);
  2784. av_freep(&h->top_borders[1]);
  2785. av_freep(&h->top_borders[0]);
  2786. h->slice_table= NULL;
  2787. av_freep(&h->mb2b_xy);
  2788. av_freep(&h->mb2b8_xy);
  2789. av_freep(&h->s.obmc_scratchpad);
  2790. }
  2791. static void init_dequant8_coeff_table(H264Context *h){
  2792. int i,q,x;
  2793. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  2794. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  2795. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  2796. for(i=0; i<2; i++ ){
  2797. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  2798. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  2799. break;
  2800. }
  2801. for(q=0; q<52; q++){
  2802. int shift = ff_div6[q];
  2803. int idx = ff_rem6[q];
  2804. for(x=0; x<64; x++)
  2805. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  2806. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  2807. h->pps.scaling_matrix8[i][x]) << shift;
  2808. }
  2809. }
  2810. }
  2811. static void init_dequant4_coeff_table(H264Context *h){
  2812. int i,j,q,x;
  2813. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  2814. for(i=0; i<6; i++ ){
  2815. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  2816. for(j=0; j<i; j++){
  2817. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  2818. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  2819. break;
  2820. }
  2821. }
  2822. if(j<i)
  2823. continue;
  2824. for(q=0; q<52; q++){
  2825. int shift = ff_div6[q] + 2;
  2826. int idx = ff_rem6[q];
  2827. for(x=0; x<16; x++)
  2828. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  2829. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  2830. h->pps.scaling_matrix4[i][x]) << shift;
  2831. }
  2832. }
  2833. }
  2834. static void init_dequant_tables(H264Context *h){
  2835. int i,x;
  2836. init_dequant4_coeff_table(h);
  2837. if(h->pps.transform_8x8_mode)
  2838. init_dequant8_coeff_table(h);
  2839. if(h->sps.transform_bypass){
  2840. for(i=0; i<6; i++)
  2841. for(x=0; x<16; x++)
  2842. h->dequant4_coeff[i][0][x] = 1<<6;
  2843. if(h->pps.transform_8x8_mode)
  2844. for(i=0; i<2; i++)
  2845. for(x=0; x<64; x++)
  2846. h->dequant8_coeff[i][0][x] = 1<<6;
  2847. }
  2848. }
  2849. /**
  2850. * allocates tables.
  2851. * needs width/height
  2852. */
  2853. static int alloc_tables(H264Context *h){
  2854. MpegEncContext * const s = &h->s;
  2855. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  2856. int x,y;
  2857. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  2858. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  2859. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  2860. CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2861. CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2862. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  2863. if( h->pps.cabac ) {
  2864. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  2865. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  2866. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  2867. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  2868. }
  2869. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  2870. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  2871. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  2872. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  2873. for(y=0; y<s->mb_height; y++){
  2874. for(x=0; x<s->mb_width; x++){
  2875. const int mb_xy= x + y*s->mb_stride;
  2876. const int b_xy = 4*x + 4*y*h->b_stride;
  2877. const int b8_xy= 2*x + 2*y*h->b8_stride;
  2878. h->mb2b_xy [mb_xy]= b_xy;
  2879. h->mb2b8_xy[mb_xy]= b8_xy;
  2880. }
  2881. }
  2882. s->obmc_scratchpad = NULL;
  2883. if(!h->dequant4_coeff[0])
  2884. init_dequant_tables(h);
  2885. return 0;
  2886. fail:
  2887. free_tables(h);
  2888. return -1;
  2889. }
  2890. static void common_init(H264Context *h){
  2891. MpegEncContext * const s = &h->s;
  2892. s->width = s->avctx->width;
  2893. s->height = s->avctx->height;
  2894. s->codec_id= s->avctx->codec->id;
  2895. init_pred_ptrs(h);
  2896. h->dequant_coeff_pps= -1;
  2897. s->unrestricted_mv=1;
  2898. s->decode=1; //FIXME
  2899. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  2900. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  2901. }
  2902. static int decode_init(AVCodecContext *avctx){
  2903. H264Context *h= avctx->priv_data;
  2904. MpegEncContext * const s = &h->s;
  2905. MPV_decode_defaults(s);
  2906. s->avctx = avctx;
  2907. common_init(h);
  2908. s->out_format = FMT_H264;
  2909. s->workaround_bugs= avctx->workaround_bugs;
  2910. // set defaults
  2911. // s->decode_mb= ff_h263_decode_mb;
  2912. s->low_delay= 1;
  2913. avctx->pix_fmt= PIX_FMT_YUV420P;
  2914. decode_init_vlc();
  2915. if(avctx->extradata_size > 0 && avctx->extradata &&
  2916. *(char *)avctx->extradata == 1){
  2917. h->is_avc = 1;
  2918. h->got_avcC = 0;
  2919. } else {
  2920. h->is_avc = 0;
  2921. }
  2922. return 0;
  2923. }
  2924. static int frame_start(H264Context *h){
  2925. MpegEncContext * const s = &h->s;
  2926. int i;
  2927. if(MPV_frame_start(s, s->avctx) < 0)
  2928. return -1;
  2929. ff_er_frame_start(s);
  2930. assert(s->linesize && s->uvlinesize);
  2931. for(i=0; i<16; i++){
  2932. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  2933. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  2934. }
  2935. for(i=0; i<4; i++){
  2936. h->block_offset[16+i]=
  2937. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2938. h->block_offset[24+16+i]=
  2939. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2940. }
  2941. /* can't be in alloc_tables because linesize isn't known there.
  2942. * FIXME: redo bipred weight to not require extra buffer? */
  2943. if(!s->obmc_scratchpad)
  2944. s->obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  2945. /* some macroblocks will be accessed before they're available */
  2946. if(FRAME_MBAFF)
  2947. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  2948. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  2949. return 0;
  2950. }
  2951. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2952. MpegEncContext * const s = &h->s;
  2953. int i;
  2954. src_y -= linesize;
  2955. src_cb -= uvlinesize;
  2956. src_cr -= uvlinesize;
  2957. // There are two lines saved, the line above the the top macroblock of a pair,
  2958. // and the line above the bottom macroblock
  2959. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2960. for(i=1; i<17; i++){
  2961. h->left_border[i]= src_y[15+i* linesize];
  2962. }
  2963. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2964. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2965. if(!(s->flags&CODEC_FLAG_GRAY)){
  2966. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2967. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2968. for(i=1; i<9; i++){
  2969. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2970. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2971. }
  2972. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2973. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2974. }
  2975. }
  2976. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2977. MpegEncContext * const s = &h->s;
  2978. int temp8, i;
  2979. uint64_t temp64;
  2980. int deblock_left = (s->mb_x > 0);
  2981. int deblock_top = (s->mb_y > 0);
  2982. src_y -= linesize + 1;
  2983. src_cb -= uvlinesize + 1;
  2984. src_cr -= uvlinesize + 1;
  2985. #define XCHG(a,b,t,xchg)\
  2986. t= a;\
  2987. if(xchg)\
  2988. a= b;\
  2989. b= t;
  2990. if(deblock_left){
  2991. for(i = !deblock_top; i<17; i++){
  2992. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2993. }
  2994. }
  2995. if(deblock_top){
  2996. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2997. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2998. if(s->mb_x+1 < s->mb_width){
  2999. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  3000. }
  3001. }
  3002. if(!(s->flags&CODEC_FLAG_GRAY)){
  3003. if(deblock_left){
  3004. for(i = !deblock_top; i<9; i++){
  3005. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  3006. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  3007. }
  3008. }
  3009. if(deblock_top){
  3010. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  3011. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  3012. }
  3013. }
  3014. }
  3015. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  3016. MpegEncContext * const s = &h->s;
  3017. int i;
  3018. src_y -= 2 * linesize;
  3019. src_cb -= 2 * uvlinesize;
  3020. src_cr -= 2 * uvlinesize;
  3021. // There are two lines saved, the line above the the top macroblock of a pair,
  3022. // and the line above the bottom macroblock
  3023. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  3024. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  3025. for(i=2; i<34; i++){
  3026. h->left_border[i]= src_y[15+i* linesize];
  3027. }
  3028. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  3029. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  3030. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  3031. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  3032. if(!(s->flags&CODEC_FLAG_GRAY)){
  3033. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  3034. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  3035. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  3036. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  3037. for(i=2; i<18; i++){
  3038. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  3039. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  3040. }
  3041. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  3042. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  3043. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  3044. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  3045. }
  3046. }
  3047. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  3048. MpegEncContext * const s = &h->s;
  3049. int temp8, i;
  3050. uint64_t temp64;
  3051. int deblock_left = (s->mb_x > 0);
  3052. int deblock_top = (s->mb_y > 1);
  3053. tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  3054. src_y -= 2 * linesize + 1;
  3055. src_cb -= 2 * uvlinesize + 1;
  3056. src_cr -= 2 * uvlinesize + 1;
  3057. #define XCHG(a,b,t,xchg)\
  3058. t= a;\
  3059. if(xchg)\
  3060. a= b;\
  3061. b= t;
  3062. if(deblock_left){
  3063. for(i = (!deblock_top)<<1; i<34; i++){
  3064. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  3065. }
  3066. }
  3067. if(deblock_top){
  3068. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  3069. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  3070. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  3071. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  3072. if(s->mb_x+1 < s->mb_width){
  3073. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  3074. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  3075. }
  3076. }
  3077. if(!(s->flags&CODEC_FLAG_GRAY)){
  3078. if(deblock_left){
  3079. for(i = (!deblock_top) << 1; i<18; i++){
  3080. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  3081. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  3082. }
  3083. }
  3084. if(deblock_top){
  3085. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  3086. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  3087. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  3088. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  3089. }
  3090. }
  3091. }
  3092. static void hl_decode_mb(H264Context *h){
  3093. MpegEncContext * const s = &h->s;
  3094. const int mb_x= s->mb_x;
  3095. const int mb_y= s->mb_y;
  3096. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3097. const int mb_type= s->current_picture.mb_type[mb_xy];
  3098. uint8_t *dest_y, *dest_cb, *dest_cr;
  3099. int linesize, uvlinesize /*dct_offset*/;
  3100. int i;
  3101. int *block_offset = &h->block_offset[0];
  3102. const unsigned int bottom = mb_y & 1;
  3103. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass);
  3104. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  3105. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  3106. if(!s->decode)
  3107. return;
  3108. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  3109. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3110. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3111. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  3112. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  3113. if (MB_FIELD) {
  3114. linesize = h->mb_linesize = s->linesize * 2;
  3115. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  3116. block_offset = &h->block_offset[24];
  3117. if(mb_y&1){ //FIXME move out of this func?
  3118. dest_y -= s->linesize*15;
  3119. dest_cb-= s->uvlinesize*7;
  3120. dest_cr-= s->uvlinesize*7;
  3121. }
  3122. if(FRAME_MBAFF) {
  3123. int list;
  3124. for(list=0; list<h->list_count; list++){
  3125. if(!USES_LIST(mb_type, list))
  3126. continue;
  3127. if(IS_16X16(mb_type)){
  3128. int8_t *ref = &h->ref_cache[list][scan8[0]];
  3129. fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1);
  3130. }else{
  3131. for(i=0; i<16; i+=4){
  3132. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  3133. int ref = h->ref_cache[list][scan8[i]];
  3134. if(ref >= 0)
  3135. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1);
  3136. }
  3137. }
  3138. }
  3139. }
  3140. } else {
  3141. linesize = h->mb_linesize = s->linesize;
  3142. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  3143. // dct_offset = s->linesize * 16;
  3144. }
  3145. if(transform_bypass){
  3146. idct_dc_add =
  3147. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  3148. }else if(IS_8x8DCT(mb_type)){
  3149. idct_dc_add = s->dsp.h264_idct8_dc_add;
  3150. idct_add = s->dsp.h264_idct8_add;
  3151. }else{
  3152. idct_dc_add = s->dsp.h264_idct_dc_add;
  3153. idct_add = s->dsp.h264_idct_add;
  3154. }
  3155. if(FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  3156. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  3157. int mbt_y = mb_y&~1;
  3158. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  3159. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  3160. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  3161. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  3162. }
  3163. if (IS_INTRA_PCM(mb_type)) {
  3164. unsigned int x, y;
  3165. // The pixels are stored in h->mb array in the same order as levels,
  3166. // copy them in output in the correct order.
  3167. for(i=0; i<16; i++) {
  3168. for (y=0; y<4; y++) {
  3169. for (x=0; x<4; x++) {
  3170. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  3171. }
  3172. }
  3173. }
  3174. for(i=16; i<16+4; i++) {
  3175. for (y=0; y<4; y++) {
  3176. for (x=0; x<4; x++) {
  3177. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  3178. }
  3179. }
  3180. }
  3181. for(i=20; i<20+4; i++) {
  3182. for (y=0; y<4; y++) {
  3183. for (x=0; x<4; x++) {
  3184. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  3185. }
  3186. }
  3187. }
  3188. } else {
  3189. if(IS_INTRA(mb_type)){
  3190. if(h->deblocking_filter && !FRAME_MBAFF)
  3191. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
  3192. if(!(s->flags&CODEC_FLAG_GRAY)){
  3193. h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  3194. h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  3195. }
  3196. if(IS_INTRA4x4(mb_type)){
  3197. if(!s->encoding){
  3198. if(IS_8x8DCT(mb_type)){
  3199. for(i=0; i<16; i+=4){
  3200. uint8_t * const ptr= dest_y + block_offset[i];
  3201. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3202. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  3203. h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  3204. (h->topright_samples_available<<i)&0x4000, linesize);
  3205. if(nnz){
  3206. if(nnz == 1 && h->mb[i*16])
  3207. idct_dc_add(ptr, h->mb + i*16, linesize);
  3208. else
  3209. idct_add(ptr, h->mb + i*16, linesize);
  3210. }
  3211. }
  3212. }else
  3213. for(i=0; i<16; i++){
  3214. uint8_t * const ptr= dest_y + block_offset[i];
  3215. uint8_t *topright;
  3216. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3217. int nnz, tr;
  3218. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  3219. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  3220. assert(mb_y || linesize <= block_offset[i]);
  3221. if(!topright_avail){
  3222. tr= ptr[3 - linesize]*0x01010101;
  3223. topright= (uint8_t*) &tr;
  3224. }else
  3225. topright= ptr + 4 - linesize;
  3226. }else
  3227. topright= NULL;
  3228. h->pred4x4[ dir ](ptr, topright, linesize);
  3229. nnz = h->non_zero_count_cache[ scan8[i] ];
  3230. if(nnz){
  3231. if(s->codec_id == CODEC_ID_H264){
  3232. if(nnz == 1 && h->mb[i*16])
  3233. idct_dc_add(ptr, h->mb + i*16, linesize);
  3234. else
  3235. idct_add(ptr, h->mb + i*16, linesize);
  3236. }else
  3237. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  3238. }
  3239. }
  3240. }
  3241. }else{
  3242. h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  3243. if(s->codec_id == CODEC_ID_H264){
  3244. if(!transform_bypass)
  3245. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
  3246. }else
  3247. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  3248. }
  3249. if(h->deblocking_filter && !FRAME_MBAFF)
  3250. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  3251. }else if(s->codec_id == CODEC_ID_H264){
  3252. hl_motion(h, dest_y, dest_cb, dest_cr,
  3253. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  3254. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  3255. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  3256. }
  3257. if(!IS_INTRA4x4(mb_type)){
  3258. if(s->codec_id == CODEC_ID_H264){
  3259. if(IS_INTRA16x16(mb_type)){
  3260. for(i=0; i<16; i++){
  3261. if(h->non_zero_count_cache[ scan8[i] ])
  3262. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3263. else if(h->mb[i*16])
  3264. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3265. }
  3266. }else{
  3267. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  3268. for(i=0; i<16; i+=di){
  3269. int nnz = h->non_zero_count_cache[ scan8[i] ];
  3270. if(nnz){
  3271. if(nnz==1 && h->mb[i*16])
  3272. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3273. else
  3274. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3275. }
  3276. }
  3277. }
  3278. }else{
  3279. for(i=0; i<16; i++){
  3280. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  3281. uint8_t * const ptr= dest_y + block_offset[i];
  3282. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  3283. }
  3284. }
  3285. }
  3286. }
  3287. if(!(s->flags&CODEC_FLAG_GRAY)){
  3288. uint8_t *dest[2] = {dest_cb, dest_cr};
  3289. if(transform_bypass){
  3290. idct_add = idct_dc_add = s->dsp.add_pixels4;
  3291. }else{
  3292. idct_add = s->dsp.h264_idct_add;
  3293. idct_dc_add = s->dsp.h264_idct_dc_add;
  3294. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]);
  3295. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]);
  3296. }
  3297. if(s->codec_id == CODEC_ID_H264){
  3298. for(i=16; i<16+8; i++){
  3299. if(h->non_zero_count_cache[ scan8[i] ])
  3300. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3301. else if(h->mb[i*16])
  3302. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3303. }
  3304. }else{
  3305. for(i=16; i<16+8; i++){
  3306. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  3307. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  3308. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  3309. }
  3310. }
  3311. }
  3312. }
  3313. }
  3314. if(h->deblocking_filter) {
  3315. if (FRAME_MBAFF) {
  3316. //FIXME try deblocking one mb at a time?
  3317. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  3318. const int mb_y = s->mb_y - 1;
  3319. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  3320. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3321. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  3322. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  3323. if (!bottom) return;
  3324. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  3325. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3326. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3327. if(IS_INTRA(mb_type_top | mb_type_bottom))
  3328. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  3329. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  3330. // deblock a pair
  3331. // top
  3332. s->mb_y--;
  3333. tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  3334. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3335. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy]);
  3336. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  3337. // bottom
  3338. s->mb_y++;
  3339. tprintf("call mbaff filter_mb\n");
  3340. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3341. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  3342. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3343. } else {
  3344. tprintf("call filter_mb\n");
  3345. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3346. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3347. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3348. }
  3349. }
  3350. }
  3351. /**
  3352. * fills the default_ref_list.
  3353. */
  3354. static int fill_default_ref_list(H264Context *h){
  3355. MpegEncContext * const s = &h->s;
  3356. int i;
  3357. int smallest_poc_greater_than_current = -1;
  3358. Picture sorted_short_ref[32];
  3359. if(h->slice_type==B_TYPE){
  3360. int out_i;
  3361. int limit= INT_MIN;
  3362. /* sort frame according to poc in B slice */
  3363. for(out_i=0; out_i<h->short_ref_count; out_i++){
  3364. int best_i=INT_MIN;
  3365. int best_poc=INT_MAX;
  3366. for(i=0; i<h->short_ref_count; i++){
  3367. const int poc= h->short_ref[i]->poc;
  3368. if(poc > limit && poc < best_poc){
  3369. best_poc= poc;
  3370. best_i= i;
  3371. }
  3372. }
  3373. assert(best_i != INT_MIN);
  3374. limit= best_poc;
  3375. sorted_short_ref[out_i]= *h->short_ref[best_i];
  3376. tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  3377. if (-1 == smallest_poc_greater_than_current) {
  3378. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  3379. smallest_poc_greater_than_current = out_i;
  3380. }
  3381. }
  3382. }
  3383. }
  3384. if(s->picture_structure == PICT_FRAME){
  3385. if(h->slice_type==B_TYPE){
  3386. int list;
  3387. tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  3388. // find the largest poc
  3389. for(list=0; list<2; list++){
  3390. int index = 0;
  3391. int j= -99;
  3392. int step= list ? -1 : 1;
  3393. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  3394. while(j<0 || j>= h->short_ref_count){
  3395. if(j != -99 && step == (list ? -1 : 1))
  3396. return -1;
  3397. step = -step;
  3398. j= smallest_poc_greater_than_current + (step>>1);
  3399. }
  3400. if(sorted_short_ref[j].reference != 3) continue;
  3401. h->default_ref_list[list][index ]= sorted_short_ref[j];
  3402. h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  3403. }
  3404. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  3405. if(h->long_ref[i] == NULL) continue;
  3406. if(h->long_ref[i]->reference != 3) continue;
  3407. h->default_ref_list[ list ][index ]= *h->long_ref[i];
  3408. h->default_ref_list[ list ][index++].pic_id= i;;
  3409. }
  3410. if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
  3411. // swap the two first elements of L1 when
  3412. // L0 and L1 are identical
  3413. Picture temp= h->default_ref_list[1][0];
  3414. h->default_ref_list[1][0] = h->default_ref_list[1][1];
  3415. h->default_ref_list[1][1] = temp;
  3416. }
  3417. if(index < h->ref_count[ list ])
  3418. memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
  3419. }
  3420. }else{
  3421. int index=0;
  3422. for(i=0; i<h->short_ref_count; i++){
  3423. if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
  3424. h->default_ref_list[0][index ]= *h->short_ref[i];
  3425. h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  3426. }
  3427. for(i = 0; i < 16; i++){
  3428. if(h->long_ref[i] == NULL) continue;
  3429. if(h->long_ref[i]->reference != 3) continue;
  3430. h->default_ref_list[0][index ]= *h->long_ref[i];
  3431. h->default_ref_list[0][index++].pic_id= i;;
  3432. }
  3433. if(index < h->ref_count[0])
  3434. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  3435. }
  3436. }else{ //FIELD
  3437. if(h->slice_type==B_TYPE){
  3438. }else{
  3439. //FIXME second field balh
  3440. }
  3441. }
  3442. #ifdef TRACE
  3443. for (i=0; i<h->ref_count[0]; i++) {
  3444. tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  3445. }
  3446. if(h->slice_type==B_TYPE){
  3447. for (i=0; i<h->ref_count[1]; i++) {
  3448. tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
  3449. }
  3450. }
  3451. #endif
  3452. return 0;
  3453. }
  3454. static void print_short_term(H264Context *h);
  3455. static void print_long_term(H264Context *h);
  3456. static int decode_ref_pic_list_reordering(H264Context *h){
  3457. MpegEncContext * const s = &h->s;
  3458. int list, index;
  3459. print_short_term(h);
  3460. print_long_term(h);
  3461. if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
  3462. for(list=0; list<h->list_count; list++){
  3463. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  3464. if(get_bits1(&s->gb)){
  3465. int pred= h->curr_pic_num;
  3466. for(index=0; ; index++){
  3467. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  3468. unsigned int pic_id;
  3469. int i;
  3470. Picture *ref = NULL;
  3471. if(reordering_of_pic_nums_idc==3)
  3472. break;
  3473. if(index >= h->ref_count[list]){
  3474. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  3475. return -1;
  3476. }
  3477. if(reordering_of_pic_nums_idc<3){
  3478. if(reordering_of_pic_nums_idc<2){
  3479. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  3480. if(abs_diff_pic_num >= h->max_pic_num){
  3481. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  3482. return -1;
  3483. }
  3484. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  3485. else pred+= abs_diff_pic_num;
  3486. pred &= h->max_pic_num - 1;
  3487. for(i= h->short_ref_count-1; i>=0; i--){
  3488. ref = h->short_ref[i];
  3489. assert(ref->reference == 3);
  3490. assert(!ref->long_ref);
  3491. if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  3492. break;
  3493. }
  3494. if(i>=0)
  3495. ref->pic_id= ref->frame_num;
  3496. }else{
  3497. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  3498. if(pic_id>31){
  3499. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  3500. return -1;
  3501. }
  3502. ref = h->long_ref[pic_id];
  3503. if(ref){
  3504. ref->pic_id= pic_id;
  3505. assert(ref->reference == 3);
  3506. assert(ref->long_ref);
  3507. i=0;
  3508. }else{
  3509. i=-1;
  3510. }
  3511. }
  3512. if (i < 0) {
  3513. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  3514. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  3515. } else {
  3516. for(i=index; i+1<h->ref_count[list]; i++){
  3517. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  3518. break;
  3519. }
  3520. for(; i > index; i--){
  3521. h->ref_list[list][i]= h->ref_list[list][i-1];
  3522. }
  3523. h->ref_list[list][index]= *ref;
  3524. }
  3525. }else{
  3526. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  3527. return -1;
  3528. }
  3529. }
  3530. }
  3531. }
  3532. for(list=0; list<h->list_count; list++){
  3533. for(index= 0; index < h->ref_count[list]; index++){
  3534. if(!h->ref_list[list][index].data[0])
  3535. h->ref_list[list][index]= s->current_picture;
  3536. }
  3537. }
  3538. if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
  3539. direct_dist_scale_factor(h);
  3540. direct_ref_list_init(h);
  3541. return 0;
  3542. }
  3543. static void fill_mbaff_ref_list(H264Context *h){
  3544. int list, i, j;
  3545. for(list=0; list<2; list++){ //FIXME try list_count
  3546. for(i=0; i<h->ref_count[list]; i++){
  3547. Picture *frame = &h->ref_list[list][i];
  3548. Picture *field = &h->ref_list[list][16+2*i];
  3549. field[0] = *frame;
  3550. for(j=0; j<3; j++)
  3551. field[0].linesize[j] <<= 1;
  3552. field[1] = field[0];
  3553. for(j=0; j<3; j++)
  3554. field[1].data[j] += frame->linesize[j];
  3555. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  3556. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  3557. for(j=0; j<2; j++){
  3558. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  3559. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  3560. }
  3561. }
  3562. }
  3563. for(j=0; j<h->ref_count[1]; j++){
  3564. for(i=0; i<h->ref_count[0]; i++)
  3565. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  3566. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  3567. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  3568. }
  3569. }
  3570. static int pred_weight_table(H264Context *h){
  3571. MpegEncContext * const s = &h->s;
  3572. int list, i;
  3573. int luma_def, chroma_def;
  3574. h->use_weight= 0;
  3575. h->use_weight_chroma= 0;
  3576. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  3577. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  3578. luma_def = 1<<h->luma_log2_weight_denom;
  3579. chroma_def = 1<<h->chroma_log2_weight_denom;
  3580. for(list=0; list<2; list++){
  3581. for(i=0; i<h->ref_count[list]; i++){
  3582. int luma_weight_flag, chroma_weight_flag;
  3583. luma_weight_flag= get_bits1(&s->gb);
  3584. if(luma_weight_flag){
  3585. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  3586. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  3587. if( h->luma_weight[list][i] != luma_def
  3588. || h->luma_offset[list][i] != 0)
  3589. h->use_weight= 1;
  3590. }else{
  3591. h->luma_weight[list][i]= luma_def;
  3592. h->luma_offset[list][i]= 0;
  3593. }
  3594. chroma_weight_flag= get_bits1(&s->gb);
  3595. if(chroma_weight_flag){
  3596. int j;
  3597. for(j=0; j<2; j++){
  3598. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  3599. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  3600. if( h->chroma_weight[list][i][j] != chroma_def
  3601. || h->chroma_offset[list][i][j] != 0)
  3602. h->use_weight_chroma= 1;
  3603. }
  3604. }else{
  3605. int j;
  3606. for(j=0; j<2; j++){
  3607. h->chroma_weight[list][i][j]= chroma_def;
  3608. h->chroma_offset[list][i][j]= 0;
  3609. }
  3610. }
  3611. }
  3612. if(h->slice_type != B_TYPE) break;
  3613. }
  3614. h->use_weight= h->use_weight || h->use_weight_chroma;
  3615. return 0;
  3616. }
  3617. static void implicit_weight_table(H264Context *h){
  3618. MpegEncContext * const s = &h->s;
  3619. int ref0, ref1;
  3620. int cur_poc = s->current_picture_ptr->poc;
  3621. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  3622. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  3623. h->use_weight= 0;
  3624. h->use_weight_chroma= 0;
  3625. return;
  3626. }
  3627. h->use_weight= 2;
  3628. h->use_weight_chroma= 2;
  3629. h->luma_log2_weight_denom= 5;
  3630. h->chroma_log2_weight_denom= 5;
  3631. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  3632. int poc0 = h->ref_list[0][ref0].poc;
  3633. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  3634. int poc1 = h->ref_list[1][ref1].poc;
  3635. int td = clip(poc1 - poc0, -128, 127);
  3636. if(td){
  3637. int tb = clip(cur_poc - poc0, -128, 127);
  3638. int tx = (16384 + (FFABS(td) >> 1)) / td;
  3639. int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  3640. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  3641. h->implicit_weight[ref0][ref1] = 32;
  3642. else
  3643. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  3644. }else
  3645. h->implicit_weight[ref0][ref1] = 32;
  3646. }
  3647. }
  3648. }
  3649. static inline void unreference_pic(H264Context *h, Picture *pic){
  3650. int i;
  3651. pic->reference=0;
  3652. if(pic == h->delayed_output_pic)
  3653. pic->reference=1;
  3654. else{
  3655. for(i = 0; h->delayed_pic[i]; i++)
  3656. if(pic == h->delayed_pic[i]){
  3657. pic->reference=1;
  3658. break;
  3659. }
  3660. }
  3661. }
  3662. /**
  3663. * instantaneous decoder refresh.
  3664. */
  3665. static void idr(H264Context *h){
  3666. int i;
  3667. for(i=0; i<16; i++){
  3668. if (h->long_ref[i] != NULL) {
  3669. unreference_pic(h, h->long_ref[i]);
  3670. h->long_ref[i]= NULL;
  3671. }
  3672. }
  3673. h->long_ref_count=0;
  3674. for(i=0; i<h->short_ref_count; i++){
  3675. unreference_pic(h, h->short_ref[i]);
  3676. h->short_ref[i]= NULL;
  3677. }
  3678. h->short_ref_count=0;
  3679. }
  3680. /* forget old pics after a seek */
  3681. static void flush_dpb(AVCodecContext *avctx){
  3682. H264Context *h= avctx->priv_data;
  3683. int i;
  3684. for(i=0; i<16; i++) {
  3685. if(h->delayed_pic[i])
  3686. h->delayed_pic[i]->reference= 0;
  3687. h->delayed_pic[i]= NULL;
  3688. }
  3689. if(h->delayed_output_pic)
  3690. h->delayed_output_pic->reference= 0;
  3691. h->delayed_output_pic= NULL;
  3692. idr(h);
  3693. if(h->s.current_picture_ptr)
  3694. h->s.current_picture_ptr->reference= 0;
  3695. }
  3696. /**
  3697. *
  3698. * @return the removed picture or NULL if an error occurs
  3699. */
  3700. static Picture * remove_short(H264Context *h, int frame_num){
  3701. MpegEncContext * const s = &h->s;
  3702. int i;
  3703. if(s->avctx->debug&FF_DEBUG_MMCO)
  3704. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  3705. for(i=0; i<h->short_ref_count; i++){
  3706. Picture *pic= h->short_ref[i];
  3707. if(s->avctx->debug&FF_DEBUG_MMCO)
  3708. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  3709. if(pic->frame_num == frame_num){
  3710. h->short_ref[i]= NULL;
  3711. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
  3712. h->short_ref_count--;
  3713. return pic;
  3714. }
  3715. }
  3716. return NULL;
  3717. }
  3718. /**
  3719. *
  3720. * @return the removed picture or NULL if an error occurs
  3721. */
  3722. static Picture * remove_long(H264Context *h, int i){
  3723. Picture *pic;
  3724. pic= h->long_ref[i];
  3725. h->long_ref[i]= NULL;
  3726. if(pic) h->long_ref_count--;
  3727. return pic;
  3728. }
  3729. /**
  3730. * print short term list
  3731. */
  3732. static void print_short_term(H264Context *h) {
  3733. uint32_t i;
  3734. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3735. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3736. for(i=0; i<h->short_ref_count; i++){
  3737. Picture *pic= h->short_ref[i];
  3738. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3739. }
  3740. }
  3741. }
  3742. /**
  3743. * print long term list
  3744. */
  3745. static void print_long_term(H264Context *h) {
  3746. uint32_t i;
  3747. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3748. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3749. for(i = 0; i < 16; i++){
  3750. Picture *pic= h->long_ref[i];
  3751. if (pic) {
  3752. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3753. }
  3754. }
  3755. }
  3756. }
  3757. /**
  3758. * Executes the reference picture marking (memory management control operations).
  3759. */
  3760. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3761. MpegEncContext * const s = &h->s;
  3762. int i, j;
  3763. int current_is_long=0;
  3764. Picture *pic;
  3765. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3766. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3767. for(i=0; i<mmco_count; i++){
  3768. if(s->avctx->debug&FF_DEBUG_MMCO)
  3769. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
  3770. switch(mmco[i].opcode){
  3771. case MMCO_SHORT2UNUSED:
  3772. pic= remove_short(h, mmco[i].short_frame_num);
  3773. if(pic)
  3774. unreference_pic(h, pic);
  3775. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3776. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n");
  3777. break;
  3778. case MMCO_SHORT2LONG:
  3779. pic= remove_long(h, mmco[i].long_index);
  3780. if(pic) unreference_pic(h, pic);
  3781. h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
  3782. if (h->long_ref[ mmco[i].long_index ]){
  3783. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3784. h->long_ref_count++;
  3785. }
  3786. break;
  3787. case MMCO_LONG2UNUSED:
  3788. pic= remove_long(h, mmco[i].long_index);
  3789. if(pic)
  3790. unreference_pic(h, pic);
  3791. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3792. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n");
  3793. break;
  3794. case MMCO_LONG:
  3795. pic= remove_long(h, mmco[i].long_index);
  3796. if(pic) unreference_pic(h, pic);
  3797. h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
  3798. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3799. h->long_ref_count++;
  3800. current_is_long=1;
  3801. break;
  3802. case MMCO_SET_MAX_LONG:
  3803. assert(mmco[i].long_index <= 16);
  3804. // just remove the long term which index is greater than new max
  3805. for(j = mmco[i].long_index; j<16; j++){
  3806. pic = remove_long(h, j);
  3807. if (pic) unreference_pic(h, pic);
  3808. }
  3809. break;
  3810. case MMCO_RESET:
  3811. while(h->short_ref_count){
  3812. pic= remove_short(h, h->short_ref[0]->frame_num);
  3813. if(pic) unreference_pic(h, pic);
  3814. }
  3815. for(j = 0; j < 16; j++) {
  3816. pic= remove_long(h, j);
  3817. if(pic) unreference_pic(h, pic);
  3818. }
  3819. break;
  3820. default: assert(0);
  3821. }
  3822. }
  3823. if(!current_is_long){
  3824. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3825. if(pic){
  3826. unreference_pic(h, pic);
  3827. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3828. }
  3829. if(h->short_ref_count)
  3830. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3831. h->short_ref[0]= s->current_picture_ptr;
  3832. h->short_ref[0]->long_ref=0;
  3833. h->short_ref_count++;
  3834. }
  3835. print_short_term(h);
  3836. print_long_term(h);
  3837. return 0;
  3838. }
  3839. static int decode_ref_pic_marking(H264Context *h){
  3840. MpegEncContext * const s = &h->s;
  3841. int i;
  3842. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3843. s->broken_link= get_bits1(&s->gb) -1;
  3844. h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
  3845. if(h->mmco[0].long_index == -1)
  3846. h->mmco_index= 0;
  3847. else{
  3848. h->mmco[0].opcode= MMCO_LONG;
  3849. h->mmco_index= 1;
  3850. }
  3851. }else{
  3852. if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
  3853. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3854. MMCOOpcode opcode= get_ue_golomb(&s->gb);;
  3855. h->mmco[i].opcode= opcode;
  3856. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3857. h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
  3858. /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
  3859. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3860. return -1;
  3861. }*/
  3862. }
  3863. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3864. unsigned int long_index= get_ue_golomb(&s->gb);
  3865. if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ long_index >= 16){
  3866. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3867. return -1;
  3868. }
  3869. h->mmco[i].long_index= long_index;
  3870. }
  3871. if(opcode > (unsigned)MMCO_LONG){
  3872. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3873. return -1;
  3874. }
  3875. if(opcode == MMCO_END)
  3876. break;
  3877. }
  3878. h->mmco_index= i;
  3879. }else{
  3880. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3881. if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
  3882. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3883. h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3884. h->mmco_index= 1;
  3885. }else
  3886. h->mmco_index= 0;
  3887. }
  3888. }
  3889. return 0;
  3890. }
  3891. static int init_poc(H264Context *h){
  3892. MpegEncContext * const s = &h->s;
  3893. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3894. int field_poc[2];
  3895. if(h->nal_unit_type == NAL_IDR_SLICE){
  3896. h->frame_num_offset= 0;
  3897. }else{
  3898. if(h->frame_num < h->prev_frame_num)
  3899. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3900. else
  3901. h->frame_num_offset= h->prev_frame_num_offset;
  3902. }
  3903. if(h->sps.poc_type==0){
  3904. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3905. if(h->nal_unit_type == NAL_IDR_SLICE){
  3906. h->prev_poc_msb=
  3907. h->prev_poc_lsb= 0;
  3908. }
  3909. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3910. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3911. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3912. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3913. else
  3914. h->poc_msb = h->prev_poc_msb;
  3915. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3916. field_poc[0] =
  3917. field_poc[1] = h->poc_msb + h->poc_lsb;
  3918. if(s->picture_structure == PICT_FRAME)
  3919. field_poc[1] += h->delta_poc_bottom;
  3920. }else if(h->sps.poc_type==1){
  3921. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3922. int i;
  3923. if(h->sps.poc_cycle_length != 0)
  3924. abs_frame_num = h->frame_num_offset + h->frame_num;
  3925. else
  3926. abs_frame_num = 0;
  3927. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3928. abs_frame_num--;
  3929. expected_delta_per_poc_cycle = 0;
  3930. for(i=0; i < h->sps.poc_cycle_length; i++)
  3931. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3932. if(abs_frame_num > 0){
  3933. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3934. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3935. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3936. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3937. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3938. } else
  3939. expectedpoc = 0;
  3940. if(h->nal_ref_idc == 0)
  3941. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3942. field_poc[0] = expectedpoc + h->delta_poc[0];
  3943. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3944. if(s->picture_structure == PICT_FRAME)
  3945. field_poc[1] += h->delta_poc[1];
  3946. }else{
  3947. int poc;
  3948. if(h->nal_unit_type == NAL_IDR_SLICE){
  3949. poc= 0;
  3950. }else{
  3951. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3952. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3953. }
  3954. field_poc[0]= poc;
  3955. field_poc[1]= poc;
  3956. }
  3957. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3958. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3959. if(s->picture_structure != PICT_TOP_FIELD)
  3960. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3961. if(s->picture_structure == PICT_FRAME) // FIXME field pix?
  3962. s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
  3963. return 0;
  3964. }
  3965. /**
  3966. * decodes a slice header.
  3967. * this will allso call MPV_common_init() and frame_start() as needed
  3968. */
  3969. static int decode_slice_header(H264Context *h){
  3970. MpegEncContext * const s = &h->s;
  3971. unsigned int first_mb_in_slice;
  3972. unsigned int pps_id;
  3973. int num_ref_idx_active_override_flag;
  3974. static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
  3975. unsigned int slice_type, tmp;
  3976. int default_ref_list_done = 0;
  3977. s->current_picture.reference= h->nal_ref_idc != 0;
  3978. s->dropable= h->nal_ref_idc == 0;
  3979. first_mb_in_slice= get_ue_golomb(&s->gb);
  3980. slice_type= get_ue_golomb(&s->gb);
  3981. if(slice_type > 9){
  3982. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3983. return -1;
  3984. }
  3985. if(slice_type > 4){
  3986. slice_type -= 5;
  3987. h->slice_type_fixed=1;
  3988. }else
  3989. h->slice_type_fixed=0;
  3990. slice_type= slice_type_map[ slice_type ];
  3991. if (slice_type == I_TYPE
  3992. || (h->slice_num != 0 && slice_type == h->slice_type) ) {
  3993. default_ref_list_done = 1;
  3994. }
  3995. h->slice_type= slice_type;
  3996. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3997. pps_id= get_ue_golomb(&s->gb);
  3998. if(pps_id>=MAX_PPS_COUNT){
  3999. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  4000. return -1;
  4001. }
  4002. h->pps= h->pps_buffer[pps_id];
  4003. if(h->pps.slice_group_count == 0){
  4004. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  4005. return -1;
  4006. }
  4007. h->sps= h->sps_buffer[ h->pps.sps_id ];
  4008. if(h->sps.log2_max_frame_num == 0){
  4009. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  4010. return -1;
  4011. }
  4012. if(h->dequant_coeff_pps != pps_id){
  4013. h->dequant_coeff_pps = pps_id;
  4014. init_dequant_tables(h);
  4015. }
  4016. s->mb_width= h->sps.mb_width;
  4017. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  4018. h->b_stride= s->mb_width*4;
  4019. h->b8_stride= s->mb_width*2;
  4020. s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
  4021. if(h->sps.frame_mbs_only_flag)
  4022. s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
  4023. else
  4024. s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
  4025. if (s->context_initialized
  4026. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  4027. free_tables(h);
  4028. MPV_common_end(s);
  4029. }
  4030. if (!s->context_initialized) {
  4031. if (MPV_common_init(s) < 0)
  4032. return -1;
  4033. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  4034. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  4035. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  4036. }else{
  4037. int i;
  4038. for(i=0; i<16; i++){
  4039. #define T(x) (x>>2) | ((x<<2) & 0xF)
  4040. h->zigzag_scan[i] = T(zigzag_scan[i]);
  4041. h-> field_scan[i] = T( field_scan[i]);
  4042. #undef T
  4043. }
  4044. }
  4045. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  4046. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  4047. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  4048. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  4049. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  4050. }else{
  4051. int i;
  4052. for(i=0; i<64; i++){
  4053. #define T(x) (x>>3) | ((x&7)<<3)
  4054. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  4055. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  4056. h->field_scan8x8[i] = T(field_scan8x8[i]);
  4057. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  4058. #undef T
  4059. }
  4060. }
  4061. if(h->sps.transform_bypass){ //FIXME same ugly
  4062. h->zigzag_scan_q0 = zigzag_scan;
  4063. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  4064. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  4065. h->field_scan_q0 = field_scan;
  4066. h->field_scan8x8_q0 = field_scan8x8;
  4067. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  4068. }else{
  4069. h->zigzag_scan_q0 = h->zigzag_scan;
  4070. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  4071. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  4072. h->field_scan_q0 = h->field_scan;
  4073. h->field_scan8x8_q0 = h->field_scan8x8;
  4074. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  4075. }
  4076. alloc_tables(h);
  4077. s->avctx->width = s->width;
  4078. s->avctx->height = s->height;
  4079. s->avctx->sample_aspect_ratio= h->sps.sar;
  4080. if(!s->avctx->sample_aspect_ratio.den)
  4081. s->avctx->sample_aspect_ratio.den = 1;
  4082. if(h->sps.timing_info_present_flag){
  4083. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  4084. if(h->x264_build > 0 && h->x264_build < 44)
  4085. s->avctx->time_base.den *= 2;
  4086. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  4087. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  4088. }
  4089. }
  4090. if(h->slice_num == 0){
  4091. if(frame_start(h) < 0)
  4092. return -1;
  4093. }
  4094. s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
  4095. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  4096. h->mb_mbaff = 0;
  4097. h->mb_aff_frame = 0;
  4098. if(h->sps.frame_mbs_only_flag){
  4099. s->picture_structure= PICT_FRAME;
  4100. }else{
  4101. if(get_bits1(&s->gb)) { //field_pic_flag
  4102. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  4103. av_log(h->s.avctx, AV_LOG_ERROR, "PAFF interlacing is not implemented\n");
  4104. } else {
  4105. s->picture_structure= PICT_FRAME;
  4106. h->mb_aff_frame = h->sps.mb_aff;
  4107. }
  4108. }
  4109. assert(s->mb_num == s->mb_width * s->mb_height);
  4110. if(first_mb_in_slice << h->mb_aff_frame >= s->mb_num ||
  4111. first_mb_in_slice >= s->mb_num){
  4112. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  4113. return -1;
  4114. }
  4115. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  4116. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << h->mb_aff_frame;
  4117. assert(s->mb_y < s->mb_height);
  4118. if(s->picture_structure==PICT_FRAME){
  4119. h->curr_pic_num= h->frame_num;
  4120. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  4121. }else{
  4122. h->curr_pic_num= 2*h->frame_num;
  4123. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  4124. }
  4125. if(h->nal_unit_type == NAL_IDR_SLICE){
  4126. get_ue_golomb(&s->gb); /* idr_pic_id */
  4127. }
  4128. if(h->sps.poc_type==0){
  4129. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  4130. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  4131. h->delta_poc_bottom= get_se_golomb(&s->gb);
  4132. }
  4133. }
  4134. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  4135. h->delta_poc[0]= get_se_golomb(&s->gb);
  4136. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  4137. h->delta_poc[1]= get_se_golomb(&s->gb);
  4138. }
  4139. init_poc(h);
  4140. if(h->pps.redundant_pic_cnt_present){
  4141. h->redundant_pic_count= get_ue_golomb(&s->gb);
  4142. }
  4143. //set defaults, might be overriden a few line later
  4144. h->ref_count[0]= h->pps.ref_count[0];
  4145. h->ref_count[1]= h->pps.ref_count[1];
  4146. if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
  4147. if(h->slice_type == B_TYPE){
  4148. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  4149. if(h->sps.mb_aff && h->direct_spatial_mv_pred)
  4150. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + spatial direct mode is not implemented\n");
  4151. }
  4152. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  4153. if(num_ref_idx_active_override_flag){
  4154. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  4155. if(h->slice_type==B_TYPE)
  4156. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  4157. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  4158. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  4159. h->ref_count[0]= h->ref_count[1]= 1;
  4160. return -1;
  4161. }
  4162. }
  4163. if(h->slice_type == B_TYPE)
  4164. h->list_count= 2;
  4165. else
  4166. h->list_count= 1;
  4167. }else
  4168. h->list_count= 0;
  4169. if(!default_ref_list_done){
  4170. fill_default_ref_list(h);
  4171. }
  4172. if(decode_ref_pic_list_reordering(h) < 0)
  4173. return -1;
  4174. if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
  4175. || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
  4176. pred_weight_table(h);
  4177. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
  4178. implicit_weight_table(h);
  4179. else
  4180. h->use_weight = 0;
  4181. if(s->current_picture.reference)
  4182. decode_ref_pic_marking(h);
  4183. if(FRAME_MBAFF)
  4184. fill_mbaff_ref_list(h);
  4185. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac ){
  4186. tmp = get_ue_golomb(&s->gb);
  4187. if(tmp > 2){
  4188. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  4189. return -1;
  4190. }
  4191. h->cabac_init_idc= tmp;
  4192. }
  4193. h->last_qscale_diff = 0;
  4194. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  4195. if(tmp>51){
  4196. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  4197. return -1;
  4198. }
  4199. s->qscale= tmp;
  4200. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  4201. //FIXME qscale / qp ... stuff
  4202. if(h->slice_type == SP_TYPE){
  4203. get_bits1(&s->gb); /* sp_for_switch_flag */
  4204. }
  4205. if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
  4206. get_se_golomb(&s->gb); /* slice_qs_delta */
  4207. }
  4208. h->deblocking_filter = 1;
  4209. h->slice_alpha_c0_offset = 0;
  4210. h->slice_beta_offset = 0;
  4211. if( h->pps.deblocking_filter_parameters_present ) {
  4212. tmp= get_ue_golomb(&s->gb);
  4213. if(tmp > 2){
  4214. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  4215. return -1;
  4216. }
  4217. h->deblocking_filter= tmp;
  4218. if(h->deblocking_filter < 2)
  4219. h->deblocking_filter^= 1; // 1<->0
  4220. if( h->deblocking_filter ) {
  4221. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  4222. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  4223. }
  4224. }
  4225. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  4226. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE)
  4227. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE)
  4228. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  4229. h->deblocking_filter= 0;
  4230. #if 0 //FMO
  4231. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  4232. slice_group_change_cycle= get_bits(&s->gb, ?);
  4233. #endif
  4234. h->slice_num++;
  4235. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  4236. h->emu_edge_height= FRAME_MBAFF ? 0 : h->emu_edge_width;
  4237. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  4238. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
  4239. h->slice_num,
  4240. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  4241. first_mb_in_slice,
  4242. av_get_pict_type_char(h->slice_type),
  4243. pps_id, h->frame_num,
  4244. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  4245. h->ref_count[0], h->ref_count[1],
  4246. s->qscale,
  4247. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  4248. h->use_weight,
  4249. h->use_weight==1 && h->use_weight_chroma ? "c" : ""
  4250. );
  4251. }
  4252. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !s->current_picture.reference){
  4253. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  4254. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  4255. }else{
  4256. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  4257. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  4258. }
  4259. return 0;
  4260. }
  4261. /**
  4262. *
  4263. */
  4264. static inline int get_level_prefix(GetBitContext *gb){
  4265. unsigned int buf;
  4266. int log;
  4267. OPEN_READER(re, gb);
  4268. UPDATE_CACHE(re, gb);
  4269. buf=GET_CACHE(re, gb);
  4270. log= 32 - av_log2(buf);
  4271. #ifdef TRACE
  4272. print_bin(buf>>(32-log), log);
  4273. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  4274. #endif
  4275. LAST_SKIP_BITS(re, gb, log);
  4276. CLOSE_READER(re, gb);
  4277. return log-1;
  4278. }
  4279. static inline int get_dct8x8_allowed(H264Context *h){
  4280. int i;
  4281. for(i=0; i<4; i++){
  4282. if(!IS_SUB_8X8(h->sub_mb_type[i])
  4283. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  4284. return 0;
  4285. }
  4286. return 1;
  4287. }
  4288. /**
  4289. * decodes a residual block.
  4290. * @param n block index
  4291. * @param scantable scantable
  4292. * @param max_coeff number of coefficients in the block
  4293. * @return <0 if an error occured
  4294. */
  4295. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  4296. MpegEncContext * const s = &h->s;
  4297. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  4298. int level[16];
  4299. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  4300. //FIXME put trailing_onex into the context
  4301. if(n == CHROMA_DC_BLOCK_INDEX){
  4302. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  4303. total_coeff= coeff_token>>2;
  4304. }else{
  4305. if(n == LUMA_DC_BLOCK_INDEX){
  4306. total_coeff= pred_non_zero_count(h, 0);
  4307. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4308. total_coeff= coeff_token>>2;
  4309. }else{
  4310. total_coeff= pred_non_zero_count(h, n);
  4311. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4312. total_coeff= coeff_token>>2;
  4313. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  4314. }
  4315. }
  4316. //FIXME set last_non_zero?
  4317. if(total_coeff==0)
  4318. return 0;
  4319. if(total_coeff > (unsigned)max_coeff) {
  4320. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  4321. return -1;
  4322. }
  4323. trailing_ones= coeff_token&3;
  4324. tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
  4325. assert(total_coeff<=16);
  4326. for(i=0; i<trailing_ones; i++){
  4327. level[i]= 1 - 2*get_bits1(gb);
  4328. }
  4329. if(i<total_coeff) {
  4330. int level_code, mask;
  4331. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  4332. int prefix= get_level_prefix(gb);
  4333. //first coefficient has suffix_length equal to 0 or 1
  4334. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  4335. if(suffix_length)
  4336. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4337. else
  4338. level_code= (prefix<<suffix_length); //part
  4339. }else if(prefix==14){
  4340. if(suffix_length)
  4341. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4342. else
  4343. level_code= prefix + get_bits(gb, 4); //part
  4344. }else if(prefix==15){
  4345. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  4346. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  4347. }else{
  4348. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4349. return -1;
  4350. }
  4351. if(trailing_ones < 3) level_code += 2;
  4352. suffix_length = 1;
  4353. if(level_code > 5)
  4354. suffix_length++;
  4355. mask= -(level_code&1);
  4356. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4357. i++;
  4358. //remaining coefficients have suffix_length > 0
  4359. for(;i<total_coeff;i++) {
  4360. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  4361. prefix = get_level_prefix(gb);
  4362. if(prefix<15){
  4363. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  4364. }else if(prefix==15){
  4365. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  4366. }else{
  4367. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4368. return -1;
  4369. }
  4370. mask= -(level_code&1);
  4371. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4372. if(level_code > suffix_limit[suffix_length])
  4373. suffix_length++;
  4374. }
  4375. }
  4376. if(total_coeff == max_coeff)
  4377. zeros_left=0;
  4378. else{
  4379. if(n == CHROMA_DC_BLOCK_INDEX)
  4380. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  4381. else
  4382. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  4383. }
  4384. coeff_num = zeros_left + total_coeff - 1;
  4385. j = scantable[coeff_num];
  4386. if(n > 24){
  4387. block[j] = level[0];
  4388. for(i=1;i<total_coeff;i++) {
  4389. if(zeros_left <= 0)
  4390. run_before = 0;
  4391. else if(zeros_left < 7){
  4392. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4393. }else{
  4394. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4395. }
  4396. zeros_left -= run_before;
  4397. coeff_num -= 1 + run_before;
  4398. j= scantable[ coeff_num ];
  4399. block[j]= level[i];
  4400. }
  4401. }else{
  4402. block[j] = (level[0] * qmul[j] + 32)>>6;
  4403. for(i=1;i<total_coeff;i++) {
  4404. if(zeros_left <= 0)
  4405. run_before = 0;
  4406. else if(zeros_left < 7){
  4407. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4408. }else{
  4409. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4410. }
  4411. zeros_left -= run_before;
  4412. coeff_num -= 1 + run_before;
  4413. j= scantable[ coeff_num ];
  4414. block[j]= (level[i] * qmul[j] + 32)>>6;
  4415. }
  4416. }
  4417. if(zeros_left<0){
  4418. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  4419. return -1;
  4420. }
  4421. return 0;
  4422. }
  4423. static void predict_field_decoding_flag(H264Context *h){
  4424. MpegEncContext * const s = &h->s;
  4425. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4426. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  4427. ? s->current_picture.mb_type[mb_xy-1]
  4428. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  4429. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  4430. : 0;
  4431. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  4432. }
  4433. /**
  4434. * decodes a P_SKIP or B_SKIP macroblock
  4435. */
  4436. static void decode_mb_skip(H264Context *h){
  4437. MpegEncContext * const s = &h->s;
  4438. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4439. int mb_type=0;
  4440. memset(h->non_zero_count[mb_xy], 0, 16);
  4441. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  4442. if(MB_FIELD)
  4443. mb_type|= MB_TYPE_INTERLACED;
  4444. if( h->slice_type == B_TYPE )
  4445. {
  4446. // just for fill_caches. pred_direct_motion will set the real mb_type
  4447. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  4448. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4449. pred_direct_motion(h, &mb_type);
  4450. mb_type|= MB_TYPE_SKIP;
  4451. }
  4452. else
  4453. {
  4454. int mx, my;
  4455. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  4456. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4457. pred_pskip_motion(h, &mx, &my);
  4458. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  4459. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  4460. }
  4461. write_back_motion(h, mb_type);
  4462. s->current_picture.mb_type[mb_xy]= mb_type;
  4463. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4464. h->slice_table[ mb_xy ]= h->slice_num;
  4465. h->prev_mb_skipped= 1;
  4466. }
  4467. /**
  4468. * decodes a macroblock
  4469. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4470. */
  4471. static int decode_mb_cavlc(H264Context *h){
  4472. MpegEncContext * const s = &h->s;
  4473. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4474. int partition_count;
  4475. unsigned int mb_type, cbp;
  4476. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4477. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  4478. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4479. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  4480. down the code */
  4481. if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
  4482. if(s->mb_skip_run==-1)
  4483. s->mb_skip_run= get_ue_golomb(&s->gb);
  4484. if (s->mb_skip_run--) {
  4485. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  4486. if(s->mb_skip_run==0)
  4487. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4488. else
  4489. predict_field_decoding_flag(h);
  4490. }
  4491. decode_mb_skip(h);
  4492. return 0;
  4493. }
  4494. }
  4495. if(FRAME_MBAFF){
  4496. if( (s->mb_y&1) == 0 )
  4497. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4498. }else
  4499. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4500. h->prev_mb_skipped= 0;
  4501. mb_type= get_ue_golomb(&s->gb);
  4502. if(h->slice_type == B_TYPE){
  4503. if(mb_type < 23){
  4504. partition_count= b_mb_type_info[mb_type].partition_count;
  4505. mb_type= b_mb_type_info[mb_type].type;
  4506. }else{
  4507. mb_type -= 23;
  4508. goto decode_intra_mb;
  4509. }
  4510. }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
  4511. if(mb_type < 5){
  4512. partition_count= p_mb_type_info[mb_type].partition_count;
  4513. mb_type= p_mb_type_info[mb_type].type;
  4514. }else{
  4515. mb_type -= 5;
  4516. goto decode_intra_mb;
  4517. }
  4518. }else{
  4519. assert(h->slice_type == I_TYPE);
  4520. decode_intra_mb:
  4521. if(mb_type > 25){
  4522. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4523. return -1;
  4524. }
  4525. partition_count=0;
  4526. cbp= i_mb_type_info[mb_type].cbp;
  4527. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4528. mb_type= i_mb_type_info[mb_type].type;
  4529. }
  4530. if(MB_FIELD)
  4531. mb_type |= MB_TYPE_INTERLACED;
  4532. h->slice_table[ mb_xy ]= h->slice_num;
  4533. if(IS_INTRA_PCM(mb_type)){
  4534. unsigned int x, y;
  4535. // we assume these blocks are very rare so we dont optimize it
  4536. align_get_bits(&s->gb);
  4537. // The pixels are stored in the same order as levels in h->mb array.
  4538. for(y=0; y<16; y++){
  4539. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4540. for(x=0; x<16; x++){
  4541. tprintf("LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4542. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4543. }
  4544. }
  4545. for(y=0; y<8; y++){
  4546. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4547. for(x=0; x<8; x++){
  4548. tprintf("CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4549. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4550. }
  4551. }
  4552. for(y=0; y<8; y++){
  4553. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4554. for(x=0; x<8; x++){
  4555. tprintf("CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4556. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4557. }
  4558. }
  4559. // In deblocking, the quantizer is 0
  4560. s->current_picture.qscale_table[mb_xy]= 0;
  4561. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  4562. // All coeffs are present
  4563. memset(h->non_zero_count[mb_xy], 16, 16);
  4564. s->current_picture.mb_type[mb_xy]= mb_type;
  4565. return 0;
  4566. }
  4567. if(MB_MBAFF){
  4568. h->ref_count[0] <<= 1;
  4569. h->ref_count[1] <<= 1;
  4570. }
  4571. fill_caches(h, mb_type, 0);
  4572. //mb_pred
  4573. if(IS_INTRA(mb_type)){
  4574. int pred_mode;
  4575. // init_top_left_availability(h);
  4576. if(IS_INTRA4x4(mb_type)){
  4577. int i;
  4578. int di = 1;
  4579. if(dct8x8_allowed && get_bits1(&s->gb)){
  4580. mb_type |= MB_TYPE_8x8DCT;
  4581. di = 4;
  4582. }
  4583. // fill_intra4x4_pred_table(h);
  4584. for(i=0; i<16; i+=di){
  4585. int mode= pred_intra_mode(h, i);
  4586. if(!get_bits1(&s->gb)){
  4587. const int rem_mode= get_bits(&s->gb, 3);
  4588. mode = rem_mode + (rem_mode >= mode);
  4589. }
  4590. if(di==4)
  4591. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4592. else
  4593. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4594. }
  4595. write_back_intra_pred_mode(h);
  4596. if( check_intra4x4_pred_mode(h) < 0)
  4597. return -1;
  4598. }else{
  4599. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4600. if(h->intra16x16_pred_mode < 0)
  4601. return -1;
  4602. }
  4603. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4604. if(pred_mode < 0)
  4605. return -1;
  4606. h->chroma_pred_mode= pred_mode;
  4607. }else if(partition_count==4){
  4608. int i, j, sub_partition_count[4], list, ref[2][4];
  4609. if(h->slice_type == B_TYPE){
  4610. for(i=0; i<4; i++){
  4611. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4612. if(h->sub_mb_type[i] >=13){
  4613. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4614. return -1;
  4615. }
  4616. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4617. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4618. }
  4619. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4620. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4621. pred_direct_motion(h, &mb_type);
  4622. h->ref_cache[0][scan8[4]] =
  4623. h->ref_cache[1][scan8[4]] =
  4624. h->ref_cache[0][scan8[12]] =
  4625. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4626. }
  4627. }else{
  4628. assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
  4629. for(i=0; i<4; i++){
  4630. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4631. if(h->sub_mb_type[i] >=4){
  4632. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4633. return -1;
  4634. }
  4635. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4636. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4637. }
  4638. }
  4639. for(list=0; list<h->list_count; list++){
  4640. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4641. for(i=0; i<4; i++){
  4642. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4643. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4644. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4645. if(tmp>=ref_count){
  4646. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4647. return -1;
  4648. }
  4649. ref[list][i]= tmp;
  4650. }else{
  4651. //FIXME
  4652. ref[list][i] = -1;
  4653. }
  4654. }
  4655. }
  4656. if(dct8x8_allowed)
  4657. dct8x8_allowed = get_dct8x8_allowed(h);
  4658. for(list=0; list<h->list_count; list++){
  4659. const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4660. for(i=0; i<4; i++){
  4661. if(IS_DIRECT(h->sub_mb_type[i])) {
  4662. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4663. continue;
  4664. }
  4665. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4666. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4667. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4668. const int sub_mb_type= h->sub_mb_type[i];
  4669. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4670. for(j=0; j<sub_partition_count[i]; j++){
  4671. int mx, my;
  4672. const int index= 4*i + block_width*j;
  4673. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4674. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4675. mx += get_se_golomb(&s->gb);
  4676. my += get_se_golomb(&s->gb);
  4677. tprintf("final mv:%d %d\n", mx, my);
  4678. if(IS_SUB_8X8(sub_mb_type)){
  4679. mv_cache[ 1 ][0]=
  4680. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4681. mv_cache[ 1 ][1]=
  4682. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4683. }else if(IS_SUB_8X4(sub_mb_type)){
  4684. mv_cache[ 1 ][0]= mx;
  4685. mv_cache[ 1 ][1]= my;
  4686. }else if(IS_SUB_4X8(sub_mb_type)){
  4687. mv_cache[ 8 ][0]= mx;
  4688. mv_cache[ 8 ][1]= my;
  4689. }
  4690. mv_cache[ 0 ][0]= mx;
  4691. mv_cache[ 0 ][1]= my;
  4692. }
  4693. }else{
  4694. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4695. p[0] = p[1]=
  4696. p[8] = p[9]= 0;
  4697. }
  4698. }
  4699. }
  4700. }else if(IS_DIRECT(mb_type)){
  4701. pred_direct_motion(h, &mb_type);
  4702. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4703. }else{
  4704. int list, mx, my, i;
  4705. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4706. if(IS_16X16(mb_type)){
  4707. for(list=0; list<h->list_count; list++){
  4708. unsigned int val;
  4709. if(IS_DIR(mb_type, 0, list)){
  4710. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4711. if(val >= h->ref_count[list]){
  4712. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4713. return -1;
  4714. }
  4715. }else
  4716. val= LIST_NOT_USED&0xFF;
  4717. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4718. }
  4719. for(list=0; list<h->list_count; list++){
  4720. unsigned int val;
  4721. if(IS_DIR(mb_type, 0, list)){
  4722. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4723. mx += get_se_golomb(&s->gb);
  4724. my += get_se_golomb(&s->gb);
  4725. tprintf("final mv:%d %d\n", mx, my);
  4726. val= pack16to32(mx,my);
  4727. }else
  4728. val=0;
  4729. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4730. }
  4731. }
  4732. else if(IS_16X8(mb_type)){
  4733. for(list=0; list<h->list_count; list++){
  4734. for(i=0; i<2; i++){
  4735. unsigned int val;
  4736. if(IS_DIR(mb_type, i, list)){
  4737. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4738. if(val >= h->ref_count[list]){
  4739. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4740. return -1;
  4741. }
  4742. }else
  4743. val= LIST_NOT_USED&0xFF;
  4744. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4745. }
  4746. }
  4747. for(list=0; list<h->list_count; list++){
  4748. for(i=0; i<2; i++){
  4749. unsigned int val;
  4750. if(IS_DIR(mb_type, i, list)){
  4751. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4752. mx += get_se_golomb(&s->gb);
  4753. my += get_se_golomb(&s->gb);
  4754. tprintf("final mv:%d %d\n", mx, my);
  4755. val= pack16to32(mx,my);
  4756. }else
  4757. val=0;
  4758. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4759. }
  4760. }
  4761. }else{
  4762. assert(IS_8X16(mb_type));
  4763. for(list=0; list<h->list_count; list++){
  4764. for(i=0; i<2; i++){
  4765. unsigned int val;
  4766. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4767. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4768. if(val >= h->ref_count[list]){
  4769. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4770. return -1;
  4771. }
  4772. }else
  4773. val= LIST_NOT_USED&0xFF;
  4774. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4775. }
  4776. }
  4777. for(list=0; list<h->list_count; list++){
  4778. for(i=0; i<2; i++){
  4779. unsigned int val;
  4780. if(IS_DIR(mb_type, i, list)){
  4781. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4782. mx += get_se_golomb(&s->gb);
  4783. my += get_se_golomb(&s->gb);
  4784. tprintf("final mv:%d %d\n", mx, my);
  4785. val= pack16to32(mx,my);
  4786. }else
  4787. val=0;
  4788. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4789. }
  4790. }
  4791. }
  4792. }
  4793. if(IS_INTER(mb_type))
  4794. write_back_motion(h, mb_type);
  4795. if(!IS_INTRA16x16(mb_type)){
  4796. cbp= get_ue_golomb(&s->gb);
  4797. if(cbp > 47){
  4798. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4799. return -1;
  4800. }
  4801. if(IS_INTRA4x4(mb_type))
  4802. cbp= golomb_to_intra4x4_cbp[cbp];
  4803. else
  4804. cbp= golomb_to_inter_cbp[cbp];
  4805. }
  4806. h->cbp = cbp;
  4807. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4808. if(get_bits1(&s->gb))
  4809. mb_type |= MB_TYPE_8x8DCT;
  4810. }
  4811. s->current_picture.mb_type[mb_xy]= mb_type;
  4812. if(cbp || IS_INTRA16x16(mb_type)){
  4813. int i8x8, i4x4, chroma_idx;
  4814. int chroma_qp, dquant;
  4815. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4816. const uint8_t *scan, *scan8x8, *dc_scan;
  4817. // fill_non_zero_count_cache(h);
  4818. if(IS_INTERLACED(mb_type)){
  4819. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4820. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4821. dc_scan= luma_dc_field_scan;
  4822. }else{
  4823. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4824. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4825. dc_scan= luma_dc_zigzag_scan;
  4826. }
  4827. dquant= get_se_golomb(&s->gb);
  4828. if( dquant > 25 || dquant < -26 ){
  4829. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4830. return -1;
  4831. }
  4832. s->qscale += dquant;
  4833. if(((unsigned)s->qscale) > 51){
  4834. if(s->qscale<0) s->qscale+= 52;
  4835. else s->qscale-= 52;
  4836. }
  4837. h->chroma_qp= chroma_qp= get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  4838. if(IS_INTRA16x16(mb_type)){
  4839. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4840. return -1; //FIXME continue if partitioned and other return -1 too
  4841. }
  4842. assert((cbp&15) == 0 || (cbp&15) == 15);
  4843. if(cbp&15){
  4844. for(i8x8=0; i8x8<4; i8x8++){
  4845. for(i4x4=0; i4x4<4; i4x4++){
  4846. const int index= i4x4 + 4*i8x8;
  4847. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4848. return -1;
  4849. }
  4850. }
  4851. }
  4852. }else{
  4853. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4854. }
  4855. }else{
  4856. for(i8x8=0; i8x8<4; i8x8++){
  4857. if(cbp & (1<<i8x8)){
  4858. if(IS_8x8DCT(mb_type)){
  4859. DCTELEM *buf = &h->mb[64*i8x8];
  4860. uint8_t *nnz;
  4861. for(i4x4=0; i4x4<4; i4x4++){
  4862. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4863. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4864. return -1;
  4865. }
  4866. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4867. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4868. }else{
  4869. for(i4x4=0; i4x4<4; i4x4++){
  4870. const int index= i4x4 + 4*i8x8;
  4871. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4872. return -1;
  4873. }
  4874. }
  4875. }
  4876. }else{
  4877. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4878. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4879. }
  4880. }
  4881. }
  4882. if(cbp&0x30){
  4883. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4884. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4885. return -1;
  4886. }
  4887. }
  4888. if(cbp&0x20){
  4889. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4890. for(i4x4=0; i4x4<4; i4x4++){
  4891. const int index= 16 + 4*chroma_idx + i4x4;
  4892. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][chroma_qp], 15) < 0){
  4893. return -1;
  4894. }
  4895. }
  4896. }
  4897. }else{
  4898. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4899. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4900. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4901. }
  4902. }else{
  4903. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4904. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4905. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4906. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4907. }
  4908. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4909. write_back_non_zero_count(h);
  4910. if(MB_MBAFF){
  4911. h->ref_count[0] >>= 1;
  4912. h->ref_count[1] >>= 1;
  4913. }
  4914. return 0;
  4915. }
  4916. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4917. MpegEncContext * const s = &h->s;
  4918. const int mb_x = s->mb_x;
  4919. const int mb_y = s->mb_y & ~1;
  4920. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4921. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4922. unsigned int ctx = 0;
  4923. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4924. ctx += 1;
  4925. }
  4926. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4927. ctx += 1;
  4928. }
  4929. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4930. }
  4931. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4932. uint8_t *state= &h->cabac_state[ctx_base];
  4933. int mb_type;
  4934. if(intra_slice){
  4935. MpegEncContext * const s = &h->s;
  4936. const int mba_xy = h->left_mb_xy[0];
  4937. const int mbb_xy = h->top_mb_xy;
  4938. int ctx=0;
  4939. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4940. ctx++;
  4941. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4942. ctx++;
  4943. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4944. return 0; /* I4x4 */
  4945. state += 2;
  4946. }else{
  4947. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4948. return 0; /* I4x4 */
  4949. }
  4950. if( get_cabac_terminate( &h->cabac ) )
  4951. return 25; /* PCM */
  4952. mb_type = 1; /* I16x16 */
  4953. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4954. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4955. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4956. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4957. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4958. return mb_type;
  4959. }
  4960. static int decode_cabac_mb_type( H264Context *h ) {
  4961. MpegEncContext * const s = &h->s;
  4962. if( h->slice_type == I_TYPE ) {
  4963. return decode_cabac_intra_mb_type(h, 3, 1);
  4964. } else if( h->slice_type == P_TYPE ) {
  4965. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4966. /* P-type */
  4967. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4968. /* P_L0_D16x16, P_8x8 */
  4969. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4970. } else {
  4971. /* P_L0_D8x16, P_L0_D16x8 */
  4972. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4973. }
  4974. } else {
  4975. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4976. }
  4977. } else if( h->slice_type == B_TYPE ) {
  4978. const int mba_xy = h->left_mb_xy[0];
  4979. const int mbb_xy = h->top_mb_xy;
  4980. int ctx = 0;
  4981. int bits;
  4982. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4983. ctx++;
  4984. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4985. ctx++;
  4986. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4987. return 0; /* B_Direct_16x16 */
  4988. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4989. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4990. }
  4991. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4992. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4993. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4994. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4995. if( bits < 8 )
  4996. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4997. else if( bits == 13 ) {
  4998. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4999. } else if( bits == 14 )
  5000. return 11; /* B_L1_L0_8x16 */
  5001. else if( bits == 15 )
  5002. return 22; /* B_8x8 */
  5003. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  5004. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  5005. } else {
  5006. /* TODO SI/SP frames? */
  5007. return -1;
  5008. }
  5009. }
  5010. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  5011. MpegEncContext * const s = &h->s;
  5012. int mba_xy, mbb_xy;
  5013. int ctx = 0;
  5014. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  5015. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5016. mba_xy = mb_xy - 1;
  5017. if( (mb_y&1)
  5018. && h->slice_table[mba_xy] == h->slice_num
  5019. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  5020. mba_xy += s->mb_stride;
  5021. if( MB_FIELD ){
  5022. mbb_xy = mb_xy - s->mb_stride;
  5023. if( !(mb_y&1)
  5024. && h->slice_table[mbb_xy] == h->slice_num
  5025. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  5026. mbb_xy -= s->mb_stride;
  5027. }else
  5028. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  5029. }else{
  5030. int mb_xy = mb_x + mb_y*s->mb_stride;
  5031. mba_xy = mb_xy - 1;
  5032. mbb_xy = mb_xy - s->mb_stride;
  5033. }
  5034. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  5035. ctx++;
  5036. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  5037. ctx++;
  5038. if( h->slice_type == B_TYPE )
  5039. ctx += 13;
  5040. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  5041. }
  5042. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  5043. int mode = 0;
  5044. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  5045. return pred_mode;
  5046. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  5047. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  5048. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  5049. if( mode >= pred_mode )
  5050. return mode + 1;
  5051. else
  5052. return mode;
  5053. }
  5054. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  5055. const int mba_xy = h->left_mb_xy[0];
  5056. const int mbb_xy = h->top_mb_xy;
  5057. int ctx = 0;
  5058. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  5059. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  5060. ctx++;
  5061. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  5062. ctx++;
  5063. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  5064. return 0;
  5065. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  5066. return 1;
  5067. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  5068. return 2;
  5069. else
  5070. return 3;
  5071. }
  5072. static const uint8_t block_idx_x[16] = {
  5073. 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
  5074. };
  5075. static const uint8_t block_idx_y[16] = {
  5076. 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
  5077. };
  5078. static const uint8_t block_idx_xy[4][4] = {
  5079. { 0, 2, 8, 10},
  5080. { 1, 3, 9, 11},
  5081. { 4, 6, 12, 14},
  5082. { 5, 7, 13, 15}
  5083. };
  5084. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  5085. int cbp = 0;
  5086. int cbp_b = -1;
  5087. int i8x8;
  5088. if( h->slice_table[h->top_mb_xy] == h->slice_num ) {
  5089. cbp_b = h->top_cbp;
  5090. tprintf("cbp_b = top_cbp = %x\n", cbp_b);
  5091. }
  5092. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5093. int cbp_a = -1;
  5094. int x, y;
  5095. int ctx = 0;
  5096. x = block_idx_x[4*i8x8];
  5097. y = block_idx_y[4*i8x8];
  5098. if( x > 0 )
  5099. cbp_a = cbp;
  5100. else if( h->slice_table[h->left_mb_xy[0]] == h->slice_num ) {
  5101. cbp_a = h->left_cbp;
  5102. tprintf("cbp_a = left_cbp = %x\n", cbp_a);
  5103. }
  5104. if( y > 0 )
  5105. cbp_b = cbp;
  5106. /* No need to test for skip as we put 0 for skip block */
  5107. /* No need to test for IPCM as we put 1 for IPCM block */
  5108. if( cbp_a >= 0 ) {
  5109. int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
  5110. if( ((cbp_a >> i8x8a)&0x01) == 0 )
  5111. ctx++;
  5112. }
  5113. if( cbp_b >= 0 ) {
  5114. int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
  5115. if( ((cbp_b >> i8x8b)&0x01) == 0 )
  5116. ctx += 2;
  5117. }
  5118. if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
  5119. cbp |= 1 << i8x8;
  5120. }
  5121. }
  5122. return cbp;
  5123. }
  5124. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  5125. int ctx;
  5126. int cbp_a, cbp_b;
  5127. cbp_a = (h->left_cbp>>4)&0x03;
  5128. cbp_b = (h-> top_cbp>>4)&0x03;
  5129. ctx = 0;
  5130. if( cbp_a > 0 ) ctx++;
  5131. if( cbp_b > 0 ) ctx += 2;
  5132. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  5133. return 0;
  5134. ctx = 4;
  5135. if( cbp_a == 2 ) ctx++;
  5136. if( cbp_b == 2 ) ctx += 2;
  5137. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  5138. }
  5139. static int decode_cabac_mb_dqp( H264Context *h) {
  5140. MpegEncContext * const s = &h->s;
  5141. int mbn_xy;
  5142. int ctx = 0;
  5143. int val = 0;
  5144. if( s->mb_x > 0 )
  5145. mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
  5146. else
  5147. mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
  5148. if( h->last_qscale_diff != 0 )
  5149. ctx++;
  5150. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  5151. if( ctx < 2 )
  5152. ctx = 2;
  5153. else
  5154. ctx = 3;
  5155. val++;
  5156. if(val > 102) //prevent infinite loop
  5157. return INT_MIN;
  5158. }
  5159. if( val&0x01 )
  5160. return (val + 1)/2;
  5161. else
  5162. return -(val + 1)/2;
  5163. }
  5164. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  5165. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  5166. return 0; /* 8x8 */
  5167. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  5168. return 1; /* 8x4 */
  5169. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  5170. return 2; /* 4x8 */
  5171. return 3; /* 4x4 */
  5172. }
  5173. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  5174. int type;
  5175. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  5176. return 0; /* B_Direct_8x8 */
  5177. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  5178. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  5179. type = 3;
  5180. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  5181. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  5182. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  5183. type += 4;
  5184. }
  5185. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  5186. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  5187. return type;
  5188. }
  5189. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  5190. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  5191. }
  5192. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  5193. int refa = h->ref_cache[list][scan8[n] - 1];
  5194. int refb = h->ref_cache[list][scan8[n] - 8];
  5195. int ref = 0;
  5196. int ctx = 0;
  5197. if( h->slice_type == B_TYPE) {
  5198. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  5199. ctx++;
  5200. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  5201. ctx += 2;
  5202. } else {
  5203. if( refa > 0 )
  5204. ctx++;
  5205. if( refb > 0 )
  5206. ctx += 2;
  5207. }
  5208. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  5209. ref++;
  5210. if( ctx < 4 )
  5211. ctx = 4;
  5212. else
  5213. ctx = 5;
  5214. if(ref >= 32 /*h->ref_list[list]*/){
  5215. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  5216. return 0; //FIXME we should return -1 and check the return everywhere
  5217. }
  5218. }
  5219. return ref;
  5220. }
  5221. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  5222. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  5223. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  5224. int ctxbase = (l == 0) ? 40 : 47;
  5225. int ctx, mvd;
  5226. if( amvd < 3 )
  5227. ctx = 0;
  5228. else if( amvd > 32 )
  5229. ctx = 2;
  5230. else
  5231. ctx = 1;
  5232. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  5233. return 0;
  5234. mvd= 1;
  5235. ctx= 3;
  5236. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  5237. mvd++;
  5238. if( ctx < 6 )
  5239. ctx++;
  5240. }
  5241. if( mvd >= 9 ) {
  5242. int k = 3;
  5243. while( get_cabac_bypass( &h->cabac ) ) {
  5244. mvd += 1 << k;
  5245. k++;
  5246. if(k>24){
  5247. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  5248. return INT_MIN;
  5249. }
  5250. }
  5251. while( k-- ) {
  5252. if( get_cabac_bypass( &h->cabac ) )
  5253. mvd += 1 << k;
  5254. }
  5255. }
  5256. return get_cabac_bypass_sign( &h->cabac, -mvd );
  5257. }
  5258. static int inline get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  5259. int nza, nzb;
  5260. int ctx = 0;
  5261. if( cat == 0 ) {
  5262. nza = h->left_cbp&0x100;
  5263. nzb = h-> top_cbp&0x100;
  5264. } else if( cat == 1 || cat == 2 ) {
  5265. nza = h->non_zero_count_cache[scan8[idx] - 1];
  5266. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  5267. } else if( cat == 3 ) {
  5268. nza = (h->left_cbp>>(6+idx))&0x01;
  5269. nzb = (h-> top_cbp>>(6+idx))&0x01;
  5270. } else {
  5271. assert(cat == 4);
  5272. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  5273. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  5274. }
  5275. if( nza > 0 )
  5276. ctx++;
  5277. if( nzb > 0 )
  5278. ctx += 2;
  5279. return ctx + 4 * cat;
  5280. }
  5281. static const __attribute((used)) uint8_t last_coeff_flag_offset_8x8[63] = {
  5282. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  5283. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  5284. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  5285. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  5286. };
  5287. static int decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  5288. const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
  5289. static const int significant_coeff_flag_offset[2][6] = {
  5290. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  5291. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  5292. };
  5293. static const int last_coeff_flag_offset[2][6] = {
  5294. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  5295. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  5296. };
  5297. static const int coeff_abs_level_m1_offset[6] = {
  5298. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  5299. };
  5300. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  5301. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  5302. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  5303. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  5304. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  5305. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  5306. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  5307. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  5308. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  5309. };
  5310. int index[64];
  5311. int last;
  5312. int coeff_count = 0;
  5313. int abslevel1 = 1;
  5314. int abslevelgt1 = 0;
  5315. uint8_t *significant_coeff_ctx_base;
  5316. uint8_t *last_coeff_ctx_base;
  5317. uint8_t *abs_level_m1_ctx_base;
  5318. #ifndef ARCH_X86
  5319. #define CABAC_ON_STACK
  5320. #endif
  5321. #ifdef CABAC_ON_STACK
  5322. #define CC &cc
  5323. CABACContext cc;
  5324. cc.range = h->cabac.range;
  5325. cc.low = h->cabac.low;
  5326. cc.bytestream= h->cabac.bytestream;
  5327. #else
  5328. #define CC &h->cabac
  5329. #endif
  5330. /* cat: 0-> DC 16x16 n = 0
  5331. * 1-> AC 16x16 n = luma4x4idx
  5332. * 2-> Luma4x4 n = luma4x4idx
  5333. * 3-> DC Chroma n = iCbCr
  5334. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  5335. * 5-> Luma8x8 n = 4 * luma8x8idx
  5336. */
  5337. /* read coded block flag */
  5338. if( cat != 5 ) {
  5339. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  5340. if( cat == 1 || cat == 2 )
  5341. h->non_zero_count_cache[scan8[n]] = 0;
  5342. else if( cat == 4 )
  5343. h->non_zero_count_cache[scan8[16+n]] = 0;
  5344. #ifdef CABAC_ON_STACK
  5345. h->cabac.range = cc.range ;
  5346. h->cabac.low = cc.low ;
  5347. h->cabac.bytestream= cc.bytestream;
  5348. #endif
  5349. return 0;
  5350. }
  5351. }
  5352. significant_coeff_ctx_base = h->cabac_state
  5353. + significant_coeff_flag_offset[MB_FIELD][cat];
  5354. last_coeff_ctx_base = h->cabac_state
  5355. + last_coeff_flag_offset[MB_FIELD][cat];
  5356. abs_level_m1_ctx_base = h->cabac_state
  5357. + coeff_abs_level_m1_offset[cat];
  5358. if( cat == 5 ) {
  5359. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  5360. for(last= 0; last < coefs; last++) { \
  5361. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  5362. if( get_cabac( CC, sig_ctx )) { \
  5363. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  5364. index[coeff_count++] = last; \
  5365. if( get_cabac( CC, last_ctx ) ) { \
  5366. last= max_coeff; \
  5367. break; \
  5368. } \
  5369. } \
  5370. }\
  5371. if( last == max_coeff -1 ) {\
  5372. index[coeff_count++] = last;\
  5373. }
  5374. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  5375. #if defined(ARCH_X86) && !(defined(PIC) && defined(__GNUC__))
  5376. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  5377. } else {
  5378. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  5379. #else
  5380. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  5381. } else {
  5382. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  5383. #endif
  5384. }
  5385. assert(coeff_count > 0);
  5386. if( cat == 0 )
  5387. h->cbp_table[mb_xy] |= 0x100;
  5388. else if( cat == 1 || cat == 2 )
  5389. h->non_zero_count_cache[scan8[n]] = coeff_count;
  5390. else if( cat == 3 )
  5391. h->cbp_table[mb_xy] |= 0x40 << n;
  5392. else if( cat == 4 )
  5393. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  5394. else {
  5395. assert( cat == 5 );
  5396. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  5397. }
  5398. for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
  5399. uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
  5400. int j= scantable[index[coeff_count]];
  5401. if( get_cabac( CC, ctx ) == 0 ) {
  5402. if( !qmul ) {
  5403. block[j] = get_cabac_bypass_sign( CC, -1);
  5404. }else{
  5405. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;;
  5406. }
  5407. abslevel1++;
  5408. } else {
  5409. int coeff_abs = 2;
  5410. ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
  5411. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  5412. coeff_abs++;
  5413. }
  5414. if( coeff_abs >= 15 ) {
  5415. int j = 0;
  5416. while( get_cabac_bypass( CC ) ) {
  5417. j++;
  5418. }
  5419. coeff_abs=1;
  5420. while( j-- ) {
  5421. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  5422. }
  5423. coeff_abs+= 14;
  5424. }
  5425. if( !qmul ) {
  5426. if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
  5427. else block[j] = coeff_abs;
  5428. }else{
  5429. if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  5430. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  5431. }
  5432. abslevelgt1++;
  5433. }
  5434. }
  5435. #ifdef CABAC_ON_STACK
  5436. h->cabac.range = cc.range ;
  5437. h->cabac.low = cc.low ;
  5438. h->cabac.bytestream= cc.bytestream;
  5439. #endif
  5440. return 0;
  5441. }
  5442. static void inline compute_mb_neighbors(H264Context *h)
  5443. {
  5444. MpegEncContext * const s = &h->s;
  5445. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  5446. h->top_mb_xy = mb_xy - s->mb_stride;
  5447. h->left_mb_xy[0] = mb_xy - 1;
  5448. if(FRAME_MBAFF){
  5449. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  5450. const int top_pair_xy = pair_xy - s->mb_stride;
  5451. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  5452. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  5453. const int curr_mb_frame_flag = !MB_FIELD;
  5454. const int bottom = (s->mb_y & 1);
  5455. if (bottom
  5456. ? !curr_mb_frame_flag // bottom macroblock
  5457. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  5458. ) {
  5459. h->top_mb_xy -= s->mb_stride;
  5460. }
  5461. if (left_mb_frame_flag != curr_mb_frame_flag) {
  5462. h->left_mb_xy[0] = pair_xy - 1;
  5463. }
  5464. }
  5465. return;
  5466. }
  5467. /**
  5468. * decodes a macroblock
  5469. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  5470. */
  5471. static int decode_mb_cabac(H264Context *h) {
  5472. MpegEncContext * const s = &h->s;
  5473. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  5474. int mb_type, partition_count, cbp = 0;
  5475. int dct8x8_allowed= h->pps.transform_8x8_mode;
  5476. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  5477. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  5478. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) {
  5479. int skip;
  5480. /* a skipped mb needs the aff flag from the following mb */
  5481. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  5482. predict_field_decoding_flag(h);
  5483. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  5484. skip = h->next_mb_skipped;
  5485. else
  5486. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  5487. /* read skip flags */
  5488. if( skip ) {
  5489. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  5490. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  5491. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  5492. if(h->next_mb_skipped)
  5493. predict_field_decoding_flag(h);
  5494. else
  5495. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5496. }
  5497. decode_mb_skip(h);
  5498. h->cbp_table[mb_xy] = 0;
  5499. h->chroma_pred_mode_table[mb_xy] = 0;
  5500. h->last_qscale_diff = 0;
  5501. return 0;
  5502. }
  5503. }
  5504. if(FRAME_MBAFF){
  5505. if( (s->mb_y&1) == 0 )
  5506. h->mb_mbaff =
  5507. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5508. }else
  5509. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  5510. h->prev_mb_skipped = 0;
  5511. compute_mb_neighbors(h);
  5512. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5513. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5514. return -1;
  5515. }
  5516. if( h->slice_type == B_TYPE ) {
  5517. if( mb_type < 23 ){
  5518. partition_count= b_mb_type_info[mb_type].partition_count;
  5519. mb_type= b_mb_type_info[mb_type].type;
  5520. }else{
  5521. mb_type -= 23;
  5522. goto decode_intra_mb;
  5523. }
  5524. } else if( h->slice_type == P_TYPE ) {
  5525. if( mb_type < 5) {
  5526. partition_count= p_mb_type_info[mb_type].partition_count;
  5527. mb_type= p_mb_type_info[mb_type].type;
  5528. } else {
  5529. mb_type -= 5;
  5530. goto decode_intra_mb;
  5531. }
  5532. } else {
  5533. assert(h->slice_type == I_TYPE);
  5534. decode_intra_mb:
  5535. partition_count = 0;
  5536. cbp= i_mb_type_info[mb_type].cbp;
  5537. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5538. mb_type= i_mb_type_info[mb_type].type;
  5539. }
  5540. if(MB_FIELD)
  5541. mb_type |= MB_TYPE_INTERLACED;
  5542. h->slice_table[ mb_xy ]= h->slice_num;
  5543. if(IS_INTRA_PCM(mb_type)) {
  5544. const uint8_t *ptr;
  5545. unsigned int x, y;
  5546. // We assume these blocks are very rare so we dont optimize it.
  5547. // FIXME The two following lines get the bitstream position in the cabac
  5548. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5549. ptr= h->cabac.bytestream;
  5550. if(h->cabac.low&0x1) ptr--;
  5551. if(CABAC_BITS==16){
  5552. if(h->cabac.low&0x1FF) ptr--;
  5553. }
  5554. // The pixels are stored in the same order as levels in h->mb array.
  5555. for(y=0; y<16; y++){
  5556. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5557. for(x=0; x<16; x++){
  5558. tprintf("LUMA ICPM LEVEL (%3d)\n", *ptr);
  5559. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5560. }
  5561. }
  5562. for(y=0; y<8; y++){
  5563. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5564. for(x=0; x<8; x++){
  5565. tprintf("CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5566. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5567. }
  5568. }
  5569. for(y=0; y<8; y++){
  5570. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5571. for(x=0; x<8; x++){
  5572. tprintf("CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5573. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5574. }
  5575. }
  5576. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5577. // All blocks are present
  5578. h->cbp_table[mb_xy] = 0x1ef;
  5579. h->chroma_pred_mode_table[mb_xy] = 0;
  5580. // In deblocking, the quantizer is 0
  5581. s->current_picture.qscale_table[mb_xy]= 0;
  5582. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  5583. // All coeffs are present
  5584. memset(h->non_zero_count[mb_xy], 16, 16);
  5585. s->current_picture.mb_type[mb_xy]= mb_type;
  5586. return 0;
  5587. }
  5588. if(MB_MBAFF){
  5589. h->ref_count[0] <<= 1;
  5590. h->ref_count[1] <<= 1;
  5591. }
  5592. fill_caches(h, mb_type, 0);
  5593. if( IS_INTRA( mb_type ) ) {
  5594. int i, pred_mode;
  5595. if( IS_INTRA4x4( mb_type ) ) {
  5596. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5597. mb_type |= MB_TYPE_8x8DCT;
  5598. for( i = 0; i < 16; i+=4 ) {
  5599. int pred = pred_intra_mode( h, i );
  5600. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5601. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5602. }
  5603. } else {
  5604. for( i = 0; i < 16; i++ ) {
  5605. int pred = pred_intra_mode( h, i );
  5606. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5607. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5608. }
  5609. }
  5610. write_back_intra_pred_mode(h);
  5611. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5612. } else {
  5613. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5614. if( h->intra16x16_pred_mode < 0 ) return -1;
  5615. }
  5616. h->chroma_pred_mode_table[mb_xy] =
  5617. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5618. pred_mode= check_intra_pred_mode( h, pred_mode );
  5619. if( pred_mode < 0 ) return -1;
  5620. h->chroma_pred_mode= pred_mode;
  5621. } else if( partition_count == 4 ) {
  5622. int i, j, sub_partition_count[4], list, ref[2][4];
  5623. if( h->slice_type == B_TYPE ) {
  5624. for( i = 0; i < 4; i++ ) {
  5625. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5626. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5627. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5628. }
  5629. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5630. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5631. pred_direct_motion(h, &mb_type);
  5632. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5633. for( i = 0; i < 4; i++ )
  5634. if( IS_DIRECT(h->sub_mb_type[i]) )
  5635. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5636. }
  5637. }
  5638. } else {
  5639. for( i = 0; i < 4; i++ ) {
  5640. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5641. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5642. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5643. }
  5644. }
  5645. for( list = 0; list < h->list_count; list++ ) {
  5646. for( i = 0; i < 4; i++ ) {
  5647. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5648. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5649. if( h->ref_count[list] > 1 )
  5650. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5651. else
  5652. ref[list][i] = 0;
  5653. } else {
  5654. ref[list][i] = -1;
  5655. }
  5656. h->ref_cache[list][ scan8[4*i]+1 ]=
  5657. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5658. }
  5659. }
  5660. if(dct8x8_allowed)
  5661. dct8x8_allowed = get_dct8x8_allowed(h);
  5662. for(list=0; list<h->list_count; list++){
  5663. for(i=0; i<4; i++){
  5664. if(IS_DIRECT(h->sub_mb_type[i])){
  5665. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5666. continue;
  5667. }
  5668. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5669. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5670. const int sub_mb_type= h->sub_mb_type[i];
  5671. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5672. for(j=0; j<sub_partition_count[i]; j++){
  5673. int mpx, mpy;
  5674. int mx, my;
  5675. const int index= 4*i + block_width*j;
  5676. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5677. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5678. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5679. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5680. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5681. tprintf("final mv:%d %d\n", mx, my);
  5682. if(IS_SUB_8X8(sub_mb_type)){
  5683. mv_cache[ 1 ][0]=
  5684. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5685. mv_cache[ 1 ][1]=
  5686. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5687. mvd_cache[ 1 ][0]=
  5688. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5689. mvd_cache[ 1 ][1]=
  5690. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5691. }else if(IS_SUB_8X4(sub_mb_type)){
  5692. mv_cache[ 1 ][0]= mx;
  5693. mv_cache[ 1 ][1]= my;
  5694. mvd_cache[ 1 ][0]= mx - mpx;
  5695. mvd_cache[ 1 ][1]= my - mpy;
  5696. }else if(IS_SUB_4X8(sub_mb_type)){
  5697. mv_cache[ 8 ][0]= mx;
  5698. mv_cache[ 8 ][1]= my;
  5699. mvd_cache[ 8 ][0]= mx - mpx;
  5700. mvd_cache[ 8 ][1]= my - mpy;
  5701. }
  5702. mv_cache[ 0 ][0]= mx;
  5703. mv_cache[ 0 ][1]= my;
  5704. mvd_cache[ 0 ][0]= mx - mpx;
  5705. mvd_cache[ 0 ][1]= my - mpy;
  5706. }
  5707. }else{
  5708. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5709. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5710. p[0] = p[1] = p[8] = p[9] = 0;
  5711. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5712. }
  5713. }
  5714. }
  5715. } else if( IS_DIRECT(mb_type) ) {
  5716. pred_direct_motion(h, &mb_type);
  5717. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5718. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5719. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5720. } else {
  5721. int list, mx, my, i, mpx, mpy;
  5722. if(IS_16X16(mb_type)){
  5723. for(list=0; list<h->list_count; list++){
  5724. if(IS_DIR(mb_type, 0, list)){
  5725. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5726. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5727. }else
  5728. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5729. }
  5730. for(list=0; list<h->list_count; list++){
  5731. if(IS_DIR(mb_type, 0, list)){
  5732. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5733. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5734. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5735. tprintf("final mv:%d %d\n", mx, my);
  5736. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5737. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5738. }else
  5739. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5740. }
  5741. }
  5742. else if(IS_16X8(mb_type)){
  5743. for(list=0; list<h->list_count; list++){
  5744. for(i=0; i<2; i++){
  5745. if(IS_DIR(mb_type, i, list)){
  5746. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5747. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5748. }else
  5749. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5750. }
  5751. }
  5752. for(list=0; list<h->list_count; list++){
  5753. for(i=0; i<2; i++){
  5754. if(IS_DIR(mb_type, i, list)){
  5755. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5756. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5757. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5758. tprintf("final mv:%d %d\n", mx, my);
  5759. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5760. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5761. }else{
  5762. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5763. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5764. }
  5765. }
  5766. }
  5767. }else{
  5768. assert(IS_8X16(mb_type));
  5769. for(list=0; list<h->list_count; list++){
  5770. for(i=0; i<2; i++){
  5771. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5772. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5773. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5774. }else
  5775. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5776. }
  5777. }
  5778. for(list=0; list<h->list_count; list++){
  5779. for(i=0; i<2; i++){
  5780. if(IS_DIR(mb_type, i, list)){
  5781. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5782. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5783. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5784. tprintf("final mv:%d %d\n", mx, my);
  5785. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5786. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5787. }else{
  5788. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5789. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5790. }
  5791. }
  5792. }
  5793. }
  5794. }
  5795. if( IS_INTER( mb_type ) ) {
  5796. h->chroma_pred_mode_table[mb_xy] = 0;
  5797. write_back_motion( h, mb_type );
  5798. }
  5799. if( !IS_INTRA16x16( mb_type ) ) {
  5800. cbp = decode_cabac_mb_cbp_luma( h );
  5801. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5802. }
  5803. h->cbp_table[mb_xy] = h->cbp = cbp;
  5804. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5805. if( decode_cabac_mb_transform_size( h ) )
  5806. mb_type |= MB_TYPE_8x8DCT;
  5807. }
  5808. s->current_picture.mb_type[mb_xy]= mb_type;
  5809. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5810. const uint8_t *scan, *scan8x8, *dc_scan;
  5811. int dqp;
  5812. if(IS_INTERLACED(mb_type)){
  5813. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5814. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5815. dc_scan= luma_dc_field_scan;
  5816. }else{
  5817. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5818. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5819. dc_scan= luma_dc_zigzag_scan;
  5820. }
  5821. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5822. if( dqp == INT_MIN ){
  5823. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5824. return -1;
  5825. }
  5826. s->qscale += dqp;
  5827. if(((unsigned)s->qscale) > 51){
  5828. if(s->qscale<0) s->qscale+= 52;
  5829. else s->qscale-= 52;
  5830. }
  5831. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  5832. if( IS_INTRA16x16( mb_type ) ) {
  5833. int i;
  5834. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5835. if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0)
  5836. return -1;
  5837. if( cbp&15 ) {
  5838. for( i = 0; i < 16; i++ ) {
  5839. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5840. if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 )
  5841. return -1;
  5842. }
  5843. } else {
  5844. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5845. }
  5846. } else {
  5847. int i8x8, i4x4;
  5848. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5849. if( cbp & (1<<i8x8) ) {
  5850. if( IS_8x8DCT(mb_type) ) {
  5851. if( decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5852. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 )
  5853. return -1;
  5854. } else
  5855. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5856. const int index = 4*i8x8 + i4x4;
  5857. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5858. //START_TIMER
  5859. if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 )
  5860. return -1;
  5861. //STOP_TIMER("decode_residual")
  5862. }
  5863. } else {
  5864. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5865. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5866. }
  5867. }
  5868. }
  5869. if( cbp&0x30 ){
  5870. int c;
  5871. for( c = 0; c < 2; c++ ) {
  5872. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5873. if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0)
  5874. return -1;
  5875. }
  5876. }
  5877. if( cbp&0x20 ) {
  5878. int c, i;
  5879. for( c = 0; c < 2; c++ ) {
  5880. for( i = 0; i < 4; i++ ) {
  5881. const int index = 16 + 4 * c + i;
  5882. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5883. if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp], 15) < 0)
  5884. return -1;
  5885. }
  5886. }
  5887. } else {
  5888. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5889. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5890. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5891. }
  5892. } else {
  5893. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5894. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5895. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5896. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5897. h->last_qscale_diff = 0;
  5898. }
  5899. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5900. write_back_non_zero_count(h);
  5901. if(MB_MBAFF){
  5902. h->ref_count[0] >>= 1;
  5903. h->ref_count[1] >>= 1;
  5904. }
  5905. return 0;
  5906. }
  5907. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5908. int i, d;
  5909. const int index_a = qp + h->slice_alpha_c0_offset;
  5910. const int alpha = (alpha_table+52)[index_a];
  5911. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5912. if( bS[0] < 4 ) {
  5913. int8_t tc[4];
  5914. for(i=0; i<4; i++)
  5915. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5916. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5917. } else {
  5918. /* 16px edge length, because bS=4 is triggered by being at
  5919. * the edge of an intra MB, so all 4 bS are the same */
  5920. for( d = 0; d < 16; d++ ) {
  5921. const int p0 = pix[-1];
  5922. const int p1 = pix[-2];
  5923. const int p2 = pix[-3];
  5924. const int q0 = pix[0];
  5925. const int q1 = pix[1];
  5926. const int q2 = pix[2];
  5927. if( FFABS( p0 - q0 ) < alpha &&
  5928. FFABS( p1 - p0 ) < beta &&
  5929. FFABS( q1 - q0 ) < beta ) {
  5930. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5931. if( FFABS( p2 - p0 ) < beta)
  5932. {
  5933. const int p3 = pix[-4];
  5934. /* p0', p1', p2' */
  5935. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5936. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5937. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5938. } else {
  5939. /* p0' */
  5940. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5941. }
  5942. if( FFABS( q2 - q0 ) < beta)
  5943. {
  5944. const int q3 = pix[3];
  5945. /* q0', q1', q2' */
  5946. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5947. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5948. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5949. } else {
  5950. /* q0' */
  5951. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5952. }
  5953. }else{
  5954. /* p0', q0' */
  5955. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5956. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5957. }
  5958. tprintf("filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5959. }
  5960. pix += stride;
  5961. }
  5962. }
  5963. }
  5964. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5965. int i;
  5966. const int index_a = qp + h->slice_alpha_c0_offset;
  5967. const int alpha = (alpha_table+52)[index_a];
  5968. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5969. if( bS[0] < 4 ) {
  5970. int8_t tc[4];
  5971. for(i=0; i<4; i++)
  5972. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5973. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5974. } else {
  5975. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5976. }
  5977. }
  5978. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5979. int i;
  5980. for( i = 0; i < 16; i++, pix += stride) {
  5981. int index_a;
  5982. int alpha;
  5983. int beta;
  5984. int qp_index;
  5985. int bS_index = (i >> 1);
  5986. if (!MB_FIELD) {
  5987. bS_index &= ~1;
  5988. bS_index |= (i & 1);
  5989. }
  5990. if( bS[bS_index] == 0 ) {
  5991. continue;
  5992. }
  5993. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5994. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5995. alpha = (alpha_table+52)[index_a];
  5996. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5997. if( bS[bS_index] < 4 ) {
  5998. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5999. const int p0 = pix[-1];
  6000. const int p1 = pix[-2];
  6001. const int p2 = pix[-3];
  6002. const int q0 = pix[0];
  6003. const int q1 = pix[1];
  6004. const int q2 = pix[2];
  6005. if( FFABS( p0 - q0 ) < alpha &&
  6006. FFABS( p1 - p0 ) < beta &&
  6007. FFABS( q1 - q0 ) < beta ) {
  6008. int tc = tc0;
  6009. int i_delta;
  6010. if( FFABS( p2 - p0 ) < beta ) {
  6011. pix[-2] = p1 + clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  6012. tc++;
  6013. }
  6014. if( FFABS( q2 - q0 ) < beta ) {
  6015. pix[1] = q1 + clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  6016. tc++;
  6017. }
  6018. i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  6019. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  6020. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  6021. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  6022. }
  6023. }else{
  6024. const int p0 = pix[-1];
  6025. const int p1 = pix[-2];
  6026. const int p2 = pix[-3];
  6027. const int q0 = pix[0];
  6028. const int q1 = pix[1];
  6029. const int q2 = pix[2];
  6030. if( FFABS( p0 - q0 ) < alpha &&
  6031. FFABS( p1 - p0 ) < beta &&
  6032. FFABS( q1 - q0 ) < beta ) {
  6033. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  6034. if( FFABS( p2 - p0 ) < beta)
  6035. {
  6036. const int p3 = pix[-4];
  6037. /* p0', p1', p2' */
  6038. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  6039. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  6040. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  6041. } else {
  6042. /* p0' */
  6043. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  6044. }
  6045. if( FFABS( q2 - q0 ) < beta)
  6046. {
  6047. const int q3 = pix[3];
  6048. /* q0', q1', q2' */
  6049. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  6050. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  6051. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  6052. } else {
  6053. /* q0' */
  6054. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  6055. }
  6056. }else{
  6057. /* p0', q0' */
  6058. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  6059. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  6060. }
  6061. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  6062. }
  6063. }
  6064. }
  6065. }
  6066. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  6067. int i;
  6068. for( i = 0; i < 8; i++, pix += stride) {
  6069. int index_a;
  6070. int alpha;
  6071. int beta;
  6072. int qp_index;
  6073. int bS_index = i;
  6074. if( bS[bS_index] == 0 ) {
  6075. continue;
  6076. }
  6077. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  6078. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  6079. alpha = (alpha_table+52)[index_a];
  6080. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  6081. if( bS[bS_index] < 4 ) {
  6082. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  6083. const int p0 = pix[-1];
  6084. const int p1 = pix[-2];
  6085. const int q0 = pix[0];
  6086. const int q1 = pix[1];
  6087. if( FFABS( p0 - q0 ) < alpha &&
  6088. FFABS( p1 - p0 ) < beta &&
  6089. FFABS( q1 - q0 ) < beta ) {
  6090. const int i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  6091. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  6092. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  6093. tprintf("filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  6094. }
  6095. }else{
  6096. const int p0 = pix[-1];
  6097. const int p1 = pix[-2];
  6098. const int q0 = pix[0];
  6099. const int q1 = pix[1];
  6100. if( FFABS( p0 - q0 ) < alpha &&
  6101. FFABS( p1 - p0 ) < beta &&
  6102. FFABS( q1 - q0 ) < beta ) {
  6103. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  6104. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  6105. tprintf("filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  6106. }
  6107. }
  6108. }
  6109. }
  6110. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  6111. int i, d;
  6112. const int index_a = qp + h->slice_alpha_c0_offset;
  6113. const int alpha = (alpha_table+52)[index_a];
  6114. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  6115. const int pix_next = stride;
  6116. if( bS[0] < 4 ) {
  6117. int8_t tc[4];
  6118. for(i=0; i<4; i++)
  6119. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  6120. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  6121. } else {
  6122. /* 16px edge length, see filter_mb_edgev */
  6123. for( d = 0; d < 16; d++ ) {
  6124. const int p0 = pix[-1*pix_next];
  6125. const int p1 = pix[-2*pix_next];
  6126. const int p2 = pix[-3*pix_next];
  6127. const int q0 = pix[0];
  6128. const int q1 = pix[1*pix_next];
  6129. const int q2 = pix[2*pix_next];
  6130. if( FFABS( p0 - q0 ) < alpha &&
  6131. FFABS( p1 - p0 ) < beta &&
  6132. FFABS( q1 - q0 ) < beta ) {
  6133. const int p3 = pix[-4*pix_next];
  6134. const int q3 = pix[ 3*pix_next];
  6135. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  6136. if( FFABS( p2 - p0 ) < beta) {
  6137. /* p0', p1', p2' */
  6138. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  6139. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  6140. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  6141. } else {
  6142. /* p0' */
  6143. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  6144. }
  6145. if( FFABS( q2 - q0 ) < beta) {
  6146. /* q0', q1', q2' */
  6147. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  6148. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  6149. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  6150. } else {
  6151. /* q0' */
  6152. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  6153. }
  6154. }else{
  6155. /* p0', q0' */
  6156. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  6157. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  6158. }
  6159. tprintf("filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  6160. }
  6161. pix++;
  6162. }
  6163. }
  6164. }
  6165. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  6166. int i;
  6167. const int index_a = qp + h->slice_alpha_c0_offset;
  6168. const int alpha = (alpha_table+52)[index_a];
  6169. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  6170. if( bS[0] < 4 ) {
  6171. int8_t tc[4];
  6172. for(i=0; i<4; i++)
  6173. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  6174. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  6175. } else {
  6176. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  6177. }
  6178. }
  6179. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  6180. MpegEncContext * const s = &h->s;
  6181. int mb_xy, mb_type;
  6182. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  6183. if(mb_x==0 || mb_y==0 || !s->dsp.h264_loop_filter_strength) {
  6184. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  6185. return;
  6186. }
  6187. assert(!FRAME_MBAFF);
  6188. mb_xy = mb_x + mb_y*s->mb_stride;
  6189. mb_type = s->current_picture.mb_type[mb_xy];
  6190. qp = s->current_picture.qscale_table[mb_xy];
  6191. qp0 = s->current_picture.qscale_table[mb_xy-1];
  6192. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  6193. qpc = get_chroma_qp( h->pps.chroma_qp_index_offset, qp );
  6194. qpc0 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp0 );
  6195. qpc1 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp1 );
  6196. qp0 = (qp + qp0 + 1) >> 1;
  6197. qp1 = (qp + qp1 + 1) >> 1;
  6198. qpc0 = (qpc + qpc0 + 1) >> 1;
  6199. qpc1 = (qpc + qpc1 + 1) >> 1;
  6200. qp_thresh = 15 - h->slice_alpha_c0_offset;
  6201. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  6202. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  6203. return;
  6204. if( IS_INTRA(mb_type) ) {
  6205. int16_t bS4[4] = {4,4,4,4};
  6206. int16_t bS3[4] = {3,3,3,3};
  6207. if( IS_8x8DCT(mb_type) ) {
  6208. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  6209. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  6210. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
  6211. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  6212. } else {
  6213. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  6214. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  6215. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  6216. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  6217. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
  6218. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  6219. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  6220. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  6221. }
  6222. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  6223. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  6224. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  6225. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  6226. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
  6227. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  6228. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
  6229. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  6230. return;
  6231. } else {
  6232. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  6233. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  6234. int edges;
  6235. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  6236. edges = 4;
  6237. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  6238. } else {
  6239. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  6240. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  6241. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  6242. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  6243. ? 3 : 0;
  6244. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  6245. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  6246. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  6247. (h->slice_type == B_TYPE), edges, step, mask_edge0, mask_edge1 );
  6248. }
  6249. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  6250. bSv[0][0] = 0x0004000400040004ULL;
  6251. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  6252. bSv[1][0] = 0x0004000400040004ULL;
  6253. #define FILTER(hv,dir,edge)\
  6254. if(bSv[dir][edge]) {\
  6255. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  6256. if(!(edge&1)) {\
  6257. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  6258. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  6259. }\
  6260. }
  6261. if( edges == 1 ) {
  6262. FILTER(v,0,0);
  6263. FILTER(h,1,0);
  6264. } else if( IS_8x8DCT(mb_type) ) {
  6265. FILTER(v,0,0);
  6266. FILTER(v,0,2);
  6267. FILTER(h,1,0);
  6268. FILTER(h,1,2);
  6269. } else {
  6270. FILTER(v,0,0);
  6271. FILTER(v,0,1);
  6272. FILTER(v,0,2);
  6273. FILTER(v,0,3);
  6274. FILTER(h,1,0);
  6275. FILTER(h,1,1);
  6276. FILTER(h,1,2);
  6277. FILTER(h,1,3);
  6278. }
  6279. #undef FILTER
  6280. }
  6281. }
  6282. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  6283. MpegEncContext * const s = &h->s;
  6284. const int mb_xy= mb_x + mb_y*s->mb_stride;
  6285. const int mb_type = s->current_picture.mb_type[mb_xy];
  6286. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  6287. int first_vertical_edge_done = 0;
  6288. int dir;
  6289. /* FIXME: A given frame may occupy more than one position in
  6290. * the reference list. So ref2frm should be populated with
  6291. * frame numbers, not indices. */
  6292. static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
  6293. 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
  6294. //for sufficiently low qp, filtering wouldn't do anything
  6295. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  6296. if(!FRAME_MBAFF){
  6297. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, h->pps.chroma_qp_index_offset);
  6298. int qp = s->current_picture.qscale_table[mb_xy];
  6299. if(qp <= qp_thresh
  6300. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  6301. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  6302. return;
  6303. }
  6304. }
  6305. if (FRAME_MBAFF
  6306. // left mb is in picture
  6307. && h->slice_table[mb_xy-1] != 255
  6308. // and current and left pair do not have the same interlaced type
  6309. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  6310. // and left mb is in the same slice if deblocking_filter == 2
  6311. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  6312. /* First vertical edge is different in MBAFF frames
  6313. * There are 8 different bS to compute and 2 different Qp
  6314. */
  6315. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  6316. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  6317. int16_t bS[8];
  6318. int qp[2];
  6319. int chroma_qp[2];
  6320. int mb_qp, mbn0_qp, mbn1_qp;
  6321. int i;
  6322. first_vertical_edge_done = 1;
  6323. if( IS_INTRA(mb_type) )
  6324. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  6325. else {
  6326. for( i = 0; i < 8; i++ ) {
  6327. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  6328. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  6329. bS[i] = 4;
  6330. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  6331. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  6332. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  6333. bS[i] = 2;
  6334. else
  6335. bS[i] = 1;
  6336. }
  6337. }
  6338. mb_qp = s->current_picture.qscale_table[mb_xy];
  6339. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  6340. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  6341. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  6342. chroma_qp[0] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) +
  6343. get_chroma_qp( h->pps.chroma_qp_index_offset, mbn0_qp ) + 1 ) >> 1;
  6344. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  6345. chroma_qp[1] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) +
  6346. get_chroma_qp( h->pps.chroma_qp_index_offset, mbn1_qp ) + 1 ) >> 1;
  6347. /* Filter edge */
  6348. tprintf("filter mb:%d/%d MBAFF, QPy:%d/%d, QPc:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], chroma_qp[0], chroma_qp[1], linesize, uvlinesize);
  6349. { int i; for (i = 0; i < 8; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  6350. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  6351. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, chroma_qp );
  6352. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, chroma_qp );
  6353. }
  6354. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  6355. for( dir = 0; dir < 2; dir++ )
  6356. {
  6357. int edge;
  6358. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  6359. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  6360. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  6361. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  6362. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  6363. // how often to recheck mv-based bS when iterating between edges
  6364. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  6365. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  6366. // how often to recheck mv-based bS when iterating along each edge
  6367. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  6368. if (first_vertical_edge_done) {
  6369. start = 1;
  6370. first_vertical_edge_done = 0;
  6371. }
  6372. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  6373. start = 1;
  6374. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  6375. && !IS_INTERLACED(mb_type)
  6376. && IS_INTERLACED(mbm_type)
  6377. ) {
  6378. // This is a special case in the norm where the filtering must
  6379. // be done twice (one each of the field) even if we are in a
  6380. // frame macroblock.
  6381. //
  6382. static const int nnz_idx[4] = {4,5,6,3};
  6383. unsigned int tmp_linesize = 2 * linesize;
  6384. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  6385. int mbn_xy = mb_xy - 2 * s->mb_stride;
  6386. int qp, chroma_qp;
  6387. int i, j;
  6388. int16_t bS[4];
  6389. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  6390. if( IS_INTRA(mb_type) ||
  6391. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  6392. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  6393. } else {
  6394. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  6395. for( i = 0; i < 4; i++ ) {
  6396. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  6397. mbn_nnz[nnz_idx[i]] != 0 )
  6398. bS[i] = 2;
  6399. else
  6400. bS[i] = 1;
  6401. }
  6402. }
  6403. // Do not use s->qscale as luma quantizer because it has not the same
  6404. // value in IPCM macroblocks.
  6405. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6406. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  6407. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  6408. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  6409. chroma_qp = ( h->chroma_qp +
  6410. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6411. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  6412. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  6413. }
  6414. start = 1;
  6415. }
  6416. /* Calculate bS */
  6417. for( edge = start; edge < edges; edge++ ) {
  6418. /* mbn_xy: neighbor macroblock */
  6419. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  6420. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  6421. int16_t bS[4];
  6422. int qp;
  6423. if( (edge&1) && IS_8x8DCT(mb_type) )
  6424. continue;
  6425. if( IS_INTRA(mb_type) ||
  6426. IS_INTRA(mbn_type) ) {
  6427. int value;
  6428. if (edge == 0) {
  6429. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  6430. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  6431. ) {
  6432. value = 4;
  6433. } else {
  6434. value = 3;
  6435. }
  6436. } else {
  6437. value = 3;
  6438. }
  6439. bS[0] = bS[1] = bS[2] = bS[3] = value;
  6440. } else {
  6441. int i, l;
  6442. int mv_done;
  6443. if( edge & mask_edge ) {
  6444. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  6445. mv_done = 1;
  6446. }
  6447. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  6448. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  6449. mv_done = 1;
  6450. }
  6451. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  6452. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  6453. int bn_idx= b_idx - (dir ? 8:1);
  6454. int v = 0;
  6455. for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6456. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6457. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6458. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  6459. }
  6460. bS[0] = bS[1] = bS[2] = bS[3] = v;
  6461. mv_done = 1;
  6462. }
  6463. else
  6464. mv_done = 0;
  6465. for( i = 0; i < 4; i++ ) {
  6466. int x = dir == 0 ? edge : i;
  6467. int y = dir == 0 ? i : edge;
  6468. int b_idx= 8 + 4 + x + 8*y;
  6469. int bn_idx= b_idx - (dir ? 8:1);
  6470. if( h->non_zero_count_cache[b_idx] != 0 ||
  6471. h->non_zero_count_cache[bn_idx] != 0 ) {
  6472. bS[i] = 2;
  6473. }
  6474. else if(!mv_done)
  6475. {
  6476. bS[i] = 0;
  6477. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6478. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6479. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6480. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  6481. bS[i] = 1;
  6482. break;
  6483. }
  6484. }
  6485. }
  6486. }
  6487. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6488. continue;
  6489. }
  6490. /* Filter edge */
  6491. // Do not use s->qscale as luma quantizer because it has not the same
  6492. // value in IPCM macroblocks.
  6493. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6494. //tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6495. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6496. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  6497. if( dir == 0 ) {
  6498. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6499. if( (edge&1) == 0 ) {
  6500. int chroma_qp = ( h->chroma_qp +
  6501. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6502. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS, chroma_qp );
  6503. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS, chroma_qp );
  6504. }
  6505. } else {
  6506. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6507. if( (edge&1) == 0 ) {
  6508. int chroma_qp = ( h->chroma_qp +
  6509. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6510. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6511. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6512. }
  6513. }
  6514. }
  6515. }
  6516. }
  6517. static int decode_slice(H264Context *h){
  6518. MpegEncContext * const s = &h->s;
  6519. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6520. s->mb_skip_run= -1;
  6521. if( h->pps.cabac ) {
  6522. int i;
  6523. /* realign */
  6524. align_get_bits( &s->gb );
  6525. /* init cabac */
  6526. ff_init_cabac_states( &h->cabac);
  6527. ff_init_cabac_decoder( &h->cabac,
  6528. s->gb.buffer + get_bits_count(&s->gb)/8,
  6529. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6530. /* calculate pre-state */
  6531. for( i= 0; i < 460; i++ ) {
  6532. int pre;
  6533. if( h->slice_type == I_TYPE )
  6534. pre = clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6535. else
  6536. pre = clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6537. if( pre <= 63 )
  6538. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6539. else
  6540. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6541. }
  6542. for(;;){
  6543. //START_TIMER
  6544. int ret = decode_mb_cabac(h);
  6545. int eos;
  6546. //STOP_TIMER("decode_mb_cabac")
  6547. if(ret>=0) hl_decode_mb(h);
  6548. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6549. s->mb_y++;
  6550. if(ret>=0) ret = decode_mb_cabac(h);
  6551. if(ret>=0) hl_decode_mb(h);
  6552. s->mb_y--;
  6553. }
  6554. eos = get_cabac_terminate( &h->cabac );
  6555. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6556. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%d)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6557. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6558. return -1;
  6559. }
  6560. if( ++s->mb_x >= s->mb_width ) {
  6561. s->mb_x = 0;
  6562. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6563. ++s->mb_y;
  6564. if(FRAME_MBAFF) {
  6565. ++s->mb_y;
  6566. }
  6567. }
  6568. if( eos || s->mb_y >= s->mb_height ) {
  6569. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6570. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6571. return 0;
  6572. }
  6573. }
  6574. } else {
  6575. for(;;){
  6576. int ret = decode_mb_cavlc(h);
  6577. if(ret>=0) hl_decode_mb(h);
  6578. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6579. s->mb_y++;
  6580. ret = decode_mb_cavlc(h);
  6581. if(ret>=0) hl_decode_mb(h);
  6582. s->mb_y--;
  6583. }
  6584. if(ret<0){
  6585. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6586. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6587. return -1;
  6588. }
  6589. if(++s->mb_x >= s->mb_width){
  6590. s->mb_x=0;
  6591. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6592. ++s->mb_y;
  6593. if(FRAME_MBAFF) {
  6594. ++s->mb_y;
  6595. }
  6596. if(s->mb_y >= s->mb_height){
  6597. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6598. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6599. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6600. return 0;
  6601. }else{
  6602. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6603. return -1;
  6604. }
  6605. }
  6606. }
  6607. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6608. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6609. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6610. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6611. return 0;
  6612. }else{
  6613. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6614. return -1;
  6615. }
  6616. }
  6617. }
  6618. }
  6619. #if 0
  6620. for(;s->mb_y < s->mb_height; s->mb_y++){
  6621. for(;s->mb_x < s->mb_width; s->mb_x++){
  6622. int ret= decode_mb(h);
  6623. hl_decode_mb(h);
  6624. if(ret<0){
  6625. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6626. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6627. return -1;
  6628. }
  6629. if(++s->mb_x >= s->mb_width){
  6630. s->mb_x=0;
  6631. if(++s->mb_y >= s->mb_height){
  6632. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6633. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6634. return 0;
  6635. }else{
  6636. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6637. return -1;
  6638. }
  6639. }
  6640. }
  6641. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6642. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6643. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6644. return 0;
  6645. }else{
  6646. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6647. return -1;
  6648. }
  6649. }
  6650. }
  6651. s->mb_x=0;
  6652. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6653. }
  6654. #endif
  6655. return -1; //not reached
  6656. }
  6657. static int decode_unregistered_user_data(H264Context *h, int size){
  6658. MpegEncContext * const s = &h->s;
  6659. uint8_t user_data[16+256];
  6660. int e, build, i;
  6661. if(size<16)
  6662. return -1;
  6663. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6664. user_data[i]= get_bits(&s->gb, 8);
  6665. }
  6666. user_data[i]= 0;
  6667. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6668. if(e==1 && build>=0)
  6669. h->x264_build= build;
  6670. if(s->avctx->debug & FF_DEBUG_BUGS)
  6671. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6672. for(; i<size; i++)
  6673. skip_bits(&s->gb, 8);
  6674. return 0;
  6675. }
  6676. static int decode_sei(H264Context *h){
  6677. MpegEncContext * const s = &h->s;
  6678. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6679. int size, type;
  6680. type=0;
  6681. do{
  6682. type+= show_bits(&s->gb, 8);
  6683. }while(get_bits(&s->gb, 8) == 255);
  6684. size=0;
  6685. do{
  6686. size+= show_bits(&s->gb, 8);
  6687. }while(get_bits(&s->gb, 8) == 255);
  6688. switch(type){
  6689. case 5:
  6690. if(decode_unregistered_user_data(h, size) < 0)
  6691. return -1;
  6692. break;
  6693. default:
  6694. skip_bits(&s->gb, 8*size);
  6695. }
  6696. //FIXME check bits here
  6697. align_get_bits(&s->gb);
  6698. }
  6699. return 0;
  6700. }
  6701. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6702. MpegEncContext * const s = &h->s;
  6703. int cpb_count, i;
  6704. cpb_count = get_ue_golomb(&s->gb) + 1;
  6705. get_bits(&s->gb, 4); /* bit_rate_scale */
  6706. get_bits(&s->gb, 4); /* cpb_size_scale */
  6707. for(i=0; i<cpb_count; i++){
  6708. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6709. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6710. get_bits1(&s->gb); /* cbr_flag */
  6711. }
  6712. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6713. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6714. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6715. get_bits(&s->gb, 5); /* time_offset_length */
  6716. }
  6717. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6718. MpegEncContext * const s = &h->s;
  6719. int aspect_ratio_info_present_flag;
  6720. unsigned int aspect_ratio_idc;
  6721. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6722. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6723. if( aspect_ratio_info_present_flag ) {
  6724. aspect_ratio_idc= get_bits(&s->gb, 8);
  6725. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6726. sps->sar.num= get_bits(&s->gb, 16);
  6727. sps->sar.den= get_bits(&s->gb, 16);
  6728. }else if(aspect_ratio_idc < 14){
  6729. sps->sar= pixel_aspect[aspect_ratio_idc];
  6730. }else{
  6731. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6732. return -1;
  6733. }
  6734. }else{
  6735. sps->sar.num=
  6736. sps->sar.den= 0;
  6737. }
  6738. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6739. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6740. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6741. }
  6742. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6743. get_bits(&s->gb, 3); /* video_format */
  6744. get_bits1(&s->gb); /* video_full_range_flag */
  6745. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6746. get_bits(&s->gb, 8); /* colour_primaries */
  6747. get_bits(&s->gb, 8); /* transfer_characteristics */
  6748. get_bits(&s->gb, 8); /* matrix_coefficients */
  6749. }
  6750. }
  6751. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6752. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6753. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6754. }
  6755. sps->timing_info_present_flag = get_bits1(&s->gb);
  6756. if(sps->timing_info_present_flag){
  6757. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6758. sps->time_scale = get_bits_long(&s->gb, 32);
  6759. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6760. }
  6761. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6762. if(nal_hrd_parameters_present_flag)
  6763. decode_hrd_parameters(h, sps);
  6764. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6765. if(vcl_hrd_parameters_present_flag)
  6766. decode_hrd_parameters(h, sps);
  6767. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6768. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6769. get_bits1(&s->gb); /* pic_struct_present_flag */
  6770. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6771. if(sps->bitstream_restriction_flag){
  6772. unsigned int num_reorder_frames;
  6773. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6774. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6775. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6776. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6777. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6778. num_reorder_frames= get_ue_golomb(&s->gb);
  6779. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6780. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6781. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6782. return -1;
  6783. }
  6784. sps->num_reorder_frames= num_reorder_frames;
  6785. }
  6786. return 0;
  6787. }
  6788. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6789. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6790. MpegEncContext * const s = &h->s;
  6791. int i, last = 8, next = 8;
  6792. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6793. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6794. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6795. else
  6796. for(i=0;i<size;i++){
  6797. if(next)
  6798. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6799. if(!i && !next){ /* matrix not written, we use the preset one */
  6800. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6801. break;
  6802. }
  6803. last = factors[scan[i]] = next ? next : last;
  6804. }
  6805. }
  6806. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6807. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6808. MpegEncContext * const s = &h->s;
  6809. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6810. const uint8_t *fallback[4] = {
  6811. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6812. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6813. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6814. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6815. };
  6816. if(get_bits1(&s->gb)){
  6817. sps->scaling_matrix_present |= is_sps;
  6818. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6819. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6820. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6821. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6822. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6823. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6824. if(is_sps || pps->transform_8x8_mode){
  6825. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6826. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6827. }
  6828. } else if(fallback_sps) {
  6829. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6830. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6831. }
  6832. }
  6833. static inline int decode_seq_parameter_set(H264Context *h){
  6834. MpegEncContext * const s = &h->s;
  6835. int profile_idc, level_idc;
  6836. unsigned int sps_id, tmp, mb_width, mb_height;
  6837. int i;
  6838. SPS *sps;
  6839. profile_idc= get_bits(&s->gb, 8);
  6840. get_bits1(&s->gb); //constraint_set0_flag
  6841. get_bits1(&s->gb); //constraint_set1_flag
  6842. get_bits1(&s->gb); //constraint_set2_flag
  6843. get_bits1(&s->gb); //constraint_set3_flag
  6844. get_bits(&s->gb, 4); // reserved
  6845. level_idc= get_bits(&s->gb, 8);
  6846. sps_id= get_ue_golomb(&s->gb);
  6847. if (sps_id >= MAX_SPS_COUNT){
  6848. // ok it has gone out of hand, someone is sending us bad stuff.
  6849. av_log(h->s.avctx, AV_LOG_ERROR, "illegal sps_id (%d)\n", sps_id);
  6850. return -1;
  6851. }
  6852. sps= &h->sps_buffer[ sps_id ];
  6853. sps->profile_idc= profile_idc;
  6854. sps->level_idc= level_idc;
  6855. if(sps->profile_idc >= 100){ //high profile
  6856. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6857. get_bits1(&s->gb); //residual_color_transform_flag
  6858. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6859. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6860. sps->transform_bypass = get_bits1(&s->gb);
  6861. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6862. }else
  6863. sps->scaling_matrix_present = 0;
  6864. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6865. sps->poc_type= get_ue_golomb(&s->gb);
  6866. if(sps->poc_type == 0){ //FIXME #define
  6867. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6868. } else if(sps->poc_type == 1){//FIXME #define
  6869. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6870. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6871. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6872. tmp= get_ue_golomb(&s->gb);
  6873. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6874. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6875. return -1;
  6876. }
  6877. sps->poc_cycle_length= tmp;
  6878. for(i=0; i<sps->poc_cycle_length; i++)
  6879. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6880. }else if(sps->poc_type != 2){
  6881. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6882. return -1;
  6883. }
  6884. tmp= get_ue_golomb(&s->gb);
  6885. if(tmp > MAX_PICTURE_COUNT-2){
  6886. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6887. }
  6888. sps->ref_frame_count= tmp;
  6889. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6890. mb_width= get_ue_golomb(&s->gb) + 1;
  6891. mb_height= get_ue_golomb(&s->gb) + 1;
  6892. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6893. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6894. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6895. return -1;
  6896. }
  6897. sps->mb_width = mb_width;
  6898. sps->mb_height= mb_height;
  6899. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6900. if(!sps->frame_mbs_only_flag)
  6901. sps->mb_aff= get_bits1(&s->gb);
  6902. else
  6903. sps->mb_aff= 0;
  6904. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6905. #ifndef ALLOW_INTERLACE
  6906. if(sps->mb_aff)
  6907. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6908. #endif
  6909. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6910. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6911. sps->crop= get_bits1(&s->gb);
  6912. if(sps->crop){
  6913. sps->crop_left = get_ue_golomb(&s->gb);
  6914. sps->crop_right = get_ue_golomb(&s->gb);
  6915. sps->crop_top = get_ue_golomb(&s->gb);
  6916. sps->crop_bottom= get_ue_golomb(&s->gb);
  6917. if(sps->crop_left || sps->crop_top){
  6918. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6919. }
  6920. }else{
  6921. sps->crop_left =
  6922. sps->crop_right =
  6923. sps->crop_top =
  6924. sps->crop_bottom= 0;
  6925. }
  6926. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6927. if( sps->vui_parameters_present_flag )
  6928. decode_vui_parameters(h, sps);
  6929. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6930. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6931. sps_id, sps->profile_idc, sps->level_idc,
  6932. sps->poc_type,
  6933. sps->ref_frame_count,
  6934. sps->mb_width, sps->mb_height,
  6935. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6936. sps->direct_8x8_inference_flag ? "8B8" : "",
  6937. sps->crop_left, sps->crop_right,
  6938. sps->crop_top, sps->crop_bottom,
  6939. sps->vui_parameters_present_flag ? "VUI" : ""
  6940. );
  6941. }
  6942. return 0;
  6943. }
  6944. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6945. MpegEncContext * const s = &h->s;
  6946. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6947. PPS *pps;
  6948. if(pps_id>=MAX_PPS_COUNT){
  6949. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  6950. return -1;
  6951. }
  6952. pps = &h->pps_buffer[pps_id];
  6953. tmp= get_ue_golomb(&s->gb);
  6954. if(tmp>=MAX_SPS_COUNT){
  6955. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6956. return -1;
  6957. }
  6958. pps->sps_id= tmp;
  6959. pps->cabac= get_bits1(&s->gb);
  6960. pps->pic_order_present= get_bits1(&s->gb);
  6961. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6962. if(pps->slice_group_count > 1 ){
  6963. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6964. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6965. switch(pps->mb_slice_group_map_type){
  6966. case 0:
  6967. #if 0
  6968. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6969. | run_length[ i ] |1 |ue(v) |
  6970. #endif
  6971. break;
  6972. case 2:
  6973. #if 0
  6974. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6975. |{ | | |
  6976. | top_left_mb[ i ] |1 |ue(v) |
  6977. | bottom_right_mb[ i ] |1 |ue(v) |
  6978. | } | | |
  6979. #endif
  6980. break;
  6981. case 3:
  6982. case 4:
  6983. case 5:
  6984. #if 0
  6985. | slice_group_change_direction_flag |1 |u(1) |
  6986. | slice_group_change_rate_minus1 |1 |ue(v) |
  6987. #endif
  6988. break;
  6989. case 6:
  6990. #if 0
  6991. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6992. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6993. |) | | |
  6994. | slice_group_id[ i ] |1 |u(v) |
  6995. #endif
  6996. break;
  6997. }
  6998. }
  6999. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  7000. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  7001. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  7002. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  7003. pps->ref_count[0]= pps->ref_count[1]= 1;
  7004. return -1;
  7005. }
  7006. pps->weighted_pred= get_bits1(&s->gb);
  7007. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  7008. pps->init_qp= get_se_golomb(&s->gb) + 26;
  7009. pps->init_qs= get_se_golomb(&s->gb) + 26;
  7010. pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
  7011. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  7012. pps->constrained_intra_pred= get_bits1(&s->gb);
  7013. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  7014. pps->transform_8x8_mode= 0;
  7015. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  7016. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  7017. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  7018. if(get_bits_count(&s->gb) < bit_length){
  7019. pps->transform_8x8_mode= get_bits1(&s->gb);
  7020. decode_scaling_matrices(h, &h->sps_buffer[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  7021. get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  7022. }
  7023. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  7024. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s %s\n",
  7025. pps_id, pps->sps_id,
  7026. pps->cabac ? "CABAC" : "CAVLC",
  7027. pps->slice_group_count,
  7028. pps->ref_count[0], pps->ref_count[1],
  7029. pps->weighted_pred ? "weighted" : "",
  7030. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
  7031. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  7032. pps->constrained_intra_pred ? "CONSTR" : "",
  7033. pps->redundant_pic_cnt_present ? "REDU" : "",
  7034. pps->transform_8x8_mode ? "8x8DCT" : ""
  7035. );
  7036. }
  7037. return 0;
  7038. }
  7039. /**
  7040. * finds the end of the current frame in the bitstream.
  7041. * @return the position of the first byte of the next frame, or -1
  7042. */
  7043. static int find_frame_end(H264Context *h, const uint8_t *buf, int buf_size){
  7044. int i;
  7045. uint32_t state;
  7046. ParseContext *pc = &(h->s.parse_context);
  7047. //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
  7048. // mb_addr= pc->mb_addr - 1;
  7049. state= pc->state;
  7050. for(i=0; i<=buf_size; i++){
  7051. if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  7052. tprintf("find_frame_end new startcode = %08x, frame_start_found = %d, pos = %d\n", state, pc->frame_start_found, i);
  7053. if(pc->frame_start_found){
  7054. // If there isn't one more byte in the buffer
  7055. // the test on first_mb_in_slice cannot be done yet
  7056. // do it at next call.
  7057. if (i >= buf_size) break;
  7058. if (buf[i] & 0x80) {
  7059. // first_mb_in_slice is 0, probably the first nal of a new
  7060. // slice
  7061. tprintf("find_frame_end frame_end_found, state = %08x, pos = %d\n", state, i);
  7062. pc->state=-1;
  7063. pc->frame_start_found= 0;
  7064. return i-4;
  7065. }
  7066. }
  7067. pc->frame_start_found = 1;
  7068. }
  7069. if((state&0xFFFFFF1F) == 0x107 || (state&0xFFFFFF1F) == 0x108 || (state&0xFFFFFF1F) == 0x109){
  7070. if(pc->frame_start_found){
  7071. pc->state=-1;
  7072. pc->frame_start_found= 0;
  7073. return i-4;
  7074. }
  7075. }
  7076. if (i<buf_size)
  7077. state= (state<<8) | buf[i];
  7078. }
  7079. pc->state= state;
  7080. return END_NOT_FOUND;
  7081. }
  7082. #ifdef CONFIG_H264_PARSER
  7083. static int h264_parse(AVCodecParserContext *s,
  7084. AVCodecContext *avctx,
  7085. uint8_t **poutbuf, int *poutbuf_size,
  7086. const uint8_t *buf, int buf_size)
  7087. {
  7088. H264Context *h = s->priv_data;
  7089. ParseContext *pc = &h->s.parse_context;
  7090. int next;
  7091. next= find_frame_end(h, buf, buf_size);
  7092. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  7093. *poutbuf = NULL;
  7094. *poutbuf_size = 0;
  7095. return buf_size;
  7096. }
  7097. *poutbuf = (uint8_t *)buf;
  7098. *poutbuf_size = buf_size;
  7099. return next;
  7100. }
  7101. static int h264_split(AVCodecContext *avctx,
  7102. const uint8_t *buf, int buf_size)
  7103. {
  7104. int i;
  7105. uint32_t state = -1;
  7106. int has_sps= 0;
  7107. for(i=0; i<=buf_size; i++){
  7108. if((state&0xFFFFFF1F) == 0x107)
  7109. has_sps=1;
  7110. /* if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  7111. }*/
  7112. if((state&0xFFFFFF00) == 0x100 && (state&0xFFFFFF1F) != 0x107 && (state&0xFFFFFF1F) != 0x108 && (state&0xFFFFFF1F) != 0x109){
  7113. if(has_sps){
  7114. while(i>4 && buf[i-5]==0) i--;
  7115. return i-4;
  7116. }
  7117. }
  7118. if (i<buf_size)
  7119. state= (state<<8) | buf[i];
  7120. }
  7121. return 0;
  7122. }
  7123. #endif /* CONFIG_H264_PARSER */
  7124. static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
  7125. MpegEncContext * const s = &h->s;
  7126. AVCodecContext * const avctx= s->avctx;
  7127. int buf_index=0;
  7128. #if 0
  7129. int i;
  7130. for(i=0; i<50; i++){
  7131. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  7132. }
  7133. #endif
  7134. h->slice_num = 0;
  7135. s->current_picture_ptr= NULL;
  7136. for(;;){
  7137. int consumed;
  7138. int dst_length;
  7139. int bit_length;
  7140. uint8_t *ptr;
  7141. int i, nalsize = 0;
  7142. if(h->is_avc) {
  7143. if(buf_index >= buf_size) break;
  7144. nalsize = 0;
  7145. for(i = 0; i < h->nal_length_size; i++)
  7146. nalsize = (nalsize << 8) | buf[buf_index++];
  7147. if(nalsize <= 1 || nalsize > buf_size){
  7148. if(nalsize == 1){
  7149. buf_index++;
  7150. continue;
  7151. }else{
  7152. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  7153. break;
  7154. }
  7155. }
  7156. } else {
  7157. // start code prefix search
  7158. for(; buf_index + 3 < buf_size; buf_index++){
  7159. // this should allways succeed in the first iteration
  7160. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  7161. break;
  7162. }
  7163. if(buf_index+3 >= buf_size) break;
  7164. buf_index+=3;
  7165. }
  7166. ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  7167. if (ptr==NULL || dst_length <= 0){
  7168. return -1;
  7169. }
  7170. while(ptr[dst_length - 1] == 0 && dst_length > 1)
  7171. dst_length--;
  7172. bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
  7173. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  7174. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length);
  7175. }
  7176. if (h->is_avc && (nalsize != consumed))
  7177. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  7178. buf_index += consumed;
  7179. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME dont discard SEI id
  7180. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  7181. continue;
  7182. switch(h->nal_unit_type){
  7183. case NAL_IDR_SLICE:
  7184. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  7185. case NAL_SLICE:
  7186. init_get_bits(&s->gb, ptr, bit_length);
  7187. h->intra_gb_ptr=
  7188. h->inter_gb_ptr= &s->gb;
  7189. s->data_partitioning = 0;
  7190. if(decode_slice_header(h) < 0){
  7191. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  7192. break;
  7193. }
  7194. s->current_picture_ptr->key_frame= (h->nal_unit_type == NAL_IDR_SLICE);
  7195. if(h->redundant_pic_count==0 && s->hurry_up < 5
  7196. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  7197. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  7198. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  7199. && avctx->skip_frame < AVDISCARD_ALL)
  7200. decode_slice(h);
  7201. break;
  7202. case NAL_DPA:
  7203. init_get_bits(&s->gb, ptr, bit_length);
  7204. h->intra_gb_ptr=
  7205. h->inter_gb_ptr= NULL;
  7206. s->data_partitioning = 1;
  7207. if(decode_slice_header(h) < 0){
  7208. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  7209. }
  7210. break;
  7211. case NAL_DPB:
  7212. init_get_bits(&h->intra_gb, ptr, bit_length);
  7213. h->intra_gb_ptr= &h->intra_gb;
  7214. break;
  7215. case NAL_DPC:
  7216. init_get_bits(&h->inter_gb, ptr, bit_length);
  7217. h->inter_gb_ptr= &h->inter_gb;
  7218. if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning
  7219. && s->context_initialized
  7220. && s->hurry_up < 5
  7221. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  7222. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  7223. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  7224. && avctx->skip_frame < AVDISCARD_ALL)
  7225. decode_slice(h);
  7226. break;
  7227. case NAL_SEI:
  7228. init_get_bits(&s->gb, ptr, bit_length);
  7229. decode_sei(h);
  7230. break;
  7231. case NAL_SPS:
  7232. init_get_bits(&s->gb, ptr, bit_length);
  7233. decode_seq_parameter_set(h);
  7234. if(s->flags& CODEC_FLAG_LOW_DELAY)
  7235. s->low_delay=1;
  7236. if(avctx->has_b_frames < 2)
  7237. avctx->has_b_frames= !s->low_delay;
  7238. break;
  7239. case NAL_PPS:
  7240. init_get_bits(&s->gb, ptr, bit_length);
  7241. decode_picture_parameter_set(h, bit_length);
  7242. break;
  7243. case NAL_AUD:
  7244. case NAL_END_SEQUENCE:
  7245. case NAL_END_STREAM:
  7246. case NAL_FILLER_DATA:
  7247. case NAL_SPS_EXT:
  7248. case NAL_AUXILIARY_SLICE:
  7249. break;
  7250. default:
  7251. av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d\n", h->nal_unit_type);
  7252. }
  7253. }
  7254. if(!s->current_picture_ptr) return buf_index; //no frame
  7255. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  7256. s->current_picture_ptr->pict_type= s->pict_type;
  7257. h->prev_frame_num_offset= h->frame_num_offset;
  7258. h->prev_frame_num= h->frame_num;
  7259. if(s->current_picture_ptr->reference){
  7260. h->prev_poc_msb= h->poc_msb;
  7261. h->prev_poc_lsb= h->poc_lsb;
  7262. }
  7263. if(s->current_picture_ptr->reference)
  7264. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  7265. ff_er_frame_end(s);
  7266. MPV_frame_end(s);
  7267. return buf_index;
  7268. }
  7269. /**
  7270. * returns the number of bytes consumed for building the current frame
  7271. */
  7272. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  7273. if(s->flags&CODEC_FLAG_TRUNCATED){
  7274. pos -= s->parse_context.last_index;
  7275. if(pos<0) pos=0; // FIXME remove (unneeded?)
  7276. return pos;
  7277. }else{
  7278. if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
  7279. if(pos+10>buf_size) pos=buf_size; // oops ;)
  7280. return pos;
  7281. }
  7282. }
  7283. static int decode_frame(AVCodecContext *avctx,
  7284. void *data, int *data_size,
  7285. uint8_t *buf, int buf_size)
  7286. {
  7287. H264Context *h = avctx->priv_data;
  7288. MpegEncContext *s = &h->s;
  7289. AVFrame *pict = data;
  7290. int buf_index;
  7291. s->flags= avctx->flags;
  7292. s->flags2= avctx->flags2;
  7293. /* no supplementary picture */
  7294. if (buf_size == 0) {
  7295. return 0;
  7296. }
  7297. if(s->flags&CODEC_FLAG_TRUNCATED){
  7298. int next= find_frame_end(h, buf, buf_size);
  7299. if( ff_combine_frame(&s->parse_context, next, &buf, &buf_size) < 0 )
  7300. return buf_size;
  7301. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  7302. }
  7303. if(h->is_avc && !h->got_avcC) {
  7304. int i, cnt, nalsize;
  7305. unsigned char *p = avctx->extradata;
  7306. if(avctx->extradata_size < 7) {
  7307. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  7308. return -1;
  7309. }
  7310. if(*p != 1) {
  7311. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  7312. return -1;
  7313. }
  7314. /* sps and pps in the avcC always have length coded with 2 bytes,
  7315. so put a fake nal_length_size = 2 while parsing them */
  7316. h->nal_length_size = 2;
  7317. // Decode sps from avcC
  7318. cnt = *(p+5) & 0x1f; // Number of sps
  7319. p += 6;
  7320. for (i = 0; i < cnt; i++) {
  7321. nalsize = AV_RB16(p) + 2;
  7322. if(decode_nal_units(h, p, nalsize) < 0) {
  7323. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  7324. return -1;
  7325. }
  7326. p += nalsize;
  7327. }
  7328. // Decode pps from avcC
  7329. cnt = *(p++); // Number of pps
  7330. for (i = 0; i < cnt; i++) {
  7331. nalsize = AV_RB16(p) + 2;
  7332. if(decode_nal_units(h, p, nalsize) != nalsize) {
  7333. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  7334. return -1;
  7335. }
  7336. p += nalsize;
  7337. }
  7338. // Now store right nal length size, that will be use to parse all other nals
  7339. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  7340. // Do not reparse avcC
  7341. h->got_avcC = 1;
  7342. }
  7343. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  7344. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  7345. return -1;
  7346. }
  7347. buf_index=decode_nal_units(h, buf, buf_size);
  7348. if(buf_index < 0)
  7349. return -1;
  7350. //FIXME do something with unavailable reference frames
  7351. // if(ret==FRAME_SKIPPED) return get_consumed_bytes(s, buf_index, buf_size);
  7352. if(!s->current_picture_ptr){
  7353. av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
  7354. return -1;
  7355. }
  7356. {
  7357. Picture *out = s->current_picture_ptr;
  7358. #if 0 //decode order
  7359. *data_size = sizeof(AVFrame);
  7360. #else
  7361. /* Sort B-frames into display order */
  7362. Picture *cur = s->current_picture_ptr;
  7363. Picture *prev = h->delayed_output_pic;
  7364. int i, pics, cross_idr, out_of_order, out_idx;
  7365. if(h->sps.bitstream_restriction_flag
  7366. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  7367. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  7368. s->low_delay = 0;
  7369. }
  7370. pics = 0;
  7371. while(h->delayed_pic[pics]) pics++;
  7372. assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
  7373. h->delayed_pic[pics++] = cur;
  7374. if(cur->reference == 0)
  7375. cur->reference = 1;
  7376. cross_idr = 0;
  7377. for(i=0; h->delayed_pic[i]; i++)
  7378. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  7379. cross_idr = 1;
  7380. out = h->delayed_pic[0];
  7381. out_idx = 0;
  7382. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  7383. if(h->delayed_pic[i]->poc < out->poc){
  7384. out = h->delayed_pic[i];
  7385. out_idx = i;
  7386. }
  7387. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  7388. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  7389. { }
  7390. else if(prev && pics <= s->avctx->has_b_frames)
  7391. out = prev;
  7392. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  7393. || (s->low_delay &&
  7394. ((!cross_idr && prev && out->poc > prev->poc + 2)
  7395. || cur->pict_type == B_TYPE)))
  7396. {
  7397. s->low_delay = 0;
  7398. s->avctx->has_b_frames++;
  7399. out = prev;
  7400. }
  7401. else if(out_of_order)
  7402. out = prev;
  7403. if(out_of_order || pics > s->avctx->has_b_frames){
  7404. for(i=out_idx; h->delayed_pic[i]; i++)
  7405. h->delayed_pic[i] = h->delayed_pic[i+1];
  7406. }
  7407. if(prev == out)
  7408. *data_size = 0;
  7409. else
  7410. *data_size = sizeof(AVFrame);
  7411. if(prev && prev != out && prev->reference == 1)
  7412. prev->reference = 0;
  7413. h->delayed_output_pic = out;
  7414. #endif
  7415. if(out)
  7416. *pict= *(AVFrame*)out;
  7417. else
  7418. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  7419. }
  7420. assert(pict->data[0] || !*data_size);
  7421. ff_print_debug_info(s, pict);
  7422. //printf("out %d\n", (int)pict->data[0]);
  7423. #if 0 //?
  7424. /* Return the Picture timestamp as the frame number */
  7425. /* we substract 1 because it is added on utils.c */
  7426. avctx->frame_number = s->picture_number - 1;
  7427. #endif
  7428. return get_consumed_bytes(s, buf_index, buf_size);
  7429. }
  7430. #if 0
  7431. static inline void fill_mb_avail(H264Context *h){
  7432. MpegEncContext * const s = &h->s;
  7433. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  7434. if(s->mb_y){
  7435. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  7436. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  7437. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  7438. }else{
  7439. h->mb_avail[0]=
  7440. h->mb_avail[1]=
  7441. h->mb_avail[2]= 0;
  7442. }
  7443. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  7444. h->mb_avail[4]= 1; //FIXME move out
  7445. h->mb_avail[5]= 0; //FIXME move out
  7446. }
  7447. #endif
  7448. #if 0 //selftest
  7449. #define COUNT 8000
  7450. #define SIZE (COUNT*40)
  7451. int main(){
  7452. int i;
  7453. uint8_t temp[SIZE];
  7454. PutBitContext pb;
  7455. GetBitContext gb;
  7456. // int int_temp[10000];
  7457. DSPContext dsp;
  7458. AVCodecContext avctx;
  7459. dsputil_init(&dsp, &avctx);
  7460. init_put_bits(&pb, temp, SIZE);
  7461. printf("testing unsigned exp golomb\n");
  7462. for(i=0; i<COUNT; i++){
  7463. START_TIMER
  7464. set_ue_golomb(&pb, i);
  7465. STOP_TIMER("set_ue_golomb");
  7466. }
  7467. flush_put_bits(&pb);
  7468. init_get_bits(&gb, temp, 8*SIZE);
  7469. for(i=0; i<COUNT; i++){
  7470. int j, s;
  7471. s= show_bits(&gb, 24);
  7472. START_TIMER
  7473. j= get_ue_golomb(&gb);
  7474. if(j != i){
  7475. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7476. // return -1;
  7477. }
  7478. STOP_TIMER("get_ue_golomb");
  7479. }
  7480. init_put_bits(&pb, temp, SIZE);
  7481. printf("testing signed exp golomb\n");
  7482. for(i=0; i<COUNT; i++){
  7483. START_TIMER
  7484. set_se_golomb(&pb, i - COUNT/2);
  7485. STOP_TIMER("set_se_golomb");
  7486. }
  7487. flush_put_bits(&pb);
  7488. init_get_bits(&gb, temp, 8*SIZE);
  7489. for(i=0; i<COUNT; i++){
  7490. int j, s;
  7491. s= show_bits(&gb, 24);
  7492. START_TIMER
  7493. j= get_se_golomb(&gb);
  7494. if(j != i - COUNT/2){
  7495. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7496. // return -1;
  7497. }
  7498. STOP_TIMER("get_se_golomb");
  7499. }
  7500. printf("testing 4x4 (I)DCT\n");
  7501. DCTELEM block[16];
  7502. uint8_t src[16], ref[16];
  7503. uint64_t error= 0, max_error=0;
  7504. for(i=0; i<COUNT; i++){
  7505. int j;
  7506. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7507. for(j=0; j<16; j++){
  7508. ref[j]= random()%255;
  7509. src[j]= random()%255;
  7510. }
  7511. h264_diff_dct_c(block, src, ref, 4);
  7512. //normalize
  7513. for(j=0; j<16; j++){
  7514. // printf("%d ", block[j]);
  7515. block[j]= block[j]*4;
  7516. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7517. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7518. }
  7519. // printf("\n");
  7520. s->dsp.h264_idct_add(ref, block, 4);
  7521. /* for(j=0; j<16; j++){
  7522. printf("%d ", ref[j]);
  7523. }
  7524. printf("\n");*/
  7525. for(j=0; j<16; j++){
  7526. int diff= FFABS(src[j] - ref[j]);
  7527. error+= diff*diff;
  7528. max_error= FFMAX(max_error, diff);
  7529. }
  7530. }
  7531. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7532. #if 0
  7533. printf("testing quantizer\n");
  7534. for(qp=0; qp<52; qp++){
  7535. for(i=0; i<16; i++)
  7536. src1_block[i]= src2_block[i]= random()%255;
  7537. }
  7538. #endif
  7539. printf("Testing NAL layer\n");
  7540. uint8_t bitstream[COUNT];
  7541. uint8_t nal[COUNT*2];
  7542. H264Context h;
  7543. memset(&h, 0, sizeof(H264Context));
  7544. for(i=0; i<COUNT; i++){
  7545. int zeros= i;
  7546. int nal_length;
  7547. int consumed;
  7548. int out_length;
  7549. uint8_t *out;
  7550. int j;
  7551. for(j=0; j<COUNT; j++){
  7552. bitstream[j]= (random() % 255) + 1;
  7553. }
  7554. for(j=0; j<zeros; j++){
  7555. int pos= random() % COUNT;
  7556. while(bitstream[pos] == 0){
  7557. pos++;
  7558. pos %= COUNT;
  7559. }
  7560. bitstream[pos]=0;
  7561. }
  7562. START_TIMER
  7563. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7564. if(nal_length<0){
  7565. printf("encoding failed\n");
  7566. return -1;
  7567. }
  7568. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7569. STOP_TIMER("NAL")
  7570. if(out_length != COUNT){
  7571. printf("incorrect length %d %d\n", out_length, COUNT);
  7572. return -1;
  7573. }
  7574. if(consumed != nal_length){
  7575. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7576. return -1;
  7577. }
  7578. if(memcmp(bitstream, out, COUNT)){
  7579. printf("missmatch\n");
  7580. return -1;
  7581. }
  7582. }
  7583. printf("Testing RBSP\n");
  7584. return 0;
  7585. }
  7586. #endif
  7587. static int decode_end(AVCodecContext *avctx)
  7588. {
  7589. H264Context *h = avctx->priv_data;
  7590. MpegEncContext *s = &h->s;
  7591. av_freep(&h->rbsp_buffer);
  7592. free_tables(h); //FIXME cleanup init stuff perhaps
  7593. MPV_common_end(s);
  7594. // memset(h, 0, sizeof(H264Context));
  7595. return 0;
  7596. }
  7597. AVCodec h264_decoder = {
  7598. "h264",
  7599. CODEC_TYPE_VIDEO,
  7600. CODEC_ID_H264,
  7601. sizeof(H264Context),
  7602. decode_init,
  7603. NULL,
  7604. decode_end,
  7605. decode_frame,
  7606. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7607. .flush= flush_dpb,
  7608. };
  7609. #ifdef CONFIG_H264_PARSER
  7610. AVCodecParser h264_parser = {
  7611. { CODEC_ID_H264 },
  7612. sizeof(H264Context),
  7613. NULL,
  7614. h264_parse,
  7615. ff_parse_close,
  7616. h264_split,
  7617. };
  7618. #endif
  7619. #include "svq3.c"