You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1809 lines
63KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "libavutil/internal.h"
  26. #include "avcodec.h"
  27. #include "error_resilience.h"
  28. #include "mpegvideo.h"
  29. #include "golomb.h"
  30. #include "internal.h"
  31. #include "mathops.h"
  32. #include "rectangle.h"
  33. #include "thread.h"
  34. #include "rv34vlc.h"
  35. #include "rv34data.h"
  36. #include "rv34.h"
  37. static inline void ZERO8x2(void* dst, int stride)
  38. {
  39. fill_rectangle(dst, 1, 2, stride, 0, 4);
  40. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  41. }
  42. /** translation of RV30/40 macroblock types to lavc ones */
  43. static const int rv34_mb_type_to_lavc[12] = {
  44. MB_TYPE_INTRA,
  45. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  46. MB_TYPE_16x16 | MB_TYPE_L0,
  47. MB_TYPE_8x8 | MB_TYPE_L0,
  48. MB_TYPE_16x16 | MB_TYPE_L0,
  49. MB_TYPE_16x16 | MB_TYPE_L1,
  50. MB_TYPE_SKIP,
  51. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  52. MB_TYPE_16x8 | MB_TYPE_L0,
  53. MB_TYPE_8x16 | MB_TYPE_L0,
  54. MB_TYPE_16x16 | MB_TYPE_L0L1,
  55. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  56. };
  57. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  58. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  59. /**
  60. * @name RV30/40 VLC generating functions
  61. * @{
  62. */
  63. static const int table_offs[] = {
  64. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  65. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  66. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  67. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  68. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  69. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  70. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  71. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  72. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  73. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  74. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  75. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  76. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  77. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  78. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  79. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  80. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  81. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  82. };
  83. static VLC_TYPE table_data[117592][2];
  84. /**
  85. * Generate VLC from codeword lengths.
  86. * @param bits codeword lengths (zeroes are accepted)
  87. * @param size length of input data
  88. * @param vlc output VLC
  89. * @param insyms symbols for input codes (NULL for default ones)
  90. * @param num VLC table number (for static initialization)
  91. */
  92. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  93. const int num)
  94. {
  95. int i;
  96. int counts[17] = {0}, codes[17];
  97. uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
  98. uint8_t bits2[MAX_VLC_SIZE];
  99. int maxbits = 0, realsize = 0;
  100. for(i = 0; i < size; i++){
  101. if(bits[i]){
  102. bits2[realsize] = bits[i];
  103. syms[realsize] = insyms ? insyms[i] : i;
  104. realsize++;
  105. maxbits = FFMAX(maxbits, bits[i]);
  106. counts[bits[i]]++;
  107. }
  108. }
  109. codes[0] = 0;
  110. for(i = 0; i < 16; i++)
  111. codes[i+1] = (codes[i] + counts[i]) << 1;
  112. for(i = 0; i < realsize; i++)
  113. cw[i] = codes[bits2[i]]++;
  114. vlc->table = &table_data[table_offs[num]];
  115. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  116. ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  117. bits2, 1, 1,
  118. cw, 2, 2,
  119. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  120. }
  121. /**
  122. * Initialize all tables.
  123. */
  124. static av_cold void rv34_init_tables(void)
  125. {
  126. int i, j, k;
  127. for(i = 0; i < NUM_INTRA_TABLES; i++){
  128. for(j = 0; j < 2; j++){
  129. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  130. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  131. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  132. for(k = 0; k < 4; k++){
  133. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  134. }
  135. }
  136. for(j = 0; j < 4; j++){
  137. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  138. }
  139. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  140. }
  141. for(i = 0; i < NUM_INTER_TABLES; i++){
  142. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  143. for(j = 0; j < 4; j++){
  144. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  145. }
  146. for(j = 0; j < 2; j++){
  147. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  148. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  149. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  150. }
  151. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  152. }
  153. }
  154. /** @} */ // vlc group
  155. /**
  156. * @name RV30/40 4x4 block decoding functions
  157. * @{
  158. */
  159. /**
  160. * Decode coded block pattern.
  161. */
  162. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  163. {
  164. int pattern, code, cbp=0;
  165. int ones;
  166. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  167. static const int shifts[4] = { 0, 2, 8, 10 };
  168. const int *curshift = shifts;
  169. int i, t, mask;
  170. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  171. pattern = code & 0xF;
  172. code >>= 4;
  173. ones = rv34_count_ones[pattern];
  174. for(mask = 8; mask; mask >>= 1, curshift++){
  175. if(pattern & mask)
  176. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  177. }
  178. for(i = 0; i < 4; i++){
  179. t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
  180. if(t == 1)
  181. cbp |= cbp_masks[get_bits1(gb)] << i;
  182. if(t == 2)
  183. cbp |= cbp_masks[2] << i;
  184. }
  185. return cbp;
  186. }
  187. /**
  188. * Get one coefficient value from the bistream and store it.
  189. */
  190. static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
  191. {
  192. if(coef){
  193. if(coef == esc){
  194. coef = get_vlc2(gb, vlc->table, 9, 2);
  195. if(coef > 23){
  196. coef -= 23;
  197. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  198. }
  199. coef += esc;
  200. }
  201. if(get_bits1(gb))
  202. coef = -coef;
  203. *dst = (coef*q + 8) >> 4;
  204. }
  205. }
  206. /**
  207. * Decode 2x2 subblock of coefficients.
  208. */
  209. static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
  210. {
  211. int flags = modulo_three_table[code];
  212. decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
  213. if(is_block2){
  214. decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
  215. decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
  216. }else{
  217. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
  218. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
  219. }
  220. decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
  221. }
  222. /**
  223. * Decode a single coefficient.
  224. */
  225. static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
  226. {
  227. int coeff = modulo_three_table[code] >> 6;
  228. decode_coeff(dst, coeff, 3, gb, vlc, q);
  229. }
  230. static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
  231. int q_dc, int q_ac1, int q_ac2)
  232. {
  233. int flags = modulo_three_table[code];
  234. decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
  235. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
  236. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
  237. decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
  238. }
  239. /**
  240. * Decode coefficients for 4x4 block.
  241. *
  242. * This is done by filling 2x2 subblocks with decoded coefficients
  243. * in this order (the same for subblocks and subblock coefficients):
  244. * o--o
  245. * /
  246. * /
  247. * o--o
  248. */
  249. static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
  250. {
  251. int code, pattern, has_ac = 1;
  252. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  253. pattern = code & 0x7;
  254. code >>= 3;
  255. if (modulo_three_table[code] & 0x3F) {
  256. decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
  257. } else {
  258. decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
  259. if (!pattern)
  260. return 0;
  261. has_ac = 0;
  262. }
  263. if(pattern & 4){
  264. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  265. decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  266. }
  267. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  268. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  269. decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
  270. }
  271. if(pattern & 1){
  272. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  273. decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  274. }
  275. return has_ac | pattern;
  276. }
  277. /**
  278. * @name RV30/40 bitstream parsing
  279. * @{
  280. */
  281. /**
  282. * Decode starting slice position.
  283. * @todo Maybe replace with ff_h263_decode_mba() ?
  284. */
  285. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  286. {
  287. int i;
  288. for(i = 0; i < 5; i++)
  289. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  290. break;
  291. return rv34_mb_bits_sizes[i];
  292. }
  293. /**
  294. * Select VLC set for decoding from current quantizer, modifier and frame type.
  295. */
  296. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  297. {
  298. if(mod == 2 && quant < 19) quant += 10;
  299. else if(mod && quant < 26) quant += 5;
  300. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  301. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  302. }
  303. /**
  304. * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
  305. */
  306. static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
  307. {
  308. MpegEncContext *s = &r->s;
  309. GetBitContext *gb = &s->gb;
  310. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  311. int t;
  312. r->is16 = get_bits1(gb);
  313. if(r->is16){
  314. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
  315. r->block_type = RV34_MB_TYPE_INTRA16x16;
  316. t = get_bits(gb, 2);
  317. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  318. r->luma_vlc = 2;
  319. }else{
  320. if(!r->rv30){
  321. if(!get_bits1(gb))
  322. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  323. }
  324. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
  325. r->block_type = RV34_MB_TYPE_INTRA;
  326. if(r->decode_intra_types(r, gb, intra_types) < 0)
  327. return -1;
  328. r->luma_vlc = 1;
  329. }
  330. r->chroma_vlc = 0;
  331. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  332. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  333. }
  334. /**
  335. * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
  336. */
  337. static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
  338. {
  339. MpegEncContext *s = &r->s;
  340. GetBitContext *gb = &s->gb;
  341. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  342. int i, t;
  343. r->block_type = r->decode_mb_info(r);
  344. if(r->block_type == -1)
  345. return -1;
  346. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  347. r->mb_type[mb_pos] = r->block_type;
  348. if(r->block_type == RV34_MB_SKIP){
  349. if(s->pict_type == AV_PICTURE_TYPE_P)
  350. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  351. if(s->pict_type == AV_PICTURE_TYPE_B)
  352. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  353. }
  354. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  355. rv34_decode_mv(r, r->block_type);
  356. if(r->block_type == RV34_MB_SKIP){
  357. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  358. return 0;
  359. }
  360. r->chroma_vlc = 1;
  361. r->luma_vlc = 0;
  362. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  363. if(r->is16){
  364. t = get_bits(gb, 2);
  365. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  366. r->luma_vlc = 2;
  367. }else{
  368. if(r->decode_intra_types(r, gb, intra_types) < 0)
  369. return -1;
  370. r->luma_vlc = 1;
  371. }
  372. r->chroma_vlc = 0;
  373. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  374. }else{
  375. for(i = 0; i < 16; i++)
  376. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  377. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  378. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  379. r->is16 = 1;
  380. r->chroma_vlc = 1;
  381. r->luma_vlc = 2;
  382. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  383. }
  384. }
  385. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  386. }
  387. /** @} */ //bitstream functions
  388. /**
  389. * @name motion vector related code (prediction, reconstruction, motion compensation)
  390. * @{
  391. */
  392. /** macroblock partition width in 8x8 blocks */
  393. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  394. /** macroblock partition height in 8x8 blocks */
  395. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  396. /** availability index for subblocks */
  397. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  398. /**
  399. * motion vector prediction
  400. *
  401. * Motion prediction performed for the block by using median prediction of
  402. * motion vectors from the left, top and right top blocks but in corner cases
  403. * some other vectors may be used instead.
  404. */
  405. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  406. {
  407. MpegEncContext *s = &r->s;
  408. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  409. int A[2] = {0}, B[2], C[2];
  410. int i, j;
  411. int mx, my;
  412. int* avail = r->avail_cache + avail_indexes[subblock_no];
  413. int c_off = part_sizes_w[block_type];
  414. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  415. if(subblock_no == 3)
  416. c_off = -1;
  417. if(avail[-1]){
  418. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  419. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  420. }
  421. if(avail[-4]){
  422. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  423. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  424. }else{
  425. B[0] = A[0];
  426. B[1] = A[1];
  427. }
  428. if(!avail[c_off-4]){
  429. if(avail[-4] && (avail[-1] || r->rv30)){
  430. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  431. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  432. }else{
  433. C[0] = A[0];
  434. C[1] = A[1];
  435. }
  436. }else{
  437. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  438. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  439. }
  440. mx = mid_pred(A[0], B[0], C[0]);
  441. my = mid_pred(A[1], B[1], C[1]);
  442. mx += r->dmv[dmv_no][0];
  443. my += r->dmv[dmv_no][1];
  444. for(j = 0; j < part_sizes_h[block_type]; j++){
  445. for(i = 0; i < part_sizes_w[block_type]; i++){
  446. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  447. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  448. }
  449. }
  450. }
  451. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  452. /**
  453. * Calculate motion vector component that should be added for direct blocks.
  454. */
  455. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  456. {
  457. int mul = dir ? -r->mv_weight2 : r->mv_weight1;
  458. return (val * mul + 0x2000) >> 14;
  459. }
  460. /**
  461. * Predict motion vector for B-frame macroblock.
  462. */
  463. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  464. int A_avail, int B_avail, int C_avail,
  465. int *mx, int *my)
  466. {
  467. if(A_avail + B_avail + C_avail != 3){
  468. *mx = A[0] + B[0] + C[0];
  469. *my = A[1] + B[1] + C[1];
  470. if(A_avail + B_avail + C_avail == 2){
  471. *mx /= 2;
  472. *my /= 2;
  473. }
  474. }else{
  475. *mx = mid_pred(A[0], B[0], C[0]);
  476. *my = mid_pred(A[1], B[1], C[1]);
  477. }
  478. }
  479. /**
  480. * motion vector prediction for B-frames
  481. */
  482. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  483. {
  484. MpegEncContext *s = &r->s;
  485. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  486. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  487. int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
  488. int has_A = 0, has_B = 0, has_C = 0;
  489. int mx, my;
  490. int i, j;
  491. Picture *cur_pic = s->current_picture_ptr;
  492. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  493. int type = cur_pic->mb_type[mb_pos];
  494. if((r->avail_cache[6-1] & type) & mask){
  495. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  496. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  497. has_A = 1;
  498. }
  499. if((r->avail_cache[6-4] & type) & mask){
  500. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  501. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  502. has_B = 1;
  503. }
  504. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  505. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  506. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  507. has_C = 1;
  508. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  509. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  510. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  511. has_C = 1;
  512. }
  513. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  514. mx += r->dmv[dir][0];
  515. my += r->dmv[dir][1];
  516. for(j = 0; j < 2; j++){
  517. for(i = 0; i < 2; i++){
  518. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  519. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  520. }
  521. }
  522. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  523. ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
  524. }
  525. }
  526. /**
  527. * motion vector prediction - RV3 version
  528. */
  529. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  530. {
  531. MpegEncContext *s = &r->s;
  532. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  533. int A[2] = {0}, B[2], C[2];
  534. int i, j, k;
  535. int mx, my;
  536. int* avail = r->avail_cache + avail_indexes[0];
  537. if(avail[-1]){
  538. A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
  539. A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
  540. }
  541. if(avail[-4]){
  542. B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
  543. B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
  544. }else{
  545. B[0] = A[0];
  546. B[1] = A[1];
  547. }
  548. if(!avail[-4 + 2]){
  549. if(avail[-4] && (avail[-1])){
  550. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
  551. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
  552. }else{
  553. C[0] = A[0];
  554. C[1] = A[1];
  555. }
  556. }else{
  557. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
  558. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
  559. }
  560. mx = mid_pred(A[0], B[0], C[0]);
  561. my = mid_pred(A[1], B[1], C[1]);
  562. mx += r->dmv[0][0];
  563. my += r->dmv[0][1];
  564. for(j = 0; j < 2; j++){
  565. for(i = 0; i < 2; i++){
  566. for(k = 0; k < 2; k++){
  567. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  568. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  569. }
  570. }
  571. }
  572. }
  573. static const int chroma_coeffs[3] = { 0, 3, 5 };
  574. /**
  575. * generic motion compensation function
  576. *
  577. * @param r decoder context
  578. * @param block_type type of the current block
  579. * @param xoff horizontal offset from the start of the current block
  580. * @param yoff vertical offset from the start of the current block
  581. * @param mv_off offset to the motion vector information
  582. * @param width width of the current partition in 8x8 blocks
  583. * @param height height of the current partition in 8x8 blocks
  584. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  585. * @param thirdpel motion vectors are specified in 1/3 of pixel
  586. * @param qpel_mc a set of functions used to perform luma motion compensation
  587. * @param chroma_mc a set of functions used to perform chroma motion compensation
  588. */
  589. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  590. const int xoff, const int yoff, int mv_off,
  591. const int width, const int height, int dir,
  592. const int thirdpel, int weighted,
  593. qpel_mc_func (*qpel_mc)[16],
  594. h264_chroma_mc_func (*chroma_mc))
  595. {
  596. MpegEncContext *s = &r->s;
  597. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  598. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  599. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  600. int is16x16 = 1;
  601. if(thirdpel){
  602. int chroma_mx, chroma_my;
  603. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  604. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  605. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  606. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  607. chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  608. chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  609. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  610. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  611. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  612. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  613. }else{
  614. int cx, cy;
  615. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  616. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  617. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  618. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  619. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  620. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  621. umx = cx >> 2;
  622. umy = cy >> 2;
  623. uvmx = (cx & 3) << 1;
  624. uvmy = (cy & 3) << 1;
  625. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  626. if(uvmx == 6 && uvmy == 6)
  627. uvmx = uvmy = 4;
  628. }
  629. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  630. /* wait for the referenced mb row to be finished */
  631. int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
  632. ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
  633. ff_thread_await_progress(f, mb_row, 0);
  634. }
  635. dxy = ly*4 + lx;
  636. srcY = dir ? s->next_picture_ptr->f.data[0] : s->last_picture_ptr->f.data[0];
  637. srcU = dir ? s->next_picture_ptr->f.data[1] : s->last_picture_ptr->f.data[1];
  638. srcV = dir ? s->next_picture_ptr->f.data[2] : s->last_picture_ptr->f.data[2];
  639. src_x = s->mb_x * 16 + xoff + mx;
  640. src_y = s->mb_y * 16 + yoff + my;
  641. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  642. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  643. srcY += src_y * s->linesize + src_x;
  644. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  645. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  646. if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
  647. (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
  648. (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
  649. uint8_t *uvbuf = s->edge_emu_buffer + 22 * s->linesize;
  650. srcY -= 2 + 2*s->linesize;
  651. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  652. s->linesize, s->linesize,
  653. (width << 3) + 6, (height << 3) + 6,
  654. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  655. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  656. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  657. s->uvlinesize,s->uvlinesize,
  658. (width << 2) + 1, (height << 2) + 1,
  659. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  660. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  661. s->uvlinesize, s->uvlinesize,
  662. (width << 2) + 1, (height << 2) + 1,
  663. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  664. srcU = uvbuf;
  665. srcV = uvbuf + 16;
  666. }
  667. if(!weighted){
  668. Y = s->dest[0] + xoff + yoff *s->linesize;
  669. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  670. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  671. }else{
  672. Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
  673. U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  674. V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  675. }
  676. if(block_type == RV34_MB_P_16x8){
  677. qpel_mc[1][dxy](Y, srcY, s->linesize);
  678. Y += 8;
  679. srcY += 8;
  680. }else if(block_type == RV34_MB_P_8x16){
  681. qpel_mc[1][dxy](Y, srcY, s->linesize);
  682. Y += 8 * s->linesize;
  683. srcY += 8 * s->linesize;
  684. }
  685. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  686. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  687. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  688. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  689. }
  690. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  691. const int xoff, const int yoff, int mv_off,
  692. const int width, const int height, int dir)
  693. {
  694. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
  695. r->rdsp.put_pixels_tab,
  696. r->rdsp.put_chroma_pixels_tab);
  697. }
  698. static void rv4_weight(RV34DecContext *r)
  699. {
  700. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
  701. r->tmp_b_block_y[0],
  702. r->tmp_b_block_y[1],
  703. r->weight1,
  704. r->weight2,
  705. r->s.linesize);
  706. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
  707. r->tmp_b_block_uv[0],
  708. r->tmp_b_block_uv[2],
  709. r->weight1,
  710. r->weight2,
  711. r->s.uvlinesize);
  712. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
  713. r->tmp_b_block_uv[1],
  714. r->tmp_b_block_uv[3],
  715. r->weight1,
  716. r->weight2,
  717. r->s.uvlinesize);
  718. }
  719. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  720. {
  721. int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
  722. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
  723. r->rdsp.put_pixels_tab,
  724. r->rdsp.put_chroma_pixels_tab);
  725. if(!weighted){
  726. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
  727. r->rdsp.avg_pixels_tab,
  728. r->rdsp.avg_chroma_pixels_tab);
  729. }else{
  730. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
  731. r->rdsp.put_pixels_tab,
  732. r->rdsp.put_chroma_pixels_tab);
  733. rv4_weight(r);
  734. }
  735. }
  736. static void rv34_mc_2mv_skip(RV34DecContext *r)
  737. {
  738. int i, j;
  739. int weighted = !r->rv30 && r->weight1 != 8192;
  740. for(j = 0; j < 2; j++)
  741. for(i = 0; i < 2; i++){
  742. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  743. weighted,
  744. r->rdsp.put_pixels_tab,
  745. r->rdsp.put_chroma_pixels_tab);
  746. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  747. weighted,
  748. weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
  749. weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
  750. }
  751. if(weighted)
  752. rv4_weight(r);
  753. }
  754. /** number of motion vectors in each macroblock type */
  755. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  756. /**
  757. * Decode motion vector differences
  758. * and perform motion vector reconstruction and motion compensation.
  759. */
  760. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  761. {
  762. MpegEncContext *s = &r->s;
  763. GetBitContext *gb = &s->gb;
  764. int i, j, k, l;
  765. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  766. int next_bt;
  767. memset(r->dmv, 0, sizeof(r->dmv));
  768. for(i = 0; i < num_mvs[block_type]; i++){
  769. r->dmv[i][0] = svq3_get_se_golomb(gb);
  770. r->dmv[i][1] = svq3_get_se_golomb(gb);
  771. }
  772. switch(block_type){
  773. case RV34_MB_TYPE_INTRA:
  774. case RV34_MB_TYPE_INTRA16x16:
  775. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  776. return 0;
  777. case RV34_MB_SKIP:
  778. if(s->pict_type == AV_PICTURE_TYPE_P){
  779. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  780. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  781. break;
  782. }
  783. case RV34_MB_B_DIRECT:
  784. //surprisingly, it uses motion scheme from next reference frame
  785. /* wait for the current mb row to be finished */
  786. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  787. ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
  788. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  789. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  790. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  791. ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  792. }else
  793. for(j = 0; j < 2; j++)
  794. for(i = 0; i < 2; i++)
  795. for(k = 0; k < 2; k++)
  796. for(l = 0; l < 2; l++)
  797. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  798. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  799. rv34_mc_2mv(r, block_type);
  800. else
  801. rv34_mc_2mv_skip(r);
  802. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  803. break;
  804. case RV34_MB_P_16x16:
  805. case RV34_MB_P_MIX16x16:
  806. rv34_pred_mv(r, block_type, 0, 0);
  807. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  808. break;
  809. case RV34_MB_B_FORWARD:
  810. case RV34_MB_B_BACKWARD:
  811. r->dmv[1][0] = r->dmv[0][0];
  812. r->dmv[1][1] = r->dmv[0][1];
  813. if(r->rv30)
  814. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  815. else
  816. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  817. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  818. break;
  819. case RV34_MB_P_16x8:
  820. case RV34_MB_P_8x16:
  821. rv34_pred_mv(r, block_type, 0, 0);
  822. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  823. if(block_type == RV34_MB_P_16x8){
  824. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  825. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  826. }
  827. if(block_type == RV34_MB_P_8x16){
  828. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  829. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  830. }
  831. break;
  832. case RV34_MB_B_BIDIR:
  833. rv34_pred_mv_b (r, block_type, 0);
  834. rv34_pred_mv_b (r, block_type, 1);
  835. rv34_mc_2mv (r, block_type);
  836. break;
  837. case RV34_MB_P_8x8:
  838. for(i=0;i< 4;i++){
  839. rv34_pred_mv(r, block_type, i, i);
  840. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  841. }
  842. break;
  843. }
  844. return 0;
  845. }
  846. /** @} */ // mv group
  847. /**
  848. * @name Macroblock reconstruction functions
  849. * @{
  850. */
  851. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  852. static const int ittrans[9] = {
  853. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  854. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  855. };
  856. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  857. static const int ittrans16[4] = {
  858. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  859. };
  860. /**
  861. * Perform 4x4 intra prediction.
  862. */
  863. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  864. {
  865. uint8_t *prev = dst - stride + 4;
  866. uint32_t topleft;
  867. if(!up && !left)
  868. itype = DC_128_PRED;
  869. else if(!up){
  870. if(itype == VERT_PRED) itype = HOR_PRED;
  871. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  872. }else if(!left){
  873. if(itype == HOR_PRED) itype = VERT_PRED;
  874. if(itype == DC_PRED) itype = TOP_DC_PRED;
  875. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  876. }
  877. if(!down){
  878. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  879. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  880. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  881. }
  882. if(!right && up){
  883. topleft = dst[-stride + 3] * 0x01010101u;
  884. prev = (uint8_t*)&topleft;
  885. }
  886. r->h.pred4x4[itype](dst, prev, stride);
  887. }
  888. static inline int adjust_pred16(int itype, int up, int left)
  889. {
  890. if(!up && !left)
  891. itype = DC_128_PRED8x8;
  892. else if(!up){
  893. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  894. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  895. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  896. }else if(!left){
  897. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  898. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  899. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  900. }
  901. return itype;
  902. }
  903. static inline void rv34_process_block(RV34DecContext *r,
  904. uint8_t *pdst, int stride,
  905. int fc, int sc, int q_dc, int q_ac)
  906. {
  907. MpegEncContext *s = &r->s;
  908. int16_t *ptr = s->block[0];
  909. int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
  910. fc, sc, q_dc, q_ac, q_ac);
  911. if(has_ac){
  912. r->rdsp.rv34_idct_add(pdst, stride, ptr);
  913. }else{
  914. r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
  915. ptr[0] = 0;
  916. }
  917. }
  918. static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
  919. {
  920. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  921. MpegEncContext *s = &r->s;
  922. GetBitContext *gb = &s->gb;
  923. int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
  924. q_ac = rv34_qscale_tab[s->qscale];
  925. uint8_t *dst = s->dest[0];
  926. int16_t *ptr = s->block[0];
  927. int i, j, itype, has_ac;
  928. memset(block16, 0, 16 * sizeof(*block16));
  929. has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
  930. if(has_ac)
  931. r->rdsp.rv34_inv_transform(block16);
  932. else
  933. r->rdsp.rv34_inv_transform_dc(block16);
  934. itype = ittrans16[intra_types[0]];
  935. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  936. r->h.pred16x16[itype](dst, s->linesize);
  937. for(j = 0; j < 4; j++){
  938. for(i = 0; i < 4; i++, cbp >>= 1){
  939. int dc = block16[i + j*4];
  940. if(cbp & 1){
  941. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  942. }else
  943. has_ac = 0;
  944. if(has_ac){
  945. ptr[0] = dc;
  946. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  947. }else
  948. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  949. }
  950. dst += 4*s->linesize;
  951. }
  952. itype = ittrans16[intra_types[0]];
  953. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  954. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  955. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  956. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  957. for(j = 1; j < 3; j++){
  958. dst = s->dest[j];
  959. r->h.pred8x8[itype](dst, s->uvlinesize);
  960. for(i = 0; i < 4; i++, cbp >>= 1){
  961. uint8_t *pdst;
  962. if(!(cbp & 1)) continue;
  963. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  964. rv34_process_block(r, pdst, s->uvlinesize,
  965. r->chroma_vlc, 1, q_dc, q_ac);
  966. }
  967. }
  968. }
  969. static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
  970. {
  971. MpegEncContext *s = &r->s;
  972. uint8_t *dst = s->dest[0];
  973. int avail[6*8] = {0};
  974. int i, j, k;
  975. int idx, q_ac, q_dc;
  976. // Set neighbour information.
  977. if(r->avail_cache[1])
  978. avail[0] = 1;
  979. if(r->avail_cache[2])
  980. avail[1] = avail[2] = 1;
  981. if(r->avail_cache[3])
  982. avail[3] = avail[4] = 1;
  983. if(r->avail_cache[4])
  984. avail[5] = 1;
  985. if(r->avail_cache[5])
  986. avail[8] = avail[16] = 1;
  987. if(r->avail_cache[9])
  988. avail[24] = avail[32] = 1;
  989. q_ac = rv34_qscale_tab[s->qscale];
  990. for(j = 0; j < 4; j++){
  991. idx = 9 + j*8;
  992. for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
  993. rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  994. avail[idx] = 1;
  995. if(!(cbp & 1)) continue;
  996. rv34_process_block(r, dst, s->linesize,
  997. r->luma_vlc, 0, q_ac, q_ac);
  998. }
  999. dst += s->linesize * 4 - 4*4;
  1000. intra_types += r->intra_types_stride;
  1001. }
  1002. intra_types -= r->intra_types_stride * 4;
  1003. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1004. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1005. for(k = 0; k < 2; k++){
  1006. dst = s->dest[1+k];
  1007. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  1008. for(j = 0; j < 2; j++){
  1009. int* acache = r->avail_cache + 6 + j*4;
  1010. for(i = 0; i < 2; i++, cbp >>= 1, acache++){
  1011. int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
  1012. rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
  1013. acache[0] = 1;
  1014. if(!(cbp&1)) continue;
  1015. rv34_process_block(r, dst + 4*i, s->uvlinesize,
  1016. r->chroma_vlc, 1, q_dc, q_ac);
  1017. }
  1018. dst += 4*s->uvlinesize;
  1019. }
  1020. }
  1021. }
  1022. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1023. {
  1024. int d;
  1025. d = motion_val[0][0] - motion_val[-step][0];
  1026. if(d < -3 || d > 3)
  1027. return 1;
  1028. d = motion_val[0][1] - motion_val[-step][1];
  1029. if(d < -3 || d > 3)
  1030. return 1;
  1031. return 0;
  1032. }
  1033. static int rv34_set_deblock_coef(RV34DecContext *r)
  1034. {
  1035. MpegEncContext *s = &r->s;
  1036. int hmvmask = 0, vmvmask = 0, i, j;
  1037. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1038. int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
  1039. for(j = 0; j < 16; j += 8){
  1040. for(i = 0; i < 2; i++){
  1041. if(is_mv_diff_gt_3(motion_val + i, 1))
  1042. vmvmask |= 0x11 << (j + i*2);
  1043. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1044. hmvmask |= 0x03 << (j + i*2);
  1045. }
  1046. motion_val += s->b8_stride;
  1047. }
  1048. if(s->first_slice_line)
  1049. hmvmask &= ~0x000F;
  1050. if(!s->mb_x)
  1051. vmvmask &= ~0x1111;
  1052. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1053. vmvmask |= (vmvmask & 0x4444) >> 1;
  1054. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1055. if(s->mb_x)
  1056. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1057. if(!s->first_slice_line)
  1058. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1059. }
  1060. return hmvmask | vmvmask;
  1061. }
  1062. static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
  1063. {
  1064. MpegEncContext *s = &r->s;
  1065. GetBitContext *gb = &s->gb;
  1066. uint8_t *dst = s->dest[0];
  1067. int16_t *ptr = s->block[0];
  1068. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1069. int cbp, cbp2;
  1070. int q_dc, q_ac, has_ac;
  1071. int i, j;
  1072. int dist;
  1073. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1074. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1075. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1076. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1077. if(s->mb_x && dist)
  1078. r->avail_cache[5] =
  1079. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1080. if(dist >= s->mb_width)
  1081. r->avail_cache[2] =
  1082. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1083. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1084. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1085. if(s->mb_x && dist > s->mb_width)
  1086. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1087. s->qscale = r->si.quant;
  1088. cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
  1089. r->cbp_luma [mb_pos] = cbp;
  1090. r->cbp_chroma[mb_pos] = cbp >> 16;
  1091. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1092. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1093. if(cbp == -1)
  1094. return -1;
  1095. if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  1096. if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
  1097. else rv34_output_intra(r, intra_types, cbp);
  1098. return 0;
  1099. }
  1100. if(r->is16){
  1101. // Only for RV34_MB_P_MIX16x16
  1102. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  1103. memset(block16, 0, 16 * sizeof(*block16));
  1104. q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
  1105. q_ac = rv34_qscale_tab[s->qscale];
  1106. if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
  1107. r->rdsp.rv34_inv_transform(block16);
  1108. else
  1109. r->rdsp.rv34_inv_transform_dc(block16);
  1110. q_ac = rv34_qscale_tab[s->qscale];
  1111. for(j = 0; j < 4; j++){
  1112. for(i = 0; i < 4; i++, cbp >>= 1){
  1113. int dc = block16[i + j*4];
  1114. if(cbp & 1){
  1115. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  1116. }else
  1117. has_ac = 0;
  1118. if(has_ac){
  1119. ptr[0] = dc;
  1120. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  1121. }else
  1122. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  1123. }
  1124. dst += 4*s->linesize;
  1125. }
  1126. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1127. }else{
  1128. q_ac = rv34_qscale_tab[s->qscale];
  1129. for(j = 0; j < 4; j++){
  1130. for(i = 0; i < 4; i++, cbp >>= 1){
  1131. if(!(cbp & 1)) continue;
  1132. rv34_process_block(r, dst + 4*i, s->linesize,
  1133. r->luma_vlc, 0, q_ac, q_ac);
  1134. }
  1135. dst += 4*s->linesize;
  1136. }
  1137. }
  1138. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1139. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1140. for(j = 1; j < 3; j++){
  1141. dst = s->dest[j];
  1142. for(i = 0; i < 4; i++, cbp >>= 1){
  1143. uint8_t *pdst;
  1144. if(!(cbp & 1)) continue;
  1145. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  1146. rv34_process_block(r, pdst, s->uvlinesize,
  1147. r->chroma_vlc, 1, q_dc, q_ac);
  1148. }
  1149. }
  1150. return 0;
  1151. }
  1152. static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
  1153. {
  1154. MpegEncContext *s = &r->s;
  1155. int cbp, dist;
  1156. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1157. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1158. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1159. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1160. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1161. if(s->mb_x && dist)
  1162. r->avail_cache[5] =
  1163. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1164. if(dist >= s->mb_width)
  1165. r->avail_cache[2] =
  1166. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1167. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1168. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1169. if(s->mb_x && dist > s->mb_width)
  1170. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1171. s->qscale = r->si.quant;
  1172. cbp = rv34_decode_intra_mb_header(r, intra_types);
  1173. r->cbp_luma [mb_pos] = cbp;
  1174. r->cbp_chroma[mb_pos] = cbp >> 16;
  1175. r->deblock_coefs[mb_pos] = 0xFFFF;
  1176. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1177. if(cbp == -1)
  1178. return -1;
  1179. if(r->is16){
  1180. rv34_output_i16x16(r, intra_types, cbp);
  1181. return 0;
  1182. }
  1183. rv34_output_intra(r, intra_types, cbp);
  1184. return 0;
  1185. }
  1186. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1187. {
  1188. int bits;
  1189. if(s->mb_y >= s->mb_height)
  1190. return 1;
  1191. if(!s->mb_num_left)
  1192. return 1;
  1193. if(r->s.mb_skip_run > 1)
  1194. return 0;
  1195. bits = get_bits_left(&s->gb);
  1196. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1197. return 1;
  1198. return 0;
  1199. }
  1200. static void rv34_decoder_free(RV34DecContext *r)
  1201. {
  1202. av_freep(&r->intra_types_hist);
  1203. r->intra_types = NULL;
  1204. av_freep(&r->tmp_b_block_base);
  1205. av_freep(&r->mb_type);
  1206. av_freep(&r->cbp_luma);
  1207. av_freep(&r->cbp_chroma);
  1208. av_freep(&r->deblock_coefs);
  1209. }
  1210. static int rv34_decoder_alloc(RV34DecContext *r)
  1211. {
  1212. r->intra_types_stride = r->s.mb_width * 4 + 4;
  1213. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1214. sizeof(*r->cbp_chroma));
  1215. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1216. sizeof(*r->cbp_luma));
  1217. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height *
  1218. sizeof(*r->deblock_coefs));
  1219. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
  1220. sizeof(*r->intra_types_hist));
  1221. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1222. sizeof(*r->mb_type));
  1223. if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
  1224. r->intra_types_hist && r->mb_type)) {
  1225. rv34_decoder_free(r);
  1226. return AVERROR(ENOMEM);
  1227. }
  1228. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1229. return 0;
  1230. }
  1231. static int rv34_decoder_realloc(RV34DecContext *r)
  1232. {
  1233. rv34_decoder_free(r);
  1234. return rv34_decoder_alloc(r);
  1235. }
  1236. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1237. {
  1238. MpegEncContext *s = &r->s;
  1239. GetBitContext *gb = &s->gb;
  1240. int mb_pos, slice_type;
  1241. int res;
  1242. init_get_bits(&r->s.gb, buf, buf_size*8);
  1243. res = r->parse_slice_header(r, gb, &r->si);
  1244. if(res < 0){
  1245. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1246. return -1;
  1247. }
  1248. slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1249. if (slice_type != s->pict_type) {
  1250. av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
  1251. return AVERROR_INVALIDDATA;
  1252. }
  1253. r->si.end = end;
  1254. s->qscale = r->si.quant;
  1255. s->mb_num_left = r->si.end - r->si.start;
  1256. r->s.mb_skip_run = 0;
  1257. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1258. if(r->si.start != mb_pos){
  1259. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1260. s->mb_x = r->si.start % s->mb_width;
  1261. s->mb_y = r->si.start / s->mb_width;
  1262. }
  1263. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1264. s->first_slice_line = 1;
  1265. s->resync_mb_x = s->mb_x;
  1266. s->resync_mb_y = s->mb_y;
  1267. ff_init_block_index(s);
  1268. while(!check_slice_end(r, s)) {
  1269. ff_update_block_index(s);
  1270. if(r->si.type)
  1271. res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1272. else
  1273. res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1274. if(res < 0){
  1275. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
  1276. return -1;
  1277. }
  1278. if (++s->mb_x == s->mb_width) {
  1279. s->mb_x = 0;
  1280. s->mb_y++;
  1281. ff_init_block_index(s);
  1282. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1283. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1284. if(r->loop_filter && s->mb_y >= 2)
  1285. r->loop_filter(r, s->mb_y - 2);
  1286. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1287. ff_thread_report_progress(&s->current_picture_ptr->tf,
  1288. s->mb_y - 2, 0);
  1289. }
  1290. if(s->mb_x == s->resync_mb_x)
  1291. s->first_slice_line=0;
  1292. s->mb_num_left--;
  1293. }
  1294. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
  1295. return s->mb_y == s->mb_height;
  1296. }
  1297. /** @} */ // recons group end
  1298. /**
  1299. * Initialize decoder.
  1300. */
  1301. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1302. {
  1303. RV34DecContext *r = avctx->priv_data;
  1304. MpegEncContext *s = &r->s;
  1305. int ret;
  1306. ff_MPV_decode_defaults(s);
  1307. s->avctx = avctx;
  1308. s->out_format = FMT_H263;
  1309. s->codec_id = avctx->codec_id;
  1310. s->width = avctx->width;
  1311. s->height = avctx->height;
  1312. r->s.avctx = avctx;
  1313. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  1314. avctx->has_b_frames = 1;
  1315. s->low_delay = 0;
  1316. if ((ret = ff_MPV_common_init(s)) < 0)
  1317. return ret;
  1318. ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
  1319. #if CONFIG_RV30_DECODER
  1320. if (avctx->codec_id == AV_CODEC_ID_RV30)
  1321. ff_rv30dsp_init(&r->rdsp);
  1322. #endif
  1323. #if CONFIG_RV40_DECODER
  1324. if (avctx->codec_id == AV_CODEC_ID_RV40)
  1325. ff_rv40dsp_init(&r->rdsp);
  1326. #endif
  1327. if ((ret = rv34_decoder_alloc(r)) < 0) {
  1328. ff_MPV_common_end(&r->s);
  1329. return ret;
  1330. }
  1331. if(!intra_vlcs[0].cbppattern[0].bits)
  1332. rv34_init_tables();
  1333. avctx->internal->allocate_progress = 1;
  1334. return 0;
  1335. }
  1336. int ff_rv34_decode_init_thread_copy(AVCodecContext *avctx)
  1337. {
  1338. int err;
  1339. RV34DecContext *r = avctx->priv_data;
  1340. r->s.avctx = avctx;
  1341. if (avctx->internal->is_copy) {
  1342. r->tmp_b_block_base = NULL;
  1343. if ((err = ff_MPV_common_init(&r->s)) < 0)
  1344. return err;
  1345. if ((err = rv34_decoder_alloc(r)) < 0) {
  1346. ff_MPV_common_end(&r->s);
  1347. return err;
  1348. }
  1349. }
  1350. return 0;
  1351. }
  1352. int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  1353. {
  1354. RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
  1355. MpegEncContext * const s = &r->s, * const s1 = &r1->s;
  1356. int err;
  1357. if (dst == src || !s1->context_initialized)
  1358. return 0;
  1359. if (s->height != s1->height || s->width != s1->width) {
  1360. s->height = s1->height;
  1361. s->width = s1->width;
  1362. if ((err = ff_MPV_common_frame_size_change(s)) < 0)
  1363. return err;
  1364. if ((err = rv34_decoder_realloc(r)) < 0)
  1365. return err;
  1366. }
  1367. if ((err = ff_mpeg_update_thread_context(dst, src)))
  1368. return err;
  1369. r->cur_pts = r1->cur_pts;
  1370. r->last_pts = r1->last_pts;
  1371. r->next_pts = r1->next_pts;
  1372. memset(&r->si, 0, sizeof(r->si));
  1373. return 0;
  1374. }
  1375. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1376. {
  1377. if(avctx->slice_count) return avctx->slice_offset[n];
  1378. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1379. }
  1380. static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
  1381. {
  1382. RV34DecContext *r = avctx->priv_data;
  1383. MpegEncContext *s = &r->s;
  1384. int got_picture = 0, ret;
  1385. ff_er_frame_end(&s->er);
  1386. ff_MPV_frame_end(s);
  1387. s->mb_num_left = 0;
  1388. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1389. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1390. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1391. if ((ret = av_frame_ref(pict, &s->current_picture_ptr->f)) < 0)
  1392. return ret;
  1393. ff_print_debug_info(s, s->current_picture_ptr);
  1394. got_picture = 1;
  1395. } else if (s->last_picture_ptr != NULL) {
  1396. if ((ret = av_frame_ref(pict, &s->last_picture_ptr->f)) < 0)
  1397. return ret;
  1398. ff_print_debug_info(s, s->last_picture_ptr);
  1399. got_picture = 1;
  1400. }
  1401. return got_picture;
  1402. }
  1403. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1404. void *data, int *got_picture_ptr,
  1405. AVPacket *avpkt)
  1406. {
  1407. const uint8_t *buf = avpkt->data;
  1408. int buf_size = avpkt->size;
  1409. RV34DecContext *r = avctx->priv_data;
  1410. MpegEncContext *s = &r->s;
  1411. AVFrame *pict = data;
  1412. SliceInfo si;
  1413. int i, ret;
  1414. int slice_count;
  1415. const uint8_t *slices_hdr = NULL;
  1416. int last = 0;
  1417. /* no supplementary picture */
  1418. if (buf_size == 0) {
  1419. /* special case for last picture */
  1420. if (s->low_delay==0 && s->next_picture_ptr) {
  1421. if ((ret = av_frame_ref(pict, &s->next_picture_ptr->f)) < 0)
  1422. return ret;
  1423. s->next_picture_ptr = NULL;
  1424. *got_picture_ptr = 1;
  1425. }
  1426. return 0;
  1427. }
  1428. if(!avctx->slice_count){
  1429. slice_count = (*buf++) + 1;
  1430. slices_hdr = buf + 4;
  1431. buf += 8 * slice_count;
  1432. buf_size -= 1 + 8 * slice_count;
  1433. }else
  1434. slice_count = avctx->slice_count;
  1435. //parse first slice header to check whether this frame can be decoded
  1436. if(get_slice_offset(avctx, slices_hdr, 0) < 0 ||
  1437. get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1438. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1439. return AVERROR_INVALIDDATA;
  1440. }
  1441. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), (buf_size-get_slice_offset(avctx, slices_hdr, 0))*8);
  1442. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1443. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1444. return AVERROR_INVALIDDATA;
  1445. }
  1446. if ((!s->last_picture_ptr || !s->last_picture_ptr->f.data[0]) &&
  1447. si.type == AV_PICTURE_TYPE_B) {
  1448. av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
  1449. "reference data.\n");
  1450. return AVERROR_INVALIDDATA;
  1451. }
  1452. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1453. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1454. || avctx->skip_frame >= AVDISCARD_ALL)
  1455. return avpkt->size;
  1456. /* first slice */
  1457. if (si.start == 0) {
  1458. if (s->mb_num_left > 0) {
  1459. av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.",
  1460. s->mb_num_left);
  1461. ff_er_frame_end(&s->er);
  1462. ff_MPV_frame_end(s);
  1463. }
  1464. if (s->width != si.width || s->height != si.height) {
  1465. int err;
  1466. av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
  1467. si.width, si.height);
  1468. s->width = si.width;
  1469. s->height = si.height;
  1470. err = ff_set_dimensions(s->avctx, s->width, s->height);
  1471. if (err < 0)
  1472. return err;
  1473. if ((err = ff_MPV_common_frame_size_change(s)) < 0)
  1474. return err;
  1475. if ((err = rv34_decoder_realloc(r)) < 0)
  1476. return err;
  1477. }
  1478. s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
  1479. if (ff_MPV_frame_start(s, s->avctx) < 0)
  1480. return -1;
  1481. ff_mpeg_er_frame_start(s);
  1482. if (!r->tmp_b_block_base) {
  1483. int i;
  1484. r->tmp_b_block_base = av_malloc(s->linesize * 48);
  1485. for (i = 0; i < 2; i++)
  1486. r->tmp_b_block_y[i] = r->tmp_b_block_base
  1487. + i * 16 * s->linesize;
  1488. for (i = 0; i < 4; i++)
  1489. r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
  1490. + (i >> 1) * 8 * s->uvlinesize
  1491. + (i & 1) * 16;
  1492. }
  1493. r->cur_pts = si.pts;
  1494. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1495. r->last_pts = r->next_pts;
  1496. r->next_pts = r->cur_pts;
  1497. } else {
  1498. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  1499. int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
  1500. int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
  1501. if(!refdist){
  1502. r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
  1503. r->scaled_weight = 0;
  1504. }else{
  1505. r->mv_weight1 = (dist0 << 14) / refdist;
  1506. r->mv_weight2 = (dist1 << 14) / refdist;
  1507. if((r->mv_weight1|r->mv_weight2) & 511){
  1508. r->weight1 = r->mv_weight1;
  1509. r->weight2 = r->mv_weight2;
  1510. r->scaled_weight = 0;
  1511. }else{
  1512. r->weight1 = r->mv_weight1 >> 9;
  1513. r->weight2 = r->mv_weight2 >> 9;
  1514. r->scaled_weight = 1;
  1515. }
  1516. }
  1517. }
  1518. s->mb_x = s->mb_y = 0;
  1519. ff_thread_finish_setup(s->avctx);
  1520. } else if (HAVE_THREADS &&
  1521. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1522. av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
  1523. "multithreading mode (start MB is %d).\n", si.start);
  1524. return AVERROR_INVALIDDATA;
  1525. }
  1526. for(i = 0; i < slice_count; i++){
  1527. int offset = get_slice_offset(avctx, slices_hdr, i);
  1528. int size;
  1529. if(i+1 == slice_count)
  1530. size = buf_size - offset;
  1531. else
  1532. size = get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1533. if(offset < 0 || offset > buf_size){
  1534. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1535. break;
  1536. }
  1537. r->si.end = s->mb_width * s->mb_height;
  1538. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1539. if(i+1 < slice_count){
  1540. if (get_slice_offset(avctx, slices_hdr, i+1) < 0 ||
  1541. get_slice_offset(avctx, slices_hdr, i+1) > buf_size) {
  1542. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1543. break;
  1544. }
  1545. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1546. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1547. if(i+2 < slice_count)
  1548. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1549. else
  1550. size = buf_size - offset;
  1551. }else
  1552. r->si.end = si.start;
  1553. }
  1554. if (size < 0 || size > buf_size - offset) {
  1555. av_log(avctx, AV_LOG_ERROR, "Slice size is invalid\n");
  1556. break;
  1557. }
  1558. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1559. if(last)
  1560. break;
  1561. }
  1562. if (s->current_picture_ptr) {
  1563. if (last) {
  1564. if(r->loop_filter)
  1565. r->loop_filter(r, s->mb_height - 1);
  1566. ret = finish_frame(avctx, pict);
  1567. if (ret < 0)
  1568. return ret;
  1569. *got_picture_ptr = ret;
  1570. } else if (HAVE_THREADS &&
  1571. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1572. av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
  1573. /* always mark the current frame as finished, frame-mt supports
  1574. * only complete frames */
  1575. ff_er_frame_end(&s->er);
  1576. ff_MPV_frame_end(s);
  1577. s->mb_num_left = 0;
  1578. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1579. return AVERROR_INVALIDDATA;
  1580. }
  1581. }
  1582. return avpkt->size;
  1583. }
  1584. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1585. {
  1586. RV34DecContext *r = avctx->priv_data;
  1587. ff_MPV_common_end(&r->s);
  1588. rv34_decoder_free(r);
  1589. return 0;
  1590. }