You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

914 lines
28KB

  1. /*
  2. * Duck TrueMotion 1.0 Decoder
  3. * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion v1 Video Decoder by
  24. * Alex Beregszaszi and
  25. * Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The TrueMotion v1 decoder presently only decodes 16-bit TM1 data and
  28. * outputs RGB555 (or RGB565) data. 24-bit TM1 data is not supported yet.
  29. */
  30. #include <stdio.h>
  31. #include <stdlib.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "dsputil.h"
  35. #include "libavutil/imgutils.h"
  36. #include "truemotion1data.h"
  37. typedef struct TrueMotion1Context {
  38. AVCodecContext *avctx;
  39. AVFrame frame;
  40. const uint8_t *buf;
  41. int size;
  42. const uint8_t *mb_change_bits;
  43. int mb_change_bits_row_size;
  44. const uint8_t *index_stream;
  45. int index_stream_size;
  46. int flags;
  47. int x, y, w, h;
  48. uint32_t y_predictor_table[1024];
  49. uint32_t c_predictor_table[1024];
  50. uint32_t fat_y_predictor_table[1024];
  51. uint32_t fat_c_predictor_table[1024];
  52. int compression;
  53. int block_type;
  54. int block_width;
  55. int block_height;
  56. int16_t ydt[8];
  57. int16_t cdt[8];
  58. int16_t fat_ydt[8];
  59. int16_t fat_cdt[8];
  60. int last_deltaset, last_vectable;
  61. unsigned int *vert_pred;
  62. int vert_pred_size;
  63. } TrueMotion1Context;
  64. #define FLAG_SPRITE 32
  65. #define FLAG_KEYFRAME 16
  66. #define FLAG_INTERFRAME 8
  67. #define FLAG_INTERPOLATED 4
  68. struct frame_header {
  69. uint8_t header_size;
  70. uint8_t compression;
  71. uint8_t deltaset;
  72. uint8_t vectable;
  73. uint16_t ysize;
  74. uint16_t xsize;
  75. uint16_t checksum;
  76. uint8_t version;
  77. uint8_t header_type;
  78. uint8_t flags;
  79. uint8_t control;
  80. uint16_t xoffset;
  81. uint16_t yoffset;
  82. uint16_t width;
  83. uint16_t height;
  84. };
  85. #define ALGO_NOP 0
  86. #define ALGO_RGB16V 1
  87. #define ALGO_RGB16H 2
  88. #define ALGO_RGB24H 3
  89. /* these are the various block sizes that can occupy a 4x4 block */
  90. #define BLOCK_2x2 0
  91. #define BLOCK_2x4 1
  92. #define BLOCK_4x2 2
  93. #define BLOCK_4x4 3
  94. typedef struct comp_types {
  95. int algorithm;
  96. int block_width; // vres
  97. int block_height; // hres
  98. int block_type;
  99. } comp_types;
  100. /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
  101. static const comp_types compression_types[17] = {
  102. { ALGO_NOP, 0, 0, 0 },
  103. { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
  104. { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
  105. { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
  106. { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
  107. { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
  108. { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
  109. { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
  110. { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
  111. { ALGO_NOP, 4, 4, BLOCK_4x4 },
  112. { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
  113. { ALGO_NOP, 4, 2, BLOCK_4x2 },
  114. { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
  115. { ALGO_NOP, 2, 4, BLOCK_2x4 },
  116. { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
  117. { ALGO_NOP, 2, 2, BLOCK_2x2 },
  118. { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
  119. };
  120. static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
  121. {
  122. int i;
  123. if (delta_table_index > 3)
  124. return;
  125. memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
  126. memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
  127. memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
  128. memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
  129. /* Y skinny deltas need to be halved for some reason; maybe the
  130. * skinny Y deltas should be modified */
  131. for (i = 0; i < 8; i++)
  132. {
  133. /* drop the lsb before dividing by 2-- net effect: round down
  134. * when dividing a negative number (e.g., -3/2 = -2, not -1) */
  135. s->ydt[i] &= 0xFFFE;
  136. s->ydt[i] /= 2;
  137. }
  138. }
  139. #if HAVE_BIGENDIAN
  140. static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
  141. #else
  142. static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
  143. #endif
  144. {
  145. int lo, hi;
  146. lo = ydt[p1];
  147. lo += (lo << 5) + (lo << 10);
  148. hi = ydt[p2];
  149. hi += (hi << 5) + (hi << 10);
  150. return (lo + (hi << 16)) << 1;
  151. }
  152. static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
  153. {
  154. int r, b, lo;
  155. b = cdt[p2];
  156. r = cdt[p1] << 10;
  157. lo = b + r;
  158. return (lo + (lo << 16)) << 1;
  159. }
  160. #if HAVE_BIGENDIAN
  161. static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
  162. #else
  163. static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
  164. #endif
  165. {
  166. int lo, hi;
  167. lo = ydt[p1];
  168. lo += (lo << 6) + (lo << 11);
  169. hi = ydt[p2];
  170. hi += (hi << 6) + (hi << 11);
  171. return (lo + (hi << 16)) << 1;
  172. }
  173. static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
  174. {
  175. int r, b, lo;
  176. b = cdt[p2];
  177. r = cdt[p1] << 11;
  178. lo = b + r;
  179. return (lo + (lo << 16)) << 1;
  180. }
  181. static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
  182. {
  183. int lo, hi;
  184. lo = ydt[p1];
  185. hi = ydt[p2];
  186. return (lo + (hi << 8) + (hi << 16)) << 1;
  187. }
  188. static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
  189. {
  190. int r, b;
  191. b = cdt[p2];
  192. r = cdt[p1]<<16;
  193. return (b+r) << 1;
  194. }
  195. static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  196. {
  197. int len, i, j;
  198. unsigned char delta_pair;
  199. for (i = 0; i < 1024; i += 4)
  200. {
  201. len = *sel_vector_table++ / 2;
  202. for (j = 0; j < len; j++)
  203. {
  204. delta_pair = *sel_vector_table++;
  205. s->y_predictor_table[i+j] = 0xfffffffe &
  206. make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  207. s->c_predictor_table[i+j] = 0xfffffffe &
  208. make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  209. }
  210. s->y_predictor_table[i+(j-1)] |= 1;
  211. s->c_predictor_table[i+(j-1)] |= 1;
  212. }
  213. }
  214. static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  215. {
  216. int len, i, j;
  217. unsigned char delta_pair;
  218. for (i = 0; i < 1024; i += 4)
  219. {
  220. len = *sel_vector_table++ / 2;
  221. for (j = 0; j < len; j++)
  222. {
  223. delta_pair = *sel_vector_table++;
  224. s->y_predictor_table[i+j] = 0xfffffffe &
  225. make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  226. s->c_predictor_table[i+j] = 0xfffffffe &
  227. make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  228. }
  229. s->y_predictor_table[i+(j-1)] |= 1;
  230. s->c_predictor_table[i+(j-1)] |= 1;
  231. }
  232. }
  233. static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  234. {
  235. int len, i, j;
  236. unsigned char delta_pair;
  237. for (i = 0; i < 1024; i += 4)
  238. {
  239. len = *sel_vector_table++ / 2;
  240. for (j = 0; j < len; j++)
  241. {
  242. delta_pair = *sel_vector_table++;
  243. s->y_predictor_table[i+j] = 0xfffffffe &
  244. make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  245. s->c_predictor_table[i+j] = 0xfffffffe &
  246. make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  247. s->fat_y_predictor_table[i+j] = 0xfffffffe &
  248. make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
  249. s->fat_c_predictor_table[i+j] = 0xfffffffe &
  250. make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
  251. }
  252. s->y_predictor_table[i+(j-1)] |= 1;
  253. s->c_predictor_table[i+(j-1)] |= 1;
  254. s->fat_y_predictor_table[i+(j-1)] |= 1;
  255. s->fat_c_predictor_table[i+(j-1)] |= 1;
  256. }
  257. }
  258. /* Returns the number of bytes consumed from the bytestream. Returns -1 if
  259. * there was an error while decoding the header */
  260. static int truemotion1_decode_header(TrueMotion1Context *s)
  261. {
  262. int i;
  263. int width_shift = 0;
  264. int new_pix_fmt;
  265. struct frame_header header;
  266. uint8_t header_buffer[128] = { 0 }; /* logical maximum size of the header */
  267. const uint8_t *sel_vector_table;
  268. header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
  269. if (s->buf[0] < 0x10 || header.header_size >= s->size)
  270. {
  271. av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
  272. return -1;
  273. }
  274. /* unscramble the header bytes with a XOR operation */
  275. for (i = 1; i < header.header_size; i++)
  276. header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
  277. header.compression = header_buffer[0];
  278. header.deltaset = header_buffer[1];
  279. header.vectable = header_buffer[2];
  280. header.ysize = AV_RL16(&header_buffer[3]);
  281. header.xsize = AV_RL16(&header_buffer[5]);
  282. header.checksum = AV_RL16(&header_buffer[7]);
  283. header.version = header_buffer[9];
  284. header.header_type = header_buffer[10];
  285. header.flags = header_buffer[11];
  286. header.control = header_buffer[12];
  287. /* Version 2 */
  288. if (header.version >= 2)
  289. {
  290. if (header.header_type > 3)
  291. {
  292. av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
  293. return -1;
  294. } else if ((header.header_type == 2) || (header.header_type == 3)) {
  295. s->flags = header.flags;
  296. if (!(s->flags & FLAG_INTERFRAME))
  297. s->flags |= FLAG_KEYFRAME;
  298. } else
  299. s->flags = FLAG_KEYFRAME;
  300. } else /* Version 1 */
  301. s->flags = FLAG_KEYFRAME;
  302. if (s->flags & FLAG_SPRITE) {
  303. av_log_ask_for_sample(s->avctx, "SPRITE frame found.\n");
  304. /* FIXME header.width, height, xoffset and yoffset aren't initialized */
  305. return -1;
  306. } else {
  307. s->w = header.xsize;
  308. s->h = header.ysize;
  309. if (header.header_type < 2) {
  310. if ((s->w < 213) && (s->h >= 176))
  311. {
  312. s->flags |= FLAG_INTERPOLATED;
  313. av_log_ask_for_sample(s->avctx, "INTERPOLATION selected.\n");
  314. }
  315. }
  316. }
  317. if (header.compression >= 17) {
  318. av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
  319. return -1;
  320. }
  321. if ((header.deltaset != s->last_deltaset) ||
  322. (header.vectable != s->last_vectable))
  323. select_delta_tables(s, header.deltaset);
  324. if ((header.compression & 1) && header.header_type)
  325. sel_vector_table = pc_tbl2;
  326. else {
  327. if (header.vectable > 0 && header.vectable < 4)
  328. sel_vector_table = tables[header.vectable - 1];
  329. else {
  330. av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
  331. return -1;
  332. }
  333. }
  334. if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
  335. new_pix_fmt = PIX_FMT_RGB32;
  336. width_shift = 1;
  337. } else
  338. new_pix_fmt = PIX_FMT_RGB555; // RGB565 is supported as well
  339. s->w >>= width_shift;
  340. if (av_image_check_size(s->w, s->h, 0, s->avctx) < 0)
  341. return -1;
  342. if (s->w != s->avctx->width || s->h != s->avctx->height ||
  343. new_pix_fmt != s->avctx->pix_fmt) {
  344. if (s->frame.data[0])
  345. s->avctx->release_buffer(s->avctx, &s->frame);
  346. s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
  347. s->avctx->pix_fmt = new_pix_fmt;
  348. avcodec_set_dimensions(s->avctx, s->w, s->h);
  349. av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
  350. }
  351. /* There is 1 change bit per 4 pixels, so each change byte represents
  352. * 32 pixels; divide width by 4 to obtain the number of change bits and
  353. * then round up to the nearest byte. */
  354. s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
  355. if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
  356. {
  357. if (compression_types[header.compression].algorithm == ALGO_RGB24H)
  358. gen_vector_table24(s, sel_vector_table);
  359. else
  360. if (s->avctx->pix_fmt == PIX_FMT_RGB555)
  361. gen_vector_table15(s, sel_vector_table);
  362. else
  363. gen_vector_table16(s, sel_vector_table);
  364. }
  365. /* set up pointers to the other key data chunks */
  366. s->mb_change_bits = s->buf + header.header_size;
  367. if (s->flags & FLAG_KEYFRAME) {
  368. /* no change bits specified for a keyframe; only index bytes */
  369. s->index_stream = s->mb_change_bits;
  370. } else {
  371. /* one change bit per 4x4 block */
  372. s->index_stream = s->mb_change_bits +
  373. (s->mb_change_bits_row_size * (s->avctx->height >> 2));
  374. }
  375. s->index_stream_size = s->size - (s->index_stream - s->buf);
  376. s->last_deltaset = header.deltaset;
  377. s->last_vectable = header.vectable;
  378. s->compression = header.compression;
  379. s->block_width = compression_types[header.compression].block_width;
  380. s->block_height = compression_types[header.compression].block_height;
  381. s->block_type = compression_types[header.compression].block_type;
  382. if (s->avctx->debug & FF_DEBUG_PICT_INFO)
  383. av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
  384. s->last_deltaset, s->last_vectable, s->compression, s->block_width,
  385. s->block_height, s->block_type,
  386. s->flags & FLAG_KEYFRAME ? " KEY" : "",
  387. s->flags & FLAG_INTERFRAME ? " INTER" : "",
  388. s->flags & FLAG_SPRITE ? " SPRITE" : "",
  389. s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
  390. return header.header_size;
  391. }
  392. static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
  393. {
  394. TrueMotion1Context *s = avctx->priv_data;
  395. s->avctx = avctx;
  396. // FIXME: it may change ?
  397. // if (avctx->bits_per_sample == 24)
  398. // avctx->pix_fmt = PIX_FMT_RGB24;
  399. // else
  400. // avctx->pix_fmt = PIX_FMT_RGB555;
  401. avcodec_get_frame_defaults(&s->frame);
  402. s->frame.data[0] = NULL;
  403. /* there is a vertical predictor for each pixel in a line; each vertical
  404. * predictor is 0 to start with */
  405. av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
  406. return 0;
  407. }
  408. /*
  409. Block decoding order:
  410. dxi: Y-Y
  411. dxic: Y-C-Y
  412. dxic2: Y-C-Y-C
  413. hres,vres,i,i%vres (0 < i < 4)
  414. 2x2 0: 0 dxic2
  415. 2x2 1: 1 dxi
  416. 2x2 2: 0 dxic2
  417. 2x2 3: 1 dxi
  418. 2x4 0: 0 dxic2
  419. 2x4 1: 1 dxi
  420. 2x4 2: 2 dxi
  421. 2x4 3: 3 dxi
  422. 4x2 0: 0 dxic
  423. 4x2 1: 1 dxi
  424. 4x2 2: 0 dxic
  425. 4x2 3: 1 dxi
  426. 4x4 0: 0 dxic
  427. 4x4 1: 1 dxi
  428. 4x4 2: 2 dxi
  429. 4x4 3: 3 dxi
  430. */
  431. #define GET_NEXT_INDEX() \
  432. {\
  433. if (index_stream_index >= s->index_stream_size) { \
  434. av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
  435. return; \
  436. } \
  437. index = s->index_stream[index_stream_index++] * 4; \
  438. }
  439. #define APPLY_C_PREDICTOR() \
  440. if(index > 1023){\
  441. av_log(s->avctx, AV_LOG_ERROR, " index %d went out of bounds\n", index); \
  442. return; \
  443. }\
  444. predictor_pair = s->c_predictor_table[index]; \
  445. horiz_pred += (predictor_pair >> 1); \
  446. if (predictor_pair & 1) { \
  447. GET_NEXT_INDEX() \
  448. if (!index) { \
  449. GET_NEXT_INDEX() \
  450. predictor_pair = s->c_predictor_table[index]; \
  451. horiz_pred += ((predictor_pair >> 1) * 5); \
  452. if (predictor_pair & 1) \
  453. GET_NEXT_INDEX() \
  454. else \
  455. index++; \
  456. } \
  457. } else \
  458. index++;
  459. #define APPLY_C_PREDICTOR_24() \
  460. if(index > 1023){\
  461. av_log(s->avctx, AV_LOG_ERROR, " index %d went out of bounds\n", index); \
  462. return; \
  463. }\
  464. predictor_pair = s->c_predictor_table[index]; \
  465. horiz_pred += (predictor_pair >> 1); \
  466. if (predictor_pair & 1) { \
  467. GET_NEXT_INDEX() \
  468. if (!index) { \
  469. GET_NEXT_INDEX() \
  470. predictor_pair = s->fat_c_predictor_table[index]; \
  471. horiz_pred += (predictor_pair >> 1); \
  472. if (predictor_pair & 1) \
  473. GET_NEXT_INDEX() \
  474. else \
  475. index++; \
  476. } \
  477. } else \
  478. index++;
  479. #define APPLY_Y_PREDICTOR() \
  480. if(index > 1023){\
  481. av_log(s->avctx, AV_LOG_ERROR, " index %d went out of bounds\n", index); \
  482. return; \
  483. }\
  484. predictor_pair = s->y_predictor_table[index]; \
  485. horiz_pred += (predictor_pair >> 1); \
  486. if (predictor_pair & 1) { \
  487. GET_NEXT_INDEX() \
  488. if (!index) { \
  489. GET_NEXT_INDEX() \
  490. predictor_pair = s->y_predictor_table[index]; \
  491. horiz_pred += ((predictor_pair >> 1) * 5); \
  492. if (predictor_pair & 1) \
  493. GET_NEXT_INDEX() \
  494. else \
  495. index++; \
  496. } \
  497. } else \
  498. index++;
  499. #define APPLY_Y_PREDICTOR_24() \
  500. if(index > 1023){\
  501. av_log(s->avctx, AV_LOG_ERROR, " index %d went out of bounds\n", index); \
  502. return; \
  503. }\
  504. predictor_pair = s->y_predictor_table[index]; \
  505. horiz_pred += (predictor_pair >> 1); \
  506. if (predictor_pair & 1) { \
  507. GET_NEXT_INDEX() \
  508. if (!index) { \
  509. GET_NEXT_INDEX() \
  510. predictor_pair = s->fat_y_predictor_table[index]; \
  511. horiz_pred += (predictor_pair >> 1); \
  512. if (predictor_pair & 1) \
  513. GET_NEXT_INDEX() \
  514. else \
  515. index++; \
  516. } \
  517. } else \
  518. index++;
  519. #define OUTPUT_PIXEL_PAIR() \
  520. *current_pixel_pair = *vert_pred + horiz_pred; \
  521. *vert_pred++ = *current_pixel_pair++;
  522. static void truemotion1_decode_16bit(TrueMotion1Context *s)
  523. {
  524. int y;
  525. int pixels_left; /* remaining pixels on this line */
  526. unsigned int predictor_pair;
  527. unsigned int horiz_pred;
  528. unsigned int *vert_pred;
  529. unsigned int *current_pixel_pair;
  530. unsigned char *current_line = s->frame.data[0];
  531. int keyframe = s->flags & FLAG_KEYFRAME;
  532. /* these variables are for managing the stream of macroblock change bits */
  533. const unsigned char *mb_change_bits = s->mb_change_bits;
  534. unsigned char mb_change_byte;
  535. unsigned char mb_change_byte_mask;
  536. int mb_change_index;
  537. /* these variables are for managing the main index stream */
  538. int index_stream_index = 0; /* yes, the index into the index stream */
  539. int index;
  540. /* clean out the line buffer */
  541. memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
  542. GET_NEXT_INDEX();
  543. for (y = 0; y < s->avctx->height; y++) {
  544. /* re-init variables for the next line iteration */
  545. horiz_pred = 0;
  546. current_pixel_pair = (unsigned int *)current_line;
  547. vert_pred = s->vert_pred;
  548. mb_change_index = 0;
  549. mb_change_byte = mb_change_bits[mb_change_index++];
  550. mb_change_byte_mask = 0x01;
  551. pixels_left = s->avctx->width;
  552. while (pixels_left > 0) {
  553. if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
  554. switch (y & 3) {
  555. case 0:
  556. /* if macroblock width is 2, apply C-Y-C-Y; else
  557. * apply C-Y-Y */
  558. if (s->block_width == 2) {
  559. APPLY_C_PREDICTOR();
  560. APPLY_Y_PREDICTOR();
  561. OUTPUT_PIXEL_PAIR();
  562. APPLY_C_PREDICTOR();
  563. APPLY_Y_PREDICTOR();
  564. OUTPUT_PIXEL_PAIR();
  565. } else {
  566. APPLY_C_PREDICTOR();
  567. APPLY_Y_PREDICTOR();
  568. OUTPUT_PIXEL_PAIR();
  569. APPLY_Y_PREDICTOR();
  570. OUTPUT_PIXEL_PAIR();
  571. }
  572. break;
  573. case 1:
  574. case 3:
  575. /* always apply 2 Y predictors on these iterations */
  576. APPLY_Y_PREDICTOR();
  577. OUTPUT_PIXEL_PAIR();
  578. APPLY_Y_PREDICTOR();
  579. OUTPUT_PIXEL_PAIR();
  580. break;
  581. case 2:
  582. /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
  583. * depending on the macroblock type */
  584. if (s->block_type == BLOCK_2x2) {
  585. APPLY_C_PREDICTOR();
  586. APPLY_Y_PREDICTOR();
  587. OUTPUT_PIXEL_PAIR();
  588. APPLY_C_PREDICTOR();
  589. APPLY_Y_PREDICTOR();
  590. OUTPUT_PIXEL_PAIR();
  591. } else if (s->block_type == BLOCK_4x2) {
  592. APPLY_C_PREDICTOR();
  593. APPLY_Y_PREDICTOR();
  594. OUTPUT_PIXEL_PAIR();
  595. APPLY_Y_PREDICTOR();
  596. OUTPUT_PIXEL_PAIR();
  597. } else {
  598. APPLY_Y_PREDICTOR();
  599. OUTPUT_PIXEL_PAIR();
  600. APPLY_Y_PREDICTOR();
  601. OUTPUT_PIXEL_PAIR();
  602. }
  603. break;
  604. }
  605. } else {
  606. /* skip (copy) four pixels, but reassign the horizontal
  607. * predictor */
  608. *vert_pred++ = *current_pixel_pair++;
  609. horiz_pred = *current_pixel_pair - *vert_pred;
  610. *vert_pred++ = *current_pixel_pair++;
  611. }
  612. if (!keyframe) {
  613. mb_change_byte_mask <<= 1;
  614. /* next byte */
  615. if (!mb_change_byte_mask) {
  616. mb_change_byte = mb_change_bits[mb_change_index++];
  617. mb_change_byte_mask = 0x01;
  618. }
  619. }
  620. pixels_left -= 4;
  621. }
  622. /* next change row */
  623. if (((y + 1) & 3) == 0)
  624. mb_change_bits += s->mb_change_bits_row_size;
  625. current_line += s->frame.linesize[0];
  626. }
  627. }
  628. static void truemotion1_decode_24bit(TrueMotion1Context *s)
  629. {
  630. int y;
  631. int pixels_left; /* remaining pixels on this line */
  632. unsigned int predictor_pair;
  633. unsigned int horiz_pred;
  634. unsigned int *vert_pred;
  635. unsigned int *current_pixel_pair;
  636. unsigned char *current_line = s->frame.data[0];
  637. int keyframe = s->flags & FLAG_KEYFRAME;
  638. /* these variables are for managing the stream of macroblock change bits */
  639. const unsigned char *mb_change_bits = s->mb_change_bits;
  640. unsigned char mb_change_byte;
  641. unsigned char mb_change_byte_mask;
  642. int mb_change_index;
  643. /* these variables are for managing the main index stream */
  644. int index_stream_index = 0; /* yes, the index into the index stream */
  645. int index;
  646. /* clean out the line buffer */
  647. memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
  648. GET_NEXT_INDEX();
  649. for (y = 0; y < s->avctx->height; y++) {
  650. /* re-init variables for the next line iteration */
  651. horiz_pred = 0;
  652. current_pixel_pair = (unsigned int *)current_line;
  653. vert_pred = s->vert_pred;
  654. mb_change_index = 0;
  655. mb_change_byte = mb_change_bits[mb_change_index++];
  656. mb_change_byte_mask = 0x01;
  657. pixels_left = s->avctx->width;
  658. while (pixels_left > 0) {
  659. if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
  660. switch (y & 3) {
  661. case 0:
  662. /* if macroblock width is 2, apply C-Y-C-Y; else
  663. * apply C-Y-Y */
  664. if (s->block_width == 2) {
  665. APPLY_C_PREDICTOR_24();
  666. APPLY_Y_PREDICTOR_24();
  667. OUTPUT_PIXEL_PAIR();
  668. APPLY_C_PREDICTOR_24();
  669. APPLY_Y_PREDICTOR_24();
  670. OUTPUT_PIXEL_PAIR();
  671. } else {
  672. APPLY_C_PREDICTOR_24();
  673. APPLY_Y_PREDICTOR_24();
  674. OUTPUT_PIXEL_PAIR();
  675. APPLY_Y_PREDICTOR_24();
  676. OUTPUT_PIXEL_PAIR();
  677. }
  678. break;
  679. case 1:
  680. case 3:
  681. /* always apply 2 Y predictors on these iterations */
  682. APPLY_Y_PREDICTOR_24();
  683. OUTPUT_PIXEL_PAIR();
  684. APPLY_Y_PREDICTOR_24();
  685. OUTPUT_PIXEL_PAIR();
  686. break;
  687. case 2:
  688. /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
  689. * depending on the macroblock type */
  690. if (s->block_type == BLOCK_2x2) {
  691. APPLY_C_PREDICTOR_24();
  692. APPLY_Y_PREDICTOR_24();
  693. OUTPUT_PIXEL_PAIR();
  694. APPLY_C_PREDICTOR_24();
  695. APPLY_Y_PREDICTOR_24();
  696. OUTPUT_PIXEL_PAIR();
  697. } else if (s->block_type == BLOCK_4x2) {
  698. APPLY_C_PREDICTOR_24();
  699. APPLY_Y_PREDICTOR_24();
  700. OUTPUT_PIXEL_PAIR();
  701. APPLY_Y_PREDICTOR_24();
  702. OUTPUT_PIXEL_PAIR();
  703. } else {
  704. APPLY_Y_PREDICTOR_24();
  705. OUTPUT_PIXEL_PAIR();
  706. APPLY_Y_PREDICTOR_24();
  707. OUTPUT_PIXEL_PAIR();
  708. }
  709. break;
  710. }
  711. } else {
  712. /* skip (copy) four pixels, but reassign the horizontal
  713. * predictor */
  714. *vert_pred++ = *current_pixel_pair++;
  715. horiz_pred = *current_pixel_pair - *vert_pred;
  716. *vert_pred++ = *current_pixel_pair++;
  717. }
  718. if (!keyframe) {
  719. mb_change_byte_mask <<= 1;
  720. /* next byte */
  721. if (!mb_change_byte_mask) {
  722. mb_change_byte = mb_change_bits[mb_change_index++];
  723. mb_change_byte_mask = 0x01;
  724. }
  725. }
  726. pixels_left -= 2;
  727. }
  728. /* next change row */
  729. if (((y + 1) & 3) == 0)
  730. mb_change_bits += s->mb_change_bits_row_size;
  731. current_line += s->frame.linesize[0];
  732. }
  733. }
  734. static int truemotion1_decode_frame(AVCodecContext *avctx,
  735. void *data, int *data_size,
  736. AVPacket *avpkt)
  737. {
  738. const uint8_t *buf = avpkt->data;
  739. int buf_size = avpkt->size;
  740. TrueMotion1Context *s = avctx->priv_data;
  741. s->buf = buf;
  742. s->size = buf_size;
  743. if (truemotion1_decode_header(s) == -1)
  744. return -1;
  745. s->frame.reference = 3;
  746. s->frame.buffer_hints = FF_BUFFER_HINTS_VALID |
  747. FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
  748. if (avctx->reget_buffer(avctx, &s->frame) < 0) {
  749. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  750. return -1;
  751. }
  752. if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
  753. truemotion1_decode_24bit(s);
  754. } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
  755. truemotion1_decode_16bit(s);
  756. }
  757. *data_size = sizeof(AVFrame);
  758. *(AVFrame*)data = s->frame;
  759. /* report that the buffer was completely consumed */
  760. return buf_size;
  761. }
  762. static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
  763. {
  764. TrueMotion1Context *s = avctx->priv_data;
  765. if (s->frame.data[0])
  766. avctx->release_buffer(avctx, &s->frame);
  767. av_free(s->vert_pred);
  768. return 0;
  769. }
  770. AVCodec ff_truemotion1_decoder = {
  771. .name = "truemotion1",
  772. .type = AVMEDIA_TYPE_VIDEO,
  773. .id = CODEC_ID_TRUEMOTION1,
  774. .priv_data_size = sizeof(TrueMotion1Context),
  775. .init = truemotion1_decode_init,
  776. .close = truemotion1_decode_end,
  777. .decode = truemotion1_decode_frame,
  778. .capabilities = CODEC_CAP_DR1,
  779. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
  780. };