You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

363 lines
14KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #define USE_FIXED 0
  28. #include "aac.h"
  29. #include "sbr.h"
  30. #include "aacsbr.h"
  31. #include "aacsbrdata.h"
  32. #include "aacsbr_tablegen.h"
  33. #include "fft.h"
  34. #include "aacps.h"
  35. #include "sbrdsp.h"
  36. #include "libavutil/internal.h"
  37. #include "libavutil/libm.h"
  38. #include "libavutil/avassert.h"
  39. #include <stdint.h>
  40. #include <float.h>
  41. #include <math.h>
  42. #if ARCH_MIPS
  43. #include "mips/aacsbr_mips.h"
  44. #endif /* ARCH_MIPS */
  45. static VLC vlc_sbr[10];
  46. static void aacsbr_func_ptr_init(AACSBRContext *c);
  47. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  48. {
  49. int k, previous, present;
  50. float base, prod;
  51. base = powf((float)stop / start, 1.0f / num_bands);
  52. prod = start;
  53. previous = start;
  54. for (k = 0; k < num_bands-1; k++) {
  55. prod *= base;
  56. present = lrintf(prod);
  57. bands[k] = present - previous;
  58. previous = present;
  59. }
  60. bands[num_bands-1] = stop - previous;
  61. }
  62. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  63. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  64. {
  65. int k, e;
  66. int ch;
  67. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  68. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  69. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  70. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  71. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  72. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  73. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  74. float fac;
  75. if (temp1 > 1E20) {
  76. av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
  77. temp1 = 1;
  78. }
  79. fac = temp1 / (1.0f + temp2);
  80. sbr->data[0].env_facs[e][k] = fac;
  81. sbr->data[1].env_facs[e][k] = fac * temp2;
  82. }
  83. }
  84. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  85. for (k = 0; k < sbr->n_q; k++) {
  86. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  87. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  88. float fac;
  89. if (temp1 > 1E20) {
  90. av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
  91. temp1 = 1;
  92. }
  93. fac = temp1 / (1.0f + temp2);
  94. sbr->data[0].noise_facs[e][k] = fac;
  95. sbr->data[1].noise_facs[e][k] = fac * temp2;
  96. }
  97. }
  98. } else { // SCE or one non-coupled CPE
  99. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  100. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  101. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  102. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
  103. sbr->data[ch].env_facs[e][k] =
  104. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  105. if (sbr->data[ch].env_facs[e][k] > 1E20) {
  106. av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
  107. sbr->data[ch].env_facs[e][k] = 1;
  108. }
  109. }
  110. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  111. for (k = 0; k < sbr->n_q; k++)
  112. sbr->data[ch].noise_facs[e][k] =
  113. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  114. }
  115. }
  116. }
  117. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  118. * (14496-3 sp04 p214)
  119. * Warning: This routine does not seem numerically stable.
  120. */
  121. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  122. float (*alpha0)[2], float (*alpha1)[2],
  123. const float X_low[32][40][2], int k0)
  124. {
  125. int k;
  126. for (k = 0; k < k0; k++) {
  127. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  128. float dk;
  129. dsp->autocorrelate(X_low[k], phi);
  130. dk = phi[2][1][0] * phi[1][0][0] -
  131. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  132. if (!dk) {
  133. alpha1[k][0] = 0;
  134. alpha1[k][1] = 0;
  135. } else {
  136. float temp_real, temp_im;
  137. temp_real = phi[0][0][0] * phi[1][1][0] -
  138. phi[0][0][1] * phi[1][1][1] -
  139. phi[0][1][0] * phi[1][0][0];
  140. temp_im = phi[0][0][0] * phi[1][1][1] +
  141. phi[0][0][1] * phi[1][1][0] -
  142. phi[0][1][1] * phi[1][0][0];
  143. alpha1[k][0] = temp_real / dk;
  144. alpha1[k][1] = temp_im / dk;
  145. }
  146. if (!phi[1][0][0]) {
  147. alpha0[k][0] = 0;
  148. alpha0[k][1] = 0;
  149. } else {
  150. float temp_real, temp_im;
  151. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  152. alpha1[k][1] * phi[1][1][1];
  153. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  154. alpha1[k][0] * phi[1][1][1];
  155. alpha0[k][0] = -temp_real / phi[1][0][0];
  156. alpha0[k][1] = -temp_im / phi[1][0][0];
  157. }
  158. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  159. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  160. alpha1[k][0] = 0;
  161. alpha1[k][1] = 0;
  162. alpha0[k][0] = 0;
  163. alpha0[k][1] = 0;
  164. }
  165. }
  166. }
  167. /// Chirp Factors (14496-3 sp04 p214)
  168. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  169. {
  170. int i;
  171. float new_bw;
  172. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  173. for (i = 0; i < sbr->n_q; i++) {
  174. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  175. new_bw = 0.6f;
  176. } else
  177. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  178. if (new_bw < ch_data->bw_array[i]) {
  179. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  180. } else
  181. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  182. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  183. }
  184. }
  185. /**
  186. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  187. * and Calculation of gain (14496-3 sp04 p219)
  188. */
  189. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  190. SBRData *ch_data, const int e_a[2])
  191. {
  192. int e, k, m;
  193. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  194. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  195. for (e = 0; e < ch_data->bs_num_env; e++) {
  196. int delta = !((e == e_a[1]) || (e == e_a[0]));
  197. for (k = 0; k < sbr->n_lim; k++) {
  198. float gain_boost, gain_max;
  199. float sum[2] = { 0.0f, 0.0f };
  200. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  201. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  202. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  203. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  204. if (!sbr->s_mapped[e][m]) {
  205. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  206. ((1.0f + sbr->e_curr[e][m]) *
  207. (1.0f + sbr->q_mapped[e][m] * delta)));
  208. } else {
  209. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  210. ((1.0f + sbr->e_curr[e][m]) *
  211. (1.0f + sbr->q_mapped[e][m])));
  212. }
  213. }
  214. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  215. sum[0] += sbr->e_origmapped[e][m];
  216. sum[1] += sbr->e_curr[e][m];
  217. }
  218. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  219. gain_max = FFMIN(100000.f, gain_max);
  220. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  221. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  222. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  223. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  224. }
  225. sum[0] = sum[1] = 0.0f;
  226. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  227. sum[0] += sbr->e_origmapped[e][m];
  228. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  229. + sbr->s_m[e][m] * sbr->s_m[e][m]
  230. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  231. }
  232. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  233. gain_boost = FFMIN(1.584893192f, gain_boost);
  234. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  235. sbr->gain[e][m] *= gain_boost;
  236. sbr->q_m[e][m] *= gain_boost;
  237. sbr->s_m[e][m] *= gain_boost;
  238. }
  239. }
  240. }
  241. }
  242. /// Assembling HF Signals (14496-3 sp04 p220)
  243. static void sbr_hf_assemble(float Y1[38][64][2],
  244. const float X_high[64][40][2],
  245. SpectralBandReplication *sbr, SBRData *ch_data,
  246. const int e_a[2])
  247. {
  248. int e, i, j, m;
  249. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  250. const int kx = sbr->kx[1];
  251. const int m_max = sbr->m[1];
  252. static const float h_smooth[5] = {
  253. 0.33333333333333,
  254. 0.30150283239582,
  255. 0.21816949906249,
  256. 0.11516383427084,
  257. 0.03183050093751,
  258. };
  259. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  260. int indexnoise = ch_data->f_indexnoise;
  261. int indexsine = ch_data->f_indexsine;
  262. if (sbr->reset) {
  263. for (i = 0; i < h_SL; i++) {
  264. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  265. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  266. }
  267. } else if (h_SL) {
  268. for (i = 0; i < 4; i++) {
  269. memcpy(g_temp[i + 2 * ch_data->t_env[0]],
  270. g_temp[i + 2 * ch_data->t_env_num_env_old],
  271. sizeof(g_temp[0]));
  272. memcpy(q_temp[i + 2 * ch_data->t_env[0]],
  273. q_temp[i + 2 * ch_data->t_env_num_env_old],
  274. sizeof(q_temp[0]));
  275. }
  276. }
  277. for (e = 0; e < ch_data->bs_num_env; e++) {
  278. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  279. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  280. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  281. }
  282. }
  283. for (e = 0; e < ch_data->bs_num_env; e++) {
  284. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  285. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  286. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  287. float *g_filt, *q_filt;
  288. if (h_SL && e != e_a[0] && e != e_a[1]) {
  289. g_filt = g_filt_tab;
  290. q_filt = q_filt_tab;
  291. for (m = 0; m < m_max; m++) {
  292. const int idx1 = i + h_SL;
  293. g_filt[m] = 0.0f;
  294. q_filt[m] = 0.0f;
  295. for (j = 0; j <= h_SL; j++) {
  296. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  297. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  298. }
  299. }
  300. } else {
  301. g_filt = g_temp[i + h_SL];
  302. q_filt = q_temp[i];
  303. }
  304. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  305. i + ENVELOPE_ADJUSTMENT_OFFSET);
  306. if (e != e_a[0] && e != e_a[1]) {
  307. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  308. q_filt, indexnoise,
  309. kx, m_max);
  310. } else {
  311. int idx = indexsine&1;
  312. int A = (1-((indexsine+(kx & 1))&2));
  313. int B = (A^(-idx)) + idx;
  314. float *out = &Y1[i][kx][idx];
  315. float *in = sbr->s_m[e];
  316. for (m = 0; m+1 < m_max; m+=2) {
  317. out[2*m ] += in[m ] * A;
  318. out[2*m+2] += in[m+1] * B;
  319. }
  320. if(m_max&1)
  321. out[2*m ] += in[m ] * A;
  322. }
  323. indexnoise = (indexnoise + m_max) & 0x1ff;
  324. indexsine = (indexsine + 1) & 3;
  325. }
  326. }
  327. ch_data->f_indexnoise = indexnoise;
  328. ch_data->f_indexsine = indexsine;
  329. }
  330. #include "aacsbr_template.c"