You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1423 lines
44KB

  1. /*
  2. * Copyright (c) 2018 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <float.h>
  21. #include "libavutil/audio_fifo.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/opt.h"
  25. #include "libavcodec/avfft.h"
  26. #include "avfilter.h"
  27. #include "audio.h"
  28. #include "formats.h"
  29. #define C (M_LN10 * 0.1)
  30. #define RATIO 0.98
  31. #define RRATIO (1.0 - RATIO)
  32. enum OutModes {
  33. IN_MODE,
  34. OUT_MODE,
  35. NOISE_MODE,
  36. NB_MODES
  37. };
  38. enum NoiseType {
  39. WHITE_NOISE,
  40. VINYL_NOISE,
  41. SHELLAC_NOISE,
  42. CUSTOM_NOISE,
  43. NB_NOISE
  44. };
  45. typedef struct DeNoiseChannel {
  46. int band_noise[15];
  47. double noise_band_auto_var[15];
  48. double noise_band_sample[15];
  49. double *amt;
  50. double *band_amt;
  51. double *band_excit;
  52. double *gain;
  53. double *prior;
  54. double *prior_band_excit;
  55. double *clean_data;
  56. double *noisy_data;
  57. double *out_samples;
  58. double *spread_function;
  59. double *abs_var;
  60. double *rel_var;
  61. double *min_abs_var;
  62. FFTComplex *fft_data;
  63. FFTContext *fft, *ifft;
  64. double noise_band_norm[15];
  65. double noise_band_avr[15];
  66. double noise_band_avi[15];
  67. double noise_band_var[15];
  68. double sfm_threshold;
  69. double sfm_alpha;
  70. double sfm_results[3];
  71. int sfm_fail_flags[512];
  72. int sfm_fail_total;
  73. } DeNoiseChannel;
  74. typedef struct AudioFFTDeNoiseContext {
  75. const AVClass *class;
  76. float noise_reduction;
  77. float noise_floor;
  78. int noise_type;
  79. char *band_noise_str;
  80. float residual_floor;
  81. int track_noise;
  82. int track_residual;
  83. int output_mode;
  84. float last_residual_floor;
  85. float last_noise_floor;
  86. float last_noise_reduction;
  87. float last_noise_balance;
  88. int64_t block_count;
  89. int64_t pts;
  90. int channels;
  91. int sample_noise;
  92. int sample_noise_start;
  93. int sample_noise_end;
  94. float sample_rate;
  95. int buffer_length;
  96. int fft_length;
  97. int fft_length2;
  98. int bin_count;
  99. int window_length;
  100. int sample_advance;
  101. int number_of_bands;
  102. int band_centre[15];
  103. int *bin2band;
  104. double *window;
  105. double *band_alpha;
  106. double *band_beta;
  107. DeNoiseChannel *dnch;
  108. double max_gain;
  109. double max_var;
  110. double gain_scale;
  111. double window_weight;
  112. double floor;
  113. double sample_floor;
  114. double auto_floor;
  115. int noise_band_edge[17];
  116. int noise_band_count;
  117. double matrix_a[25];
  118. double vector_b[5];
  119. double matrix_b[75];
  120. double matrix_c[75];
  121. AVAudioFifo *fifo;
  122. } AudioFFTDeNoiseContext;
  123. #define OFFSET(x) offsetof(AudioFFTDeNoiseContext, x)
  124. #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  125. static const AVOption afftdn_options[] = {
  126. { "nr", "set the noise reduction", OFFSET(noise_reduction), AV_OPT_TYPE_FLOAT, {.dbl = 12}, .01, 97, A },
  127. { "nf", "set the noise floor", OFFSET(noise_floor), AV_OPT_TYPE_FLOAT, {.dbl =-50}, -80,-20, A },
  128. { "nt", "set the noise type", OFFSET(noise_type), AV_OPT_TYPE_INT, {.i64 = WHITE_NOISE}, WHITE_NOISE, NB_NOISE-1, A, "type" },
  129. { "w", "white noise", 0, AV_OPT_TYPE_CONST, {.i64 = WHITE_NOISE}, 0, 0, A, "type" },
  130. { "v", "vinyl noise", 0, AV_OPT_TYPE_CONST, {.i64 = VINYL_NOISE}, 0, 0, A, "type" },
  131. { "s", "shellac noise", 0, AV_OPT_TYPE_CONST, {.i64 = SHELLAC_NOISE}, 0, 0, A, "type" },
  132. { "c", "custom noise", 0, AV_OPT_TYPE_CONST, {.i64 = CUSTOM_NOISE}, 0, 0, A, "type" },
  133. { "bn", "set the custom bands noise", OFFSET(band_noise_str), AV_OPT_TYPE_STRING, {.str = 0}, 0, 0, A },
  134. { "rf", "set the residual floor", OFFSET(residual_floor), AV_OPT_TYPE_FLOAT, {.dbl =-38}, -80,-20, A },
  135. { "tn", "track noise", OFFSET(track_noise), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A },
  136. { "tr", "track residual", OFFSET(track_residual), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A },
  137. { "om", "set output mode", OFFSET(output_mode), AV_OPT_TYPE_INT, {.i64 = OUT_MODE}, 0, NB_MODES-1, A, "mode" },
  138. { "i", "input", 0, AV_OPT_TYPE_CONST, {.i64 = IN_MODE}, 0, 0, A, "mode" },
  139. { "o", "output", 0, AV_OPT_TYPE_CONST, {.i64 = OUT_MODE}, 0, 0, A, "mode" },
  140. { "n", "noise", 0, AV_OPT_TYPE_CONST, {.i64 = NOISE_MODE}, 0, 0, A, "mode" },
  141. { NULL }
  142. };
  143. AVFILTER_DEFINE_CLASS(afftdn);
  144. static int get_band_noise(AudioFFTDeNoiseContext *s,
  145. int band, double a,
  146. double b, double c)
  147. {
  148. double d1, d2, d3;
  149. d1 = a / s->band_centre[band];
  150. d1 = 10.0 * log(1.0 + d1 * d1) / M_LN10;
  151. d2 = b / s->band_centre[band];
  152. d2 = 10.0 * log(1.0 + d2 * d2) / M_LN10;
  153. d3 = s->band_centre[band] / c;
  154. d3 = 10.0 * log(1.0 + d3 * d3) / M_LN10;
  155. return lrint(-d1 + d2 - d3);
  156. }
  157. static void factor(double *array, int size)
  158. {
  159. for (int i = 0; i < size - 1; i++) {
  160. for (int j = i + 1; j < size; j++) {
  161. double d = array[j + i * size] / array[i + i * size];
  162. array[j + i * size] = d;
  163. for (int k = i + 1; k < size; k++) {
  164. array[j + k * size] -= d * array[i + k * size];
  165. }
  166. }
  167. }
  168. }
  169. static void solve(double *matrix, double *vector, int size)
  170. {
  171. for (int i = 0; i < size - 1; i++) {
  172. for (int j = i + 1; j < size; j++) {
  173. double d = matrix[j + i * size];
  174. vector[j] -= d * vector[i];
  175. }
  176. }
  177. vector[size - 1] /= matrix[size * size - 1];
  178. for (int i = size - 2; i >= 0; i--) {
  179. double d = vector[i];
  180. for (int j = i + 1; j < size; j++)
  181. d -= matrix[i + j * size] * vector[j];
  182. vector[i] = d / matrix[i + i * size];
  183. }
  184. }
  185. static int process_get_band_noise(AudioFFTDeNoiseContext *s,
  186. DeNoiseChannel *dnch,
  187. int band)
  188. {
  189. double product, sum, f;
  190. int i = 0;
  191. if (band < 15)
  192. return dnch->band_noise[band];
  193. for (int j = 0; j < 5; j++) {
  194. sum = 0.0;
  195. for (int k = 0; k < 15; k++)
  196. sum += s->matrix_b[i++] * dnch->band_noise[k];
  197. s->vector_b[j] = sum;
  198. }
  199. solve(s->matrix_a, s->vector_b, 5);
  200. f = (0.5 * s->sample_rate) / s->band_centre[14];
  201. f = 15.0 + log(f / 1.5) / log(1.5);
  202. sum = 0.0;
  203. product = 1.0;
  204. for (int j = 0; j < 5; j++) {
  205. sum += product * s->vector_b[j];
  206. product *= f;
  207. }
  208. return lrint(sum);
  209. }
  210. static void calculate_sfm(AudioFFTDeNoiseContext *s,
  211. DeNoiseChannel *dnch,
  212. int start, int end)
  213. {
  214. double d1 = 0.0, d2 = 1.0;
  215. int i = 0, j = 0;
  216. for (int k = start; k < end; k++) {
  217. if (dnch->noisy_data[k] > s->sample_floor) {
  218. j++;
  219. d1 += dnch->noisy_data[k];
  220. d2 *= dnch->noisy_data[k];
  221. if (d2 > 1.0E100) {
  222. d2 *= 1.0E-100;
  223. i++;
  224. } else if (d2 < 1.0E-100) {
  225. d2 *= 1.0E100;
  226. i--;
  227. }
  228. }
  229. }
  230. if (j > 1) {
  231. d1 /= j;
  232. dnch->sfm_results[0] = d1;
  233. d2 = log(d2) + 230.2585 * i;
  234. d2 /= j;
  235. d1 = log(d1);
  236. dnch->sfm_results[1] = d1;
  237. dnch->sfm_results[2] = d1 - d2;
  238. } else {
  239. dnch->sfm_results[0] = s->auto_floor;
  240. dnch->sfm_results[1] = dnch->sfm_threshold;
  241. dnch->sfm_results[2] = dnch->sfm_threshold;
  242. }
  243. }
  244. static double limit_gain(double a, double b)
  245. {
  246. if (a > 1.0)
  247. return (b * a - 1.0) / (b + a - 2.0);
  248. if (a < 1.0)
  249. return (b * a - 2.0 * a + 1.0) / (b - a);
  250. return 1.0;
  251. }
  252. static void process_frame(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch,
  253. FFTComplex *fft_data,
  254. double *prior, double *prior_band_excit, int track_noise)
  255. {
  256. double d1, d2, d3, gain;
  257. int n, i1;
  258. d1 = fft_data[0].re * fft_data[0].re;
  259. dnch->noisy_data[0] = d1;
  260. d2 = d1 / dnch->abs_var[0];
  261. d3 = RATIO * prior[0] + RRATIO * fmax(d2 - 1.0, 0.0);
  262. gain = d3 / (1.0 + d3);
  263. gain *= (gain + M_PI_4 / fmax(d2, 1.0E-6));
  264. prior[0] = (d2 * gain);
  265. dnch->clean_data[0] = (d1 * gain);
  266. gain = sqrt(gain);
  267. dnch->gain[0] = gain;
  268. n = 0;
  269. for (int i = 1; i < s->fft_length2; i++) {
  270. d1 = fft_data[i].re * fft_data[i].re + fft_data[i].im * fft_data[i].im;
  271. if (d1 > s->sample_floor)
  272. n = i;
  273. dnch->noisy_data[i] = d1;
  274. d2 = d1 / dnch->abs_var[i];
  275. d3 = RATIO * prior[i] + RRATIO * fmax(d2 - 1.0, 0.0);
  276. gain = d3 / (1.0 + d3);
  277. gain *= (gain + M_PI_4 / fmax(d2, 1.0E-6));
  278. prior[i] = d2 * gain;
  279. dnch->clean_data[i] = d1 * gain;
  280. gain = sqrt(gain);
  281. dnch->gain[i] = gain;
  282. }
  283. d1 = fft_data[0].im * fft_data[0].im;
  284. if (d1 > s->sample_floor)
  285. n = s->fft_length2;
  286. dnch->noisy_data[s->fft_length2] = d1;
  287. d2 = d1 / dnch->abs_var[s->fft_length2];
  288. d3 = RATIO * prior[s->fft_length2] + RRATIO * fmax(d2 - 1.0, 0.0);
  289. gain = d3 / (1.0 + d3);
  290. gain *= gain + M_PI_4 / fmax(d2, 1.0E-6);
  291. prior[s->fft_length2] = d2 * gain;
  292. dnch->clean_data[s->fft_length2] = d1 * gain;
  293. gain = sqrt(gain);
  294. dnch->gain[s->fft_length2] = gain;
  295. if (n > s->fft_length2 - 2) {
  296. n = s->bin_count;
  297. i1 = s->noise_band_count;
  298. } else {
  299. i1 = 0;
  300. for (int i = 0; i <= s->noise_band_count; i++) {
  301. if (n > 1.1 * s->noise_band_edge[i]) {
  302. i1 = i;
  303. }
  304. }
  305. }
  306. if (track_noise && (i1 > s->noise_band_count / 2)) {
  307. int j = FFMIN(n, s->noise_band_edge[i1]);
  308. int m = 3, k;
  309. for (k = i1 - 1; k >= 0; k--) {
  310. int i = s->noise_band_edge[k];
  311. calculate_sfm(s, dnch, i, j);
  312. dnch->noise_band_sample[k] = dnch->sfm_results[0];
  313. if (dnch->sfm_results[2] + 0.013 * m * fmax(0.0, dnch->sfm_results[1] - 20.53) >= dnch->sfm_threshold) {
  314. break;
  315. }
  316. j = i;
  317. m++;
  318. }
  319. if (k < i1 - 1) {
  320. double sum = 0.0, min, max;
  321. int i;
  322. for (i = i1 - 1; i > k; i--) {
  323. min = log(dnch->noise_band_sample[i] / dnch->noise_band_auto_var[i]);
  324. sum += min;
  325. }
  326. i = i1 - k - 1;
  327. if (i < 5) {
  328. min = 3.0E-4 * i * i;
  329. } else {
  330. min = 3.0E-4 * (8 * i - 16);
  331. }
  332. if (i < 3) {
  333. max = 2.0E-4 * i * i;
  334. } else {
  335. max = 2.0E-4 * (4 * i - 4);
  336. }
  337. if (s->track_residual) {
  338. if (s->last_noise_floor > s->last_residual_floor + 9) {
  339. min *= 0.5;
  340. max *= 0.75;
  341. } else if (s->last_noise_floor > s->last_residual_floor + 6) {
  342. min *= 0.4;
  343. max *= 1.0;
  344. } else if (s->last_noise_floor > s->last_residual_floor + 4) {
  345. min *= 0.3;
  346. max *= 1.3;
  347. } else if (s->last_noise_floor > s->last_residual_floor + 2) {
  348. min *= 0.2;
  349. max *= 1.6;
  350. } else if (s->last_noise_floor > s->last_residual_floor) {
  351. min *= 0.1;
  352. max *= 2.0;
  353. } else {
  354. min = 0.0;
  355. max *= 2.5;
  356. }
  357. }
  358. sum = av_clipd(sum, -min, max);
  359. sum = exp(sum);
  360. for (int i = 0; i < 15; i++)
  361. dnch->noise_band_auto_var[i] *= sum;
  362. } else if (dnch->sfm_results[2] >= dnch->sfm_threshold) {
  363. dnch->sfm_fail_flags[s->block_count & 0x1FF] = 1;
  364. dnch->sfm_fail_total += 1;
  365. }
  366. }
  367. for (int i = 0; i < s->number_of_bands; i++) {
  368. dnch->band_excit[i] = 0.0;
  369. dnch->band_amt[i] = 0.0;
  370. }
  371. for (int i = 0; i < s->bin_count; i++) {
  372. dnch->band_excit[s->bin2band[i]] += dnch->clean_data[i];
  373. }
  374. for (int i = 0; i < s->number_of_bands; i++) {
  375. dnch->band_excit[i] = fmax(dnch->band_excit[i],
  376. s->band_alpha[i] * dnch->band_excit[i] +
  377. s->band_beta[i] * prior_band_excit[i]);
  378. prior_band_excit[i] = dnch->band_excit[i];
  379. }
  380. for (int j = 0, i = 0; j < s->number_of_bands; j++) {
  381. for (int k = 0; k < s->number_of_bands; k++) {
  382. dnch->band_amt[j] += dnch->spread_function[i++] * dnch->band_excit[k];
  383. }
  384. }
  385. for (int i = 0; i < s->bin_count; i++)
  386. dnch->amt[i] = dnch->band_amt[s->bin2band[i]];
  387. if (dnch->amt[0] > dnch->abs_var[0]) {
  388. dnch->gain[0] = 1.0;
  389. } else if (dnch->amt[0] > dnch->min_abs_var[0]) {
  390. double limit = sqrt(dnch->abs_var[0] / dnch->amt[0]);
  391. dnch->gain[0] = limit_gain(dnch->gain[0], limit);
  392. } else {
  393. dnch->gain[0] = limit_gain(dnch->gain[0], s->max_gain);
  394. }
  395. if (dnch->amt[s->fft_length2] > dnch->abs_var[s->fft_length2]) {
  396. dnch->gain[s->fft_length2] = 1.0;
  397. } else if (dnch->amt[s->fft_length2] > dnch->min_abs_var[s->fft_length2]) {
  398. double limit = sqrt(dnch->abs_var[s->fft_length2] / dnch->amt[s->fft_length2]);
  399. dnch->gain[s->fft_length2] = limit_gain(dnch->gain[s->fft_length2], limit);
  400. } else {
  401. dnch->gain[s->fft_length2] = limit_gain(dnch->gain[s->fft_length2], s->max_gain);
  402. }
  403. for (int i = 1; i < s->fft_length2; i++) {
  404. if (dnch->amt[i] > dnch->abs_var[i]) {
  405. dnch->gain[i] = 1.0;
  406. } else if (dnch->amt[i] > dnch->min_abs_var[i]) {
  407. double limit = sqrt(dnch->abs_var[i] / dnch->amt[i]);
  408. dnch->gain[i] = limit_gain(dnch->gain[i], limit);
  409. } else {
  410. dnch->gain[i] = limit_gain(dnch->gain[i], s->max_gain);
  411. }
  412. }
  413. gain = dnch->gain[0];
  414. dnch->clean_data[0] = (gain * gain * dnch->noisy_data[0]);
  415. fft_data[0].re *= gain;
  416. gain = dnch->gain[s->fft_length2];
  417. dnch->clean_data[s->fft_length2] = (gain * gain * dnch->noisy_data[s->fft_length2]);
  418. fft_data[0].im *= gain;
  419. for (int i = 1; i < s->fft_length2; i++) {
  420. gain = dnch->gain[i];
  421. dnch->clean_data[i] = (gain * gain * dnch->noisy_data[i]);
  422. fft_data[i].re *= gain;
  423. fft_data[i].im *= gain;
  424. }
  425. }
  426. static double freq2bark(double x)
  427. {
  428. double d = x / 7500.0;
  429. return 13.0 * atan(7.6E-4 * x) + 3.5 * atan(d * d);
  430. }
  431. static int get_band_centre(AudioFFTDeNoiseContext *s, int band)
  432. {
  433. if (band == -1)
  434. return lrint(s->band_centre[0] / 1.5);
  435. return s->band_centre[band];
  436. }
  437. static int get_band_edge(AudioFFTDeNoiseContext *s, int band)
  438. {
  439. int i;
  440. if (band == 15) {
  441. i = lrint(s->band_centre[14] * 1.224745);
  442. } else {
  443. i = lrint(s->band_centre[band] / 1.224745);
  444. }
  445. return FFMIN(i, s->sample_rate / 2);
  446. }
  447. static void set_band_parameters(AudioFFTDeNoiseContext *s,
  448. DeNoiseChannel *dnch)
  449. {
  450. double band_noise, d2, d3, d4, d5;
  451. int i = 0, j = 0, k = 0;
  452. d5 = 0.0;
  453. band_noise = process_get_band_noise(s, dnch, 0);
  454. for (int m = j; m <= s->fft_length2; m++) {
  455. if (m == j) {
  456. i = j;
  457. d5 = band_noise;
  458. if (k == 15) {
  459. j = s->bin_count;
  460. } else {
  461. j = s->fft_length * get_band_centre(s, k) / s->sample_rate;
  462. }
  463. d2 = j - i;
  464. band_noise = process_get_band_noise(s, dnch, k);
  465. k++;
  466. }
  467. d3 = (j - m) / d2;
  468. d4 = (m - i) / d2;
  469. dnch->rel_var[m] = exp((d5 * d3 + band_noise * d4) * C);
  470. }
  471. dnch->rel_var[s->fft_length2] = exp(band_noise * C);
  472. for (i = 0; i < 15; i++)
  473. dnch->noise_band_auto_var[i] = s->max_var * exp((process_get_band_noise(s, dnch, i) - 2.0) * C);
  474. for (i = 0; i <= s->fft_length2; i++) {
  475. dnch->abs_var[i] = fmax(s->max_var * dnch->rel_var[i], 1.0);
  476. dnch->min_abs_var[i] = s->gain_scale * dnch->abs_var[i];
  477. }
  478. }
  479. static void read_custom_noise(AudioFFTDeNoiseContext *s, int ch)
  480. {
  481. DeNoiseChannel *dnch = &s->dnch[ch];
  482. char *p, *arg, *saveptr = NULL;
  483. int i, ret, band_noise[15] = { 0 };
  484. if (!s->band_noise_str)
  485. return;
  486. p = av_strdup(s->band_noise_str);
  487. if (!p)
  488. return;
  489. for (i = 0; i < 15; i++) {
  490. if (!(arg = av_strtok(p, "| ", &saveptr)))
  491. break;
  492. p = NULL;
  493. ret = sscanf(arg, "%d", &band_noise[i]);
  494. if (ret != 1) {
  495. av_log(s, AV_LOG_ERROR, "Custom band noise must be integer.\n");
  496. break;
  497. }
  498. band_noise[i] = av_clip(band_noise[i], -24, 24);
  499. }
  500. av_free(p);
  501. memcpy(dnch->band_noise, band_noise, sizeof(band_noise));
  502. }
  503. static void set_parameters(AudioFFTDeNoiseContext *s)
  504. {
  505. if (s->last_noise_floor != s->noise_floor)
  506. s->last_noise_floor = s->noise_floor;
  507. if (s->track_residual)
  508. s->last_noise_floor = fmaxf(s->last_noise_floor, s->residual_floor);
  509. s->max_var = s->floor * exp((100.0 + s->last_noise_floor) * C);
  510. if (s->track_residual) {
  511. s->last_residual_floor = s->residual_floor;
  512. s->last_noise_reduction = fmax(s->last_noise_floor - s->last_residual_floor, 0);
  513. s->max_gain = exp(s->last_noise_reduction * (0.5 * C));
  514. } else if (s->noise_reduction != s->last_noise_reduction) {
  515. s->last_noise_reduction = s->noise_reduction;
  516. s->last_residual_floor = av_clipf(s->last_noise_floor - s->last_noise_reduction, -80, -20);
  517. s->max_gain = exp(s->last_noise_reduction * (0.5 * C));
  518. }
  519. s->gain_scale = 1.0 / (s->max_gain * s->max_gain);
  520. for (int ch = 0; ch < s->channels; ch++) {
  521. DeNoiseChannel *dnch = &s->dnch[ch];
  522. set_band_parameters(s, dnch);
  523. }
  524. }
  525. static int config_input(AVFilterLink *inlink)
  526. {
  527. AVFilterContext *ctx = inlink->dst;
  528. AudioFFTDeNoiseContext *s = ctx->priv;
  529. double wscale, sar, sum, sdiv;
  530. int i, j, k, m, n;
  531. s->dnch = av_calloc(inlink->channels, sizeof(*s->dnch));
  532. if (!s->dnch)
  533. return AVERROR(ENOMEM);
  534. s->pts = AV_NOPTS_VALUE;
  535. s->channels = inlink->channels;
  536. s->sample_rate = inlink->sample_rate;
  537. s->sample_advance = s->sample_rate / 80;
  538. s->window_length = 3 * s->sample_advance;
  539. s->fft_length2 = 1 << (32 - ff_clz(s->window_length));
  540. s->fft_length = s->fft_length2 * 2;
  541. s->buffer_length = s->fft_length * 2;
  542. s->bin_count = s->fft_length2 + 1;
  543. s->band_centre[0] = 80;
  544. for (i = 1; i < 15; i++) {
  545. s->band_centre[i] = lrint(1.5 * s->band_centre[i - 1] + 5.0);
  546. if (s->band_centre[i] < 1000) {
  547. s->band_centre[i] = 10 * (s->band_centre[i] / 10);
  548. } else if (s->band_centre[i] < 5000) {
  549. s->band_centre[i] = 50 * ((s->band_centre[i] + 20) / 50);
  550. } else if (s->band_centre[i] < 15000) {
  551. s->band_centre[i] = 100 * ((s->band_centre[i] + 45) / 100);
  552. } else {
  553. s->band_centre[i] = 1000 * ((s->band_centre[i] + 495) / 1000);
  554. }
  555. }
  556. for (j = 0; j < 5; j++) {
  557. for (k = 0; k < 5; k++) {
  558. s->matrix_a[j + k * 5] = 0.0;
  559. for (m = 0; m < 15; m++)
  560. s->matrix_a[j + k * 5] += pow(m, j + k);
  561. }
  562. }
  563. factor(s->matrix_a, 5);
  564. i = 0;
  565. for (j = 0; j < 5; j++)
  566. for (k = 0; k < 15; k++)
  567. s->matrix_b[i++] = pow(k, j);
  568. i = 0;
  569. for (j = 0; j < 15; j++)
  570. for (k = 0; k < 5; k++)
  571. s->matrix_c[i++] = pow(j, k);
  572. s->window = av_calloc(s->window_length, sizeof(*s->window));
  573. s->bin2band = av_calloc(s->bin_count, sizeof(*s->bin2band));
  574. if (!s->window || !s->bin2band)
  575. return AVERROR(ENOMEM);
  576. sdiv = s->sample_rate / 17640.0;
  577. for (i = 0; i <= s->fft_length2; i++)
  578. s->bin2band[i] = lrint(sdiv * freq2bark((0.5 * i * s->sample_rate) / s->fft_length2));
  579. s->number_of_bands = s->bin2band[s->fft_length2] + 1;
  580. s->band_alpha = av_calloc(s->number_of_bands, sizeof(*s->band_alpha));
  581. s->band_beta = av_calloc(s->number_of_bands, sizeof(*s->band_beta));
  582. if (!s->band_alpha || !s->band_beta)
  583. return AVERROR(ENOMEM);
  584. for (int ch = 0; ch < inlink->channels; ch++) {
  585. DeNoiseChannel *dnch = &s->dnch[ch];
  586. switch (s->noise_type) {
  587. case WHITE_NOISE:
  588. for (i = 0; i < 15; i++)
  589. dnch->band_noise[i] = 0;
  590. break;
  591. case VINYL_NOISE:
  592. for (i = 0; i < 15; i++)
  593. dnch->band_noise[i] = get_band_noise(s, i, 50.0, 500.5, 2125.0) + FFMAX(i - 7, 0);
  594. break;
  595. case SHELLAC_NOISE:
  596. for (i = 0; i < 15; i++)
  597. dnch->band_noise[i] = get_band_noise(s, i, 1.0, 500.0, 1.0E10) + FFMAX(i - 12, -5);
  598. break;
  599. case CUSTOM_NOISE:
  600. read_custom_noise(s, ch);
  601. break;
  602. default:
  603. return AVERROR_BUG;
  604. }
  605. dnch->sfm_threshold = 0.8;
  606. dnch->sfm_alpha = 0.05;
  607. for (i = 0; i < 512; i++)
  608. dnch->sfm_fail_flags[i] = 0;
  609. dnch->sfm_fail_total = 0;
  610. j = FFMAX((int)(10.0 * (1.3 - dnch->sfm_threshold)), 1);
  611. for (i = 0; i < 512; i += j) {
  612. dnch->sfm_fail_flags[i] = 1;
  613. dnch->sfm_fail_total += 1;
  614. }
  615. dnch->amt = av_calloc(s->bin_count, sizeof(*dnch->amt));
  616. dnch->band_amt = av_calloc(s->number_of_bands, sizeof(*dnch->band_amt));
  617. dnch->band_excit = av_calloc(s->number_of_bands, sizeof(*dnch->band_excit));
  618. dnch->gain = av_calloc(s->bin_count, sizeof(*dnch->gain));
  619. dnch->prior = av_calloc(s->bin_count, sizeof(*dnch->prior));
  620. dnch->prior_band_excit = av_calloc(s->number_of_bands, sizeof(*dnch->prior_band_excit));
  621. dnch->clean_data = av_calloc(s->bin_count, sizeof(*dnch->clean_data));
  622. dnch->noisy_data = av_calloc(s->bin_count, sizeof(*dnch->noisy_data));
  623. dnch->out_samples = av_calloc(s->buffer_length, sizeof(*dnch->out_samples));
  624. dnch->abs_var = av_calloc(s->bin_count, sizeof(*dnch->abs_var));
  625. dnch->rel_var = av_calloc(s->bin_count, sizeof(*dnch->rel_var));
  626. dnch->min_abs_var = av_calloc(s->bin_count, sizeof(*dnch->min_abs_var));
  627. dnch->fft_data = av_calloc(s->fft_length2 + 1, sizeof(*dnch->fft_data));
  628. dnch->fft = av_fft_init(av_log2(s->fft_length2), 0);
  629. dnch->ifft = av_fft_init(av_log2(s->fft_length2), 1);
  630. dnch->spread_function = av_calloc(s->number_of_bands * s->number_of_bands,
  631. sizeof(*dnch->spread_function));
  632. if (!dnch->amt ||
  633. !dnch->band_amt ||
  634. !dnch->band_excit ||
  635. !dnch->gain ||
  636. !dnch->prior ||
  637. !dnch->prior_band_excit ||
  638. !dnch->clean_data ||
  639. !dnch->noisy_data ||
  640. !dnch->out_samples ||
  641. !dnch->fft_data ||
  642. !dnch->abs_var ||
  643. !dnch->rel_var ||
  644. !dnch->min_abs_var ||
  645. !dnch->spread_function ||
  646. !dnch->fft ||
  647. !dnch->ifft)
  648. return AVERROR(ENOMEM);
  649. }
  650. for (int ch = 0; ch < inlink->channels; ch++) {
  651. DeNoiseChannel *dnch = &s->dnch[ch];
  652. double *prior_band_excit = dnch->prior_band_excit;
  653. double *prior = dnch->prior;
  654. double min, max;
  655. double p1, p2;
  656. p1 = pow(0.1, 2.5 / sdiv);
  657. p2 = pow(0.1, 1.0 / sdiv);
  658. j = 0;
  659. for (m = 0; m < s->number_of_bands; m++) {
  660. for (n = 0; n < s->number_of_bands; n++) {
  661. if (n < m) {
  662. dnch->spread_function[j++] = pow(p2, m - n);
  663. } else if (n > m) {
  664. dnch->spread_function[j++] = pow(p1, n - m);
  665. } else {
  666. dnch->spread_function[j++] = 1.0;
  667. }
  668. }
  669. }
  670. for (m = 0; m < s->number_of_bands; m++) {
  671. dnch->band_excit[m] = 0.0;
  672. prior_band_excit[m] = 0.0;
  673. }
  674. for (m = 0; m <= s->fft_length2; m++)
  675. dnch->band_excit[s->bin2band[m]] += 1.0;
  676. j = 0;
  677. for (m = 0; m < s->number_of_bands; m++) {
  678. for (n = 0; n < s->number_of_bands; n++)
  679. prior_band_excit[m] += dnch->spread_function[j++] * dnch->band_excit[n];
  680. }
  681. min = pow(0.1, 2.5);
  682. max = pow(0.1, 1.0);
  683. for (int i = 0; i < s->number_of_bands; i++) {
  684. if (i < lrint(12.0 * sdiv)) {
  685. dnch->band_excit[i] = pow(0.1, 1.45 + 0.1 * i / sdiv);
  686. } else {
  687. dnch->band_excit[i] = pow(0.1, 2.5 - 0.2 * (i / sdiv - 14.0));
  688. }
  689. dnch->band_excit[i] = av_clipd(dnch->band_excit[i], min, max);
  690. }
  691. for (int i = 0; i <= s->fft_length2; i++)
  692. prior[i] = RRATIO;
  693. for (int i = 0; i < s->buffer_length; i++)
  694. dnch->out_samples[i] = 0;
  695. j = 0;
  696. for (int i = 0; i < s->number_of_bands; i++)
  697. for (int k = 0; k < s->number_of_bands; k++)
  698. dnch->spread_function[j++] *= dnch->band_excit[i] / prior_band_excit[i];
  699. }
  700. j = 0;
  701. sar = s->sample_advance / s->sample_rate;
  702. for (int i = 0; i <= s->fft_length2; i++) {
  703. if ((i == s->fft_length2) || (s->bin2band[i] > j)) {
  704. double d6 = (i - 1) * s->sample_rate / s->fft_length;
  705. double d7 = fmin(0.008 + 2.2 / d6, 0.03);
  706. s->band_alpha[j] = exp(-sar / d7);
  707. s->band_beta[j] = 1.0 - s->band_alpha[j];
  708. j = s->bin2band[i];
  709. }
  710. }
  711. wscale = sqrt(16.0 / (9.0 * s->fft_length));
  712. sum = 0.0;
  713. for (int i = 0; i < s->window_length; i++) {
  714. double d10 = sin(i * M_PI / s->window_length);
  715. d10 *= wscale * d10;
  716. s->window[i] = d10;
  717. sum += d10 * d10;
  718. }
  719. s->window_weight = 0.5 * sum;
  720. s->floor = (1LL << 48) * exp(-23.025558369790467) * s->window_weight;
  721. s->sample_floor = s->floor * exp(4.144600506562284);
  722. s->auto_floor = s->floor * exp(6.907667510937141);
  723. set_parameters(s);
  724. s->noise_band_edge[0] = FFMIN(s->fft_length2, s->fft_length * get_band_edge(s, 0) / s->sample_rate);
  725. i = 0;
  726. for (int j = 1; j < 16; j++) {
  727. s->noise_band_edge[j] = FFMIN(s->fft_length2, s->fft_length * get_band_edge(s, j) / s->sample_rate);
  728. if (s->noise_band_edge[j] > lrint(1.1 * s->noise_band_edge[j - 1]))
  729. i++;
  730. s->noise_band_edge[16] = i;
  731. }
  732. s->noise_band_count = s->noise_band_edge[16];
  733. s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->fft_length);
  734. if (!s->fifo)
  735. return AVERROR(ENOMEM);
  736. return 0;
  737. }
  738. static void preprocess(FFTComplex *in, int len)
  739. {
  740. double d1, d2, d3, d4, d5, d6, d7, d8, d9, d10;
  741. int n, i, k;
  742. d5 = 2.0 * M_PI / len;
  743. d8 = sin(0.5 * d5);
  744. d8 = -2.0 * d8 * d8;
  745. d7 = sin(d5);
  746. d9 = 1.0 + d8;
  747. d6 = d7;
  748. n = len / 2;
  749. for (i = 1; i < len / 4; i++) {
  750. k = n - i;
  751. d2 = 0.5 * (in[i].re + in[k].re);
  752. d1 = 0.5 * (in[i].im - in[k].im);
  753. d4 = 0.5 * (in[i].im + in[k].im);
  754. d3 = 0.5 * (in[k].re - in[i].re);
  755. in[i].re = d2 + d9 * d4 + d6 * d3;
  756. in[i].im = d1 + d9 * d3 - d6 * d4;
  757. in[k].re = d2 - d9 * d4 - d6 * d3;
  758. in[k].im = -d1 + d9 * d3 - d6 * d4;
  759. d10 = d9;
  760. d9 += d9 * d8 - d6 * d7;
  761. d6 += d6 * d8 + d10 * d7;
  762. }
  763. d2 = in[0].re;
  764. in[0].re = d2 + in[0].im;
  765. in[0].im = d2 - in[0].im;
  766. }
  767. static void postprocess(FFTComplex *in, int len)
  768. {
  769. double d1, d2, d3, d4, d5, d6, d7, d8, d9, d10;
  770. int n, i, k;
  771. d5 = 2.0 * M_PI / len;
  772. d8 = sin(0.5 * d5);
  773. d8 = -2.0 * d8 * d8;
  774. d7 = sin(d5);
  775. d9 = 1.0 + d8;
  776. d6 = d7;
  777. n = len / 2;
  778. for (i = 1; i < len / 4; i++) {
  779. k = n - i;
  780. d2 = 0.5 * (in[i].re + in[k].re);
  781. d1 = 0.5 * (in[i].im - in[k].im);
  782. d4 = 0.5 * (in[i].re - in[k].re);
  783. d3 = 0.5 * (in[i].im + in[k].im);
  784. in[i].re = d2 - d9 * d3 - d6 * d4;
  785. in[i].im = d1 + d9 * d4 - d6 * d3;
  786. in[k].re = d2 + d9 * d3 + d6 * d4;
  787. in[k].im = -d1 + d9 * d4 - d6 * d3;
  788. d10 = d9;
  789. d9 += d9 * d8 - d6 * d7;
  790. d6 += d6 * d8 + d10 * d7;
  791. }
  792. d2 = in[0].re;
  793. in[0].re = 0.5 * (d2 + in[0].im);
  794. in[0].im = 0.5 * (d2 - in[0].im);
  795. }
  796. static void init_sample_noise(DeNoiseChannel *dnch)
  797. {
  798. for (int i = 0; i < 15; i++) {
  799. dnch->noise_band_norm[i] = 0.0;
  800. dnch->noise_band_avr[i] = 0.0;
  801. dnch->noise_band_avi[i] = 0.0;
  802. dnch->noise_band_var[i] = 0.0;
  803. }
  804. }
  805. static void sample_noise_block(AudioFFTDeNoiseContext *s,
  806. DeNoiseChannel *dnch,
  807. AVFrame *in, int ch)
  808. {
  809. float *src = (float *)in->extended_data[ch];
  810. double mag2, var = 0.0, avr = 0.0, avi = 0.0;
  811. int edge, j, k, n, edgemax;
  812. for (int i = 0; i < s->window_length; i++) {
  813. dnch->fft_data[i].re = s->window[i] * src[i] * (1LL << 24);
  814. dnch->fft_data[i].im = 0.0;
  815. }
  816. for (int i = s->window_length; i < s->fft_length2; i++) {
  817. dnch->fft_data[i].re = 0.0;
  818. dnch->fft_data[i].im = 0.0;
  819. }
  820. av_fft_permute(dnch->fft, dnch->fft_data);
  821. av_fft_calc(dnch->fft, dnch->fft_data);
  822. preprocess(dnch->fft_data, s->fft_length);
  823. edge = s->noise_band_edge[0];
  824. j = edge;
  825. k = 0;
  826. n = j;
  827. edgemax = fmin(s->fft_length2, s->noise_band_edge[15]);
  828. dnch->fft_data[s->fft_length2].re = dnch->fft_data[0].im;
  829. dnch->fft_data[0].im = 0.0;
  830. dnch->fft_data[s->fft_length2].im = 0.0;
  831. for (int i = j; i <= edgemax; i++) {
  832. if ((i == j) && (i < edgemax)) {
  833. if (j > edge) {
  834. dnch->noise_band_norm[k - 1] += j - edge;
  835. dnch->noise_band_avr[k - 1] += avr;
  836. dnch->noise_band_avi[k - 1] += avi;
  837. dnch->noise_band_var[k - 1] += var;
  838. }
  839. k++;
  840. edge = j;
  841. j = s->noise_band_edge[k];
  842. if (k == 15) {
  843. j++;
  844. }
  845. var = 0.0;
  846. avr = 0.0;
  847. avi = 0.0;
  848. }
  849. avr += dnch->fft_data[n].re;
  850. avi += dnch->fft_data[n].im;
  851. mag2 = dnch->fft_data[n].re * dnch->fft_data[n].re +
  852. dnch->fft_data[n].im * dnch->fft_data[n].im;
  853. mag2 = fmax(mag2, s->sample_floor);
  854. dnch->noisy_data[i] = mag2;
  855. var += mag2;
  856. n++;
  857. }
  858. dnch->noise_band_norm[k - 1] += j - edge;
  859. dnch->noise_band_avr[k - 1] += avr;
  860. dnch->noise_band_avi[k - 1] += avi;
  861. dnch->noise_band_var[k - 1] += var;
  862. }
  863. static void finish_sample_noise(AudioFFTDeNoiseContext *s,
  864. DeNoiseChannel *dnch,
  865. double *sample_noise)
  866. {
  867. for (int i = 0; i < s->noise_band_count; i++) {
  868. dnch->noise_band_avr[i] /= dnch->noise_band_norm[i];
  869. dnch->noise_band_avi[i] /= dnch->noise_band_norm[i];
  870. dnch->noise_band_var[i] /= dnch->noise_band_norm[i];
  871. dnch->noise_band_var[i] -= dnch->noise_band_avr[i] * dnch->noise_band_avr[i] +
  872. dnch->noise_band_avi[i] * dnch->noise_band_avi[i];
  873. dnch->noise_band_auto_var[i] = dnch->noise_band_var[i];
  874. sample_noise[i] = (1.0 / C) * log(dnch->noise_band_var[i] / s->floor) - 100.0;
  875. }
  876. if (s->noise_band_count < 15) {
  877. for (int i = s->noise_band_count; i < 15; i++)
  878. sample_noise[i] = sample_noise[i - 1];
  879. }
  880. }
  881. static void set_noise_profile(AudioFFTDeNoiseContext *s,
  882. DeNoiseChannel *dnch,
  883. double *sample_noise,
  884. int new_profile)
  885. {
  886. int new_band_noise[15];
  887. double temp[15];
  888. double sum = 0.0, d1;
  889. float new_noise_floor;
  890. int i, n;
  891. for (int m = 0; m < 15; m++)
  892. temp[m] = sample_noise[m];
  893. if (new_profile) {
  894. i = 0;
  895. for (int m = 0; m < 5; m++) {
  896. sum = 0.0;
  897. for (n = 0; n < 15; n++)
  898. sum += s->matrix_b[i++] * temp[n];
  899. s->vector_b[m] = sum;
  900. }
  901. solve(s->matrix_a, s->vector_b, 5);
  902. i = 0;
  903. for (int m = 0; m < 15; m++) {
  904. sum = 0.0;
  905. for (n = 0; n < 5; n++)
  906. sum += s->matrix_c[i++] * s->vector_b[n];
  907. temp[m] = sum;
  908. }
  909. }
  910. sum = 0.0;
  911. for (int m = 0; m < 15; m++)
  912. sum += temp[m];
  913. d1 = (int)(sum / 15.0 - 0.5);
  914. if (!new_profile)
  915. i = lrint(temp[7] - d1);
  916. for (d1 -= dnch->band_noise[7] - i; d1 > -20.0; d1 -= 1.0)
  917. ;
  918. for (int m = 0; m < 15; m++)
  919. temp[m] -= d1;
  920. new_noise_floor = d1 + 2.5;
  921. if (new_profile) {
  922. av_log(s, AV_LOG_INFO, "bn=");
  923. for (int m = 0; m < 15; m++) {
  924. new_band_noise[m] = lrint(temp[m]);
  925. new_band_noise[m] = av_clip(new_band_noise[m], -24, 24);
  926. av_log(s, AV_LOG_INFO, "%d ", new_band_noise[m]);
  927. }
  928. av_log(s, AV_LOG_INFO, "\n");
  929. memcpy(dnch->band_noise, new_band_noise, sizeof(new_band_noise));
  930. }
  931. if (s->track_noise)
  932. s->noise_floor = new_noise_floor;
  933. }
  934. typedef struct ThreadData {
  935. AVFrame *in;
  936. } ThreadData;
  937. static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  938. {
  939. AudioFFTDeNoiseContext *s = ctx->priv;
  940. ThreadData *td = arg;
  941. AVFrame *in = td->in;
  942. const int start = (in->channels * jobnr) / nb_jobs;
  943. const int end = (in->channels * (jobnr+1)) / nb_jobs;
  944. for (int ch = start; ch < end; ch++) {
  945. DeNoiseChannel *dnch = &s->dnch[ch];
  946. const float *src = (const float *)in->extended_data[ch];
  947. double *dst = dnch->out_samples;
  948. if (s->track_noise) {
  949. int i = s->block_count & 0x1FF;
  950. if (dnch->sfm_fail_flags[i])
  951. dnch->sfm_fail_total--;
  952. dnch->sfm_fail_flags[i] = 0;
  953. dnch->sfm_threshold *= 1.0 - dnch->sfm_alpha;
  954. dnch->sfm_threshold += dnch->sfm_alpha * (0.5 + (1.0 / 640) * dnch->sfm_fail_total);
  955. }
  956. for (int m = 0; m < s->window_length; m++) {
  957. dnch->fft_data[m].re = s->window[m] * src[m] * (1LL << 24);
  958. dnch->fft_data[m].im = 0;
  959. }
  960. for (int m = s->window_length; m < s->fft_length2; m++) {
  961. dnch->fft_data[m].re = 0;
  962. dnch->fft_data[m].im = 0;
  963. }
  964. av_fft_permute(dnch->fft, dnch->fft_data);
  965. av_fft_calc(dnch->fft, dnch->fft_data);
  966. preprocess(dnch->fft_data, s->fft_length);
  967. process_frame(s, dnch, dnch->fft_data,
  968. dnch->prior,
  969. dnch->prior_band_excit,
  970. s->track_noise);
  971. postprocess(dnch->fft_data, s->fft_length);
  972. av_fft_permute(dnch->ifft, dnch->fft_data);
  973. av_fft_calc(dnch->ifft, dnch->fft_data);
  974. for (int m = 0; m < s->window_length; m++)
  975. dst[m] += s->window[m] * dnch->fft_data[m].re / (1LL << 24);
  976. }
  977. return 0;
  978. }
  979. static void get_auto_noise_levels(AudioFFTDeNoiseContext *s,
  980. DeNoiseChannel *dnch,
  981. double *levels)
  982. {
  983. if (s->noise_band_count > 0) {
  984. for (int i = 0; i < s->noise_band_count; i++) {
  985. levels[i] = (1.0 / C) * log(dnch->noise_band_auto_var[i] / s->floor) - 100.0;
  986. }
  987. if (s->noise_band_count < 15) {
  988. for (int i = s->noise_band_count; i < 15; i++)
  989. levels[i] = levels[i - 1];
  990. }
  991. } else {
  992. for (int i = 0; i < 15; i++) {
  993. levels[i] = -100.0;
  994. }
  995. }
  996. }
  997. static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
  998. {
  999. AVFilterContext *ctx = inlink->dst;
  1000. AVFilterLink *outlink = ctx->outputs[0];
  1001. AudioFFTDeNoiseContext *s = ctx->priv;
  1002. AVFrame *out = NULL, *in = NULL;
  1003. ThreadData td;
  1004. int ret = 0;
  1005. if (s->pts == AV_NOPTS_VALUE)
  1006. s->pts = frame->pts;
  1007. ret = av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples);
  1008. av_frame_free(&frame);
  1009. if (ret < 0)
  1010. return ret;
  1011. while (av_audio_fifo_size(s->fifo) >= s->window_length) {
  1012. if (!in) {
  1013. in = ff_get_audio_buffer(outlink, s->window_length);
  1014. if (!in)
  1015. return AVERROR(ENOMEM);
  1016. }
  1017. ret = av_audio_fifo_peek(s->fifo, (void **)in->extended_data, s->window_length);
  1018. if (ret < 0)
  1019. break;
  1020. if (s->track_noise) {
  1021. for (int ch = 0; ch < inlink->channels; ch++) {
  1022. DeNoiseChannel *dnch = &s->dnch[ch];
  1023. double levels[15];
  1024. get_auto_noise_levels(s, dnch, levels);
  1025. set_noise_profile(s, dnch, levels, 0);
  1026. }
  1027. if (s->noise_floor != s->last_noise_floor)
  1028. set_parameters(s);
  1029. }
  1030. if (s->sample_noise_start) {
  1031. for (int ch = 0; ch < inlink->channels; ch++) {
  1032. DeNoiseChannel *dnch = &s->dnch[ch];
  1033. init_sample_noise(dnch);
  1034. }
  1035. s->sample_noise_start = 0;
  1036. s->sample_noise = 1;
  1037. }
  1038. if (s->sample_noise) {
  1039. for (int ch = 0; ch < inlink->channels; ch++) {
  1040. DeNoiseChannel *dnch = &s->dnch[ch];
  1041. sample_noise_block(s, dnch, in, ch);
  1042. }
  1043. }
  1044. if (s->sample_noise_end) {
  1045. for (int ch = 0; ch < inlink->channels; ch++) {
  1046. DeNoiseChannel *dnch = &s->dnch[ch];
  1047. double sample_noise[15];
  1048. finish_sample_noise(s, dnch, sample_noise);
  1049. set_noise_profile(s, dnch, sample_noise, 1);
  1050. set_band_parameters(s, dnch);
  1051. }
  1052. s->sample_noise = 0;
  1053. s->sample_noise_end = 0;
  1054. }
  1055. s->block_count++;
  1056. td.in = in;
  1057. ctx->internal->execute(ctx, filter_channel, &td, NULL,
  1058. FFMIN(outlink->channels, ff_filter_get_nb_threads(ctx)));
  1059. out = ff_get_audio_buffer(outlink, s->sample_advance);
  1060. if (!out) {
  1061. ret = AVERROR(ENOMEM);
  1062. break;
  1063. }
  1064. for (int ch = 0; ch < inlink->channels; ch++) {
  1065. DeNoiseChannel *dnch = &s->dnch[ch];
  1066. double *src = dnch->out_samples;
  1067. float *orig = (float *)in->extended_data[ch];
  1068. float *dst = (float *)out->extended_data[ch];
  1069. switch (s->output_mode) {
  1070. case IN_MODE:
  1071. for (int m = 0; m < s->sample_advance; m++)
  1072. dst[m] = orig[m];
  1073. break;
  1074. case OUT_MODE:
  1075. for (int m = 0; m < s->sample_advance; m++)
  1076. dst[m] = src[m];
  1077. break;
  1078. case NOISE_MODE:
  1079. for (int m = 0; m < s->sample_advance; m++)
  1080. dst[m] = orig[m] - src[m];
  1081. break;
  1082. default:
  1083. return AVERROR_BUG;
  1084. }
  1085. memmove(src, src + s->sample_advance, (s->window_length - s->sample_advance) * sizeof(*src));
  1086. memset(src + (s->window_length - s->sample_advance), 0, s->sample_advance * sizeof(*src));
  1087. }
  1088. av_audio_fifo_drain(s->fifo, s->sample_advance);
  1089. out->pts = s->pts;
  1090. ret = ff_filter_frame(outlink, out);
  1091. if (ret < 0)
  1092. break;
  1093. s->pts += s->sample_advance;
  1094. }
  1095. av_frame_free(&in);
  1096. return ret;
  1097. }
  1098. static av_cold void uninit(AVFilterContext *ctx)
  1099. {
  1100. AudioFFTDeNoiseContext *s = ctx->priv;
  1101. av_freep(&s->window);
  1102. av_freep(&s->bin2band);
  1103. av_freep(&s->band_alpha);
  1104. av_freep(&s->band_beta);
  1105. if (s->dnch) {
  1106. for (int ch = 0; ch < s->channels; ch++) {
  1107. DeNoiseChannel *dnch = &s->dnch[ch];
  1108. av_freep(&dnch->amt);
  1109. av_freep(&dnch->band_amt);
  1110. av_freep(&dnch->band_excit);
  1111. av_freep(&dnch->gain);
  1112. av_freep(&dnch->prior);
  1113. av_freep(&dnch->prior_band_excit);
  1114. av_freep(&dnch->clean_data);
  1115. av_freep(&dnch->noisy_data);
  1116. av_freep(&dnch->out_samples);
  1117. av_freep(&dnch->spread_function);
  1118. av_freep(&dnch->abs_var);
  1119. av_freep(&dnch->rel_var);
  1120. av_freep(&dnch->min_abs_var);
  1121. av_freep(&dnch->fft_data);
  1122. av_fft_end(dnch->fft);
  1123. dnch->fft = NULL;
  1124. av_fft_end(dnch->ifft);
  1125. dnch->ifft = NULL;
  1126. }
  1127. av_freep(&s->dnch);
  1128. }
  1129. av_audio_fifo_free(s->fifo);
  1130. }
  1131. static int query_formats(AVFilterContext *ctx)
  1132. {
  1133. AVFilterFormats *formats = NULL;
  1134. AVFilterChannelLayouts *layouts = NULL;
  1135. static const enum AVSampleFormat sample_fmts[] = {
  1136. AV_SAMPLE_FMT_FLTP,
  1137. AV_SAMPLE_FMT_NONE
  1138. };
  1139. int ret;
  1140. formats = ff_make_format_list(sample_fmts);
  1141. if (!formats)
  1142. return AVERROR(ENOMEM);
  1143. ret = ff_set_common_formats(ctx, formats);
  1144. if (ret < 0)
  1145. return ret;
  1146. layouts = ff_all_channel_counts();
  1147. if (!layouts)
  1148. return AVERROR(ENOMEM);
  1149. ret = ff_set_common_channel_layouts(ctx, layouts);
  1150. if (ret < 0)
  1151. return ret;
  1152. formats = ff_all_samplerates();
  1153. return ff_set_common_samplerates(ctx, formats);
  1154. }
  1155. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  1156. char *res, int res_len, int flags)
  1157. {
  1158. AudioFFTDeNoiseContext *s = ctx->priv;
  1159. int need_reset = 0;
  1160. if (!strcmp(cmd, "sample_noise") ||
  1161. !strcmp(cmd, "sn")) {
  1162. if (!strcmp(args, "start")) {
  1163. s->sample_noise_start = 1;
  1164. s->sample_noise_end = 0;
  1165. } else if (!strcmp(args, "end")) {
  1166. s->sample_noise_start = 0;
  1167. s->sample_noise_end = 1;
  1168. }
  1169. } else if (!strcmp(cmd, "nr") ||
  1170. !strcmp(cmd, "noise_reduction")) {
  1171. float nr;
  1172. if (sscanf(args, "%f", &nr) == 1) {
  1173. s->noise_reduction = av_clipf(nr, 0.01, 97);
  1174. need_reset = 1;
  1175. }
  1176. } else if (!strcmp(cmd, "nf") ||
  1177. !strcmp(cmd, "noise_floor")) {
  1178. float nf;
  1179. if (sscanf(args, "%f", &nf) == 1) {
  1180. s->noise_floor = av_clipf(nf, -80, -20);
  1181. need_reset = 1;
  1182. }
  1183. } else if (!strcmp(cmd, "output_mode") ||
  1184. !strcmp(cmd, "om")) {
  1185. if (!strcmp(args, "i")) {
  1186. s->output_mode = IN_MODE;
  1187. } else if (!strcmp(args, "o")) {
  1188. s->output_mode = OUT_MODE;
  1189. } else if (!strcmp(args, "n")) {
  1190. s->output_mode = NOISE_MODE;
  1191. }
  1192. }
  1193. if (need_reset)
  1194. set_parameters(s);
  1195. return 0;
  1196. }
  1197. static const AVFilterPad inputs[] = {
  1198. {
  1199. .name = "default",
  1200. .type = AVMEDIA_TYPE_AUDIO,
  1201. .filter_frame = filter_frame,
  1202. .config_props = config_input,
  1203. },
  1204. { NULL }
  1205. };
  1206. static const AVFilterPad outputs[] = {
  1207. {
  1208. .name = "default",
  1209. .type = AVMEDIA_TYPE_AUDIO,
  1210. },
  1211. { NULL }
  1212. };
  1213. AVFilter ff_af_afftdn = {
  1214. .name = "afftdn",
  1215. .description = NULL_IF_CONFIG_SMALL("Denoise audio samples using FFT."),
  1216. .query_formats = query_formats,
  1217. .priv_size = sizeof(AudioFFTDeNoiseContext),
  1218. .priv_class = &afftdn_class,
  1219. .uninit = uninit,
  1220. .inputs = inputs,
  1221. .outputs = outputs,
  1222. .process_command = process_command,
  1223. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
  1224. AVFILTER_FLAG_SLICE_THREADS,
  1225. };