You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1319 lines
45KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include "libavutil/lfg.h"
  44. #include "avcodec.h"
  45. #include "get_bits.h"
  46. #include "dsputil.h"
  47. #include "bytestream.h"
  48. #include "fft.h"
  49. #include "libavutil/audioconvert.h"
  50. #include "sinewin.h"
  51. #include "cookdata.h"
  52. /* the different Cook versions */
  53. #define MONO 0x1000001
  54. #define STEREO 0x1000002
  55. #define JOINT_STEREO 0x1000003
  56. #define MC_COOK 0x2000000 // multichannel Cook, not supported
  57. #define SUBBAND_SIZE 20
  58. #define MAX_SUBPACKETS 5
  59. typedef struct {
  60. int *now;
  61. int *previous;
  62. } cook_gains;
  63. typedef struct {
  64. int ch_idx;
  65. int size;
  66. int num_channels;
  67. int cookversion;
  68. int samples_per_frame;
  69. int subbands;
  70. int js_subband_start;
  71. int js_vlc_bits;
  72. int samples_per_channel;
  73. int log2_numvector_size;
  74. unsigned int channel_mask;
  75. VLC ccpl; ///< channel coupling
  76. int joint_stereo;
  77. int bits_per_subpacket;
  78. int bits_per_subpdiv;
  79. int total_subbands;
  80. int numvector_size; ///< 1 << log2_numvector_size;
  81. float mono_previous_buffer1[1024];
  82. float mono_previous_buffer2[1024];
  83. /** gain buffers */
  84. cook_gains gains1;
  85. cook_gains gains2;
  86. int gain_1[9];
  87. int gain_2[9];
  88. int gain_3[9];
  89. int gain_4[9];
  90. } COOKSubpacket;
  91. typedef struct cook {
  92. /*
  93. * The following 5 functions provide the lowlevel arithmetic on
  94. * the internal audio buffers.
  95. */
  96. void (*scalar_dequant)(struct cook *q, int index, int quant_index,
  97. int *subband_coef_index, int *subband_coef_sign,
  98. float *mlt_p);
  99. void (*decouple)(struct cook *q,
  100. COOKSubpacket *p,
  101. int subband,
  102. float f1, float f2,
  103. float *decode_buffer,
  104. float *mlt_buffer1, float *mlt_buffer2);
  105. void (*imlt_window)(struct cook *q, float *buffer1,
  106. cook_gains *gains_ptr, float *previous_buffer);
  107. void (*interpolate)(struct cook *q, float *buffer,
  108. int gain_index, int gain_index_next);
  109. void (*saturate_output)(struct cook *q, int chan, float *out);
  110. AVCodecContext* avctx;
  111. AVFrame frame;
  112. GetBitContext gb;
  113. /* stream data */
  114. int nb_channels;
  115. int bit_rate;
  116. int sample_rate;
  117. int num_vectors;
  118. int samples_per_channel;
  119. /* states */
  120. AVLFG random_state;
  121. int discarded_packets;
  122. /* transform data */
  123. FFTContext mdct_ctx;
  124. float* mlt_window;
  125. /* VLC data */
  126. VLC envelope_quant_index[13];
  127. VLC sqvh[7]; // scalar quantization
  128. /* generatable tables and related variables */
  129. int gain_size_factor;
  130. float gain_table[23];
  131. /* data buffers */
  132. uint8_t* decoded_bytes_buffer;
  133. DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
  134. float decode_buffer_1[1024];
  135. float decode_buffer_2[1024];
  136. float decode_buffer_0[1060]; /* static allocation for joint decode */
  137. const float *cplscales[5];
  138. int num_subpackets;
  139. COOKSubpacket subpacket[MAX_SUBPACKETS];
  140. } COOKContext;
  141. static float pow2tab[127];
  142. static float rootpow2tab[127];
  143. /*************** init functions ***************/
  144. /* table generator */
  145. static av_cold void init_pow2table(void)
  146. {
  147. int i;
  148. for (i = -63; i < 64; i++) {
  149. pow2tab[63 + i] = pow(2, i);
  150. rootpow2tab[63 + i] = sqrt(pow(2, i));
  151. }
  152. }
  153. /* table generator */
  154. static av_cold void init_gain_table(COOKContext *q)
  155. {
  156. int i;
  157. q->gain_size_factor = q->samples_per_channel / 8;
  158. for (i = 0; i < 23; i++)
  159. q->gain_table[i] = pow(pow2tab[i + 52],
  160. (1.0 / (double) q->gain_size_factor));
  161. }
  162. static av_cold int init_cook_vlc_tables(COOKContext *q)
  163. {
  164. int i, result;
  165. result = 0;
  166. for (i = 0; i < 13; i++) {
  167. result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
  168. envelope_quant_index_huffbits[i], 1, 1,
  169. envelope_quant_index_huffcodes[i], 2, 2, 0);
  170. }
  171. av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
  172. for (i = 0; i < 7; i++) {
  173. result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  174. cvh_huffbits[i], 1, 1,
  175. cvh_huffcodes[i], 2, 2, 0);
  176. }
  177. for (i = 0; i < q->num_subpackets; i++) {
  178. if (q->subpacket[i].joint_stereo == 1) {
  179. result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
  180. ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
  181. ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
  182. av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
  183. }
  184. }
  185. av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
  186. return result;
  187. }
  188. static av_cold int init_cook_mlt(COOKContext *q)
  189. {
  190. int j, ret;
  191. int mlt_size = q->samples_per_channel;
  192. if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
  193. return AVERROR(ENOMEM);
  194. /* Initialize the MLT window: simple sine window. */
  195. ff_sine_window_init(q->mlt_window, mlt_size);
  196. for (j = 0; j < mlt_size; j++)
  197. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  198. /* Initialize the MDCT. */
  199. if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
  200. av_free(q->mlt_window);
  201. return ret;
  202. }
  203. av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
  204. av_log2(mlt_size) + 1);
  205. return 0;
  206. }
  207. static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
  208. {
  209. if (1)
  210. return ptr;
  211. }
  212. static av_cold void init_cplscales_table(COOKContext *q)
  213. {
  214. int i;
  215. for (i = 0; i < 5; i++)
  216. q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
  217. }
  218. /*************** init functions end ***********/
  219. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
  220. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  221. /**
  222. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  223. * Why? No idea, some checksum/error detection method maybe.
  224. *
  225. * Out buffer size: extra bytes are needed to cope with
  226. * padding/misalignment.
  227. * Subpackets passed to the decoder can contain two, consecutive
  228. * half-subpackets, of identical but arbitrary size.
  229. * 1234 1234 1234 1234 extraA extraB
  230. * Case 1: AAAA BBBB 0 0
  231. * Case 2: AAAA ABBB BB-- 3 3
  232. * Case 3: AAAA AABB BBBB 2 2
  233. * Case 4: AAAA AAAB BBBB BB-- 1 5
  234. *
  235. * Nice way to waste CPU cycles.
  236. *
  237. * @param inbuffer pointer to byte array of indata
  238. * @param out pointer to byte array of outdata
  239. * @param bytes number of bytes
  240. */
  241. static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
  242. {
  243. static const uint32_t tab[4] = {
  244. AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
  245. AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
  246. };
  247. int i, off;
  248. uint32_t c;
  249. const uint32_t *buf;
  250. uint32_t *obuf = (uint32_t *) out;
  251. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  252. * I'm too lazy though, should be something like
  253. * for (i = 0; i < bitamount / 64; i++)
  254. * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
  255. * Buffer alignment needs to be checked. */
  256. off = (intptr_t) inbuffer & 3;
  257. buf = (const uint32_t *) (inbuffer - off);
  258. c = tab[off];
  259. bytes += 3 + off;
  260. for (i = 0; i < bytes / 4; i++)
  261. obuf[i] = c ^ buf[i];
  262. return off;
  263. }
  264. /**
  265. * Cook uninit
  266. */
  267. static av_cold int cook_decode_close(AVCodecContext *avctx)
  268. {
  269. int i;
  270. COOKContext *q = avctx->priv_data;
  271. av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
  272. /* Free allocated memory buffers. */
  273. av_free(q->mlt_window);
  274. av_free(q->decoded_bytes_buffer);
  275. /* Free the transform. */
  276. ff_mdct_end(&q->mdct_ctx);
  277. /* Free the VLC tables. */
  278. for (i = 0; i < 13; i++)
  279. ff_free_vlc(&q->envelope_quant_index[i]);
  280. for (i = 0; i < 7; i++)
  281. ff_free_vlc(&q->sqvh[i]);
  282. for (i = 0; i < q->num_subpackets; i++)
  283. ff_free_vlc(&q->subpacket[i].ccpl);
  284. av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
  285. return 0;
  286. }
  287. /**
  288. * Fill the gain array for the timedomain quantization.
  289. *
  290. * @param gb pointer to the GetBitContext
  291. * @param gaininfo array[9] of gain indexes
  292. */
  293. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  294. {
  295. int i, n;
  296. while (get_bits1(gb)) {
  297. /* NOTHING */
  298. }
  299. n = get_bits_count(gb) - 1; // amount of elements*2 to update
  300. i = 0;
  301. while (n--) {
  302. int index = get_bits(gb, 3);
  303. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  304. while (i <= index)
  305. gaininfo[i++] = gain;
  306. }
  307. while (i <= 8)
  308. gaininfo[i++] = 0;
  309. }
  310. /**
  311. * Create the quant index table needed for the envelope.
  312. *
  313. * @param q pointer to the COOKContext
  314. * @param quant_index_table pointer to the array
  315. */
  316. static int decode_envelope(COOKContext *q, COOKSubpacket *p,
  317. int *quant_index_table)
  318. {
  319. int i, j, vlc_index;
  320. quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
  321. for (i = 1; i < p->total_subbands; i++) {
  322. vlc_index = i;
  323. if (i >= p->js_subband_start * 2) {
  324. vlc_index -= p->js_subband_start;
  325. } else {
  326. vlc_index /= 2;
  327. if (vlc_index < 1)
  328. vlc_index = 1;
  329. }
  330. if (vlc_index > 13)
  331. vlc_index = 13; // the VLC tables >13 are identical to No. 13
  332. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
  333. q->envelope_quant_index[vlc_index - 1].bits, 2);
  334. quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
  335. if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
  336. av_log(q->avctx, AV_LOG_ERROR,
  337. "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
  338. quant_index_table[i], i);
  339. return AVERROR_INVALIDDATA;
  340. }
  341. }
  342. return 0;
  343. }
  344. /**
  345. * Calculate the category and category_index vector.
  346. *
  347. * @param q pointer to the COOKContext
  348. * @param quant_index_table pointer to the array
  349. * @param category pointer to the category array
  350. * @param category_index pointer to the category_index array
  351. */
  352. static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
  353. int *category, int *category_index)
  354. {
  355. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  356. int exp_index2[102] = { 0 };
  357. int exp_index1[102] = { 0 };
  358. int tmp_categorize_array[128 * 2] = { 0 };
  359. int tmp_categorize_array1_idx = p->numvector_size;
  360. int tmp_categorize_array2_idx = p->numvector_size;
  361. bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
  362. if (bits_left > q->samples_per_channel)
  363. bits_left = q->samples_per_channel +
  364. ((bits_left - q->samples_per_channel) * 5) / 8;
  365. bias = -32;
  366. /* Estimate bias. */
  367. for (i = 32; i > 0; i = i / 2) {
  368. num_bits = 0;
  369. index = 0;
  370. for (j = p->total_subbands; j > 0; j--) {
  371. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  372. index++;
  373. num_bits += expbits_tab[exp_idx];
  374. }
  375. if (num_bits >= bits_left - 32)
  376. bias += i;
  377. }
  378. /* Calculate total number of bits. */
  379. num_bits = 0;
  380. for (i = 0; i < p->total_subbands; i++) {
  381. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  382. num_bits += expbits_tab[exp_idx];
  383. exp_index1[i] = exp_idx;
  384. exp_index2[i] = exp_idx;
  385. }
  386. tmpbias1 = tmpbias2 = num_bits;
  387. for (j = 1; j < p->numvector_size; j++) {
  388. if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
  389. int max = -999999;
  390. index = -1;
  391. for (i = 0; i < p->total_subbands; i++) {
  392. if (exp_index1[i] < 7) {
  393. v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
  394. if (v >= max) {
  395. max = v;
  396. index = i;
  397. }
  398. }
  399. }
  400. if (index == -1)
  401. break;
  402. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  403. tmpbias1 -= expbits_tab[exp_index1[index]] -
  404. expbits_tab[exp_index1[index] + 1];
  405. ++exp_index1[index];
  406. } else { /* <--- */
  407. int min = 999999;
  408. index = -1;
  409. for (i = 0; i < p->total_subbands; i++) {
  410. if (exp_index2[i] > 0) {
  411. v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
  412. if (v < min) {
  413. min = v;
  414. index = i;
  415. }
  416. }
  417. }
  418. if (index == -1)
  419. break;
  420. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  421. tmpbias2 -= expbits_tab[exp_index2[index]] -
  422. expbits_tab[exp_index2[index] - 1];
  423. --exp_index2[index];
  424. }
  425. }
  426. for (i = 0; i < p->total_subbands; i++)
  427. category[i] = exp_index2[i];
  428. for (i = 0; i < p->numvector_size - 1; i++)
  429. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  430. }
  431. /**
  432. * Expand the category vector.
  433. *
  434. * @param q pointer to the COOKContext
  435. * @param category pointer to the category array
  436. * @param category_index pointer to the category_index array
  437. */
  438. static inline void expand_category(COOKContext *q, int *category,
  439. int *category_index)
  440. {
  441. int i;
  442. for (i = 0; i < q->num_vectors; i++)
  443. {
  444. int idx = category_index[i];
  445. if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
  446. --category[idx];
  447. }
  448. }
  449. /**
  450. * The real requantization of the mltcoefs
  451. *
  452. * @param q pointer to the COOKContext
  453. * @param index index
  454. * @param quant_index quantisation index
  455. * @param subband_coef_index array of indexes to quant_centroid_tab
  456. * @param subband_coef_sign signs of coefficients
  457. * @param mlt_p pointer into the mlt buffer
  458. */
  459. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  460. int *subband_coef_index, int *subband_coef_sign,
  461. float *mlt_p)
  462. {
  463. int i;
  464. float f1;
  465. for (i = 0; i < SUBBAND_SIZE; i++) {
  466. if (subband_coef_index[i]) {
  467. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  468. if (subband_coef_sign[i])
  469. f1 = -f1;
  470. } else {
  471. /* noise coding if subband_coef_index[i] == 0 */
  472. f1 = dither_tab[index];
  473. if (av_lfg_get(&q->random_state) < 0x80000000)
  474. f1 = -f1;
  475. }
  476. mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
  477. }
  478. }
  479. /**
  480. * Unpack the subband_coef_index and subband_coef_sign vectors.
  481. *
  482. * @param q pointer to the COOKContext
  483. * @param category pointer to the category array
  484. * @param subband_coef_index array of indexes to quant_centroid_tab
  485. * @param subband_coef_sign signs of coefficients
  486. */
  487. static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
  488. int *subband_coef_index, int *subband_coef_sign)
  489. {
  490. int i, j;
  491. int vlc, vd, tmp, result;
  492. vd = vd_tab[category];
  493. result = 0;
  494. for (i = 0; i < vpr_tab[category]; i++) {
  495. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  496. if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
  497. vlc = 0;
  498. result = 1;
  499. }
  500. for (j = vd - 1; j >= 0; j--) {
  501. tmp = (vlc * invradix_tab[category]) / 0x100000;
  502. subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
  503. vlc = tmp;
  504. }
  505. for (j = 0; j < vd; j++) {
  506. if (subband_coef_index[i * vd + j]) {
  507. if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
  508. subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
  509. } else {
  510. result = 1;
  511. subband_coef_sign[i * vd + j] = 0;
  512. }
  513. } else {
  514. subband_coef_sign[i * vd + j] = 0;
  515. }
  516. }
  517. }
  518. return result;
  519. }
  520. /**
  521. * Fill the mlt_buffer with mlt coefficients.
  522. *
  523. * @param q pointer to the COOKContext
  524. * @param category pointer to the category array
  525. * @param quant_index_table pointer to the array
  526. * @param mlt_buffer pointer to mlt coefficients
  527. */
  528. static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
  529. int *quant_index_table, float *mlt_buffer)
  530. {
  531. /* A zero in this table means that the subband coefficient is
  532. random noise coded. */
  533. int subband_coef_index[SUBBAND_SIZE];
  534. /* A zero in this table means that the subband coefficient is a
  535. positive multiplicator. */
  536. int subband_coef_sign[SUBBAND_SIZE];
  537. int band, j;
  538. int index = 0;
  539. for (band = 0; band < p->total_subbands; band++) {
  540. index = category[band];
  541. if (category[band] < 7) {
  542. if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
  543. index = 7;
  544. for (j = 0; j < p->total_subbands; j++)
  545. category[band + j] = 7;
  546. }
  547. }
  548. if (index >= 7) {
  549. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  550. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  551. }
  552. q->scalar_dequant(q, index, quant_index_table[band],
  553. subband_coef_index, subband_coef_sign,
  554. &mlt_buffer[band * SUBBAND_SIZE]);
  555. }
  556. /* FIXME: should this be removed, or moved into loop above? */
  557. if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
  558. return;
  559. }
  560. /**
  561. * function for decoding mono data
  562. *
  563. * @param q pointer to the COOKContext
  564. * @param mlt_buffer pointer to mlt coefficients
  565. */
  566. static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
  567. {
  568. int category_index[128] = { 0 };
  569. int category[128] = { 0 };
  570. int quant_index_table[102];
  571. int res, i;
  572. if ((res = decode_envelope(q, p, quant_index_table)) < 0)
  573. return res;
  574. q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
  575. categorize(q, p, quant_index_table, category, category_index);
  576. expand_category(q, category, category_index);
  577. for (i=0; i<p->total_subbands; i++) {
  578. if (category[i] > 7)
  579. return AVERROR_INVALIDDATA;
  580. }
  581. decode_vectors(q, p, category, quant_index_table, mlt_buffer);
  582. return 0;
  583. }
  584. /**
  585. * the actual requantization of the timedomain samples
  586. *
  587. * @param q pointer to the COOKContext
  588. * @param buffer pointer to the timedomain buffer
  589. * @param gain_index index for the block multiplier
  590. * @param gain_index_next index for the next block multiplier
  591. */
  592. static void interpolate_float(COOKContext *q, float *buffer,
  593. int gain_index, int gain_index_next)
  594. {
  595. int i;
  596. float fc1, fc2;
  597. fc1 = pow2tab[gain_index + 63];
  598. if (gain_index == gain_index_next) { // static gain
  599. for (i = 0; i < q->gain_size_factor; i++)
  600. buffer[i] *= fc1;
  601. } else { // smooth gain
  602. fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
  603. for (i = 0; i < q->gain_size_factor; i++) {
  604. buffer[i] *= fc1;
  605. fc1 *= fc2;
  606. }
  607. }
  608. }
  609. /**
  610. * Apply transform window, overlap buffers.
  611. *
  612. * @param q pointer to the COOKContext
  613. * @param inbuffer pointer to the mltcoefficients
  614. * @param gains_ptr current and previous gains
  615. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  616. */
  617. static void imlt_window_float(COOKContext *q, float *inbuffer,
  618. cook_gains *gains_ptr, float *previous_buffer)
  619. {
  620. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  621. int i;
  622. /* The weird thing here, is that the two halves of the time domain
  623. * buffer are swapped. Also, the newest data, that we save away for
  624. * next frame, has the wrong sign. Hence the subtraction below.
  625. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  626. */
  627. /* Apply window and overlap */
  628. for (i = 0; i < q->samples_per_channel; i++)
  629. inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
  630. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  631. }
  632. /**
  633. * The modulated lapped transform, this takes transform coefficients
  634. * and transforms them into timedomain samples.
  635. * Apply transform window, overlap buffers, apply gain profile
  636. * and buffer management.
  637. *
  638. * @param q pointer to the COOKContext
  639. * @param inbuffer pointer to the mltcoefficients
  640. * @param gains_ptr current and previous gains
  641. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  642. */
  643. static void imlt_gain(COOKContext *q, float *inbuffer,
  644. cook_gains *gains_ptr, float *previous_buffer)
  645. {
  646. float *buffer0 = q->mono_mdct_output;
  647. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  648. int i;
  649. /* Inverse modified discrete cosine transform */
  650. q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  651. q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
  652. /* Apply gain profile */
  653. for (i = 0; i < 8; i++)
  654. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  655. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  656. gains_ptr->now[i], gains_ptr->now[i + 1]);
  657. /* Save away the current to be previous block. */
  658. memcpy(previous_buffer, buffer0,
  659. q->samples_per_channel * sizeof(*previous_buffer));
  660. }
  661. /**
  662. * function for getting the jointstereo coupling information
  663. *
  664. * @param q pointer to the COOKContext
  665. * @param decouple_tab decoupling array
  666. *
  667. */
  668. static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
  669. {
  670. int i;
  671. int vlc = get_bits1(&q->gb);
  672. int start = cplband[p->js_subband_start];
  673. int end = cplband[p->subbands - 1];
  674. int length = end - start + 1;
  675. if (start > end)
  676. return 0;
  677. if (vlc)
  678. for (i = 0; i < length; i++)
  679. decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
  680. else
  681. for (i = 0; i < length; i++) {
  682. int v = get_bits(&q->gb, p->js_vlc_bits);
  683. if (v == (1<<p->js_vlc_bits)-1) {
  684. av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
  685. return AVERROR_INVALIDDATA;
  686. }
  687. decouple_tab[start + i] = v;
  688. }
  689. return 0;
  690. }
  691. /*
  692. * function decouples a pair of signals from a single signal via multiplication.
  693. *
  694. * @param q pointer to the COOKContext
  695. * @param subband index of the current subband
  696. * @param f1 multiplier for channel 1 extraction
  697. * @param f2 multiplier for channel 2 extraction
  698. * @param decode_buffer input buffer
  699. * @param mlt_buffer1 pointer to left channel mlt coefficients
  700. * @param mlt_buffer2 pointer to right channel mlt coefficients
  701. */
  702. static void decouple_float(COOKContext *q,
  703. COOKSubpacket *p,
  704. int subband,
  705. float f1, float f2,
  706. float *decode_buffer,
  707. float *mlt_buffer1, float *mlt_buffer2)
  708. {
  709. int j, tmp_idx;
  710. for (j = 0; j < SUBBAND_SIZE; j++) {
  711. tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
  712. mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
  713. mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
  714. }
  715. }
  716. /**
  717. * function for decoding joint stereo data
  718. *
  719. * @param q pointer to the COOKContext
  720. * @param mlt_buffer1 pointer to left channel mlt coefficients
  721. * @param mlt_buffer2 pointer to right channel mlt coefficients
  722. */
  723. static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
  724. float *mlt_buffer2)
  725. {
  726. int i, j, res;
  727. int decouple_tab[SUBBAND_SIZE] = { 0 };
  728. float *decode_buffer = q->decode_buffer_0;
  729. int idx, cpl_tmp;
  730. float f1, f2;
  731. const float *cplscale;
  732. memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
  733. /* Make sure the buffers are zeroed out. */
  734. memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
  735. memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
  736. if ((res = decouple_info(q, p, decouple_tab)) < 0)
  737. return res;
  738. if ((res = mono_decode(q, p, decode_buffer)) < 0)
  739. return res;
  740. /* The two channels are stored interleaved in decode_buffer. */
  741. for (i = 0; i < p->js_subband_start; i++) {
  742. for (j = 0; j < SUBBAND_SIZE; j++) {
  743. mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
  744. mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
  745. }
  746. }
  747. /* When we reach js_subband_start (the higher frequencies)
  748. the coefficients are stored in a coupling scheme. */
  749. idx = (1 << p->js_vlc_bits) - 1;
  750. for (i = p->js_subband_start; i < p->subbands; i++) {
  751. cpl_tmp = cplband[i];
  752. idx -= decouple_tab[cpl_tmp];
  753. cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
  754. f1 = cplscale[decouple_tab[cpl_tmp] + 1];
  755. f2 = cplscale[idx];
  756. q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  757. idx = (1 << p->js_vlc_bits) - 1;
  758. }
  759. return 0;
  760. }
  761. /**
  762. * First part of subpacket decoding:
  763. * decode raw stream bytes and read gain info.
  764. *
  765. * @param q pointer to the COOKContext
  766. * @param inbuffer pointer to raw stream data
  767. * @param gains_ptr array of current/prev gain pointers
  768. */
  769. static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
  770. const uint8_t *inbuffer,
  771. cook_gains *gains_ptr)
  772. {
  773. int offset;
  774. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  775. p->bits_per_subpacket / 8);
  776. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  777. p->bits_per_subpacket);
  778. decode_gain_info(&q->gb, gains_ptr->now);
  779. /* Swap current and previous gains */
  780. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  781. }
  782. /**
  783. * Saturate the output signal and interleave.
  784. *
  785. * @param q pointer to the COOKContext
  786. * @param chan channel to saturate
  787. * @param out pointer to the output vector
  788. */
  789. static void saturate_output_float(COOKContext *q, int chan, float *out)
  790. {
  791. int j;
  792. float *output = q->mono_mdct_output + q->samples_per_channel;
  793. for (j = 0; j < q->samples_per_channel; j++) {
  794. out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
  795. }
  796. }
  797. /**
  798. * Final part of subpacket decoding:
  799. * Apply modulated lapped transform, gain compensation,
  800. * clip and convert to integer.
  801. *
  802. * @param q pointer to the COOKContext
  803. * @param decode_buffer pointer to the mlt coefficients
  804. * @param gains_ptr array of current/prev gain pointers
  805. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  806. * @param out pointer to the output buffer
  807. * @param chan 0: left or single channel, 1: right channel
  808. */
  809. static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
  810. cook_gains *gains_ptr, float *previous_buffer,
  811. float *out, int chan)
  812. {
  813. imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
  814. if (out)
  815. q->saturate_output(q, chan, out);
  816. }
  817. /**
  818. * Cook subpacket decoding. This function returns one decoded subpacket,
  819. * usually 1024 samples per channel.
  820. *
  821. * @param q pointer to the COOKContext
  822. * @param inbuffer pointer to the inbuffer
  823. * @param outbuffer pointer to the outbuffer
  824. */
  825. static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
  826. const uint8_t *inbuffer, float *outbuffer)
  827. {
  828. int sub_packet_size = p->size;
  829. int res;
  830. memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
  831. decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
  832. if (p->joint_stereo) {
  833. if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
  834. return res;
  835. } else {
  836. if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
  837. return res;
  838. if (p->num_channels == 2) {
  839. decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
  840. if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
  841. return res;
  842. }
  843. }
  844. mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
  845. p->mono_previous_buffer1, outbuffer, p->ch_idx);
  846. if (p->num_channels == 2)
  847. if (p->joint_stereo)
  848. mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
  849. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  850. else
  851. mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
  852. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  853. return 0;
  854. }
  855. /**
  856. * Cook frame decoding
  857. *
  858. * @param avctx pointer to the AVCodecContext
  859. */
  860. static int cook_decode_frame(AVCodecContext *avctx, void *data,
  861. int *got_frame_ptr, AVPacket *avpkt)
  862. {
  863. const uint8_t *buf = avpkt->data;
  864. int buf_size = avpkt->size;
  865. COOKContext *q = avctx->priv_data;
  866. float *samples = NULL;
  867. int i, ret;
  868. int offset = 0;
  869. int chidx = 0;
  870. if (buf_size < avctx->block_align)
  871. return buf_size;
  872. /* get output buffer */
  873. if (q->discarded_packets >= 2) {
  874. q->frame.nb_samples = q->samples_per_channel;
  875. if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
  876. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  877. return ret;
  878. }
  879. samples = (float *) q->frame.data[0];
  880. }
  881. /* estimate subpacket sizes */
  882. q->subpacket[0].size = avctx->block_align;
  883. for (i = 1; i < q->num_subpackets; i++) {
  884. q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
  885. q->subpacket[0].size -= q->subpacket[i].size + 1;
  886. if (q->subpacket[0].size < 0) {
  887. av_log(avctx, AV_LOG_DEBUG,
  888. "frame subpacket size total > avctx->block_align!\n");
  889. return AVERROR_INVALIDDATA;
  890. }
  891. }
  892. /* decode supbackets */
  893. for (i = 0; i < q->num_subpackets; i++) {
  894. q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
  895. q->subpacket[i].bits_per_subpdiv;
  896. q->subpacket[i].ch_idx = chidx;
  897. av_log(avctx, AV_LOG_DEBUG,
  898. "subpacket[%i] size %i js %i %i block_align %i\n",
  899. i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
  900. avctx->block_align);
  901. if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
  902. return ret;
  903. offset += q->subpacket[i].size;
  904. chidx += q->subpacket[i].num_channels;
  905. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
  906. i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
  907. }
  908. /* Discard the first two frames: no valid audio. */
  909. if (q->discarded_packets < 2) {
  910. q->discarded_packets++;
  911. *got_frame_ptr = 0;
  912. return avctx->block_align;
  913. }
  914. *got_frame_ptr = 1;
  915. *(AVFrame *) data = q->frame;
  916. return avctx->block_align;
  917. }
  918. #ifdef DEBUG
  919. static void dump_cook_context(COOKContext *q)
  920. {
  921. //int i=0;
  922. #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
  923. av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
  924. av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
  925. if (q->subpacket[0].cookversion > STEREO) {
  926. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  927. PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
  928. }
  929. av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
  930. PRINT("nb_channels", q->nb_channels);
  931. PRINT("bit_rate", q->bit_rate);
  932. PRINT("sample_rate", q->sample_rate);
  933. PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
  934. PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
  935. PRINT("subbands", q->subpacket[0].subbands);
  936. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  937. PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
  938. PRINT("numvector_size", q->subpacket[0].numvector_size);
  939. PRINT("total_subbands", q->subpacket[0].total_subbands);
  940. }
  941. #endif
  942. static av_cold int cook_count_channels(unsigned int mask)
  943. {
  944. int i;
  945. int channels = 0;
  946. for (i = 0; i < 32; i++)
  947. if (mask & (1 << i))
  948. ++channels;
  949. return channels;
  950. }
  951. /**
  952. * Cook initialization
  953. *
  954. * @param avctx pointer to the AVCodecContext
  955. */
  956. static av_cold int cook_decode_init(AVCodecContext *avctx)
  957. {
  958. COOKContext *q = avctx->priv_data;
  959. const uint8_t *edata_ptr = avctx->extradata;
  960. const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
  961. int extradata_size = avctx->extradata_size;
  962. int s = 0;
  963. unsigned int channel_mask = 0;
  964. int ret;
  965. q->avctx = avctx;
  966. /* Take care of the codec specific extradata. */
  967. if (extradata_size <= 0) {
  968. av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
  969. return AVERROR_INVALIDDATA;
  970. }
  971. av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
  972. /* Take data from the AVCodecContext (RM container). */
  973. q->sample_rate = avctx->sample_rate;
  974. q->nb_channels = avctx->channels;
  975. q->bit_rate = avctx->bit_rate;
  976. if (!q->nb_channels) {
  977. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  978. return AVERROR_INVALIDDATA;
  979. }
  980. /* Initialize RNG. */
  981. av_lfg_init(&q->random_state, 0);
  982. while (edata_ptr < edata_ptr_end) {
  983. /* 8 for mono, 16 for stereo, ? for multichannel
  984. Swap to right endianness so we don't need to care later on. */
  985. if (extradata_size >= 8) {
  986. q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
  987. q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
  988. q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
  989. extradata_size -= 8;
  990. }
  991. if (extradata_size >= 8) {
  992. bytestream_get_be32(&edata_ptr); // Unknown unused
  993. q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
  994. q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
  995. extradata_size -= 8;
  996. }
  997. /* Initialize extradata related variables. */
  998. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
  999. q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
  1000. /* Initialize default data states. */
  1001. q->subpacket[s].log2_numvector_size = 5;
  1002. q->subpacket[s].total_subbands = q->subpacket[s].subbands;
  1003. q->subpacket[s].num_channels = 1;
  1004. /* Initialize version-dependent variables */
  1005. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
  1006. q->subpacket[s].cookversion);
  1007. q->subpacket[s].joint_stereo = 0;
  1008. switch (q->subpacket[s].cookversion) {
  1009. case MONO:
  1010. if (q->nb_channels != 1) {
  1011. av_log_ask_for_sample(avctx, "Container channels != 1.\n");
  1012. return AVERROR_PATCHWELCOME;
  1013. }
  1014. av_log(avctx, AV_LOG_DEBUG, "MONO\n");
  1015. break;
  1016. case STEREO:
  1017. if (q->nb_channels != 1) {
  1018. q->subpacket[s].bits_per_subpdiv = 1;
  1019. q->subpacket[s].num_channels = 2;
  1020. }
  1021. av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
  1022. break;
  1023. case JOINT_STEREO:
  1024. if (q->nb_channels != 2) {
  1025. av_log_ask_for_sample(avctx, "Container channels != 2.\n");
  1026. return AVERROR_PATCHWELCOME;
  1027. }
  1028. av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
  1029. if (avctx->extradata_size >= 16) {
  1030. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1031. q->subpacket[s].js_subband_start;
  1032. q->subpacket[s].joint_stereo = 1;
  1033. q->subpacket[s].num_channels = 2;
  1034. }
  1035. if (q->subpacket[s].samples_per_channel > 256) {
  1036. q->subpacket[s].log2_numvector_size = 6;
  1037. }
  1038. if (q->subpacket[s].samples_per_channel > 512) {
  1039. q->subpacket[s].log2_numvector_size = 7;
  1040. }
  1041. break;
  1042. case MC_COOK:
  1043. av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
  1044. if (extradata_size >= 4)
  1045. channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
  1046. if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
  1047. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1048. q->subpacket[s].js_subband_start;
  1049. q->subpacket[s].joint_stereo = 1;
  1050. q->subpacket[s].num_channels = 2;
  1051. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
  1052. if (q->subpacket[s].samples_per_channel > 256) {
  1053. q->subpacket[s].log2_numvector_size = 6;
  1054. }
  1055. if (q->subpacket[s].samples_per_channel > 512) {
  1056. q->subpacket[s].log2_numvector_size = 7;
  1057. }
  1058. } else
  1059. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
  1060. break;
  1061. default:
  1062. av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
  1063. return AVERROR_PATCHWELCOME;
  1064. }
  1065. if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
  1066. av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
  1067. return AVERROR_INVALIDDATA;
  1068. } else
  1069. q->samples_per_channel = q->subpacket[0].samples_per_channel;
  1070. /* Initialize variable relations */
  1071. q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
  1072. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1073. if (q->subpacket[s].total_subbands > 53) {
  1074. av_log_ask_for_sample(avctx, "total_subbands > 53\n");
  1075. return AVERROR_PATCHWELCOME;
  1076. }
  1077. if ((q->subpacket[s].js_vlc_bits > 6) ||
  1078. (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
  1079. av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
  1080. q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
  1081. return AVERROR_INVALIDDATA;
  1082. }
  1083. if (q->subpacket[s].subbands > 50) {
  1084. av_log_ask_for_sample(avctx, "subbands > 50\n");
  1085. return AVERROR_PATCHWELCOME;
  1086. }
  1087. q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
  1088. q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
  1089. q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
  1090. q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
  1091. if (q->num_subpackets + q->subpacket[s].num_channels > q->nb_channels) {
  1092. av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->nb_channels);
  1093. return AVERROR_INVALIDDATA;
  1094. }
  1095. q->num_subpackets++;
  1096. s++;
  1097. if (s > MAX_SUBPACKETS) {
  1098. av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
  1099. return AVERROR_PATCHWELCOME;
  1100. }
  1101. }
  1102. /* Generate tables */
  1103. init_pow2table();
  1104. init_gain_table(q);
  1105. init_cplscales_table(q);
  1106. if ((ret = init_cook_vlc_tables(q)))
  1107. return ret;
  1108. if (avctx->block_align >= UINT_MAX / 2)
  1109. return AVERROR(EINVAL);
  1110. /* Pad the databuffer with:
  1111. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  1112. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  1113. q->decoded_bytes_buffer =
  1114. av_mallocz(avctx->block_align
  1115. + DECODE_BYTES_PAD1(avctx->block_align)
  1116. + FF_INPUT_BUFFER_PADDING_SIZE);
  1117. if (q->decoded_bytes_buffer == NULL)
  1118. return AVERROR(ENOMEM);
  1119. /* Initialize transform. */
  1120. if ((ret = init_cook_mlt(q)))
  1121. return ret;
  1122. /* Initialize COOK signal arithmetic handling */
  1123. if (1) {
  1124. q->scalar_dequant = scalar_dequant_float;
  1125. q->decouple = decouple_float;
  1126. q->imlt_window = imlt_window_float;
  1127. q->interpolate = interpolate_float;
  1128. q->saturate_output = saturate_output_float;
  1129. }
  1130. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1131. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
  1132. || (q->samples_per_channel == 1024)) {
  1133. } else {
  1134. av_log_ask_for_sample(avctx,
  1135. "unknown amount of samples_per_channel = %d\n",
  1136. q->samples_per_channel);
  1137. return AVERROR_PATCHWELCOME;
  1138. }
  1139. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1140. if (channel_mask)
  1141. avctx->channel_layout = channel_mask;
  1142. else
  1143. avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
  1144. avcodec_get_frame_defaults(&q->frame);
  1145. avctx->coded_frame = &q->frame;
  1146. #ifdef DEBUG
  1147. dump_cook_context(q);
  1148. #endif
  1149. return 0;
  1150. }
  1151. AVCodec ff_cook_decoder = {
  1152. .name = "cook",
  1153. .type = AVMEDIA_TYPE_AUDIO,
  1154. .id = AV_CODEC_ID_COOK,
  1155. .priv_data_size = sizeof(COOKContext),
  1156. .init = cook_decode_init,
  1157. .close = cook_decode_close,
  1158. .decode = cook_decode_frame,
  1159. .capabilities = CODEC_CAP_DR1,
  1160. .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
  1161. };