You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

412 lines
14KB

  1. /*
  2. * Nellymoser encoder
  3. * This code is developed as part of Google Summer of Code 2008 Program.
  4. *
  5. * Copyright (c) 2008 Bartlomiej Wolowiec
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * Nellymoser encoder
  26. * by Bartlomiej Wolowiec
  27. *
  28. * Generic codec information: libavcodec/nellymoserdec.c
  29. *
  30. * Some information also from: http://samples.libav.org/A-codecs/Nelly_Moser/ASAO/ASAO.zip
  31. * (Copyright Joseph Artsimovich and UAB "DKD")
  32. *
  33. * for more information about nellymoser format, visit:
  34. * http://wiki.multimedia.cx/index.php?title=Nellymoser
  35. */
  36. #include "libavutil/mathematics.h"
  37. #include "nellymoser.h"
  38. #include "avcodec.h"
  39. #include "dsputil.h"
  40. #include "fft.h"
  41. #include "sinewin.h"
  42. #define BITSTREAM_WRITER_LE
  43. #include "put_bits.h"
  44. #define POW_TABLE_SIZE (1<<11)
  45. #define POW_TABLE_OFFSET 3
  46. #define OPT_SIZE ((1<<15) + 3000)
  47. typedef struct NellyMoserEncodeContext {
  48. AVCodecContext *avctx;
  49. int last_frame;
  50. int bufsel;
  51. int have_saved;
  52. DSPContext dsp;
  53. FFTContext mdct_ctx;
  54. DECLARE_ALIGNED(32, float, mdct_out)[NELLY_SAMPLES];
  55. DECLARE_ALIGNED(32, float, in_buff)[NELLY_SAMPLES];
  56. DECLARE_ALIGNED(32, float, buf)[2][3 * NELLY_BUF_LEN]; ///< sample buffer
  57. float (*opt )[NELLY_BANDS];
  58. uint8_t (*path)[NELLY_BANDS];
  59. } NellyMoserEncodeContext;
  60. static float pow_table[POW_TABLE_SIZE]; ///< -pow(2, -i / 2048.0 - 3.0);
  61. static const uint8_t sf_lut[96] = {
  62. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  63. 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14,
  64. 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26,
  65. 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40,
  66. 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 52, 53,
  67. 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 60, 60, 61, 61, 61, 62,
  68. };
  69. static const uint8_t sf_delta_lut[78] = {
  70. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  71. 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12,
  72. 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23,
  73. 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28,
  74. 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 30,
  75. };
  76. static const uint8_t quant_lut[230] = {
  77. 0,
  78. 0, 1, 2,
  79. 0, 1, 2, 3, 4, 5, 6,
  80. 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11,
  81. 12, 13, 13, 13, 14,
  82. 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8,
  83. 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
  84. 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29,
  85. 30,
  86. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3,
  87. 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9,
  88. 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
  89. 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20,
  90. 21, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32,
  91. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45,
  92. 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52,
  93. 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57,
  94. 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61,
  95. 61, 61, 61, 61, 62,
  96. };
  97. static const float quant_lut_mul[7] = { 0.0, 0.0, 2.0, 2.0, 5.0, 12.0, 36.6 };
  98. static const float quant_lut_add[7] = { 0.0, 0.0, 2.0, 7.0, 21.0, 56.0, 157.0 };
  99. static const uint8_t quant_lut_offset[8] = { 0, 0, 1, 4, 11, 32, 81, 230 };
  100. static void apply_mdct(NellyMoserEncodeContext *s)
  101. {
  102. s->dsp.vector_fmul(s->in_buff, s->buf[s->bufsel], ff_sine_128, NELLY_BUF_LEN);
  103. s->dsp.vector_fmul_reverse(s->in_buff + NELLY_BUF_LEN, s->buf[s->bufsel] + NELLY_BUF_LEN, ff_sine_128,
  104. NELLY_BUF_LEN);
  105. s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out, s->in_buff);
  106. s->dsp.vector_fmul(s->buf[s->bufsel] + NELLY_BUF_LEN, s->buf[s->bufsel] + NELLY_BUF_LEN,
  107. ff_sine_128, NELLY_BUF_LEN);
  108. s->dsp.vector_fmul_reverse(s->buf[s->bufsel] + 2 * NELLY_BUF_LEN, s->buf[1 - s->bufsel], ff_sine_128,
  109. NELLY_BUF_LEN);
  110. s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out + NELLY_BUF_LEN, s->buf[s->bufsel] + NELLY_BUF_LEN);
  111. }
  112. static av_cold int encode_end(AVCodecContext *avctx)
  113. {
  114. NellyMoserEncodeContext *s = avctx->priv_data;
  115. ff_mdct_end(&s->mdct_ctx);
  116. if (s->avctx->trellis) {
  117. av_free(s->opt);
  118. av_free(s->path);
  119. }
  120. av_freep(&avctx->coded_frame);
  121. return 0;
  122. }
  123. static av_cold int encode_init(AVCodecContext *avctx)
  124. {
  125. NellyMoserEncodeContext *s = avctx->priv_data;
  126. int i, ret;
  127. if (avctx->channels != 1) {
  128. av_log(avctx, AV_LOG_ERROR, "Nellymoser supports only 1 channel\n");
  129. return AVERROR(EINVAL);
  130. }
  131. if (avctx->sample_rate != 8000 && avctx->sample_rate != 16000 &&
  132. avctx->sample_rate != 11025 &&
  133. avctx->sample_rate != 22050 && avctx->sample_rate != 44100 &&
  134. avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) {
  135. av_log(avctx, AV_LOG_ERROR, "Nellymoser works only with 8000, 16000, 11025, 22050 and 44100 sample rate\n");
  136. return AVERROR(EINVAL);
  137. }
  138. avctx->frame_size = NELLY_SAMPLES;
  139. s->avctx = avctx;
  140. if ((ret = ff_mdct_init(&s->mdct_ctx, 8, 0, 32768.0)) < 0)
  141. goto error;
  142. ff_dsputil_init(&s->dsp, avctx);
  143. /* Generate overlap window */
  144. ff_sine_window_init(ff_sine_128, 128);
  145. for (i = 0; i < POW_TABLE_SIZE; i++)
  146. pow_table[i] = -pow(2, -i / 2048.0 - 3.0 + POW_TABLE_OFFSET);
  147. if (s->avctx->trellis) {
  148. s->opt = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(float ));
  149. s->path = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(uint8_t));
  150. if (!s->opt || !s->path) {
  151. ret = AVERROR(ENOMEM);
  152. goto error;
  153. }
  154. }
  155. avctx->coded_frame = avcodec_alloc_frame();
  156. if (!avctx->coded_frame) {
  157. ret = AVERROR(ENOMEM);
  158. goto error;
  159. }
  160. return 0;
  161. error:
  162. encode_end(avctx);
  163. return ret;
  164. }
  165. #define find_best(val, table, LUT, LUT_add, LUT_size) \
  166. best_idx = \
  167. LUT[av_clip ((lrintf(val) >> 8) + LUT_add, 0, LUT_size - 1)]; \
  168. if (fabs(val - table[best_idx]) > fabs(val - table[best_idx + 1])) \
  169. best_idx++;
  170. static void get_exponent_greedy(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  171. {
  172. int band, best_idx, power_idx = 0;
  173. float power_candidate;
  174. //base exponent
  175. find_best(cand[0], ff_nelly_init_table, sf_lut, -20, 96);
  176. idx_table[0] = best_idx;
  177. power_idx = ff_nelly_init_table[best_idx];
  178. for (band = 1; band < NELLY_BANDS; band++) {
  179. power_candidate = cand[band] - power_idx;
  180. find_best(power_candidate, ff_nelly_delta_table, sf_delta_lut, 37, 78);
  181. idx_table[band] = best_idx;
  182. power_idx += ff_nelly_delta_table[best_idx];
  183. }
  184. }
  185. static inline float distance(float x, float y, int band)
  186. {
  187. //return pow(fabs(x-y), 2.0);
  188. float tmp = x - y;
  189. return tmp * tmp;
  190. }
  191. static void get_exponent_dynamic(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  192. {
  193. int i, j, band, best_idx;
  194. float power_candidate, best_val;
  195. float (*opt )[NELLY_BANDS] = s->opt ;
  196. uint8_t(*path)[NELLY_BANDS] = s->path;
  197. for (i = 0; i < NELLY_BANDS * OPT_SIZE; i++) {
  198. opt[0][i] = INFINITY;
  199. }
  200. for (i = 0; i < 64; i++) {
  201. opt[0][ff_nelly_init_table[i]] = distance(cand[0], ff_nelly_init_table[i], 0);
  202. path[0][ff_nelly_init_table[i]] = i;
  203. }
  204. for (band = 1; band < NELLY_BANDS; band++) {
  205. int q, c = 0;
  206. float tmp;
  207. int idx_min, idx_max, idx;
  208. power_candidate = cand[band];
  209. for (q = 1000; !c && q < OPT_SIZE; q <<= 2) {
  210. idx_min = FFMAX(0, cand[band] - q);
  211. idx_max = FFMIN(OPT_SIZE, cand[band - 1] + q);
  212. for (i = FFMAX(0, cand[band - 1] - q); i < FFMIN(OPT_SIZE, cand[band - 1] + q); i++) {
  213. if ( isinf(opt[band - 1][i]) )
  214. continue;
  215. for (j = 0; j < 32; j++) {
  216. idx = i + ff_nelly_delta_table[j];
  217. if (idx > idx_max)
  218. break;
  219. if (idx >= idx_min) {
  220. tmp = opt[band - 1][i] + distance(idx, power_candidate, band);
  221. if (opt[band][idx] > tmp) {
  222. opt[band][idx] = tmp;
  223. path[band][idx] = j;
  224. c = 1;
  225. }
  226. }
  227. }
  228. }
  229. }
  230. assert(c); //FIXME
  231. }
  232. best_val = INFINITY;
  233. best_idx = -1;
  234. band = NELLY_BANDS - 1;
  235. for (i = 0; i < OPT_SIZE; i++) {
  236. if (best_val > opt[band][i]) {
  237. best_val = opt[band][i];
  238. best_idx = i;
  239. }
  240. }
  241. for (band = NELLY_BANDS - 1; band >= 0; band--) {
  242. idx_table[band] = path[band][best_idx];
  243. if (band) {
  244. best_idx -= ff_nelly_delta_table[path[band][best_idx]];
  245. }
  246. }
  247. }
  248. /**
  249. * Encode NELLY_SAMPLES samples. It assumes, that samples contains 3 * NELLY_BUF_LEN values
  250. * @param s encoder context
  251. * @param output output buffer
  252. * @param output_size size of output buffer
  253. */
  254. static void encode_block(NellyMoserEncodeContext *s, unsigned char *output, int output_size)
  255. {
  256. PutBitContext pb;
  257. int i, j, band, block, best_idx, power_idx = 0;
  258. float power_val, coeff, coeff_sum;
  259. float pows[NELLY_FILL_LEN];
  260. int bits[NELLY_BUF_LEN], idx_table[NELLY_BANDS];
  261. float cand[NELLY_BANDS];
  262. apply_mdct(s);
  263. init_put_bits(&pb, output, output_size * 8);
  264. i = 0;
  265. for (band = 0; band < NELLY_BANDS; band++) {
  266. coeff_sum = 0;
  267. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  268. coeff_sum += s->mdct_out[i ] * s->mdct_out[i ]
  269. + s->mdct_out[i + NELLY_BUF_LEN] * s->mdct_out[i + NELLY_BUF_LEN];
  270. }
  271. cand[band] =
  272. log(FFMAX(1.0, coeff_sum / (ff_nelly_band_sizes_table[band] << 7))) * 1024.0 / M_LN2;
  273. }
  274. if (s->avctx->trellis) {
  275. get_exponent_dynamic(s, cand, idx_table);
  276. } else {
  277. get_exponent_greedy(s, cand, idx_table);
  278. }
  279. i = 0;
  280. for (band = 0; band < NELLY_BANDS; band++) {
  281. if (band) {
  282. power_idx += ff_nelly_delta_table[idx_table[band]];
  283. put_bits(&pb, 5, idx_table[band]);
  284. } else {
  285. power_idx = ff_nelly_init_table[idx_table[0]];
  286. put_bits(&pb, 6, idx_table[0]);
  287. }
  288. power_val = pow_table[power_idx & 0x7FF] / (1 << ((power_idx >> 11) + POW_TABLE_OFFSET));
  289. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  290. s->mdct_out[i] *= power_val;
  291. s->mdct_out[i + NELLY_BUF_LEN] *= power_val;
  292. pows[i] = power_idx;
  293. }
  294. }
  295. ff_nelly_get_sample_bits(pows, bits);
  296. for (block = 0; block < 2; block++) {
  297. for (i = 0; i < NELLY_FILL_LEN; i++) {
  298. if (bits[i] > 0) {
  299. const float *table = ff_nelly_dequantization_table + (1 << bits[i]) - 1;
  300. coeff = s->mdct_out[block * NELLY_BUF_LEN + i];
  301. best_idx =
  302. quant_lut[av_clip (
  303. coeff * quant_lut_mul[bits[i]] + quant_lut_add[bits[i]],
  304. quant_lut_offset[bits[i]],
  305. quant_lut_offset[bits[i]+1] - 1
  306. )];
  307. if (fabs(coeff - table[best_idx]) > fabs(coeff - table[best_idx + 1]))
  308. best_idx++;
  309. put_bits(&pb, bits[i], best_idx);
  310. }
  311. }
  312. if (!block)
  313. put_bits(&pb, NELLY_HEADER_BITS + NELLY_DETAIL_BITS - put_bits_count(&pb), 0);
  314. }
  315. flush_put_bits(&pb);
  316. }
  317. static int encode_frame(AVCodecContext *avctx, uint8_t *frame, int buf_size, void *data)
  318. {
  319. NellyMoserEncodeContext *s = avctx->priv_data;
  320. const float *samples = data;
  321. int i;
  322. if (s->last_frame)
  323. return 0;
  324. if (data) {
  325. memcpy(s->buf[s->bufsel], samples, avctx->frame_size * sizeof(*samples));
  326. for (i = avctx->frame_size; i < NELLY_SAMPLES; i++) {
  327. s->buf[s->bufsel][i] = 0;
  328. }
  329. s->bufsel = 1 - s->bufsel;
  330. if (!s->have_saved) {
  331. s->have_saved = 1;
  332. return 0;
  333. }
  334. } else {
  335. memset(s->buf[s->bufsel], 0, sizeof(s->buf[0][0]) * NELLY_BUF_LEN);
  336. s->bufsel = 1 - s->bufsel;
  337. s->last_frame = 1;
  338. }
  339. if (s->have_saved) {
  340. encode_block(s, frame, buf_size);
  341. return NELLY_BLOCK_LEN;
  342. }
  343. return 0;
  344. }
  345. AVCodec ff_nellymoser_encoder = {
  346. .name = "nellymoser",
  347. .type = AVMEDIA_TYPE_AUDIO,
  348. .id = CODEC_ID_NELLYMOSER,
  349. .priv_data_size = sizeof(NellyMoserEncodeContext),
  350. .init = encode_init,
  351. .encode = encode_frame,
  352. .close = encode_end,
  353. .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
  354. .long_name = NULL_IF_CONFIG_SMALL("Nellymoser Asao"),
  355. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
  356. };