You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

313 lines
8.0KB

  1. /*
  2. * Sample rate convertion for both audio and video
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include "avcodec.h"
  20. typedef struct {
  21. /* fractional resampling */
  22. UINT32 incr; /* fractional increment */
  23. UINT32 frac;
  24. int last_sample;
  25. /* integer down sample */
  26. int iratio; /* integer divison ratio */
  27. int icount, isum;
  28. int inv;
  29. } ReSampleChannelContext;
  30. struct ReSampleContext {
  31. ReSampleChannelContext channel_ctx[2];
  32. float ratio;
  33. /* channel convert */
  34. int input_channels, output_channels, filter_channels;
  35. };
  36. #define FRAC_BITS 16
  37. #define FRAC (1 << FRAC_BITS)
  38. static void init_mono_resample(ReSampleChannelContext *s, float ratio)
  39. {
  40. ratio = 1.0 / ratio;
  41. s->iratio = (int)floor(ratio);
  42. if (s->iratio == 0)
  43. s->iratio = 1;
  44. s->incr = (int)((ratio / s->iratio) * FRAC);
  45. s->frac = FRAC;
  46. s->last_sample = 0;
  47. s->icount = s->iratio;
  48. s->isum = 0;
  49. s->inv = (FRAC / s->iratio);
  50. }
  51. /* fractional audio resampling */
  52. static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  53. {
  54. unsigned int frac, incr;
  55. int l0, l1;
  56. short *q, *p, *pend;
  57. l0 = s->last_sample;
  58. incr = s->incr;
  59. frac = s->frac;
  60. p = input;
  61. pend = input + nb_samples;
  62. q = output;
  63. l1 = *p++;
  64. for(;;) {
  65. /* interpolate */
  66. *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
  67. frac = frac + s->incr;
  68. while (frac >= FRAC) {
  69. frac -= FRAC;
  70. if (p >= pend)
  71. goto the_end;
  72. l0 = l1;
  73. l1 = *p++;
  74. }
  75. }
  76. the_end:
  77. s->last_sample = l1;
  78. s->frac = frac;
  79. return q - output;
  80. }
  81. static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  82. {
  83. short *q, *p, *pend;
  84. int c, sum;
  85. p = input;
  86. pend = input + nb_samples;
  87. q = output;
  88. c = s->icount;
  89. sum = s->isum;
  90. for(;;) {
  91. sum += *p++;
  92. if (--c == 0) {
  93. *q++ = (sum * s->inv) >> FRAC_BITS;
  94. c = s->iratio;
  95. sum = 0;
  96. }
  97. if (p >= pend)
  98. break;
  99. }
  100. s->isum = sum;
  101. s->icount = c;
  102. return q - output;
  103. }
  104. /* n1: number of samples */
  105. static void stereo_to_mono(short *output, short *input, int n1)
  106. {
  107. short *p, *q;
  108. int n = n1;
  109. p = input;
  110. q = output;
  111. while (n >= 4) {
  112. q[0] = (p[0] + p[1]) >> 1;
  113. q[1] = (p[2] + p[3]) >> 1;
  114. q[2] = (p[4] + p[5]) >> 1;
  115. q[3] = (p[6] + p[7]) >> 1;
  116. q += 4;
  117. p += 8;
  118. n -= 4;
  119. }
  120. while (n > 0) {
  121. q[0] = (p[0] + p[1]) >> 1;
  122. q++;
  123. p += 2;
  124. n--;
  125. }
  126. }
  127. /* n1: number of samples */
  128. static void mono_to_stereo(short *output, short *input, int n1)
  129. {
  130. short *p, *q;
  131. int n = n1;
  132. int v;
  133. p = input;
  134. q = output;
  135. while (n >= 4) {
  136. v = p[0]; q[0] = v; q[1] = v;
  137. v = p[1]; q[2] = v; q[3] = v;
  138. v = p[2]; q[4] = v; q[5] = v;
  139. v = p[3]; q[6] = v; q[7] = v;
  140. q += 8;
  141. p += 4;
  142. n -= 4;
  143. }
  144. while (n > 0) {
  145. v = p[0]; q[0] = v; q[1] = v;
  146. q += 2;
  147. p += 1;
  148. n--;
  149. }
  150. }
  151. /* XXX: should use more abstract 'N' channels system */
  152. static void stereo_split(short *output1, short *output2, short *input, int n)
  153. {
  154. int i;
  155. for(i=0;i<n;i++) {
  156. *output1++ = *input++;
  157. *output2++ = *input++;
  158. }
  159. }
  160. static void stereo_mux(short *output, short *input1, short *input2, int n)
  161. {
  162. int i;
  163. for(i=0;i<n;i++) {
  164. *output++ = *input1++;
  165. *output++ = *input2++;
  166. }
  167. }
  168. static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  169. {
  170. short *buf1;
  171. short *buftmp;
  172. buf1= (short*)av_malloc( nb_samples * sizeof(short) );
  173. /* first downsample by an integer factor with averaging filter */
  174. if (s->iratio > 1) {
  175. buftmp = buf1;
  176. nb_samples = integer_downsample(s, buftmp, input, nb_samples);
  177. } else {
  178. buftmp = input;
  179. }
  180. /* then do a fractional resampling with linear interpolation */
  181. if (s->incr != FRAC) {
  182. nb_samples = fractional_resample(s, output, buftmp, nb_samples);
  183. } else {
  184. memcpy(output, buftmp, nb_samples * sizeof(short));
  185. }
  186. av_free(buf1);
  187. return nb_samples;
  188. }
  189. ReSampleContext *audio_resample_init(int output_channels, int input_channels,
  190. int output_rate, int input_rate)
  191. {
  192. ReSampleContext *s;
  193. int i;
  194. if (output_channels > 2 || input_channels > 2)
  195. return NULL;
  196. s = av_mallocz(sizeof(ReSampleContext));
  197. if (!s)
  198. return NULL;
  199. s->ratio = (float)output_rate / (float)input_rate;
  200. s->input_channels = input_channels;
  201. s->output_channels = output_channels;
  202. s->filter_channels = s->input_channels;
  203. if (s->output_channels < s->filter_channels)
  204. s->filter_channels = s->output_channels;
  205. for(i=0;i<s->filter_channels;i++) {
  206. init_mono_resample(&s->channel_ctx[i], s->ratio);
  207. }
  208. return s;
  209. }
  210. /* resample audio. 'nb_samples' is the number of input samples */
  211. /* XXX: optimize it ! */
  212. /* XXX: do it with polyphase filters, since the quality here is
  213. HORRIBLE. Return the number of samples available in output */
  214. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  215. {
  216. int i, nb_samples1;
  217. short *bufin[2];
  218. short *bufout[2];
  219. short *buftmp2[2], *buftmp3[2];
  220. int lenout;
  221. if (s->input_channels == s->output_channels && s->ratio == 1.0) {
  222. /* nothing to do */
  223. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  224. return nb_samples;
  225. }
  226. /* XXX: move those malloc to resample init code */
  227. bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) );
  228. bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) );
  229. /* make some zoom to avoid round pb */
  230. lenout= (int)(nb_samples * s->ratio) + 16;
  231. bufout[0]= (short*) av_malloc( lenout * sizeof(short) );
  232. bufout[1]= (short*) av_malloc( lenout * sizeof(short) );
  233. if (s->input_channels == 2 &&
  234. s->output_channels == 1) {
  235. buftmp2[0] = bufin[0];
  236. buftmp3[0] = output;
  237. stereo_to_mono(buftmp2[0], input, nb_samples);
  238. } else if (s->output_channels == 2 && s->input_channels == 1) {
  239. buftmp2[0] = input;
  240. buftmp3[0] = bufout[0];
  241. } else if (s->output_channels == 2) {
  242. buftmp2[0] = bufin[0];
  243. buftmp2[1] = bufin[1];
  244. buftmp3[0] = bufout[0];
  245. buftmp3[1] = bufout[1];
  246. stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
  247. } else {
  248. buftmp2[0] = input;
  249. buftmp3[0] = output;
  250. }
  251. /* resample each channel */
  252. nb_samples1 = 0; /* avoid warning */
  253. for(i=0;i<s->filter_channels;i++) {
  254. nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
  255. }
  256. if (s->output_channels == 2 && s->input_channels == 1) {
  257. mono_to_stereo(output, buftmp3[0], nb_samples1);
  258. } else if (s->output_channels == 2) {
  259. stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  260. }
  261. av_free(bufin[0]);
  262. av_free(bufin[1]);
  263. av_free(bufout[0]);
  264. av_free(bufout[1]);
  265. return nb_samples1;
  266. }
  267. void audio_resample_close(ReSampleContext *s)
  268. {
  269. av_free(s);
  270. }