You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

849 lines
28KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <math.h>
  21. #include "common.h"
  22. #include "avcodec.h"
  23. #include "dsputil.h"
  24. #include "mpegvideo.h"
  25. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  26. #include <assert.h>
  27. #ifndef M_PI
  28. #define M_PI 3.14159265358979323846
  29. #endif
  30. #ifndef M_E
  31. #define M_E 2.718281828
  32. #endif
  33. static int init_pass2(MpegEncContext *s);
  34. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  35. void ff_write_pass1_stats(MpegEncContext *s){
  36. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  37. s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
  38. s->frame_qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  39. s->f_code, s->b_code, s->mc_mb_var_sum, s->mb_var_sum, s->i_count);
  40. }
  41. int ff_rate_control_init(MpegEncContext *s)
  42. {
  43. RateControlContext *rcc= &s->rc_context;
  44. int i;
  45. emms_c();
  46. for(i=0; i<5; i++){
  47. rcc->pred[i].coeff= 7.0;
  48. rcc->pred[i].count= 1.0;
  49. rcc->pred[i].decay= 0.4;
  50. rcc->i_cplx_sum [i]=
  51. rcc->p_cplx_sum [i]=
  52. rcc->mv_bits_sum[i]=
  53. rcc->qscale_sum [i]=
  54. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  55. rcc->last_qscale_for[i]=5;
  56. }
  57. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  58. if(s->flags&CODEC_FLAG_PASS2){
  59. int i;
  60. char *p;
  61. /* find number of pics */
  62. p= s->avctx->stats_in;
  63. for(i=-1; p; i++){
  64. p= strchr(p+1, ';');
  65. }
  66. i+= s->max_b_frames;
  67. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  68. rcc->num_entries= i;
  69. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  70. for(i=0; i<rcc->num_entries; i++){
  71. RateControlEntry *rce= &rcc->entry[i];
  72. rce->pict_type= rce->new_pict_type=P_TYPE;
  73. rce->qscale= rce->new_qscale=2;
  74. rce->misc_bits= s->mb_num + 10;
  75. rce->mb_var_sum= s->mb_num*100;
  76. }
  77. /* read stats */
  78. p= s->avctx->stats_in;
  79. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  80. RateControlEntry *rce;
  81. int picture_number;
  82. int e;
  83. char *next;
  84. next= strchr(p, ';');
  85. if(next){
  86. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  87. next++;
  88. }
  89. e= sscanf(p, " in:%d ", &picture_number);
  90. assert(picture_number >= 0);
  91. assert(picture_number < rcc->num_entries);
  92. rce= &rcc->entry[picture_number];
  93. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  94. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  95. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  96. if(e!=12){
  97. fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
  98. return -1;
  99. }
  100. p= next;
  101. }
  102. if(init_pass2(s) < 0) return -1;
  103. }
  104. if(!(s->flags&CODEC_FLAG_PASS2)){
  105. rcc->short_term_qsum=0.001;
  106. rcc->short_term_qcount=0.001;
  107. rcc->pass1_rc_eq_output_sum= 0.001;
  108. rcc->pass1_wanted_bits=0.001;
  109. /* init stuff with the user specified complexity */
  110. if(s->avctx->rc_initial_cplx){
  111. for(i=0; i<60*30; i++){
  112. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  113. RateControlEntry rce;
  114. double q;
  115. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  116. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  117. else rce.pict_type= P_TYPE;
  118. rce.new_pict_type= rce.pict_type;
  119. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  120. rce.mb_var_sum = s->mb_num;
  121. rce.qscale = 2;
  122. rce.f_code = 2;
  123. rce.b_code = 1;
  124. rce.misc_bits= 1;
  125. if(s->pict_type== I_TYPE){
  126. rce.i_count = s->mb_num;
  127. rce.i_tex_bits= bits;
  128. rce.p_tex_bits= 0;
  129. rce.mv_bits= 0;
  130. }else{
  131. rce.i_count = 0; //FIXME we do know this approx
  132. rce.i_tex_bits= 0;
  133. rce.p_tex_bits= bits*0.9;
  134. rce.mv_bits= bits*0.1;
  135. }
  136. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  137. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  138. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  139. rcc->frame_count[rce.pict_type] ++;
  140. bits= rce.i_tex_bits + rce.p_tex_bits;
  141. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  142. rcc->pass1_wanted_bits+= s->bit_rate/(s->frame_rate / (double)FRAME_RATE_BASE);
  143. }
  144. }
  145. }
  146. return 0;
  147. }
  148. void ff_rate_control_uninit(MpegEncContext *s)
  149. {
  150. RateControlContext *rcc= &s->rc_context;
  151. emms_c();
  152. av_freep(&rcc->entry);
  153. }
  154. static inline double qp2bits(RateControlEntry *rce, double qp){
  155. if(qp<=0.0){
  156. fprintf(stderr, "qp<=0.0\n");
  157. }
  158. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  159. }
  160. static inline double bits2qp(RateControlEntry *rce, double bits){
  161. if(bits<0.9){
  162. fprintf(stderr, "bits<0.9\n");
  163. }
  164. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  165. }
  166. static void update_rc_buffer(MpegEncContext *s, int frame_size){
  167. RateControlContext *rcc= &s->rc_context;
  168. const double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  169. const double buffer_size= s->avctx->rc_buffer_size;
  170. const double min_rate= s->avctx->rc_min_rate/fps;
  171. const double max_rate= s->avctx->rc_max_rate/fps;
  172. if(buffer_size){
  173. rcc->buffer_index-= frame_size;
  174. if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
  175. rcc->buffer_index+= max_rate;
  176. if(rcc->buffer_index >= buffer_size)
  177. rcc->buffer_index= buffer_size-1;
  178. }else{
  179. rcc->buffer_index+= min_rate;
  180. }
  181. if(rcc->buffer_index < 0)
  182. fprintf(stderr, "rc buffer underflow\n");
  183. if(rcc->buffer_index >= s->avctx->rc_buffer_size)
  184. fprintf(stderr, "rc buffer overflow\n");
  185. }
  186. }
  187. /**
  188. * modifies the bitrate curve from pass1 for one frame
  189. */
  190. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  191. RateControlContext *rcc= &s->rc_context;
  192. double q, bits;
  193. const int pict_type= rce->new_pict_type;
  194. const double mb_num= s->mb_num;
  195. int i;
  196. double const_values[]={
  197. M_PI,
  198. M_E,
  199. rce->i_tex_bits*rce->qscale,
  200. rce->p_tex_bits*rce->qscale,
  201. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  202. rce->mv_bits/mb_num,
  203. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  204. rce->i_count/mb_num,
  205. rce->mc_mb_var_sum/mb_num,
  206. rce->mb_var_sum/mb_num,
  207. rce->pict_type == I_TYPE,
  208. rce->pict_type == P_TYPE,
  209. rce->pict_type == B_TYPE,
  210. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  211. s->qcompress,
  212. /* rcc->last_qscale_for[I_TYPE],
  213. rcc->last_qscale_for[P_TYPE],
  214. rcc->last_qscale_for[B_TYPE],
  215. rcc->next_non_b_qscale,*/
  216. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  217. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  218. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  219. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  220. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  221. 0
  222. };
  223. char *const_names[]={
  224. "PI",
  225. "E",
  226. "iTex",
  227. "pTex",
  228. "tex",
  229. "mv",
  230. "fCode",
  231. "iCount",
  232. "mcVar",
  233. "var",
  234. "isI",
  235. "isP",
  236. "isB",
  237. "avgQP",
  238. "qComp",
  239. /* "lastIQP",
  240. "lastPQP",
  241. "lastBQP",
  242. "nextNonBQP",*/
  243. "avgIITex",
  244. "avgPITex",
  245. "avgPPTex",
  246. "avgBPTex",
  247. "avgTex",
  248. NULL
  249. };
  250. static double (*func1[])(void *, double)={
  251. (void *)bits2qp,
  252. (void *)qp2bits,
  253. NULL
  254. };
  255. char *func1_names[]={
  256. "bits2qp",
  257. "qp2bits",
  258. NULL
  259. };
  260. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  261. rcc->pass1_rc_eq_output_sum+= bits;
  262. bits*=rate_factor;
  263. if(bits<0.0) bits=0.0;
  264. bits+= 1.0; //avoid 1/0 issues
  265. /* user override */
  266. for(i=0; i<s->avctx->rc_override_count; i++){
  267. RcOverride *rco= s->avctx->rc_override;
  268. if(rco[i].start_frame > frame_num) continue;
  269. if(rco[i].end_frame < frame_num) continue;
  270. if(rco[i].qscale)
  271. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  272. else
  273. bits*= rco[i].quality_factor;
  274. }
  275. q= bits2qp(rce, bits);
  276. /* I/B difference */
  277. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  278. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  279. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  280. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  281. return q;
  282. }
  283. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  284. RateControlContext *rcc= &s->rc_context;
  285. AVCodecContext *a= s->avctx;
  286. const int pict_type= rce->new_pict_type;
  287. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  288. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  289. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  290. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  291. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  292. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  293. /* last qscale / qdiff stuff */
  294. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  295. double last_q= rcc->last_qscale_for[pict_type];
  296. if (q > last_q + a->max_qdiff) q= last_q + a->max_qdiff;
  297. else if(q < last_q - a->max_qdiff) q= last_q - a->max_qdiff;
  298. }
  299. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  300. if(pict_type!=B_TYPE)
  301. rcc->last_non_b_pict_type= pict_type;
  302. return q;
  303. }
  304. /**
  305. * gets the qmin & qmax for pict_type
  306. */
  307. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  308. int qmin= s->qmin;
  309. int qmax= s->qmax;
  310. if(pict_type==B_TYPE){
  311. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  312. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  313. }else if(pict_type==I_TYPE){
  314. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  315. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  316. }
  317. if(qmin<1) qmin=1;
  318. if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
  319. if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
  320. if(qmax>31) qmax=31;
  321. if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
  322. *qmin_ret= qmin;
  323. *qmax_ret= qmax;
  324. }
  325. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  326. RateControlContext *rcc= &s->rc_context;
  327. int qmin, qmax;
  328. double bits;
  329. const int pict_type= rce->new_pict_type;
  330. const double buffer_size= s->avctx->rc_buffer_size;
  331. const double min_rate= s->avctx->rc_min_rate;
  332. const double max_rate= s->avctx->rc_max_rate;
  333. get_qminmax(&qmin, &qmax, s, pict_type);
  334. /* modulation */
  335. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  336. q*= s->avctx->rc_qmod_amp;
  337. bits= qp2bits(rce, q);
  338. //printf("q:%f\n", q);
  339. /* buffer overflow/underflow protection */
  340. if(buffer_size){
  341. double expected_size= rcc->buffer_index;
  342. if(min_rate){
  343. double d= 2*(buffer_size - expected_size)/buffer_size;
  344. if(d>1.0) d=1.0;
  345. else if(d<0.0001) d=0.0001;
  346. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  347. q= FFMIN(q, bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*2, 1)));
  348. }
  349. if(max_rate){
  350. double d= 2*expected_size/buffer_size;
  351. if(d>1.0) d=1.0;
  352. else if(d<0.0001) d=0.0001;
  353. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  354. q= FFMAX(q, bits2qp(rce, FFMAX(rcc->buffer_index/2, 1)));
  355. }
  356. }
  357. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  358. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  359. if (q<qmin) q=qmin;
  360. else if(q>qmax) q=qmax;
  361. }else{
  362. double min2= log(qmin);
  363. double max2= log(qmax);
  364. q= log(q);
  365. q= (q - min2)/(max2-min2) - 0.5;
  366. q*= -4.0;
  367. q= 1.0/(1.0 + exp(q));
  368. q= q*(max2-min2) + min2;
  369. q= exp(q);
  370. }
  371. return q;
  372. }
  373. //----------------------------------
  374. // 1 Pass Code
  375. static double predict_size(Predictor *p, double q, double var)
  376. {
  377. return p->coeff*var / (q*p->count);
  378. }
  379. static double predict_qp(Predictor *p, double size, double var)
  380. {
  381. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  382. return p->coeff*var / (size*p->count);
  383. }
  384. static void update_predictor(Predictor *p, double q, double var, double size)
  385. {
  386. double new_coeff= size*q / (var + 1);
  387. if(var<10) return;
  388. p->count*= p->decay;
  389. p->coeff*= p->decay;
  390. p->count++;
  391. p->coeff+= new_coeff;
  392. }
  393. static void adaptive_quantization(MpegEncContext *s, double q){
  394. int i;
  395. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  396. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  397. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  398. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  399. const float p_masking = s->avctx->p_masking;
  400. float bits_sum= 0.0;
  401. float cplx_sum= 0.0;
  402. float cplx_tab[s->mb_num];
  403. float bits_tab[s->mb_num];
  404. const int qmin= 2; //s->avctx->mb_qmin;
  405. const int qmax= 31; //s->avctx->mb_qmax;
  406. for(i=0; i<s->mb_num; i++){
  407. float temp_cplx= sqrt(s->mc_mb_var[i]);
  408. float spat_cplx= sqrt(s->mb_var[i]);
  409. const int lumi= s->mb_mean[i];
  410. float bits, cplx, factor;
  411. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  412. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  413. if((s->mb_type[i]&MB_TYPE_INTRA)){//FIXME hq mode
  414. cplx= spat_cplx;
  415. factor= 1.0 + p_masking;
  416. }else{
  417. cplx= temp_cplx;
  418. factor= pow(temp_cplx, - temp_cplx_masking);
  419. }
  420. factor*=pow(spat_cplx, - spatial_cplx_masking);
  421. if(lumi>127)
  422. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  423. else
  424. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  425. if(factor<0.00001) factor= 0.00001;
  426. bits= cplx*factor;
  427. cplx_sum+= cplx;
  428. bits_sum+= bits;
  429. cplx_tab[i]= cplx;
  430. bits_tab[i]= bits;
  431. }
  432. /* handle qmin/qmax cliping */
  433. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  434. for(i=0; i<s->mb_num; i++){
  435. float newq= q*cplx_tab[i]/bits_tab[i];
  436. newq*= bits_sum/cplx_sum;
  437. if (newq > qmax){
  438. bits_sum -= bits_tab[i];
  439. cplx_sum -= cplx_tab[i]*q/qmax;
  440. }
  441. else if(newq < qmin){
  442. bits_sum -= bits_tab[i];
  443. cplx_sum -= cplx_tab[i]*q/qmin;
  444. }
  445. }
  446. }
  447. for(i=0; i<s->mb_num; i++){
  448. float newq= q*cplx_tab[i]/bits_tab[i];
  449. int intq;
  450. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  451. newq*= bits_sum/cplx_sum;
  452. }
  453. if(i && ABS(s->qscale_table[i-1] - newq)<0.75)
  454. intq= s->qscale_table[i-1];
  455. else
  456. intq= (int)(newq + 0.5);
  457. if (intq > qmax) intq= qmax;
  458. else if(intq < qmin) intq= qmin;
  459. //if(i%s->mb_width==0) printf("\n");
  460. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  461. s->qscale_table[i]= intq;
  462. }
  463. }
  464. float ff_rate_estimate_qscale(MpegEncContext *s)
  465. {
  466. float q;
  467. int qmin, qmax;
  468. float br_compensation;
  469. double diff;
  470. double short_term_q;
  471. double fps;
  472. int picture_number= s->picture_number;
  473. int64_t wanted_bits;
  474. RateControlContext *rcc= &s->rc_context;
  475. RateControlEntry local_rce, *rce;
  476. double bits;
  477. double rate_factor;
  478. int var;
  479. const int pict_type= s->pict_type;
  480. emms_c();
  481. get_qminmax(&qmin, &qmax, s, pict_type);
  482. fps= (double)s->frame_rate / FRAME_RATE_BASE;
  483. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  484. /* update predictors */
  485. if(picture_number>2){
  486. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  487. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  488. }
  489. if(s->flags&CODEC_FLAG_PASS2){
  490. assert(picture_number>=0);
  491. assert(picture_number<rcc->num_entries);
  492. rce= &rcc->entry[picture_number];
  493. wanted_bits= rce->expected_bits;
  494. }else{
  495. rce= &local_rce;
  496. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  497. }
  498. diff= s->total_bits - wanted_bits;
  499. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  500. if(br_compensation<=0.0) br_compensation=0.001;
  501. var= pict_type == I_TYPE ? s->mb_var_sum : s->mc_mb_var_sum;
  502. if(s->flags&CODEC_FLAG_PASS2){
  503. if(pict_type!=I_TYPE)
  504. assert(pict_type == rce->new_pict_type);
  505. q= rce->new_qscale / br_compensation;
  506. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  507. }else{
  508. rce->pict_type=
  509. rce->new_pict_type= pict_type;
  510. rce->mc_mb_var_sum= s->mc_mb_var_sum;
  511. rce->mb_var_sum = s-> mb_var_sum;
  512. rce->qscale = 2;
  513. rce->f_code = s->f_code;
  514. rce->b_code = s->b_code;
  515. rce->misc_bits= 1;
  516. if(picture_number>0)
  517. update_rc_buffer(s, s->frame_bits);
  518. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  519. if(pict_type== I_TYPE){
  520. rce->i_count = s->mb_num;
  521. rce->i_tex_bits= bits;
  522. rce->p_tex_bits= 0;
  523. rce->mv_bits= 0;
  524. }else{
  525. rce->i_count = 0; //FIXME we do know this approx
  526. rce->i_tex_bits= 0;
  527. rce->p_tex_bits= bits*0.9;
  528. rce->mv_bits= bits*0.1;
  529. }
  530. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  531. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  532. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  533. rcc->frame_count[pict_type] ++;
  534. bits= rce->i_tex_bits + rce->p_tex_bits;
  535. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  536. q= get_qscale(s, rce, rate_factor, picture_number);
  537. assert(q>0.0);
  538. //printf("%f ", q);
  539. q= get_diff_limited_q(s, rce, q);
  540. //printf("%f ", q);
  541. assert(q>0.0);
  542. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  543. rcc->short_term_qsum*=s->qblur;
  544. rcc->short_term_qcount*=s->qblur;
  545. rcc->short_term_qsum+= q;
  546. rcc->short_term_qcount++;
  547. //printf("%f ", q);
  548. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  549. //printf("%f ", q);
  550. }
  551. assert(q>0.0);
  552. q= modify_qscale(s, rce, q, picture_number);
  553. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  554. assert(q>0.0);
  555. }
  556. //printf("qmin:%d, qmax:%d, q:%f\n", qmin, qmax, q);
  557. if (q<qmin) q=qmin;
  558. else if(q>qmax) q=qmax;
  559. // printf("%f %d %d %d\n", q, picture_number, (int)wanted_bits, (int)s->total_bits);
  560. //printf("%f %f %f\n", q, br_compensation, short_term_q);
  561. //printf("q:%d diff:%d comp:%f st_q:%f last_size:%d type:%d\n", qscale, (int)diff, br_compensation,
  562. // short_term_q, s->frame_bits, pict_type);
  563. //printf("%d %d\n", s->bit_rate, (int)fps);
  564. if(s->adaptive_quant)
  565. adaptive_quantization(s, q);
  566. else
  567. q= (int)(q + 0.5);
  568. rcc->last_qscale= q;
  569. rcc->last_mc_mb_var_sum= s->mc_mb_var_sum;
  570. rcc->last_mb_var_sum= s->mb_var_sum;
  571. return q;
  572. }
  573. //----------------------------------------------
  574. // 2-Pass code
  575. static int init_pass2(MpegEncContext *s)
  576. {
  577. RateControlContext *rcc= &s->rc_context;
  578. int i;
  579. double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  580. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  581. double avg_quantizer[5];
  582. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  583. uint64_t available_bits[5];
  584. uint64_t all_const_bits;
  585. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  586. double rate_factor=0;
  587. double step;
  588. int last_i_frame=-10000000;
  589. const int filter_size= (int)(s->qblur*4) | 1;
  590. double expected_bits;
  591. double *qscale, *blured_qscale;
  592. /* find complexity & const_bits & decide the pict_types */
  593. for(i=0; i<rcc->num_entries; i++){
  594. RateControlEntry *rce= &rcc->entry[i];
  595. if(s->b_frame_strategy==0 || s->max_b_frames==0){
  596. rce->new_pict_type= rce->pict_type;
  597. }else{
  598. int j;
  599. int next_non_b_type=P_TYPE;
  600. switch(rce->pict_type){
  601. case I_TYPE:
  602. if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal
  603. rce->new_pict_type= I_TYPE;
  604. last_i_frame= i;
  605. }else{
  606. rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway
  607. }
  608. break;
  609. case P_TYPE:
  610. rce->new_pict_type= P_TYPE;
  611. break;
  612. case B_TYPE:
  613. for(j=i+1; j<i+s->max_b_frames+2 && j<rcc->num_entries; j++){
  614. if(rcc->entry[j].pict_type != B_TYPE){
  615. next_non_b_type= rcc->entry[j].pict_type;
  616. break;
  617. }
  618. }
  619. if(next_non_b_type==I_TYPE)
  620. rce->new_pict_type= P_TYPE;
  621. else
  622. rce->new_pict_type= B_TYPE;
  623. break;
  624. }
  625. }
  626. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  627. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  628. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  629. rcc->frame_count[rce->pict_type] ++;
  630. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  631. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  632. }
  633. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  634. if(all_available_bits < all_const_bits){
  635. fprintf(stderr, "requested bitrate is to low\n");
  636. return -1;
  637. }
  638. /* find average quantizers */
  639. avg_quantizer[P_TYPE]=0;
  640. for(step=256*256; step>0.0000001; step*=0.5){
  641. double expected_bits=0;
  642. avg_quantizer[P_TYPE]+= step;
  643. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  644. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  645. expected_bits=
  646. + all_const_bits
  647. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  648. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  649. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  650. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  651. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  652. }
  653. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  654. for(i=0; i<5; i++){
  655. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  656. }
  657. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  658. qscale= malloc(sizeof(double)*rcc->num_entries);
  659. blured_qscale= malloc(sizeof(double)*rcc->num_entries);
  660. for(step=256*256; step>0.0000001; step*=0.5){
  661. expected_bits=0;
  662. rate_factor+= step;
  663. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  664. /* find qscale */
  665. for(i=0; i<rcc->num_entries; i++){
  666. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  667. }
  668. assert(filter_size%2==1);
  669. /* fixed I/B QP relative to P mode */
  670. for(i=rcc->num_entries-1; i>=0; i--){
  671. RateControlEntry *rce= &rcc->entry[i];
  672. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  673. }
  674. /* smooth curve */
  675. for(i=0; i<rcc->num_entries; i++){
  676. RateControlEntry *rce= &rcc->entry[i];
  677. const int pict_type= rce->new_pict_type;
  678. int j;
  679. double q=0.0, sum=0.0;
  680. for(j=0; j<filter_size; j++){
  681. int index= i+j-filter_size/2;
  682. double d= index-i;
  683. double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
  684. if(index < 0 || index >= rcc->num_entries) continue;
  685. if(pict_type != rcc->entry[index].new_pict_type) continue;
  686. q+= qscale[index] * coeff;
  687. sum+= coeff;
  688. }
  689. blured_qscale[i]= q/sum;
  690. }
  691. /* find expected bits */
  692. for(i=0; i<rcc->num_entries; i++){
  693. RateControlEntry *rce= &rcc->entry[i];
  694. double bits;
  695. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  696. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  697. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  698. update_rc_buffer(s, bits);
  699. rce->expected_bits= expected_bits;
  700. expected_bits += bits;
  701. }
  702. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  703. if(expected_bits > all_available_bits) rate_factor-= step;
  704. }
  705. free(qscale);
  706. free(blured_qscale);
  707. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  708. fprintf(stderr, "Error: 2pass curve failed to converge\n");
  709. return -1;
  710. }
  711. return 0;
  712. }