You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1523 lines
52KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/alsdec.c
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. //#define DEBUG
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include <stdint.h>
  33. /** Rice parameters and corresponding index offsets for decoding the
  34. * indices of scaled PARCOR values. The table choosen is set globally
  35. * by the encoder and stored in ALSSpecificConfig.
  36. */
  37. static const int8_t parcor_rice_table[3][20][2] = {
  38. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  39. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  40. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  41. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  42. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  43. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  44. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  45. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  46. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  47. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  48. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  49. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  50. };
  51. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  52. * To be indexed by the Rice coded indices.
  53. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  54. * Actual values are divided by 32 in order to be stored in 16 bits.
  55. */
  56. static const int16_t parcor_scaled_values[] = {
  57. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  58. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  59. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  60. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  61. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  62. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  63. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  64. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  65. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  66. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  67. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  68. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  69. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  70. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  71. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  72. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  73. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  74. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  75. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  76. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  77. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  78. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  79. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  80. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  81. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  82. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  83. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  84. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  85. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  86. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  87. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  88. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  89. };
  90. /** Gain values of p(0) for long-term prediction.
  91. * To be indexed by the Rice coded indices.
  92. */
  93. static const uint8_t ltp_gain_values [4][4] = {
  94. { 0, 8, 16, 24},
  95. {32, 40, 48, 56},
  96. {64, 70, 76, 82},
  97. {88, 92, 96, 100}
  98. };
  99. /** Inter-channel weighting factors for multi-channel correlation.
  100. * To be indexed by the Rice coded indices.
  101. */
  102. static const int16_t mcc_weightings[] = {
  103. 204, 192, 179, 166, 153, 140, 128, 115,
  104. 102, 89, 76, 64, 51, 38, 25, 12,
  105. 0, -12, -25, -38, -51, -64, -76, -89,
  106. -102, -115, -128, -140, -153, -166, -179, -192
  107. };
  108. enum RA_Flag {
  109. RA_FLAG_NONE,
  110. RA_FLAG_FRAMES,
  111. RA_FLAG_HEADER
  112. };
  113. typedef struct {
  114. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  115. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  116. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  117. int frame_length; ///< frame length for each frame (last frame may differ)
  118. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  119. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  120. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  121. int coef_table; ///< table index of Rice code parameters
  122. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  123. int max_order; ///< maximum prediction order (0..1023)
  124. int block_switching; ///< number of block switching levels
  125. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  126. int sb_part; ///< sub-block partition
  127. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  128. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  129. int chan_config; ///< indicates that a chan_config_info field is present
  130. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  131. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  132. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  133. int *chan_pos; ///< original channel positions
  134. } ALSSpecificConfig;
  135. typedef struct {
  136. int stop_flag;
  137. int master_channel;
  138. int time_diff_flag;
  139. int time_diff_sign;
  140. int time_diff_index;
  141. int weighting[6];
  142. } ALSChannelData;
  143. typedef struct {
  144. AVCodecContext *avctx;
  145. ALSSpecificConfig sconf;
  146. GetBitContext gb;
  147. unsigned int cur_frame_length; ///< length of the current frame to decode
  148. unsigned int frame_id; ///< the frame ID / number of the current frame
  149. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  150. unsigned int num_blocks; ///< number of blocks used in the current frame
  151. int ltp_lag_length; ///< number of bits used for ltp lag value
  152. int *use_ltp; ///< contains use_ltp flags for all channels
  153. int *ltp_lag; ///< contains ltp lag values for all channels
  154. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  155. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  156. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  157. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  158. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  159. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  160. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  161. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  162. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  163. int *reverted_channels; ///< stores a flag for each reverted channel
  164. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  165. int32_t **raw_samples; ///< decoded raw samples for each channel
  166. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  167. } ALSDecContext;
  168. typedef struct {
  169. unsigned int block_length; ///< number of samples within the block
  170. unsigned int ra_block; ///< if true, this is a random access block
  171. int const_block; ///< if true, this is a constant value block
  172. int32_t const_val; ///< the sample value of a constant block
  173. int js_blocks; ///< true if this block contains a difference signal
  174. unsigned int shift_lsbs; ///< shift of values for this block
  175. unsigned int opt_order; ///< prediction order of this block
  176. int store_prev_samples;///< if true, carryover samples have to be stored
  177. int *use_ltp; ///< if true, long-term prediction is used
  178. int *ltp_lag; ///< lag value for long-term prediction
  179. int *ltp_gain; ///< gain values for ltp 5-tap filter
  180. int32_t *quant_cof; ///< quantized parcor coefficients
  181. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  182. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  183. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  184. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  185. } ALSBlockData;
  186. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  187. {
  188. #ifdef DEBUG
  189. AVCodecContext *avctx = ctx->avctx;
  190. ALSSpecificConfig *sconf = &ctx->sconf;
  191. dprintf(avctx, "resolution = %i\n", sconf->resolution);
  192. dprintf(avctx, "floating = %i\n", sconf->floating);
  193. dprintf(avctx, "frame_length = %i\n", sconf->frame_length);
  194. dprintf(avctx, "ra_distance = %i\n", sconf->ra_distance);
  195. dprintf(avctx, "ra_flag = %i\n", sconf->ra_flag);
  196. dprintf(avctx, "adapt_order = %i\n", sconf->adapt_order);
  197. dprintf(avctx, "coef_table = %i\n", sconf->coef_table);
  198. dprintf(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  199. dprintf(avctx, "max_order = %i\n", sconf->max_order);
  200. dprintf(avctx, "block_switching = %i\n", sconf->block_switching);
  201. dprintf(avctx, "bgmc = %i\n", sconf->bgmc);
  202. dprintf(avctx, "sb_part = %i\n", sconf->sb_part);
  203. dprintf(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  204. dprintf(avctx, "mc_coding = %i\n", sconf->mc_coding);
  205. dprintf(avctx, "chan_config = %i\n", sconf->chan_config);
  206. dprintf(avctx, "chan_sort = %i\n", sconf->chan_sort);
  207. dprintf(avctx, "RLSLMS = %i\n", sconf->rlslms);
  208. dprintf(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  209. #endif
  210. }
  211. /** Reads an ALSSpecificConfig from a buffer into the output struct.
  212. */
  213. static av_cold int read_specific_config(ALSDecContext *ctx)
  214. {
  215. GetBitContext gb;
  216. uint64_t ht_size;
  217. int i, config_offset, crc_enabled;
  218. MPEG4AudioConfig m4ac;
  219. ALSSpecificConfig *sconf = &ctx->sconf;
  220. AVCodecContext *avctx = ctx->avctx;
  221. uint32_t als_id, header_size, trailer_size;
  222. init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
  223. config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
  224. avctx->extradata_size);
  225. if (config_offset < 0)
  226. return -1;
  227. skip_bits_long(&gb, config_offset);
  228. if (get_bits_left(&gb) < (30 << 3))
  229. return -1;
  230. // read the fixed items
  231. als_id = get_bits_long(&gb, 32);
  232. avctx->sample_rate = m4ac.sample_rate;
  233. skip_bits_long(&gb, 32); // sample rate already known
  234. sconf->samples = get_bits_long(&gb, 32);
  235. avctx->channels = m4ac.channels;
  236. skip_bits(&gb, 16); // number of channels already knwon
  237. skip_bits(&gb, 3); // skip file_type
  238. sconf->resolution = get_bits(&gb, 3);
  239. sconf->floating = get_bits1(&gb);
  240. skip_bits1(&gb); // skip msb_first
  241. sconf->frame_length = get_bits(&gb, 16) + 1;
  242. sconf->ra_distance = get_bits(&gb, 8);
  243. sconf->ra_flag = get_bits(&gb, 2);
  244. sconf->adapt_order = get_bits1(&gb);
  245. sconf->coef_table = get_bits(&gb, 2);
  246. sconf->long_term_prediction = get_bits1(&gb);
  247. sconf->max_order = get_bits(&gb, 10);
  248. sconf->block_switching = get_bits(&gb, 2);
  249. sconf->bgmc = get_bits1(&gb);
  250. sconf->sb_part = get_bits1(&gb);
  251. sconf->joint_stereo = get_bits1(&gb);
  252. sconf->mc_coding = get_bits1(&gb);
  253. sconf->chan_config = get_bits1(&gb);
  254. sconf->chan_sort = get_bits1(&gb);
  255. crc_enabled = get_bits1(&gb);
  256. sconf->rlslms = get_bits1(&gb);
  257. skip_bits(&gb, 5); // skip 5 reserved bits
  258. skip_bits1(&gb); // skip aux_data_enabled
  259. // check for ALSSpecificConfig struct
  260. if (als_id != MKBETAG('A','L','S','\0'))
  261. return -1;
  262. ctx->cur_frame_length = sconf->frame_length;
  263. // read channel config
  264. if (sconf->chan_config)
  265. sconf->chan_config_info = get_bits(&gb, 16);
  266. // TODO: use this to set avctx->channel_layout
  267. // read channel sorting
  268. if (sconf->chan_sort && avctx->channels > 1) {
  269. int chan_pos_bits = av_ceil_log2(avctx->channels);
  270. int bits_needed = avctx->channels * chan_pos_bits + 7;
  271. if (get_bits_left(&gb) < bits_needed)
  272. return -1;
  273. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  274. return AVERROR(ENOMEM);
  275. for (i = 0; i < avctx->channels; i++)
  276. sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
  277. align_get_bits(&gb);
  278. // TODO: use this to actually do channel sorting
  279. } else {
  280. sconf->chan_sort = 0;
  281. }
  282. // read fixed header and trailer sizes,
  283. // if size = 0xFFFFFFFF then there is no data field!
  284. if (get_bits_left(&gb) < 64)
  285. return -1;
  286. header_size = get_bits_long(&gb, 32);
  287. trailer_size = get_bits_long(&gb, 32);
  288. if (header_size == 0xFFFFFFFF)
  289. header_size = 0;
  290. if (trailer_size == 0xFFFFFFFF)
  291. trailer_size = 0;
  292. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  293. // skip the header and trailer data
  294. if (get_bits_left(&gb) < ht_size)
  295. return -1;
  296. if (ht_size > INT32_MAX)
  297. return -1;
  298. skip_bits_long(&gb, ht_size);
  299. // skip the crc data
  300. if (crc_enabled) {
  301. if (get_bits_left(&gb) < 32)
  302. return -1;
  303. skip_bits_long(&gb, 32);
  304. }
  305. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  306. dprint_specific_config(ctx);
  307. return 0;
  308. }
  309. /** Checks the ALSSpecificConfig for unsupported features.
  310. */
  311. static int check_specific_config(ALSDecContext *ctx)
  312. {
  313. ALSSpecificConfig *sconf = &ctx->sconf;
  314. int error = 0;
  315. // report unsupported feature and set error value
  316. #define MISSING_ERR(cond, str, errval) \
  317. { \
  318. if (cond) { \
  319. av_log_missing_feature(ctx->avctx, str, 0); \
  320. error = errval; \
  321. } \
  322. }
  323. MISSING_ERR(sconf->floating, "Floating point decoding", -1);
  324. MISSING_ERR(sconf->bgmc, "BGMC entropy decoding", -1);
  325. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", -1);
  326. MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
  327. return error;
  328. }
  329. /** Parses the bs_info field to extract the block partitioning used in
  330. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  331. */
  332. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  333. unsigned int div, unsigned int **div_blocks,
  334. unsigned int *num_blocks)
  335. {
  336. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  337. // if the level is valid and the investigated bit n is set
  338. // then recursively check both children at bits (2n+1) and (2n+2)
  339. n *= 2;
  340. div += 1;
  341. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  342. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  343. } else {
  344. // else the bit is not set or the last level has been reached
  345. // (bit implicitly not set)
  346. **div_blocks = div;
  347. (*div_blocks)++;
  348. (*num_blocks)++;
  349. }
  350. }
  351. /** Reads and decodes a Rice codeword.
  352. */
  353. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  354. {
  355. int max = get_bits_left(gb) - k;
  356. int q = get_unary(gb, 0, max);
  357. int r = k ? get_bits1(gb) : !(q & 1);
  358. if (k > 1) {
  359. q <<= (k - 1);
  360. q += get_bits_long(gb, k - 1);
  361. } else if (!k) {
  362. q >>= 1;
  363. }
  364. return r ? q : ~q;
  365. }
  366. /** Converts PARCOR coefficient k to direct filter coefficient.
  367. */
  368. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  369. {
  370. int i, j;
  371. for (i = 0, j = k - 1; i < j; i++, j--) {
  372. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  373. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  374. cof[i] += tmp1;
  375. }
  376. if (i == j)
  377. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  378. cof[k] = par[k];
  379. }
  380. /** Reads block switching field if necessary and sets actual block sizes.
  381. * Also assures that the block sizes of the last frame correspond to the
  382. * actual number of samples.
  383. */
  384. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  385. uint32_t *bs_info)
  386. {
  387. ALSSpecificConfig *sconf = &ctx->sconf;
  388. GetBitContext *gb = &ctx->gb;
  389. unsigned int *ptr_div_blocks = div_blocks;
  390. unsigned int b;
  391. if (sconf->block_switching) {
  392. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  393. *bs_info = get_bits_long(gb, bs_info_len);
  394. *bs_info <<= (32 - bs_info_len);
  395. }
  396. ctx->num_blocks = 0;
  397. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  398. // The last frame may have an overdetermined block structure given in
  399. // the bitstream. In that case the defined block structure would need
  400. // more samples than available to be consistent.
  401. // The block structure is actually used but the block sizes are adapted
  402. // to fit the actual number of available samples.
  403. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  404. // This results in the actual block sizes: 2 2 1 0.
  405. // This is not specified in 14496-3 but actually done by the reference
  406. // codec RM22 revision 2.
  407. // This appears to happen in case of an odd number of samples in the last
  408. // frame which is actually not allowed by the block length switching part
  409. // of 14496-3.
  410. // The ALS conformance files feature an odd number of samples in the last
  411. // frame.
  412. for (b = 0; b < ctx->num_blocks; b++)
  413. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  414. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  415. unsigned int remaining = ctx->cur_frame_length;
  416. for (b = 0; b < ctx->num_blocks; b++) {
  417. if (remaining < div_blocks[b]) {
  418. div_blocks[b] = remaining;
  419. ctx->num_blocks = b + 1;
  420. break;
  421. }
  422. remaining -= div_blocks[b];
  423. }
  424. }
  425. }
  426. /** Reads the block data for a constant block
  427. */
  428. static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  429. {
  430. ALSSpecificConfig *sconf = &ctx->sconf;
  431. AVCodecContext *avctx = ctx->avctx;
  432. GetBitContext *gb = &ctx->gb;
  433. bd->const_val = 0;
  434. bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  435. bd->js_blocks = get_bits1(gb);
  436. // skip 5 reserved bits
  437. skip_bits(gb, 5);
  438. if (bd->const_block) {
  439. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  440. bd->const_val = get_sbits_long(gb, const_val_bits);
  441. }
  442. // ensure constant block decoding by reusing this field
  443. bd->const_block = 1;
  444. }
  445. /** Decodes the block data for a constant block
  446. */
  447. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  448. {
  449. int smp = bd->block_length;
  450. int32_t val = bd->const_val;
  451. int32_t *dst = bd->raw_samples;
  452. // write raw samples into buffer
  453. for (; smp; smp--)
  454. *dst++ = val;
  455. }
  456. /** Reads the block data for a non-constant block
  457. */
  458. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  459. {
  460. ALSSpecificConfig *sconf = &ctx->sconf;
  461. AVCodecContext *avctx = ctx->avctx;
  462. GetBitContext *gb = &ctx->gb;
  463. unsigned int k;
  464. unsigned int s[8];
  465. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  466. unsigned int start = 0;
  467. unsigned int opt_order;
  468. int sb;
  469. int32_t *quant_cof = bd->quant_cof;
  470. // ensure variable block decoding by reusing this field
  471. bd->const_block = 0;
  472. bd->opt_order = 1;
  473. bd->js_blocks = get_bits1(gb);
  474. opt_order = bd->opt_order;
  475. // determine the number of subblocks for entropy decoding
  476. if (!sconf->bgmc && !sconf->sb_part) {
  477. log2_sub_blocks = 0;
  478. } else {
  479. if (sconf->bgmc && sconf->sb_part)
  480. log2_sub_blocks = get_bits(gb, 2);
  481. else
  482. log2_sub_blocks = 2 * get_bits1(gb);
  483. }
  484. sub_blocks = 1 << log2_sub_blocks;
  485. // do not continue in case of a damaged stream since
  486. // block_length must be evenly divisible by sub_blocks
  487. if (bd->block_length & (sub_blocks - 1)) {
  488. av_log(avctx, AV_LOG_WARNING,
  489. "Block length is not evenly divisible by the number of subblocks.\n");
  490. return -1;
  491. }
  492. sb_length = bd->block_length >> log2_sub_blocks;
  493. if (sconf->bgmc) {
  494. // TODO: BGMC mode
  495. } else {
  496. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  497. for (k = 1; k < sub_blocks; k++)
  498. s[k] = s[k - 1] + decode_rice(gb, 0);
  499. }
  500. if (get_bits1(gb))
  501. bd->shift_lsbs = get_bits(gb, 4) + 1;
  502. bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || bd->shift_lsbs;
  503. if (!sconf->rlslms) {
  504. if (sconf->adapt_order) {
  505. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  506. 2, sconf->max_order + 1));
  507. bd->opt_order = get_bits(gb, opt_order_length);
  508. } else {
  509. bd->opt_order = sconf->max_order;
  510. }
  511. opt_order = bd->opt_order;
  512. if (opt_order) {
  513. int add_base;
  514. if (sconf->coef_table == 3) {
  515. add_base = 0x7F;
  516. // read coefficient 0
  517. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  518. // read coefficient 1
  519. if (opt_order > 1)
  520. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  521. // read coefficients 2 to opt_order
  522. for (k = 2; k < opt_order; k++)
  523. quant_cof[k] = get_bits(gb, 7);
  524. } else {
  525. int k_max;
  526. add_base = 1;
  527. // read coefficient 0 to 19
  528. k_max = FFMIN(opt_order, 20);
  529. for (k = 0; k < k_max; k++) {
  530. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  531. int offset = parcor_rice_table[sconf->coef_table][k][0];
  532. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  533. }
  534. // read coefficients 20 to 126
  535. k_max = FFMIN(opt_order, 127);
  536. for (; k < k_max; k++)
  537. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  538. // read coefficients 127 to opt_order
  539. for (; k < opt_order; k++)
  540. quant_cof[k] = decode_rice(gb, 1);
  541. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  542. if (opt_order > 1)
  543. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  544. }
  545. for (k = 2; k < opt_order; k++)
  546. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  547. }
  548. }
  549. // read LTP gain and lag values
  550. if (sconf->long_term_prediction) {
  551. *bd->use_ltp = get_bits1(gb);
  552. if (*bd->use_ltp) {
  553. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  554. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  555. bd->ltp_gain[2] = ltp_gain_values[get_unary(gb, 0, 4)][get_bits(gb, 2)];
  556. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  557. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  558. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  559. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  560. }
  561. }
  562. // read first value and residuals in case of a random access block
  563. if (bd->ra_block) {
  564. if (opt_order)
  565. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  566. if (opt_order > 1)
  567. bd->raw_samples[1] = decode_rice(gb, s[0] + 3);
  568. if (opt_order > 2)
  569. bd->raw_samples[2] = decode_rice(gb, s[0] + 1);
  570. start = FFMIN(opt_order, 3);
  571. }
  572. // read all residuals
  573. if (sconf->bgmc) {
  574. // TODO: BGMC mode
  575. } else {
  576. int32_t *current_res = bd->raw_samples + start;
  577. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  578. for (; start < sb_length; start++)
  579. *current_res++ = decode_rice(gb, s[sb]);
  580. }
  581. if (!sconf->mc_coding || ctx->js_switch)
  582. align_get_bits(gb);
  583. return 0;
  584. }
  585. /** Decodes the block data for a non-constant block
  586. */
  587. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  588. {
  589. ALSSpecificConfig *sconf = &ctx->sconf;
  590. unsigned int block_length = bd->block_length;
  591. unsigned int smp = 0;
  592. unsigned int k;
  593. int opt_order = bd->opt_order;
  594. int sb;
  595. int64_t y;
  596. int32_t *quant_cof = bd->quant_cof;
  597. int32_t *lpc_cof = bd->lpc_cof;
  598. int32_t *raw_samples = bd->raw_samples;
  599. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  600. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  601. // reverse long-term prediction
  602. if (*bd->use_ltp) {
  603. int ltp_smp;
  604. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  605. int center = ltp_smp - *bd->ltp_lag;
  606. int begin = FFMAX(0, center - 2);
  607. int end = center + 3;
  608. int tab = 5 - (end - begin);
  609. int base;
  610. y = 1 << 6;
  611. for (base = begin; base < end; base++, tab++)
  612. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  613. raw_samples[ltp_smp] += y >> 7;
  614. }
  615. }
  616. // reconstruct all samples from residuals
  617. if (bd->ra_block) {
  618. for (smp = 0; smp < opt_order; smp++) {
  619. y = 1 << 19;
  620. for (sb = 0; sb < smp; sb++)
  621. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  622. *raw_samples++ -= y >> 20;
  623. parcor_to_lpc(smp, quant_cof, lpc_cof);
  624. }
  625. } else {
  626. for (k = 0; k < opt_order; k++)
  627. parcor_to_lpc(k, quant_cof, lpc_cof);
  628. // store previous samples in case that they have to be altered
  629. if (bd->store_prev_samples)
  630. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  631. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  632. // reconstruct difference signal for prediction (joint-stereo)
  633. if (bd->js_blocks && bd->raw_other) {
  634. int32_t *left, *right;
  635. if (bd->raw_other > raw_samples) { // D = R - L
  636. left = raw_samples;
  637. right = bd->raw_other;
  638. } else { // D = R - L
  639. left = bd->raw_other;
  640. right = raw_samples;
  641. }
  642. for (sb = -1; sb >= -sconf->max_order; sb--)
  643. raw_samples[sb] = right[sb] - left[sb];
  644. }
  645. // reconstruct shifted signal
  646. if (bd->shift_lsbs)
  647. for (sb = -1; sb >= -sconf->max_order; sb--)
  648. raw_samples[sb] >>= bd->shift_lsbs;
  649. }
  650. // reverse linear prediction coefficients for efficiency
  651. lpc_cof = lpc_cof + opt_order;
  652. for (sb = 0; sb < opt_order; sb++)
  653. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  654. // reconstruct raw samples
  655. raw_samples = bd->raw_samples + smp;
  656. lpc_cof = lpc_cof_reversed + opt_order;
  657. for (; raw_samples < raw_samples_end; raw_samples++) {
  658. y = 1 << 19;
  659. for (sb = -opt_order; sb < 0; sb++)
  660. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  661. *raw_samples -= y >> 20;
  662. }
  663. raw_samples = bd->raw_samples;
  664. // restore previous samples in case that they have been altered
  665. if (bd->store_prev_samples)
  666. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  667. sizeof(*raw_samples) * sconf->max_order);
  668. return 0;
  669. }
  670. /** Reads the block data.
  671. */
  672. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  673. {
  674. GetBitContext *gb = &ctx->gb;
  675. // read block type flag and read the samples accordingly
  676. if (get_bits1(gb)) {
  677. if (read_var_block_data(ctx, bd))
  678. return -1;
  679. } else {
  680. read_const_block_data(ctx, bd);
  681. }
  682. return 0;
  683. }
  684. /** Decodes the block data.
  685. */
  686. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  687. {
  688. unsigned int smp;
  689. // read block type flag and read the samples accordingly
  690. if (bd->const_block)
  691. decode_const_block_data(ctx, bd);
  692. else if (decode_var_block_data(ctx, bd))
  693. return -1;
  694. // TODO: read RLSLMS extension data
  695. if (bd->shift_lsbs)
  696. for (smp = 0; smp < bd->block_length; smp++)
  697. bd->raw_samples[smp] <<= bd->shift_lsbs;
  698. return 0;
  699. }
  700. /** Reads and decodes block data successively.
  701. */
  702. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  703. {
  704. int ret;
  705. ret = read_block(ctx, bd);
  706. if (ret)
  707. return ret;
  708. ret = decode_block(ctx, bd);
  709. return ret;
  710. }
  711. /** Computes the number of samples left to decode for the current frame and
  712. * sets these samples to zero.
  713. */
  714. static void zero_remaining(unsigned int b, unsigned int b_max,
  715. const unsigned int *div_blocks, int32_t *buf)
  716. {
  717. unsigned int count = 0;
  718. while (b < b_max)
  719. count += div_blocks[b];
  720. if (count)
  721. memset(buf, 0, sizeof(*buf) * count);
  722. }
  723. /** Decodes blocks independently.
  724. */
  725. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  726. unsigned int c, const unsigned int *div_blocks,
  727. unsigned int *js_blocks)
  728. {
  729. unsigned int b;
  730. ALSBlockData bd;
  731. memset(&bd, 0, sizeof(ALSBlockData));
  732. bd.ra_block = ra_frame;
  733. bd.use_ltp = ctx->use_ltp;
  734. bd.ltp_lag = ctx->ltp_lag;
  735. bd.ltp_gain = ctx->ltp_gain[0];
  736. bd.quant_cof = ctx->quant_cof[0];
  737. bd.lpc_cof = ctx->lpc_cof[0];
  738. bd.prev_raw_samples = ctx->prev_raw_samples;
  739. bd.raw_samples = ctx->raw_samples[c];
  740. for (b = 0; b < ctx->num_blocks; b++) {
  741. bd.shift_lsbs = 0;
  742. bd.block_length = div_blocks[b];
  743. if (read_decode_block(ctx, &bd)) {
  744. // damaged block, write zero for the rest of the frame
  745. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  746. return -1;
  747. }
  748. bd.raw_samples += div_blocks[b];
  749. bd.ra_block = 0;
  750. }
  751. return 0;
  752. }
  753. /** Decodes blocks dependently.
  754. */
  755. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  756. unsigned int c, const unsigned int *div_blocks,
  757. unsigned int *js_blocks)
  758. {
  759. ALSSpecificConfig *sconf = &ctx->sconf;
  760. unsigned int offset = 0;
  761. unsigned int b;
  762. ALSBlockData bd[2];
  763. memset(bd, 0, 2 * sizeof(ALSBlockData));
  764. bd[0].ra_block = ra_frame;
  765. bd[0].use_ltp = ctx->use_ltp;
  766. bd[0].ltp_lag = ctx->ltp_lag;
  767. bd[0].ltp_gain = ctx->ltp_gain[0];
  768. bd[0].quant_cof = ctx->quant_cof[0];
  769. bd[0].lpc_cof = ctx->lpc_cof[0];
  770. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  771. bd[0].js_blocks = *js_blocks;
  772. bd[1].ra_block = ra_frame;
  773. bd[1].use_ltp = ctx->use_ltp;
  774. bd[1].ltp_lag = ctx->ltp_lag;
  775. bd[1].ltp_gain = ctx->ltp_gain[0];
  776. bd[1].quant_cof = ctx->quant_cof[0];
  777. bd[1].lpc_cof = ctx->lpc_cof[0];
  778. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  779. bd[1].js_blocks = *(js_blocks + 1);
  780. // decode all blocks
  781. for (b = 0; b < ctx->num_blocks; b++) {
  782. unsigned int s;
  783. bd[0].shift_lsbs = 0;
  784. bd[1].shift_lsbs = 0;
  785. bd[0].block_length = div_blocks[b];
  786. bd[1].block_length = div_blocks[b];
  787. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  788. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  789. bd[0].raw_other = bd[1].raw_samples;
  790. bd[1].raw_other = bd[0].raw_samples;
  791. if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
  792. // damaged block, write zero for the rest of the frame
  793. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  794. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  795. return -1;
  796. }
  797. // reconstruct joint-stereo blocks
  798. if (bd[0].js_blocks) {
  799. if (bd[1].js_blocks)
  800. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
  801. for (s = 0; s < div_blocks[b]; s++)
  802. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  803. } else if (bd[1].js_blocks) {
  804. for (s = 0; s < div_blocks[b]; s++)
  805. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  806. }
  807. offset += div_blocks[b];
  808. bd[0].ra_block = 0;
  809. bd[1].ra_block = 0;
  810. }
  811. // store carryover raw samples,
  812. // the others channel raw samples are stored by the calling function.
  813. memmove(ctx->raw_samples[c] - sconf->max_order,
  814. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  815. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  816. return 0;
  817. }
  818. /** Reads the channel data.
  819. */
  820. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  821. {
  822. GetBitContext *gb = &ctx->gb;
  823. ALSChannelData *current = cd;
  824. unsigned int channels = ctx->avctx->channels;
  825. int entries = 0;
  826. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  827. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  828. if (current->master_channel >= channels) {
  829. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  830. return -1;
  831. }
  832. if (current->master_channel != c) {
  833. current->time_diff_flag = get_bits1(gb);
  834. current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  835. current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
  836. current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  837. if (current->time_diff_flag) {
  838. current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  839. current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  840. current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  841. current->time_diff_sign = get_bits1(gb);
  842. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  843. }
  844. }
  845. current++;
  846. entries++;
  847. }
  848. if (entries == channels) {
  849. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  850. return -1;
  851. }
  852. align_get_bits(gb);
  853. return 0;
  854. }
  855. /** Recursively reverts the inter-channel correlation for a block.
  856. */
  857. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  858. ALSChannelData **cd, int *reverted,
  859. unsigned int offset, int c)
  860. {
  861. ALSChannelData *ch = cd[c];
  862. unsigned int dep = 0;
  863. unsigned int channels = ctx->avctx->channels;
  864. if (reverted[c])
  865. return 0;
  866. reverted[c] = 1;
  867. while (dep < channels && !ch[dep].stop_flag) {
  868. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  869. ch[dep].master_channel);
  870. dep++;
  871. }
  872. if (dep == channels) {
  873. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
  874. return -1;
  875. }
  876. bd->use_ltp = ctx->use_ltp + c;
  877. bd->ltp_lag = ctx->ltp_lag + c;
  878. bd->ltp_gain = ctx->ltp_gain[c];
  879. bd->lpc_cof = ctx->lpc_cof[c];
  880. bd->quant_cof = ctx->quant_cof[c];
  881. bd->raw_samples = ctx->raw_samples[c] + offset;
  882. dep = 0;
  883. while (!ch[dep].stop_flag) {
  884. unsigned int smp;
  885. unsigned int begin = 1;
  886. unsigned int end = bd->block_length - 1;
  887. int64_t y;
  888. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  889. if (ch[dep].time_diff_flag) {
  890. int t = ch[dep].time_diff_index;
  891. if (ch[dep].time_diff_sign) {
  892. t = -t;
  893. begin -= t;
  894. } else {
  895. end -= t;
  896. }
  897. for (smp = begin; smp < end; smp++) {
  898. y = (1 << 6) +
  899. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  900. MUL64(ch[dep].weighting[1], master[smp ]) +
  901. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  902. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  903. MUL64(ch[dep].weighting[4], master[smp + t]) +
  904. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  905. bd->raw_samples[smp] += y >> 7;
  906. }
  907. } else {
  908. for (smp = begin; smp < end; smp++) {
  909. y = (1 << 6) +
  910. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  911. MUL64(ch[dep].weighting[1], master[smp ]) +
  912. MUL64(ch[dep].weighting[2], master[smp + 1]);
  913. bd->raw_samples[smp] += y >> 7;
  914. }
  915. }
  916. dep++;
  917. }
  918. return 0;
  919. }
  920. /** Reads the frame data.
  921. */
  922. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  923. {
  924. ALSSpecificConfig *sconf = &ctx->sconf;
  925. AVCodecContext *avctx = ctx->avctx;
  926. GetBitContext *gb = &ctx->gb;
  927. unsigned int div_blocks[32]; ///< block sizes.
  928. unsigned int c;
  929. unsigned int js_blocks[2];
  930. uint32_t bs_info = 0;
  931. // skip the size of the ra unit if present in the frame
  932. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  933. skip_bits_long(gb, 32);
  934. if (sconf->mc_coding && sconf->joint_stereo) {
  935. ctx->js_switch = get_bits1(gb);
  936. align_get_bits(gb);
  937. }
  938. if (!sconf->mc_coding || ctx->js_switch) {
  939. int independent_bs = !sconf->joint_stereo;
  940. for (c = 0; c < avctx->channels; c++) {
  941. js_blocks[0] = 0;
  942. js_blocks[1] = 0;
  943. get_block_sizes(ctx, div_blocks, &bs_info);
  944. // if joint_stereo and block_switching is set, independent decoding
  945. // is signaled via the first bit of bs_info
  946. if (sconf->joint_stereo && sconf->block_switching)
  947. if (bs_info >> 31)
  948. independent_bs = 2;
  949. // if this is the last channel, it has to be decoded independently
  950. if (c == avctx->channels - 1)
  951. independent_bs = 1;
  952. if (independent_bs) {
  953. if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
  954. return -1;
  955. independent_bs--;
  956. } else {
  957. if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
  958. return -1;
  959. c++;
  960. }
  961. // store carryover raw samples
  962. memmove(ctx->raw_samples[c] - sconf->max_order,
  963. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  964. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  965. }
  966. } else { // multi-channel coding
  967. ALSBlockData bd;
  968. int b;
  969. int *reverted_channels = ctx->reverted_channels;
  970. unsigned int offset = 0;
  971. for (c = 0; c < avctx->channels; c++)
  972. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  973. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  974. return -1;
  975. }
  976. memset(&bd, 0, sizeof(ALSBlockData));
  977. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  978. bd.ra_block = ra_frame;
  979. bd.prev_raw_samples = ctx->prev_raw_samples;
  980. get_block_sizes(ctx, div_blocks, &bs_info);
  981. for (b = 0; b < ctx->num_blocks; b++) {
  982. bd.shift_lsbs = 0;
  983. bd.block_length = div_blocks[b];
  984. for (c = 0; c < avctx->channels; c++) {
  985. bd.use_ltp = ctx->use_ltp + c;
  986. bd.ltp_lag = ctx->ltp_lag + c;
  987. bd.ltp_gain = ctx->ltp_gain[c];
  988. bd.lpc_cof = ctx->lpc_cof[c];
  989. bd.quant_cof = ctx->quant_cof[c];
  990. bd.raw_samples = ctx->raw_samples[c] + offset;
  991. bd.raw_other = NULL;
  992. read_block(ctx, &bd);
  993. if (read_channel_data(ctx, ctx->chan_data[c], c))
  994. return -1;
  995. }
  996. for (c = 0; c < avctx->channels; c++)
  997. if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
  998. reverted_channels, offset, c))
  999. return -1;
  1000. for (c = 0; c < avctx->channels; c++) {
  1001. bd.use_ltp = ctx->use_ltp + c;
  1002. bd.ltp_lag = ctx->ltp_lag + c;
  1003. bd.ltp_gain = ctx->ltp_gain[c];
  1004. bd.lpc_cof = ctx->lpc_cof[c];
  1005. bd.quant_cof = ctx->quant_cof[c];
  1006. bd.raw_samples = ctx->raw_samples[c] + offset;
  1007. decode_block(ctx, &bd);
  1008. }
  1009. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1010. offset += div_blocks[b];
  1011. bd.ra_block = 0;
  1012. }
  1013. // store carryover raw samples
  1014. for (c = 0; c < avctx->channels; c++)
  1015. memmove(ctx->raw_samples[c] - sconf->max_order,
  1016. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1017. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1018. }
  1019. // TODO: read_diff_float_data
  1020. return 0;
  1021. }
  1022. /** Decodes an ALS frame.
  1023. */
  1024. static int decode_frame(AVCodecContext *avctx,
  1025. void *data, int *data_size,
  1026. AVPacket *avpkt)
  1027. {
  1028. ALSDecContext *ctx = avctx->priv_data;
  1029. ALSSpecificConfig *sconf = &ctx->sconf;
  1030. const uint8_t *buffer = avpkt->data;
  1031. int buffer_size = avpkt->size;
  1032. int invalid_frame, size;
  1033. unsigned int c, sample, ra_frame, bytes_read, shift;
  1034. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1035. // In the case that the distance between random access frames is set to zero
  1036. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1037. // For the first frame, if prediction is used, all samples used from the
  1038. // previous frame are assumed to be zero.
  1039. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1040. // the last frame to decode might have a different length
  1041. if (sconf->samples != 0xFFFFFFFF)
  1042. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1043. sconf->frame_length);
  1044. else
  1045. ctx->cur_frame_length = sconf->frame_length;
  1046. // decode the frame data
  1047. if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
  1048. av_log(ctx->avctx, AV_LOG_WARNING,
  1049. "Reading frame data failed. Skipping RA unit.\n");
  1050. ctx->frame_id++;
  1051. // check for size of decoded data
  1052. size = ctx->cur_frame_length * avctx->channels *
  1053. (av_get_bits_per_sample_format(avctx->sample_fmt) >> 3);
  1054. if (size > *data_size) {
  1055. av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
  1056. return -1;
  1057. }
  1058. *data_size = size;
  1059. // transform decoded frame into output format
  1060. #define INTERLEAVE_OUTPUT(bps) \
  1061. { \
  1062. int##bps##_t *dest = (int##bps##_t*) data; \
  1063. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1064. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1065. for (c = 0; c < avctx->channels; c++) \
  1066. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1067. }
  1068. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1069. INTERLEAVE_OUTPUT(16)
  1070. } else {
  1071. INTERLEAVE_OUTPUT(32)
  1072. }
  1073. bytes_read = invalid_frame ? buffer_size :
  1074. (get_bits_count(&ctx->gb) + 7) >> 3;
  1075. return bytes_read;
  1076. }
  1077. /** Uninitializes the ALS decoder.
  1078. */
  1079. static av_cold int decode_end(AVCodecContext *avctx)
  1080. {
  1081. ALSDecContext *ctx = avctx->priv_data;
  1082. av_freep(&ctx->sconf.chan_pos);
  1083. av_freep(&ctx->use_ltp);
  1084. av_freep(&ctx->ltp_lag);
  1085. av_freep(&ctx->ltp_gain);
  1086. av_freep(&ctx->ltp_gain_buffer);
  1087. av_freep(&ctx->quant_cof);
  1088. av_freep(&ctx->lpc_cof);
  1089. av_freep(&ctx->quant_cof_buffer);
  1090. av_freep(&ctx->lpc_cof_buffer);
  1091. av_freep(&ctx->lpc_cof_reversed_buffer);
  1092. av_freep(&ctx->prev_raw_samples);
  1093. av_freep(&ctx->raw_samples);
  1094. av_freep(&ctx->raw_buffer);
  1095. av_freep(&ctx->chan_data);
  1096. av_freep(&ctx->chan_data_buffer);
  1097. av_freep(&ctx->reverted_channels);
  1098. return 0;
  1099. }
  1100. /** Initializes the ALS decoder.
  1101. */
  1102. static av_cold int decode_init(AVCodecContext *avctx)
  1103. {
  1104. unsigned int c;
  1105. unsigned int channel_size;
  1106. int num_buffers;
  1107. ALSDecContext *ctx = avctx->priv_data;
  1108. ALSSpecificConfig *sconf = &ctx->sconf;
  1109. ctx->avctx = avctx;
  1110. if (!avctx->extradata) {
  1111. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1112. return -1;
  1113. }
  1114. if (read_specific_config(ctx)) {
  1115. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1116. decode_end(avctx);
  1117. return -1;
  1118. }
  1119. if (check_specific_config(ctx)) {
  1120. decode_end(avctx);
  1121. return -1;
  1122. }
  1123. if (sconf->floating) {
  1124. avctx->sample_fmt = SAMPLE_FMT_FLT;
  1125. avctx->bits_per_raw_sample = 32;
  1126. } else {
  1127. avctx->sample_fmt = sconf->resolution > 1
  1128. ? SAMPLE_FMT_S32 : SAMPLE_FMT_S16;
  1129. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1130. }
  1131. // set lag value for long-term prediction
  1132. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1133. (avctx->sample_rate >= 192000);
  1134. // allocate quantized parcor coefficient buffer
  1135. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1136. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1137. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1138. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1139. num_buffers * sconf->max_order);
  1140. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1141. num_buffers * sconf->max_order);
  1142. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1143. sconf->max_order);
  1144. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1145. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1146. !ctx->lpc_cof_reversed_buffer) {
  1147. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1148. return AVERROR(ENOMEM);
  1149. }
  1150. // assign quantized parcor coefficient buffers
  1151. for (c = 0; c < num_buffers; c++) {
  1152. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1153. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1154. }
  1155. // allocate and assign lag and gain data buffer for ltp mode
  1156. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1157. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1158. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1159. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1160. num_buffers * 5);
  1161. if (!ctx->use_ltp || !ctx->ltp_lag ||
  1162. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1163. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1164. decode_end(avctx);
  1165. return AVERROR(ENOMEM);
  1166. }
  1167. for (c = 0; c < num_buffers; c++)
  1168. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1169. // allocate and assign channel data buffer for mcc mode
  1170. if (sconf->mc_coding) {
  1171. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1172. num_buffers);
  1173. ctx->chan_data = av_malloc(sizeof(ALSChannelData) *
  1174. num_buffers);
  1175. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1176. num_buffers);
  1177. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1178. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1179. decode_end(avctx);
  1180. return AVERROR(ENOMEM);
  1181. }
  1182. for (c = 0; c < num_buffers; c++)
  1183. ctx->chan_data[c] = ctx->chan_data_buffer + c;
  1184. } else {
  1185. ctx->chan_data = NULL;
  1186. ctx->chan_data_buffer = NULL;
  1187. ctx->reverted_channels = NULL;
  1188. }
  1189. avctx->frame_size = sconf->frame_length;
  1190. channel_size = sconf->frame_length + sconf->max_order;
  1191. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1192. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1193. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1194. // allocate previous raw sample buffer
  1195. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1196. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1197. decode_end(avctx);
  1198. return AVERROR(ENOMEM);
  1199. }
  1200. // assign raw samples buffers
  1201. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1202. for (c = 1; c < avctx->channels; c++)
  1203. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1204. return 0;
  1205. }
  1206. /** Flushes (resets) the frame ID after seeking.
  1207. */
  1208. static av_cold void flush(AVCodecContext *avctx)
  1209. {
  1210. ALSDecContext *ctx = avctx->priv_data;
  1211. ctx->frame_id = 0;
  1212. }
  1213. AVCodec als_decoder = {
  1214. "als",
  1215. CODEC_TYPE_AUDIO,
  1216. CODEC_ID_MP4ALS,
  1217. sizeof(ALSDecContext),
  1218. decode_init,
  1219. NULL,
  1220. decode_end,
  1221. decode_frame,
  1222. .flush = flush,
  1223. .capabilities = CODEC_CAP_SUBFRAMES,
  1224. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1225. };