You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1128 lines
37KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #include "random.h"
  38. /**
  39. * Table of bin locations for rematrixing bands
  40. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  41. */
  42. static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
  43. /* table for exponent to scale_factor mapping
  44. * scale_factor[i] = 2 ^ -(i + 15)
  45. */
  46. static float scale_factors[25];
  47. /** table for grouping exponents */
  48. static uint8_t exp_ungroup_tbl[128][3];
  49. /** tables for ungrouping mantissas */
  50. static float b1_mantissas[32][3];
  51. static float b2_mantissas[128][3];
  52. static float b3_mantissas[8];
  53. static float b4_mantissas[128][2];
  54. static float b5_mantissas[16];
  55. /**
  56. * Quantization table: levels for symmetric. bits for asymmetric.
  57. * reference: Table 7.18 Mapping of bap to Quantizer
  58. */
  59. static const uint8_t qntztab[16] = {
  60. 0, 3, 5, 7, 11, 15,
  61. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  62. };
  63. /** dynamic range table. converts codes to scale factors. */
  64. static float dynrng_tbl[256];
  65. /* Adjustmens in dB gain */
  66. #define LEVEL_MINUS_3DB 0.7071067811865476
  67. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  68. #define LEVEL_MINUS_6DB 0.5000000000000000
  69. #define LEVEL_MINUS_9DB 0.3535533905932738
  70. #define LEVEL_ZERO 0.0000000000000000
  71. #define LEVEL_ONE 1.0000000000000000
  72. static const float gain_levels[6] = {
  73. LEVEL_ZERO,
  74. LEVEL_ONE,
  75. LEVEL_MINUS_3DB,
  76. LEVEL_MINUS_4POINT5DB,
  77. LEVEL_MINUS_6DB,
  78. LEVEL_MINUS_9DB
  79. };
  80. /**
  81. * Table for center mix levels
  82. * reference: Section 5.4.2.4 cmixlev
  83. */
  84. static const uint8_t clevs[4] = { 2, 3, 4, 3 };
  85. /**
  86. * Table for surround mix levels
  87. * reference: Section 5.4.2.5 surmixlev
  88. */
  89. static const uint8_t slevs[4] = { 2, 4, 0, 4 };
  90. /**
  91. * Table for default stereo downmixing coefficients
  92. * reference: Section 7.8.2 Downmixing Into Two Channels
  93. */
  94. static const uint8_t ac3_default_coeffs[8][5][2] = {
  95. { { 1, 0 }, { 0, 1 }, },
  96. { { 2, 2 }, },
  97. { { 1, 0 }, { 0, 1 }, },
  98. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  99. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  100. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  101. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  102. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  103. };
  104. /* override ac3.h to include coupling channel */
  105. #undef AC3_MAX_CHANNELS
  106. #define AC3_MAX_CHANNELS 7
  107. #define CPL_CH 0
  108. #define AC3_OUTPUT_LFEON 8
  109. typedef struct {
  110. int acmod;
  111. int dsurmod;
  112. int blksw[AC3_MAX_CHANNELS];
  113. int dithflag[AC3_MAX_CHANNELS];
  114. int dither_all;
  115. int cplinu;
  116. int chincpl[AC3_MAX_CHANNELS];
  117. int phsflginu;
  118. int cplbndstrc[18];
  119. int rematstr;
  120. int nrematbnd;
  121. int rematflg[4];
  122. int expstr[AC3_MAX_CHANNELS];
  123. int snroffst[AC3_MAX_CHANNELS];
  124. int fgain[AC3_MAX_CHANNELS];
  125. int deltbae[AC3_MAX_CHANNELS];
  126. int deltnseg[AC3_MAX_CHANNELS];
  127. uint8_t deltoffst[AC3_MAX_CHANNELS][8];
  128. uint8_t deltlen[AC3_MAX_CHANNELS][8];
  129. uint8_t deltba[AC3_MAX_CHANNELS][8];
  130. /* Derived Attributes. */
  131. int sampling_rate;
  132. int bit_rate;
  133. int frame_size;
  134. int nchans; //number of total channels
  135. int nfchans; //number of full-bandwidth channels
  136. int lfeon; //lfe channel in use
  137. int lfe_ch; ///< index of LFE channel
  138. int output_mode; ///< output channel configuration
  139. int out_channels; ///< number of output channels
  140. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  141. float dynrng; //dynamic range gain
  142. float dynrng2; //dynamic range gain for 1+1 mode
  143. float cplco[AC3_MAX_CHANNELS][18]; //coupling coordinates
  144. int ncplbnd; //number of coupling bands
  145. int ncplsubnd; //number of coupling sub bands
  146. int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin
  147. int endmant[AC3_MAX_CHANNELS]; //channel end mantissas
  148. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  149. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  150. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  151. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  152. int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  153. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  154. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
  155. /* For IMDCT. */
  156. MDCTContext imdct_512; //for 512 sample imdct transform
  157. MDCTContext imdct_256; //for 256 sample imdct transform
  158. DSPContext dsp; //for optimization
  159. float add_bias; ///< offset for float_to_int16 conversion
  160. float mul_bias; ///< scaling for float_to_int16 conversion
  161. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing
  162. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  163. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); //delay - added to the next block
  164. DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
  165. DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
  166. DECLARE_ALIGNED_16(float, window[256]); //window coefficients
  167. /* Miscellaneous. */
  168. GetBitContext gb;
  169. AVRandomState dith_state; //for dither generation
  170. } AC3DecodeContext;
  171. /*********** BEGIN INIT HELPER FUNCTIONS ***********/
  172. /**
  173. * Generate a Kaiser-Bessel Derived Window.
  174. */
  175. static void ac3_window_init(float *window)
  176. {
  177. int i, j;
  178. double sum = 0.0, bessel, tmp;
  179. double local_window[256];
  180. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  181. for (i = 0; i < 256; i++) {
  182. tmp = i * (256 - i) * alpha2;
  183. bessel = 1.0;
  184. for (j = 100; j > 0; j--) /* defaul to 100 iterations */
  185. bessel = bessel * tmp / (j * j) + 1;
  186. sum += bessel;
  187. local_window[i] = sum;
  188. }
  189. sum++;
  190. for (i = 0; i < 256; i++)
  191. window[i] = sqrt(local_window[i] / sum);
  192. }
  193. static inline float
  194. symmetric_dequant(int code, int levels)
  195. {
  196. return (code - (levels >> 1)) * (2.0f / levels);
  197. }
  198. /*
  199. * Initialize tables at runtime.
  200. */
  201. static void ac3_tables_init(void)
  202. {
  203. int i;
  204. /* generate grouped mantissa tables
  205. reference: Section 7.3.5 Ungrouping of Mantissas */
  206. for(i=0; i<32; i++) {
  207. /* bap=1 mantissas */
  208. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  209. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  210. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  211. }
  212. for(i=0; i<128; i++) {
  213. /* bap=2 mantissas */
  214. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  215. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  216. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  217. /* bap=4 mantissas */
  218. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  219. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  220. }
  221. /* generate ungrouped mantissa tables
  222. reference: Tables 7.21 and 7.23 */
  223. for(i=0; i<7; i++) {
  224. /* bap=3 mantissas */
  225. b3_mantissas[i] = symmetric_dequant(i, 7);
  226. }
  227. for(i=0; i<15; i++) {
  228. /* bap=5 mantissas */
  229. b5_mantissas[i] = symmetric_dequant(i, 15);
  230. }
  231. /* generate dynamic range table
  232. reference: Section 7.7.1 Dynamic Range Control */
  233. for(i=0; i<256; i++) {
  234. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  235. dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  236. }
  237. //generate scale factors
  238. for (i = 0; i < 25; i++)
  239. scale_factors[i] = pow(2.0, -i);
  240. /* generate exponent tables
  241. reference: Section 7.1.3 Exponent Decoding */
  242. for(i=0; i<128; i++) {
  243. exp_ungroup_tbl[i][0] = i / 25;
  244. exp_ungroup_tbl[i][1] = (i % 25) / 5;
  245. exp_ungroup_tbl[i][2] = (i % 25) % 5;
  246. }
  247. }
  248. static int ac3_decode_init(AVCodecContext *avctx)
  249. {
  250. AC3DecodeContext *ctx = avctx->priv_data;
  251. ac3_common_init();
  252. ac3_tables_init();
  253. ff_mdct_init(&ctx->imdct_256, 8, 1);
  254. ff_mdct_init(&ctx->imdct_512, 9, 1);
  255. ac3_window_init(ctx->window);
  256. dsputil_init(&ctx->dsp, avctx);
  257. av_init_random(0, &ctx->dith_state);
  258. if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
  259. ctx->add_bias = 385.0f;
  260. ctx->mul_bias = 1.0f;
  261. } else {
  262. ctx->add_bias = 0.0f;
  263. ctx->mul_bias = 32767.0f;
  264. }
  265. return 0;
  266. }
  267. /*********** END INIT FUNCTIONS ***********/
  268. /**
  269. * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  270. * GetBitContext within AC3DecodeContext must point to
  271. * start of the synchronized ac3 bitstream.
  272. */
  273. static int ac3_parse_header(AC3DecodeContext *ctx)
  274. {
  275. AC3HeaderInfo hdr;
  276. GetBitContext *gb = &ctx->gb;
  277. float cmixlev, surmixlev;
  278. int err, i;
  279. err = ff_ac3_parse_header(gb->buffer, &hdr);
  280. if(err)
  281. return err;
  282. /* get decoding parameters from header info */
  283. ctx->bit_alloc_params.fscod = hdr.fscod;
  284. ctx->acmod = hdr.acmod;
  285. cmixlev = gain_levels[clevs[hdr.cmixlev]];
  286. surmixlev = gain_levels[slevs[hdr.surmixlev]];
  287. ctx->dsurmod = hdr.dsurmod;
  288. ctx->lfeon = hdr.lfeon;
  289. ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
  290. ctx->sampling_rate = hdr.sample_rate;
  291. ctx->bit_rate = hdr.bit_rate;
  292. ctx->nchans = hdr.channels;
  293. ctx->nfchans = ctx->nchans - ctx->lfeon;
  294. ctx->lfe_ch = ctx->nfchans + 1;
  295. ctx->frame_size = hdr.frame_size;
  296. /* set default output to all source channels */
  297. ctx->out_channels = ctx->nchans;
  298. ctx->output_mode = ctx->acmod;
  299. if(ctx->lfeon)
  300. ctx->output_mode |= AC3_OUTPUT_LFEON;
  301. /* skip over portion of header which has already been read */
  302. skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
  303. skip_bits(gb, 16); // skip crc1
  304. skip_bits(gb, 8); // skip fscod and frmsizecod
  305. skip_bits(gb, 11); // skip bsid, bsmod, and acmod
  306. if(ctx->acmod == AC3_ACMOD_STEREO) {
  307. skip_bits(gb, 2); // skip dsurmod
  308. } else {
  309. if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
  310. skip_bits(gb, 2); // skip cmixlev
  311. if(ctx->acmod & 4)
  312. skip_bits(gb, 2); // skip surmixlev
  313. }
  314. skip_bits1(gb); // skip lfeon
  315. /* read the rest of the bsi. read twice for dual mono mode. */
  316. i = !(ctx->acmod);
  317. do {
  318. skip_bits(gb, 5); //skip dialog normalization
  319. if (get_bits1(gb))
  320. skip_bits(gb, 8); //skip compression
  321. if (get_bits1(gb))
  322. skip_bits(gb, 8); //skip language code
  323. if (get_bits1(gb))
  324. skip_bits(gb, 7); //skip audio production information
  325. } while (i--);
  326. skip_bits(gb, 2); //skip copyright bit and original bitstream bit
  327. /* FIXME: read & use the xbsi1 downmix levels */
  328. if (get_bits1(gb))
  329. skip_bits(gb, 14); //skip timecode1
  330. if (get_bits1(gb))
  331. skip_bits(gb, 14); //skip timecode2
  332. if (get_bits1(gb)) {
  333. i = get_bits(gb, 6); //additional bsi length
  334. do {
  335. skip_bits(gb, 8);
  336. } while(i--);
  337. }
  338. /* set stereo downmixing coefficients
  339. reference: Section 7.8.2 Downmixing Into Two Channels */
  340. for(i=0; i<ctx->nfchans; i++) {
  341. ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
  342. ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
  343. }
  344. if(ctx->acmod > 1 && ctx->acmod & 1) {
  345. ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
  346. }
  347. if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
  348. int nf = ctx->acmod - 2;
  349. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
  350. }
  351. if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
  352. int nf = ctx->acmod - 4;
  353. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
  354. }
  355. return 0;
  356. }
  357. /**
  358. * Decodes the grouped exponents.
  359. * This function decodes the coded exponents according to exponent strategy
  360. * and stores them in the decoded exponents buffer.
  361. *
  362. * @param[in] gb GetBitContext which points to start of coded exponents
  363. * @param[in] expstr Exponent coding strategy
  364. * @param[in] ngrps Number of grouped exponents
  365. * @param[in] absexp Absolute exponent or DC exponent
  366. * @param[out] dexps Decoded exponents are stored in dexps
  367. */
  368. static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
  369. uint8_t absexp, int8_t *dexps)
  370. {
  371. int i, j, grp, grpsize;
  372. int dexp[256];
  373. int expacc, prevexp;
  374. /* unpack groups */
  375. grpsize = expstr + (expstr == EXP_D45);
  376. for(grp=0,i=0; grp<ngrps; grp++) {
  377. expacc = get_bits(gb, 7);
  378. dexp[i++] = exp_ungroup_tbl[expacc][0];
  379. dexp[i++] = exp_ungroup_tbl[expacc][1];
  380. dexp[i++] = exp_ungroup_tbl[expacc][2];
  381. }
  382. /* convert to absolute exps and expand groups */
  383. prevexp = absexp;
  384. for(i=0; i<ngrps*3; i++) {
  385. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  386. for(j=0; j<grpsize; j++) {
  387. dexps[(i*grpsize)+j] = prevexp;
  388. }
  389. }
  390. }
  391. /**
  392. * Generates transform coefficients for each coupled channel in the coupling
  393. * range using the coupling coefficients and coupling coordinates.
  394. * reference: Section 7.4.3 Coupling Coordinate Format
  395. */
  396. static void uncouple_channels(AC3DecodeContext *ctx)
  397. {
  398. int i, j, ch, bnd, subbnd;
  399. subbnd = -1;
  400. i = ctx->startmant[CPL_CH];
  401. for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
  402. do {
  403. subbnd++;
  404. for(j=0; j<12; j++) {
  405. for(ch=1; ch<=ctx->nfchans; ch++) {
  406. if(ctx->chincpl[ch])
  407. ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
  408. }
  409. i++;
  410. }
  411. } while(ctx->cplbndstrc[subbnd]);
  412. }
  413. }
  414. typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
  415. float b1_mant[3];
  416. float b2_mant[3];
  417. float b4_mant[2];
  418. int b1ptr;
  419. int b2ptr;
  420. int b4ptr;
  421. } mant_groups;
  422. /* Get the transform coefficients for particular channel */
  423. static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
  424. {
  425. GetBitContext *gb = &ctx->gb;
  426. int i, gcode, tbap, start, end;
  427. uint8_t *exps;
  428. uint8_t *bap;
  429. float *coeffs;
  430. exps = ctx->dexps[ch_index];
  431. bap = ctx->bap[ch_index];
  432. coeffs = ctx->transform_coeffs[ch_index];
  433. start = ctx->startmant[ch_index];
  434. end = ctx->endmant[ch_index];
  435. for (i = start; i < end; i++) {
  436. tbap = bap[i];
  437. switch (tbap) {
  438. case 0:
  439. coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
  440. break;
  441. case 1:
  442. if(m->b1ptr > 2) {
  443. gcode = get_bits(gb, 5);
  444. m->b1_mant[0] = b1_mantissas[gcode][0];
  445. m->b1_mant[1] = b1_mantissas[gcode][1];
  446. m->b1_mant[2] = b1_mantissas[gcode][2];
  447. m->b1ptr = 0;
  448. }
  449. coeffs[i] = m->b1_mant[m->b1ptr++];
  450. break;
  451. case 2:
  452. if(m->b2ptr > 2) {
  453. gcode = get_bits(gb, 7);
  454. m->b2_mant[0] = b2_mantissas[gcode][0];
  455. m->b2_mant[1] = b2_mantissas[gcode][1];
  456. m->b2_mant[2] = b2_mantissas[gcode][2];
  457. m->b2ptr = 0;
  458. }
  459. coeffs[i] = m->b2_mant[m->b2ptr++];
  460. break;
  461. case 3:
  462. coeffs[i] = b3_mantissas[get_bits(gb, 3)];
  463. break;
  464. case 4:
  465. if(m->b4ptr > 1) {
  466. gcode = get_bits(gb, 7);
  467. m->b4_mant[0] = b4_mantissas[gcode][0];
  468. m->b4_mant[1] = b4_mantissas[gcode][1];
  469. m->b4ptr = 0;
  470. }
  471. coeffs[i] = m->b4_mant[m->b4ptr++];
  472. break;
  473. case 5:
  474. coeffs[i] = b5_mantissas[get_bits(gb, 4)];
  475. break;
  476. default:
  477. coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
  478. break;
  479. }
  480. coeffs[i] *= scale_factors[exps[i]];
  481. }
  482. return 0;
  483. }
  484. /**
  485. * Removes random dithering from coefficients with zero-bit mantissas
  486. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  487. */
  488. static void remove_dithering(AC3DecodeContext *ctx) {
  489. int ch, i;
  490. int end=0;
  491. float *coeffs;
  492. uint8_t *bap;
  493. for(ch=1; ch<=ctx->nfchans; ch++) {
  494. if(!ctx->dithflag[ch]) {
  495. coeffs = ctx->transform_coeffs[ch];
  496. bap = ctx->bap[ch];
  497. if(ctx->chincpl[ch])
  498. end = ctx->startmant[CPL_CH];
  499. else
  500. end = ctx->endmant[ch];
  501. for(i=0; i<end; i++) {
  502. if(bap[i] == 0)
  503. coeffs[i] = 0.0f;
  504. }
  505. if(ctx->chincpl[ch]) {
  506. bap = ctx->bap[CPL_CH];
  507. for(; i<ctx->endmant[CPL_CH]; i++) {
  508. if(bap[i] == 0)
  509. coeffs[i] = 0.0f;
  510. }
  511. }
  512. }
  513. }
  514. }
  515. /* Get the transform coefficients.
  516. * This function extracts the tranform coefficients form the ac3 bitstream.
  517. * This function is called after bit allocation is performed.
  518. */
  519. static int get_transform_coeffs(AC3DecodeContext * ctx)
  520. {
  521. int ch, end;
  522. int got_cplchan = 0;
  523. mant_groups m;
  524. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  525. for (ch = 1; ch <= ctx->nchans; ch++) {
  526. /* transform coefficients for individual channel */
  527. if (get_transform_coeffs_ch(ctx, ch, &m))
  528. return -1;
  529. /* tranform coefficients for coupling channels */
  530. if (ctx->chincpl[ch]) {
  531. if (!got_cplchan) {
  532. if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
  533. av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
  534. return -1;
  535. }
  536. uncouple_channels(ctx);
  537. got_cplchan = 1;
  538. }
  539. end = ctx->endmant[CPL_CH];
  540. } else {
  541. end = ctx->endmant[ch];
  542. }
  543. do
  544. ctx->transform_coeffs[ch][end] = 0;
  545. while(++end < 256);
  546. }
  547. /* if any channel doesn't use dithering, zero appropriate coefficients */
  548. if(!ctx->dither_all)
  549. remove_dithering(ctx);
  550. return 0;
  551. }
  552. /**
  553. * Performs stereo rematrixing.
  554. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  555. */
  556. static void do_rematrixing(AC3DecodeContext *ctx)
  557. {
  558. int bnd, i;
  559. int end, bndend;
  560. float tmp0, tmp1;
  561. end = FFMIN(ctx->endmant[1], ctx->endmant[2]);
  562. for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
  563. if(ctx->rematflg[bnd]) {
  564. bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
  565. for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
  566. tmp0 = ctx->transform_coeffs[1][i];
  567. tmp1 = ctx->transform_coeffs[2][i];
  568. ctx->transform_coeffs[1][i] = tmp0 + tmp1;
  569. ctx->transform_coeffs[2][i] = tmp0 - tmp1;
  570. }
  571. }
  572. }
  573. }
  574. /* This function performs the imdct on 256 sample transform
  575. * coefficients.
  576. */
  577. static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
  578. {
  579. int i, k;
  580. DECLARE_ALIGNED_16(float, x[128]);
  581. FFTComplex z[2][64];
  582. float *o_ptr = ctx->tmp_output;
  583. for(i=0; i<2; i++) {
  584. /* de-interleave coefficients */
  585. for(k=0; k<128; k++) {
  586. x[k] = ctx->transform_coeffs[chindex][2*k+i];
  587. }
  588. /* run standard IMDCT */
  589. ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
  590. /* reverse the post-rotation & reordering from standard IMDCT */
  591. for(k=0; k<32; k++) {
  592. z[i][32+k].re = -o_ptr[128+2*k];
  593. z[i][32+k].im = -o_ptr[2*k];
  594. z[i][31-k].re = o_ptr[2*k+1];
  595. z[i][31-k].im = o_ptr[128+2*k+1];
  596. }
  597. }
  598. /* apply AC-3 post-rotation & reordering */
  599. for(k=0; k<64; k++) {
  600. o_ptr[ 2*k ] = -z[0][ k].im;
  601. o_ptr[ 2*k+1] = z[0][63-k].re;
  602. o_ptr[128+2*k ] = -z[0][ k].re;
  603. o_ptr[128+2*k+1] = z[0][63-k].im;
  604. o_ptr[256+2*k ] = -z[1][ k].re;
  605. o_ptr[256+2*k+1] = z[1][63-k].im;
  606. o_ptr[384+2*k ] = z[1][ k].im;
  607. o_ptr[384+2*k+1] = -z[1][63-k].re;
  608. }
  609. }
  610. /* IMDCT Transform. */
  611. static inline void do_imdct(AC3DecodeContext *ctx)
  612. {
  613. int ch;
  614. int nchans;
  615. nchans = ctx->nfchans;
  616. if(ctx->output_mode & AC3_OUTPUT_LFEON)
  617. nchans++;
  618. for (ch=1; ch<=nchans; ch++) {
  619. if (ctx->blksw[ch]) {
  620. do_imdct_256(ctx, ch);
  621. } else {
  622. ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
  623. ctx->transform_coeffs[ch],
  624. ctx->tmp_imdct);
  625. }
  626. ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
  627. ctx->window, ctx->delay[ch-1], 0, 256, 1);
  628. ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
  629. ctx->window, 256);
  630. }
  631. }
  632. /**
  633. * Downmixes the output to stereo.
  634. */
  635. static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
  636. int output_mode, float coef[AC3_MAX_CHANNELS][2])
  637. {
  638. int i, j;
  639. float v0, v1, s0, s1;
  640. for(i=0; i<256; i++) {
  641. v0 = v1 = s0 = s1 = 0.0f;
  642. for(j=0; j<nfchans; j++) {
  643. v0 += samples[j][i] * coef[j][0];
  644. v1 += samples[j][i] * coef[j][1];
  645. s0 += coef[j][0];
  646. s1 += coef[j][1];
  647. }
  648. v0 /= s0;
  649. v1 /= s1;
  650. if(output_mode == AC3_ACMOD_MONO) {
  651. samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  652. } else if(output_mode == AC3_ACMOD_STEREO) {
  653. samples[0][i] = v0;
  654. samples[1][i] = v1;
  655. }
  656. }
  657. }
  658. /* Parse the audio block from ac3 bitstream.
  659. * This function extract the audio block from the ac3 bitstream
  660. * and produces the output for the block. This function must
  661. * be called for each of the six audio block in the ac3 bitstream.
  662. */
  663. static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
  664. {
  665. int nfchans = ctx->nfchans;
  666. int acmod = ctx->acmod;
  667. int i, bnd, seg, ch;
  668. GetBitContext *gb = &ctx->gb;
  669. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  670. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  671. for (ch = 1; ch <= nfchans; ch++) /*block switch flag */
  672. ctx->blksw[ch] = get_bits1(gb);
  673. ctx->dither_all = 1;
  674. for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */
  675. ctx->dithflag[ch] = get_bits1(gb);
  676. if(!ctx->dithflag[ch])
  677. ctx->dither_all = 0;
  678. }
  679. if (get_bits1(gb)) { /* dynamic range */
  680. ctx->dynrng = dynrng_tbl[get_bits(gb, 8)];
  681. } else if(blk == 0) {
  682. ctx->dynrng = 1.0;
  683. }
  684. if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
  685. if(get_bits1(gb)) {
  686. ctx->dynrng2 = dynrng_tbl[get_bits(gb, 8)];
  687. } else if(blk == 0) {
  688. ctx->dynrng2 = 1.0;
  689. }
  690. }
  691. if (get_bits1(gb)) { /* coupling strategy */
  692. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  693. ctx->cplinu = get_bits1(gb);
  694. if (ctx->cplinu) { /* coupling in use */
  695. int cplbegf, cplendf;
  696. for (ch = 1; ch <= nfchans; ch++)
  697. ctx->chincpl[ch] = get_bits1(gb);
  698. if (acmod == AC3_ACMOD_STEREO)
  699. ctx->phsflginu = get_bits1(gb); //phase flag in use
  700. cplbegf = get_bits(gb, 4);
  701. cplendf = get_bits(gb, 4);
  702. if (3 + cplendf - cplbegf < 0) {
  703. av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
  704. return -1;
  705. }
  706. ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
  707. ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
  708. ctx->endmant[CPL_CH] = cplendf * 12 + 73;
  709. for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */
  710. if (get_bits1(gb)) {
  711. ctx->cplbndstrc[bnd] = 1;
  712. ctx->ncplbnd--;
  713. }
  714. }
  715. } else {
  716. for (ch = 1; ch <= nfchans; ch++)
  717. ctx->chincpl[ch] = 0;
  718. }
  719. }
  720. if (ctx->cplinu) {
  721. int cplcoe = 0;
  722. for (ch = 1; ch <= nfchans; ch++) {
  723. if (ctx->chincpl[ch]) {
  724. if (get_bits1(gb)) { /* coupling co-ordinates */
  725. int mstrcplco, cplcoexp, cplcomant;
  726. cplcoe = 1;
  727. mstrcplco = 3 * get_bits(gb, 2);
  728. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  729. cplcoexp = get_bits(gb, 4);
  730. cplcomant = get_bits(gb, 4);
  731. if (cplcoexp == 15)
  732. ctx->cplco[ch][bnd] = cplcomant / 16.0f;
  733. else
  734. ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
  735. ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
  736. }
  737. }
  738. }
  739. }
  740. if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
  741. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  742. if (get_bits1(gb))
  743. ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
  744. }
  745. }
  746. }
  747. if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
  748. ctx->rematstr = get_bits1(gb);
  749. if (ctx->rematstr) {
  750. ctx->nrematbnd = 4;
  751. if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
  752. ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
  753. for(bnd=0; bnd<ctx->nrematbnd; bnd++)
  754. ctx->rematflg[bnd] = get_bits1(gb);
  755. }
  756. }
  757. ctx->expstr[CPL_CH] = EXP_REUSE;
  758. ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
  759. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  760. if(ch == ctx->lfe_ch)
  761. ctx->expstr[ch] = get_bits(gb, 1);
  762. else
  763. ctx->expstr[ch] = get_bits(gb, 2);
  764. if(ctx->expstr[ch] != EXP_REUSE)
  765. bit_alloc_stages[ch] = 3;
  766. }
  767. for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */
  768. ctx->startmant[ch] = 0;
  769. if (ctx->expstr[ch] != EXP_REUSE) {
  770. int prev = ctx->endmant[ch];
  771. if (ctx->chincpl[ch])
  772. ctx->endmant[ch] = ctx->startmant[CPL_CH];
  773. else {
  774. int chbwcod = get_bits(gb, 6);
  775. if (chbwcod > 60) {
  776. av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
  777. return -1;
  778. }
  779. ctx->endmant[ch] = chbwcod * 3 + 73;
  780. }
  781. if(blk > 0 && ctx->endmant[ch] != prev)
  782. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  783. }
  784. }
  785. ctx->startmant[ctx->lfe_ch] = 0;
  786. ctx->endmant[ctx->lfe_ch] = 7;
  787. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  788. if (ctx->expstr[ch] != EXP_REUSE) {
  789. int grpsize, ngrps;
  790. grpsize = 3 << (ctx->expstr[ch] - 1);
  791. if(ch == CPL_CH)
  792. ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
  793. else if(ch == ctx->lfe_ch)
  794. ngrps = 2;
  795. else
  796. ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
  797. ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
  798. decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
  799. &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
  800. if(ch != CPL_CH && ch != ctx->lfe_ch)
  801. skip_bits(gb, 2); /* skip gainrng */
  802. }
  803. }
  804. if (get_bits1(gb)) { /* bit allocation information */
  805. ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
  806. ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
  807. ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
  808. ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
  809. ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
  810. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  811. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  812. }
  813. }
  814. if (get_bits1(gb)) { /* snroffset */
  815. int csnr;
  816. csnr = (get_bits(gb, 6) - 15) << 4;
  817. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
  818. ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
  819. ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
  820. }
  821. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  822. }
  823. if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
  824. ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
  825. ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
  826. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  827. }
  828. if (get_bits1(gb)) { /* delta bit allocation information */
  829. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  830. ctx->deltbae[ch] = get_bits(gb, 2);
  831. if (ctx->deltbae[ch] == DBA_RESERVED) {
  832. av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  833. return -1;
  834. }
  835. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  836. }
  837. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  838. if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */
  839. ctx->deltnseg[ch] = get_bits(gb, 3);
  840. for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
  841. ctx->deltoffst[ch][seg] = get_bits(gb, 5);
  842. ctx->deltlen[ch][seg] = get_bits(gb, 4);
  843. ctx->deltba[ch][seg] = get_bits(gb, 3);
  844. }
  845. }
  846. }
  847. } else if(blk == 0) {
  848. for(ch=0; ch<=ctx->nchans; ch++) {
  849. ctx->deltbae[ch] = DBA_NONE;
  850. }
  851. }
  852. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  853. if(bit_alloc_stages[ch] > 2) {
  854. /* Exponent mapping into PSD and PSD integration */
  855. ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
  856. ctx->startmant[ch], ctx->endmant[ch],
  857. ctx->psd[ch], ctx->bndpsd[ch]);
  858. }
  859. if(bit_alloc_stages[ch] > 1) {
  860. /* Compute excitation function, Compute masking curve, and
  861. Apply delta bit allocation */
  862. ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
  863. ctx->startmant[ch], ctx->endmant[ch],
  864. ctx->fgain[ch], (ch == ctx->lfe_ch),
  865. ctx->deltbae[ch], ctx->deltnseg[ch],
  866. ctx->deltoffst[ch], ctx->deltlen[ch],
  867. ctx->deltba[ch], ctx->mask[ch]);
  868. }
  869. if(bit_alloc_stages[ch] > 0) {
  870. /* Compute bit allocation */
  871. ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
  872. ctx->startmant[ch], ctx->endmant[ch],
  873. ctx->snroffst[ch],
  874. ctx->bit_alloc_params.floor,
  875. ctx->bap[ch]);
  876. }
  877. }
  878. if (get_bits1(gb)) { /* unused dummy data */
  879. int skipl = get_bits(gb, 9);
  880. while(skipl--)
  881. skip_bits(gb, 8);
  882. }
  883. /* unpack the transform coefficients
  884. * * this also uncouples channels if coupling is in use.
  885. */
  886. if (get_transform_coeffs(ctx)) {
  887. av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  888. return -1;
  889. }
  890. /* recover coefficients if rematrixing is in use */
  891. if(ctx->acmod == AC3_ACMOD_STEREO)
  892. do_rematrixing(ctx);
  893. /* apply scaling to coefficients (headroom, dynrng) */
  894. for(ch=1; ch<=ctx->nchans; ch++) {
  895. float gain = 2.0f * ctx->mul_bias;
  896. if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) {
  897. gain *= ctx->dynrng2;
  898. } else {
  899. gain *= ctx->dynrng;
  900. }
  901. for(i=0; i<ctx->endmant[ch]; i++) {
  902. ctx->transform_coeffs[ch][i] *= gain;
  903. }
  904. }
  905. do_imdct(ctx);
  906. /* downmix output if needed */
  907. if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
  908. ctx->nfchans == ctx->out_channels)) {
  909. ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
  910. ctx->downmix_coeffs);
  911. }
  912. /* convert float to 16-bit integer */
  913. for(ch=0; ch<ctx->out_channels; ch++) {
  914. for(i=0; i<256; i++) {
  915. ctx->output[ch][i] += ctx->add_bias;
  916. }
  917. ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
  918. }
  919. return 0;
  920. }
  921. /* Decode ac3 frame.
  922. *
  923. * @param avctx Pointer to AVCodecContext
  924. * @param data Pointer to pcm smaples
  925. * @param data_size Set to number of pcm samples produced by decoding
  926. * @param buf Data to be decoded
  927. * @param buf_size Size of the buffer
  928. */
  929. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  930. {
  931. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  932. int16_t *out_samples = (int16_t *)data;
  933. int i, blk, ch;
  934. //Initialize the GetBitContext with the start of valid AC3 Frame.
  935. init_get_bits(&ctx->gb, buf, buf_size * 8);
  936. //Parse the syncinfo.
  937. if (ac3_parse_header(ctx)) {
  938. av_log(avctx, AV_LOG_ERROR, "\n");
  939. *data_size = 0;
  940. return buf_size;
  941. }
  942. avctx->sample_rate = ctx->sampling_rate;
  943. avctx->bit_rate = ctx->bit_rate;
  944. /* channel config */
  945. ctx->out_channels = ctx->nchans;
  946. if (avctx->channels == 0) {
  947. avctx->channels = ctx->out_channels;
  948. } else if(ctx->out_channels < avctx->channels) {
  949. av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
  950. ctx->out_channels, avctx->channels);
  951. return -1;
  952. }
  953. if(avctx->channels == 2) {
  954. ctx->output_mode = AC3_ACMOD_STEREO;
  955. } else if(avctx->channels == 1) {
  956. ctx->output_mode = AC3_ACMOD_MONO;
  957. } else if(avctx->channels != ctx->out_channels) {
  958. av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
  959. ctx->out_channels, avctx->channels);
  960. return -1;
  961. }
  962. ctx->out_channels = avctx->channels;
  963. //av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
  964. //Parse the Audio Blocks.
  965. for (blk = 0; blk < NB_BLOCKS; blk++) {
  966. if (ac3_parse_audio_block(ctx, blk)) {
  967. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  968. *data_size = 0;
  969. return ctx->frame_size;
  970. }
  971. for (i = 0; i < 256; i++)
  972. for (ch = 0; ch < ctx->out_channels; ch++)
  973. *(out_samples++) = ctx->int_output[ch][i];
  974. }
  975. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  976. return ctx->frame_size;
  977. }
  978. /* Uninitialize ac3 decoder.
  979. */
  980. static int ac3_decode_end(AVCodecContext *avctx)
  981. {
  982. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  983. ff_mdct_end(&ctx->imdct_512);
  984. ff_mdct_end(&ctx->imdct_256);
  985. return 0;
  986. }
  987. AVCodec ac3_decoder = {
  988. .name = "ac3",
  989. .type = CODEC_TYPE_AUDIO,
  990. .id = CODEC_ID_AC3,
  991. .priv_data_size = sizeof (AC3DecodeContext),
  992. .init = ac3_decode_init,
  993. .close = ac3_decode_end,
  994. .decode = ac3_decode_frame,
  995. };