You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

208 lines
5.2KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. // Generate a sine window.
  47. void ff_sine_window_init(float *window, int n) {
  48. int i;
  49. for(i = 0; i < n; i++)
  50. window[i] = sin((i + 0.5) / (2 * n) * M_PI);
  51. }
  52. /**
  53. * init MDCT or IMDCT computation.
  54. */
  55. int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
  56. {
  57. int n, n4, i;
  58. double alpha;
  59. memset(s, 0, sizeof(*s));
  60. n = 1 << nbits;
  61. s->nbits = nbits;
  62. s->n = n;
  63. n4 = n >> 2;
  64. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  65. if (!s->tcos)
  66. goto fail;
  67. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  68. if (!s->tsin)
  69. goto fail;
  70. for(i=0;i<n4;i++) {
  71. alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
  72. s->tcos[i] = -cos(alpha);
  73. s->tsin[i] = -sin(alpha);
  74. }
  75. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  76. goto fail;
  77. return 0;
  78. fail:
  79. av_freep(&s->tcos);
  80. av_freep(&s->tsin);
  81. return -1;
  82. }
  83. /* complex multiplication: p = a * b */
  84. #define CMUL(pre, pim, are, aim, bre, bim) \
  85. {\
  86. double _are = (are);\
  87. double _aim = (aim);\
  88. double _bre = (bre);\
  89. double _bim = (bim);\
  90. (pre) = _are * _bre - _aim * _bim;\
  91. (pim) = _are * _bim + _aim * _bre;\
  92. }
  93. /**
  94. * Compute inverse MDCT of size N = 2^nbits
  95. * @param output N samples
  96. * @param input N/2 samples
  97. * @param tmp N/2 samples
  98. */
  99. void ff_imdct_calc(MDCTContext *s, FFTSample *output,
  100. const FFTSample *input, FFTSample *tmp)
  101. {
  102. int k, n8, n4, n2, n, j;
  103. const uint16_t *revtab = s->fft.revtab;
  104. const FFTSample *tcos = s->tcos;
  105. const FFTSample *tsin = s->tsin;
  106. const FFTSample *in1, *in2;
  107. FFTComplex *z = (FFTComplex *)tmp;
  108. n = 1 << s->nbits;
  109. n2 = n >> 1;
  110. n4 = n >> 2;
  111. n8 = n >> 3;
  112. /* pre rotation */
  113. in1 = input;
  114. in2 = input + n2 - 1;
  115. for(k = 0; k < n4; k++) {
  116. j=revtab[k];
  117. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  118. in1 += 2;
  119. in2 -= 2;
  120. }
  121. ff_fft_calc(&s->fft, z);
  122. /* post rotation + reordering */
  123. /* XXX: optimize */
  124. for(k = 0; k < n4; k++) {
  125. CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
  126. }
  127. for(k = 0; k < n8; k++) {
  128. output[2*k] = -z[n8 + k].im;
  129. output[n2-1-2*k] = z[n8 + k].im;
  130. output[2*k+1] = z[n8-1-k].re;
  131. output[n2-1-2*k-1] = -z[n8-1-k].re;
  132. output[n2 + 2*k]=-z[k+n8].re;
  133. output[n-1- 2*k]=-z[k+n8].re;
  134. output[n2 + 2*k+1]=z[n8-k-1].im;
  135. output[n-2 - 2 * k] = z[n8-k-1].im;
  136. }
  137. }
  138. /**
  139. * Compute MDCT of size N = 2^nbits
  140. * @param input N samples
  141. * @param out N/2 samples
  142. * @param tmp temporary storage of N/2 samples
  143. */
  144. void ff_mdct_calc(MDCTContext *s, FFTSample *out,
  145. const FFTSample *input, FFTSample *tmp)
  146. {
  147. int i, j, n, n8, n4, n2, n3;
  148. FFTSample re, im, re1, im1;
  149. const uint16_t *revtab = s->fft.revtab;
  150. const FFTSample *tcos = s->tcos;
  151. const FFTSample *tsin = s->tsin;
  152. FFTComplex *x = (FFTComplex *)tmp;
  153. n = 1 << s->nbits;
  154. n2 = n >> 1;
  155. n4 = n >> 2;
  156. n8 = n >> 3;
  157. n3 = 3 * n4;
  158. /* pre rotation */
  159. for(i=0;i<n8;i++) {
  160. re = -input[2*i+3*n4] - input[n3-1-2*i];
  161. im = -input[n4+2*i] + input[n4-1-2*i];
  162. j = revtab[i];
  163. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  164. re = input[2*i] - input[n2-1-2*i];
  165. im = -(input[n2+2*i] + input[n-1-2*i]);
  166. j = revtab[n8 + i];
  167. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  168. }
  169. ff_fft_calc(&s->fft, x);
  170. /* post rotation */
  171. for(i=0;i<n4;i++) {
  172. re = x[i].re;
  173. im = x[i].im;
  174. CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
  175. out[2*i] = im1;
  176. out[n2-1-2*i] = re1;
  177. }
  178. }
  179. void ff_mdct_end(MDCTContext *s)
  180. {
  181. av_freep(&s->tcos);
  182. av_freep(&s->tsin);
  183. ff_fft_end(&s->fft);
  184. }