You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

779 lines
22KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file flac.c
  23. * FLAC (Free Lossless Audio Codec) decoder
  24. * @author Alex Beregszaszi
  25. *
  26. * For more information on the FLAC format, visit:
  27. * http://flac.sourceforge.net/
  28. *
  29. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  30. * through, starting from the initial 'fLaC' signature; or by passing the
  31. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  32. * by data starting with the 0xFFF8 marker.
  33. */
  34. #include <limits.h>
  35. #define ALT_BITSTREAM_READER
  36. #include "libavutil/crc.h"
  37. #include "avcodec.h"
  38. #include "bitstream.h"
  39. #include "golomb.h"
  40. #include "flac.h"
  41. #undef NDEBUG
  42. #include <assert.h>
  43. #define MAX_CHANNELS 8
  44. #define MAX_BLOCKSIZE 65535
  45. #define FLAC_STREAMINFO_SIZE 34
  46. enum decorrelation_type {
  47. INDEPENDENT,
  48. LEFT_SIDE,
  49. RIGHT_SIDE,
  50. MID_SIDE,
  51. };
  52. typedef struct FLACContext {
  53. FLACSTREAMINFO
  54. AVCodecContext *avctx;
  55. GetBitContext gb;
  56. int blocksize/*, last_blocksize*/;
  57. int curr_bps;
  58. enum decorrelation_type decorrelation;
  59. int32_t *decoded[MAX_CHANNELS];
  60. uint8_t *bitstream;
  61. int bitstream_size;
  62. int bitstream_index;
  63. unsigned int allocated_bitstream_size;
  64. } FLACContext;
  65. #define METADATA_TYPE_STREAMINFO 0
  66. static const int sample_rate_table[] =
  67. { 0, 0, 0, 0,
  68. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  69. 0, 0, 0, 0 };
  70. static const int sample_size_table[] =
  71. { 0, 8, 12, 0, 16, 20, 24, 0 };
  72. static const int blocksize_table[] = {
  73. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  74. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  75. };
  76. static int64_t get_utf8(GetBitContext *gb){
  77. int64_t val;
  78. GET_UTF8(val, get_bits(gb, 8), return -1;)
  79. return val;
  80. }
  81. static void allocate_buffers(FLACContext *s);
  82. static int metadata_parse(FLACContext *s);
  83. static av_cold int flac_decode_init(AVCodecContext * avctx)
  84. {
  85. FLACContext *s = avctx->priv_data;
  86. s->avctx = avctx;
  87. if (avctx->extradata_size > 4) {
  88. /* initialize based on the demuxer-supplied streamdata header */
  89. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  90. ff_flac_parse_streaminfo(avctx, (FLACStreaminfo *)s, avctx->extradata);
  91. allocate_buffers(s);
  92. } else {
  93. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  94. metadata_parse(s);
  95. }
  96. }
  97. return 0;
  98. }
  99. static void dump_headers(AVCodecContext *avctx, FLACStreaminfo *s)
  100. {
  101. av_log(avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d\n", s->min_blocksize, s->max_blocksize);
  102. av_log(avctx, AV_LOG_DEBUG, " Max Framesize: %d\n", s->max_framesize);
  103. av_log(avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  104. av_log(avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  105. av_log(avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  106. }
  107. static void allocate_buffers(FLACContext *s){
  108. int i;
  109. assert(s->max_blocksize);
  110. if(s->max_framesize == 0 && s->max_blocksize){
  111. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  112. }
  113. for (i = 0; i < s->channels; i++)
  114. {
  115. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  116. }
  117. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  118. }
  119. void ff_flac_parse_streaminfo(AVCodecContext *avctx, struct FLACStreaminfo *s,
  120. const uint8_t *buffer)
  121. {
  122. GetBitContext gb;
  123. init_get_bits(&gb, buffer, FLAC_STREAMINFO_SIZE*8);
  124. /* mandatory streaminfo */
  125. s->min_blocksize = get_bits(&gb, 16);
  126. s->max_blocksize = get_bits(&gb, 16);
  127. skip_bits(&gb, 24); /* skip min frame size */
  128. s->max_framesize = get_bits_long(&gb, 24);
  129. s->samplerate = get_bits_long(&gb, 20);
  130. s->channels = get_bits(&gb, 3) + 1;
  131. s->bps = get_bits(&gb, 5) + 1;
  132. avctx->channels = s->channels;
  133. avctx->sample_rate = s->samplerate;
  134. skip_bits(&gb, 36); /* total num of samples */
  135. skip_bits(&gb, 64); /* md5 sum */
  136. skip_bits(&gb, 64); /* md5 sum */
  137. dump_headers(avctx, s);
  138. }
  139. /**
  140. * Parse a list of metadata blocks. This list of blocks must begin with
  141. * the fLaC marker.
  142. * @param s the flac decoding context containing the gb bit reader used to
  143. * parse metadata
  144. * @return 1 if some metadata was read, 0 if no fLaC marker was found
  145. */
  146. static int metadata_parse(FLACContext *s)
  147. {
  148. int i, metadata_last, metadata_type, metadata_size, streaminfo_updated=0;
  149. if (show_bits_long(&s->gb, 32) == MKBETAG('f','L','a','C')) {
  150. skip_bits(&s->gb, 32);
  151. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  152. do {
  153. metadata_last = get_bits1(&s->gb);
  154. metadata_type = get_bits(&s->gb, 7);
  155. metadata_size = get_bits_long(&s->gb, 24);
  156. av_log(s->avctx, AV_LOG_DEBUG,
  157. " metadata block: flag = %d, type = %d, size = %d\n",
  158. metadata_last, metadata_type, metadata_size);
  159. if (metadata_size) {
  160. switch (metadata_type) {
  161. case METADATA_TYPE_STREAMINFO:
  162. ff_flac_parse_streaminfo(s->avctx, (FLACStreaminfo *)s, s->gb.buffer+get_bits_count(&s->gb)/8);
  163. streaminfo_updated = 1;
  164. default:
  165. for (i=0; i<metadata_size; i++)
  166. skip_bits(&s->gb, 8);
  167. }
  168. }
  169. } while (!metadata_last);
  170. if (streaminfo_updated)
  171. allocate_buffers(s);
  172. return 1;
  173. }
  174. return 0;
  175. }
  176. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  177. {
  178. int i, tmp, partition, method_type, rice_order;
  179. int sample = 0, samples;
  180. method_type = get_bits(&s->gb, 2);
  181. if (method_type > 1){
  182. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  183. return -1;
  184. }
  185. rice_order = get_bits(&s->gb, 4);
  186. samples= s->blocksize >> rice_order;
  187. if (pred_order > samples) {
  188. av_log(s->avctx, AV_LOG_ERROR, "invalid predictor order: %i > %i\n", pred_order, samples);
  189. return -1;
  190. }
  191. sample=
  192. i= pred_order;
  193. for (partition = 0; partition < (1 << rice_order); partition++)
  194. {
  195. tmp = get_bits(&s->gb, method_type == 0 ? 4 : 5);
  196. if (tmp == (method_type == 0 ? 15 : 31))
  197. {
  198. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  199. tmp = get_bits(&s->gb, 5);
  200. for (; i < samples; i++, sample++)
  201. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  202. }
  203. else
  204. {
  205. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  206. for (; i < samples; i++, sample++){
  207. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  208. }
  209. }
  210. i= 0;
  211. }
  212. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  213. return 0;
  214. }
  215. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  216. {
  217. const int blocksize = s->blocksize;
  218. int32_t *decoded = s->decoded[channel];
  219. int a, b, c, d, i;
  220. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  221. /* warm up samples */
  222. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  223. for (i = 0; i < pred_order; i++)
  224. {
  225. decoded[i] = get_sbits(&s->gb, s->curr_bps);
  226. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  227. }
  228. if (decode_residuals(s, channel, pred_order) < 0)
  229. return -1;
  230. if(pred_order > 0)
  231. a = decoded[pred_order-1];
  232. if(pred_order > 1)
  233. b = a - decoded[pred_order-2];
  234. if(pred_order > 2)
  235. c = b - decoded[pred_order-2] + decoded[pred_order-3];
  236. if(pred_order > 3)
  237. d = c - decoded[pred_order-2] + 2*decoded[pred_order-3] - decoded[pred_order-4];
  238. switch(pred_order)
  239. {
  240. case 0:
  241. break;
  242. case 1:
  243. for (i = pred_order; i < blocksize; i++)
  244. decoded[i] = a += decoded[i];
  245. break;
  246. case 2:
  247. for (i = pred_order; i < blocksize; i++)
  248. decoded[i] = a += b += decoded[i];
  249. break;
  250. case 3:
  251. for (i = pred_order; i < blocksize; i++)
  252. decoded[i] = a += b += c += decoded[i];
  253. break;
  254. case 4:
  255. for (i = pred_order; i < blocksize; i++)
  256. decoded[i] = a += b += c += d += decoded[i];
  257. break;
  258. default:
  259. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  260. return -1;
  261. }
  262. return 0;
  263. }
  264. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  265. {
  266. int i, j;
  267. int coeff_prec, qlevel;
  268. int coeffs[pred_order];
  269. int32_t *decoded = s->decoded[channel];
  270. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  271. /* warm up samples */
  272. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  273. for (i = 0; i < pred_order; i++)
  274. {
  275. decoded[i] = get_sbits(&s->gb, s->curr_bps);
  276. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, decoded[i]);
  277. }
  278. coeff_prec = get_bits(&s->gb, 4) + 1;
  279. if (coeff_prec == 16)
  280. {
  281. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  282. return -1;
  283. }
  284. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  285. qlevel = get_sbits(&s->gb, 5);
  286. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  287. if(qlevel < 0){
  288. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  289. return -1;
  290. }
  291. for (i = 0; i < pred_order; i++)
  292. {
  293. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  294. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  295. }
  296. if (decode_residuals(s, channel, pred_order) < 0)
  297. return -1;
  298. if (s->bps > 16) {
  299. int64_t sum;
  300. for (i = pred_order; i < s->blocksize; i++)
  301. {
  302. sum = 0;
  303. for (j = 0; j < pred_order; j++)
  304. sum += (int64_t)coeffs[j] * decoded[i-j-1];
  305. decoded[i] += sum >> qlevel;
  306. }
  307. } else {
  308. for (i = pred_order; i < s->blocksize-1; i += 2)
  309. {
  310. int c;
  311. int d = decoded[i-pred_order];
  312. int s0 = 0, s1 = 0;
  313. for (j = pred_order-1; j > 0; j--)
  314. {
  315. c = coeffs[j];
  316. s0 += c*d;
  317. d = decoded[i-j];
  318. s1 += c*d;
  319. }
  320. c = coeffs[0];
  321. s0 += c*d;
  322. d = decoded[i] += s0 >> qlevel;
  323. s1 += c*d;
  324. decoded[i+1] += s1 >> qlevel;
  325. }
  326. if (i < s->blocksize)
  327. {
  328. int sum = 0;
  329. for (j = 0; j < pred_order; j++)
  330. sum += coeffs[j] * decoded[i-j-1];
  331. decoded[i] += sum >> qlevel;
  332. }
  333. }
  334. return 0;
  335. }
  336. static inline int decode_subframe(FLACContext *s, int channel)
  337. {
  338. int type, wasted = 0;
  339. int i, tmp;
  340. s->curr_bps = s->bps;
  341. if(channel == 0){
  342. if(s->decorrelation == RIGHT_SIDE)
  343. s->curr_bps++;
  344. }else{
  345. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  346. s->curr_bps++;
  347. }
  348. if (get_bits1(&s->gb))
  349. {
  350. av_log(s->avctx, AV_LOG_ERROR, "invalid subframe padding\n");
  351. return -1;
  352. }
  353. type = get_bits(&s->gb, 6);
  354. // wasted = get_bits1(&s->gb);
  355. // if (wasted)
  356. // {
  357. // while (!get_bits1(&s->gb))
  358. // wasted++;
  359. // if (wasted)
  360. // wasted++;
  361. // s->curr_bps -= wasted;
  362. // }
  363. #if 0
  364. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  365. skip_bits(&s->gb, wasted+1);
  366. s->curr_bps -= wasted;
  367. #else
  368. if (get_bits1(&s->gb))
  369. {
  370. wasted = 1;
  371. while (!get_bits1(&s->gb))
  372. wasted++;
  373. s->curr_bps -= wasted;
  374. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  375. }
  376. #endif
  377. //FIXME use av_log2 for types
  378. if (type == 0)
  379. {
  380. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  381. tmp = get_sbits(&s->gb, s->curr_bps);
  382. for (i = 0; i < s->blocksize; i++)
  383. s->decoded[channel][i] = tmp;
  384. }
  385. else if (type == 1)
  386. {
  387. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  388. for (i = 0; i < s->blocksize; i++)
  389. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  390. }
  391. else if ((type >= 8) && (type <= 12))
  392. {
  393. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  394. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  395. return -1;
  396. }
  397. else if (type >= 32)
  398. {
  399. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  400. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  401. return -1;
  402. }
  403. else
  404. {
  405. av_log(s->avctx, AV_LOG_ERROR, "invalid coding type\n");
  406. return -1;
  407. }
  408. if (wasted)
  409. {
  410. int i;
  411. for (i = 0; i < s->blocksize; i++)
  412. s->decoded[channel][i] <<= wasted;
  413. }
  414. return 0;
  415. }
  416. static int decode_frame(FLACContext *s, int alloc_data_size)
  417. {
  418. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  419. int decorrelation, bps, blocksize, samplerate;
  420. blocksize_code = get_bits(&s->gb, 4);
  421. sample_rate_code = get_bits(&s->gb, 4);
  422. assignment = get_bits(&s->gb, 4); /* channel assignment */
  423. if (assignment < 8 && s->channels == assignment+1)
  424. decorrelation = INDEPENDENT;
  425. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  426. decorrelation = LEFT_SIDE + assignment - 8;
  427. else
  428. {
  429. av_log(s->avctx, AV_LOG_ERROR, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  430. return -1;
  431. }
  432. sample_size_code = get_bits(&s->gb, 3);
  433. if(sample_size_code == 0)
  434. bps= s->bps;
  435. else if((sample_size_code != 3) && (sample_size_code != 7))
  436. bps = sample_size_table[sample_size_code];
  437. else
  438. {
  439. av_log(s->avctx, AV_LOG_ERROR, "invalid sample size code (%d)\n", sample_size_code);
  440. return -1;
  441. }
  442. if (get_bits1(&s->gb))
  443. {
  444. av_log(s->avctx, AV_LOG_ERROR, "broken stream, invalid padding\n");
  445. return -1;
  446. }
  447. if(get_utf8(&s->gb) < 0){
  448. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  449. return -1;
  450. }
  451. #if 0
  452. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  453. (s->min_blocksize != s->max_blocksize)){
  454. }else{
  455. }
  456. #endif
  457. if (blocksize_code == 0)
  458. blocksize = s->min_blocksize;
  459. else if (blocksize_code == 6)
  460. blocksize = get_bits(&s->gb, 8)+1;
  461. else if (blocksize_code == 7)
  462. blocksize = get_bits(&s->gb, 16)+1;
  463. else
  464. blocksize = blocksize_table[blocksize_code];
  465. if(blocksize > s->max_blocksize){
  466. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  467. return -1;
  468. }
  469. if(blocksize * s->channels * sizeof(int16_t) > alloc_data_size)
  470. return -1;
  471. if (sample_rate_code == 0){
  472. samplerate= s->samplerate;
  473. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  474. samplerate = sample_rate_table[sample_rate_code];
  475. else if (sample_rate_code == 12)
  476. samplerate = get_bits(&s->gb, 8) * 1000;
  477. else if (sample_rate_code == 13)
  478. samplerate = get_bits(&s->gb, 16);
  479. else if (sample_rate_code == 14)
  480. samplerate = get_bits(&s->gb, 16) * 10;
  481. else{
  482. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  483. return -1;
  484. }
  485. skip_bits(&s->gb, 8);
  486. crc8 = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
  487. s->gb.buffer, get_bits_count(&s->gb)/8);
  488. if(crc8){
  489. av_log(s->avctx, AV_LOG_ERROR, "header crc mismatch crc=%2X\n", crc8);
  490. return -1;
  491. }
  492. s->blocksize = blocksize;
  493. s->samplerate = samplerate;
  494. s->bps = bps;
  495. s->decorrelation= decorrelation;
  496. // dump_headers(s->avctx, (FLACStreaminfo *)s);
  497. /* subframes */
  498. for (i = 0; i < s->channels; i++)
  499. {
  500. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  501. if (decode_subframe(s, i) < 0)
  502. return -1;
  503. }
  504. align_get_bits(&s->gb);
  505. /* frame footer */
  506. skip_bits(&s->gb, 16); /* data crc */
  507. return 0;
  508. }
  509. static int flac_decode_frame(AVCodecContext *avctx,
  510. void *data, int *data_size,
  511. const uint8_t *buf, int buf_size)
  512. {
  513. FLACContext *s = avctx->priv_data;
  514. int tmp = 0, i, j = 0, input_buf_size = 0;
  515. int16_t *samples = data;
  516. int alloc_data_size= *data_size;
  517. *data_size=0;
  518. if(s->max_framesize == 0){
  519. s->max_framesize= 65536; // should hopefully be enough for the first header
  520. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  521. }
  522. if(1 && s->max_framesize){//FIXME truncated
  523. buf_size= FFMAX(FFMIN(buf_size, s->max_framesize - s->bitstream_size), 0);
  524. input_buf_size= buf_size;
  525. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  526. // printf("memmove\n");
  527. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  528. s->bitstream_index=0;
  529. }
  530. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  531. buf= &s->bitstream[s->bitstream_index];
  532. buf_size += s->bitstream_size;
  533. s->bitstream_size= buf_size;
  534. if(buf_size < s->max_framesize){
  535. // printf("wanna more data ...\n");
  536. return input_buf_size;
  537. }
  538. }
  539. init_get_bits(&s->gb, buf, buf_size*8);
  540. if (!metadata_parse(s))
  541. {
  542. tmp = show_bits(&s->gb, 16);
  543. if((tmp & 0xFFFE) != 0xFFF8){
  544. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  545. while(get_bits_count(&s->gb)/8+2 < buf_size && (show_bits(&s->gb, 16) & 0xFFFE) != 0xFFF8)
  546. skip_bits(&s->gb, 8);
  547. goto end; // we may not have enough bits left to decode a frame, so try next time
  548. }
  549. skip_bits(&s->gb, 16);
  550. if (decode_frame(s, alloc_data_size) < 0){
  551. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  552. s->bitstream_size=0;
  553. s->bitstream_index=0;
  554. return -1;
  555. }
  556. }
  557. #if 0
  558. /* fix the channel order here */
  559. if (s->order == MID_SIDE)
  560. {
  561. short *left = samples;
  562. short *right = samples + s->blocksize;
  563. for (i = 0; i < s->blocksize; i += 2)
  564. {
  565. uint32_t x = s->decoded[0][i];
  566. uint32_t y = s->decoded[0][i+1];
  567. right[i] = x - (y / 2);
  568. left[i] = right[i] + y;
  569. }
  570. *data_size = 2 * s->blocksize;
  571. }
  572. else
  573. {
  574. for (i = 0; i < s->channels; i++)
  575. {
  576. switch(s->order)
  577. {
  578. case INDEPENDENT:
  579. for (j = 0; j < s->blocksize; j++)
  580. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  581. break;
  582. case LEFT_SIDE:
  583. case RIGHT_SIDE:
  584. if (i == 0)
  585. for (j = 0; j < s->blocksize; j++)
  586. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  587. else
  588. for (j = 0; j < s->blocksize; j++)
  589. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  590. break;
  591. // case MID_SIDE:
  592. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  593. }
  594. *data_size += s->blocksize;
  595. }
  596. }
  597. #else
  598. #define DECORRELATE(left, right)\
  599. assert(s->channels == 2);\
  600. for (i = 0; i < s->blocksize; i++)\
  601. {\
  602. int a= s->decoded[0][i];\
  603. int b= s->decoded[1][i];\
  604. *samples++ = ((left) << (24 - s->bps)) >> 8;\
  605. *samples++ = ((right) << (24 - s->bps)) >> 8;\
  606. }\
  607. break;
  608. switch(s->decorrelation)
  609. {
  610. case INDEPENDENT:
  611. for (j = 0; j < s->blocksize; j++)
  612. {
  613. for (i = 0; i < s->channels; i++)
  614. *samples++ = (s->decoded[i][j] << (24 - s->bps)) >> 8;
  615. }
  616. break;
  617. case LEFT_SIDE:
  618. DECORRELATE(a,a-b)
  619. case RIGHT_SIDE:
  620. DECORRELATE(a+b,b)
  621. case MID_SIDE:
  622. DECORRELATE( (a-=b>>1) + b, a)
  623. }
  624. #endif
  625. *data_size = (int8_t *)samples - (int8_t *)data;
  626. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  627. // s->last_blocksize = s->blocksize;
  628. end:
  629. i= (get_bits_count(&s->gb)+7)/8;
  630. if(i > buf_size){
  631. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  632. s->bitstream_size=0;
  633. s->bitstream_index=0;
  634. return -1;
  635. }
  636. if(s->bitstream_size){
  637. s->bitstream_index += i;
  638. s->bitstream_size -= i;
  639. return input_buf_size;
  640. }else
  641. return i;
  642. }
  643. static av_cold int flac_decode_close(AVCodecContext *avctx)
  644. {
  645. FLACContext *s = avctx->priv_data;
  646. int i;
  647. for (i = 0; i < s->channels; i++)
  648. {
  649. av_freep(&s->decoded[i]);
  650. }
  651. av_freep(&s->bitstream);
  652. return 0;
  653. }
  654. static void flac_flush(AVCodecContext *avctx){
  655. FLACContext *s = avctx->priv_data;
  656. s->bitstream_size=
  657. s->bitstream_index= 0;
  658. }
  659. AVCodec flac_decoder = {
  660. "flac",
  661. CODEC_TYPE_AUDIO,
  662. CODEC_ID_FLAC,
  663. sizeof(FLACContext),
  664. flac_decode_init,
  665. NULL,
  666. flac_decode_close,
  667. flac_decode_frame,
  668. .flush= flac_flush,
  669. .long_name= NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
  670. };