You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1043 lines
30KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include <inttypes.h>
  26. #include "avcodec.h"
  27. #include "bswapdsp.h"
  28. #include "bytestream.h"
  29. #include "get_bits.h"
  30. #include "internal.h"
  31. #define TM2_ESCAPE 0x80000000
  32. #define TM2_DELTAS 64
  33. /* Huffman-coded streams of different types of blocks */
  34. enum TM2_STREAMS {
  35. TM2_C_HI = 0,
  36. TM2_C_LO,
  37. TM2_L_HI,
  38. TM2_L_LO,
  39. TM2_UPD,
  40. TM2_MOT,
  41. TM2_TYPE,
  42. TM2_NUM_STREAMS
  43. };
  44. /* Block types */
  45. enum TM2_BLOCKS {
  46. TM2_HI_RES = 0,
  47. TM2_MED_RES,
  48. TM2_LOW_RES,
  49. TM2_NULL_RES,
  50. TM2_UPDATE,
  51. TM2_STILL,
  52. TM2_MOTION
  53. };
  54. typedef struct TM2Context {
  55. AVCodecContext *avctx;
  56. AVFrame *pic;
  57. GetBitContext gb;
  58. int error;
  59. BswapDSPContext bdsp;
  60. uint8_t *buffer;
  61. int buffer_size;
  62. /* TM2 streams */
  63. int *tokens[TM2_NUM_STREAMS];
  64. int tok_lens[TM2_NUM_STREAMS];
  65. int tok_ptrs[TM2_NUM_STREAMS];
  66. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  67. /* for blocks decoding */
  68. int D[4];
  69. int CD[4];
  70. int *last;
  71. int *clast;
  72. /* data for current and previous frame */
  73. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  74. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  75. int y_stride, uv_stride;
  76. int cur;
  77. } TM2Context;
  78. /**
  79. * Huffman codes for each of streams
  80. */
  81. typedef struct TM2Codes {
  82. VLC vlc; ///< table for FFmpeg bitstream reader
  83. int bits;
  84. int *recode; ///< table for converting from code indexes to values
  85. int length;
  86. } TM2Codes;
  87. /**
  88. * structure for gathering Huffman codes information
  89. */
  90. typedef struct TM2Huff {
  91. int val_bits; ///< length of literal
  92. int max_bits; ///< maximum length of code
  93. int min_bits; ///< minimum length of code
  94. int nodes; ///< total number of nodes in tree
  95. int num; ///< current number filled
  96. int max_num; ///< total number of codes
  97. int *nums; ///< literals
  98. uint32_t *bits; ///< codes
  99. int *lens; ///< codelengths
  100. } TM2Huff;
  101. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  102. {
  103. int ret;
  104. if (length > huff->max_bits) {
  105. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
  106. huff->max_bits);
  107. return AVERROR_INVALIDDATA;
  108. }
  109. if (!get_bits1(&ctx->gb)) { /* literal */
  110. if (length == 0) {
  111. length = 1;
  112. }
  113. if (huff->num >= huff->max_num) {
  114. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  115. return AVERROR_INVALIDDATA;
  116. }
  117. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  118. huff->bits[huff->num] = prefix;
  119. huff->lens[huff->num] = length;
  120. huff->num++;
  121. return 0;
  122. } else { /* non-terminal node */
  123. if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
  124. return ret;
  125. if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
  126. return ret;
  127. }
  128. return 0;
  129. }
  130. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  131. {
  132. TM2Huff huff;
  133. int res = 0;
  134. huff.val_bits = get_bits(&ctx->gb, 5);
  135. huff.max_bits = get_bits(&ctx->gb, 5);
  136. huff.min_bits = get_bits(&ctx->gb, 5);
  137. huff.nodes = get_bits_long(&ctx->gb, 17);
  138. huff.num = 0;
  139. /* check for correct codes parameters */
  140. if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
  141. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  142. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
  143. "length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
  144. return AVERROR_INVALIDDATA;
  145. }
  146. if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  147. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
  148. "nodes: %i\n", huff.nodes);
  149. return AVERROR_INVALIDDATA;
  150. }
  151. /* one-node tree */
  152. if (huff.max_bits == 0)
  153. huff.max_bits = 1;
  154. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  155. huff.max_num = (huff.nodes + 1) >> 1;
  156. huff.nums = av_calloc(huff.max_num, sizeof(int));
  157. huff.bits = av_calloc(huff.max_num, sizeof(uint32_t));
  158. huff.lens = av_calloc(huff.max_num, sizeof(int));
  159. if (!huff.nums || !huff.bits || !huff.lens) {
  160. res = AVERROR(ENOMEM);
  161. goto out;
  162. }
  163. res = tm2_read_tree(ctx, 0, 0, &huff);
  164. if (huff.num != huff.max_num) {
  165. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  166. huff.num, huff.max_num);
  167. res = AVERROR_INVALIDDATA;
  168. }
  169. /* convert codes to vlc_table */
  170. if (res >= 0) {
  171. int i;
  172. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  173. huff.lens, sizeof(int), sizeof(int),
  174. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  175. if (res < 0)
  176. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  177. else {
  178. code->bits = huff.max_bits;
  179. code->length = huff.max_num;
  180. code->recode = av_malloc_array(code->length, sizeof(int));
  181. if (!code->recode) {
  182. res = AVERROR(ENOMEM);
  183. goto out;
  184. }
  185. for (i = 0; i < code->length; i++)
  186. code->recode[i] = huff.nums[i];
  187. }
  188. }
  189. out:
  190. /* free allocated memory */
  191. av_free(huff.nums);
  192. av_free(huff.bits);
  193. av_free(huff.lens);
  194. return res;
  195. }
  196. static void tm2_free_codes(TM2Codes *code)
  197. {
  198. av_free(code->recode);
  199. if (code->vlc.table)
  200. ff_free_vlc(&code->vlc);
  201. }
  202. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  203. {
  204. int val;
  205. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  206. if(val<0)
  207. return -1;
  208. return code->recode[val];
  209. }
  210. #define TM2_OLD_HEADER_MAGIC 0x00000100
  211. #define TM2_NEW_HEADER_MAGIC 0x00000101
  212. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  213. {
  214. uint32_t magic = AV_RL32(buf);
  215. switch (magic) {
  216. case TM2_OLD_HEADER_MAGIC:
  217. avpriv_request_sample(ctx->avctx, "Old TM2 header");
  218. return 0;
  219. case TM2_NEW_HEADER_MAGIC:
  220. return 0;
  221. default:
  222. av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08"PRIX32"\n",
  223. magic);
  224. return AVERROR_INVALIDDATA;
  225. }
  226. }
  227. static int tm2_read_deltas(TM2Context *ctx, int stream_id)
  228. {
  229. int d, mb;
  230. int i, v;
  231. d = get_bits(&ctx->gb, 9);
  232. mb = get_bits(&ctx->gb, 5);
  233. av_assert2(mb < 32);
  234. if ((d < 1) || (d > TM2_DELTAS) || (mb < 1)) {
  235. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  236. return AVERROR_INVALIDDATA;
  237. }
  238. for (i = 0; i < d; i++) {
  239. v = get_bits_long(&ctx->gb, mb);
  240. if (v & (1 << (mb - 1)))
  241. ctx->deltas[stream_id][i] = v - (1U << mb);
  242. else
  243. ctx->deltas[stream_id][i] = v;
  244. }
  245. for (; i < TM2_DELTAS; i++)
  246. ctx->deltas[stream_id][i] = 0;
  247. return 0;
  248. }
  249. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  250. {
  251. int i, ret;
  252. int skip = 0;
  253. int len, toks, pos;
  254. TM2Codes codes;
  255. GetByteContext gb;
  256. if (buf_size < 4) {
  257. av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n");
  258. return AVERROR_INVALIDDATA;
  259. }
  260. /* get stream length in dwords */
  261. bytestream2_init(&gb, buf, buf_size);
  262. len = bytestream2_get_be32(&gb);
  263. if (len == 0)
  264. return 4;
  265. if (len >= INT_MAX / 4 - 1 || len < 0 || len * 4 + 4 > buf_size) {
  266. av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
  267. return AVERROR_INVALIDDATA;
  268. }
  269. skip = len * 4 + 4;
  270. toks = bytestream2_get_be32(&gb);
  271. if (toks & 1) {
  272. len = bytestream2_get_be32(&gb);
  273. if (len == TM2_ESCAPE) {
  274. len = bytestream2_get_be32(&gb);
  275. }
  276. if (len > 0) {
  277. pos = bytestream2_tell(&gb);
  278. if (skip <= pos)
  279. return AVERROR_INVALIDDATA;
  280. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  281. if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
  282. return ret;
  283. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  284. }
  285. }
  286. /* skip unused fields */
  287. len = bytestream2_get_be32(&gb);
  288. if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  289. bytestream2_skip(&gb, 8); /* unused by decoder */
  290. } else {
  291. bytestream2_skip(&gb, 4); /* unused by decoder */
  292. }
  293. pos = bytestream2_tell(&gb);
  294. if (skip <= pos)
  295. return AVERROR_INVALIDDATA;
  296. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  297. if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
  298. return ret;
  299. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  300. toks >>= 1;
  301. /* check if we have sane number of tokens */
  302. if ((toks < 0) || (toks > 0xFFFFFF)) {
  303. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  304. ret = AVERROR_INVALIDDATA;
  305. goto end;
  306. }
  307. ret = av_reallocp_array(&ctx->tokens[stream_id], toks, sizeof(int));
  308. if (ret < 0) {
  309. ctx->tok_lens[stream_id] = 0;
  310. goto end;
  311. }
  312. ctx->tok_lens[stream_id] = toks;
  313. len = bytestream2_get_be32(&gb);
  314. if (len > 0) {
  315. pos = bytestream2_tell(&gb);
  316. if (skip <= pos) {
  317. ret = AVERROR_INVALIDDATA;
  318. goto end;
  319. }
  320. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  321. for (i = 0; i < toks; i++) {
  322. if (get_bits_left(&ctx->gb) <= 0) {
  323. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  324. ret = AVERROR_INVALIDDATA;
  325. goto end;
  326. }
  327. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  328. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS || ctx->tokens[stream_id][i]<0) {
  329. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  330. ctx->tokens[stream_id][i], stream_id, i);
  331. ret = AVERROR_INVALIDDATA;
  332. goto end;
  333. }
  334. }
  335. } else {
  336. for (i = 0; i < toks; i++) {
  337. ctx->tokens[stream_id][i] = codes.recode[0];
  338. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  339. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  340. ctx->tokens[stream_id][i], stream_id, i);
  341. ret = AVERROR_INVALIDDATA;
  342. goto end;
  343. }
  344. }
  345. }
  346. ret = skip;
  347. end:
  348. tm2_free_codes(&codes);
  349. return ret;
  350. }
  351. static inline int GET_TOK(TM2Context *ctx,int type)
  352. {
  353. if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  354. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  355. ctx->error = 1;
  356. return 0;
  357. }
  358. if (type <= TM2_MOT) {
  359. if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) {
  360. av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]);
  361. return 0;
  362. }
  363. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  364. }
  365. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  366. }
  367. /* blocks decoding routines */
  368. /* common Y, U, V pointers initialisation */
  369. #define TM2_INIT_POINTERS() \
  370. int *last, *clast; \
  371. int *Y, *U, *V;\
  372. int Ystride, Ustride, Vstride;\
  373. \
  374. Ystride = ctx->y_stride;\
  375. Vstride = ctx->uv_stride;\
  376. Ustride = ctx->uv_stride;\
  377. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  378. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  379. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  380. last = ctx->last + bx * 4;\
  381. clast = ctx->clast + bx * 4;
  382. #define TM2_INIT_POINTERS_2() \
  383. int *Yo, *Uo, *Vo;\
  384. int oYstride, oUstride, oVstride;\
  385. \
  386. TM2_INIT_POINTERS();\
  387. oYstride = Ystride;\
  388. oVstride = Vstride;\
  389. oUstride = Ustride;\
  390. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  391. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  392. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  393. /* recalculate last and delta values for next blocks */
  394. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  395. CD[0] = (unsigned)CHR[ 1] - (unsigned)last[1];\
  396. CD[1] = (unsigned)CHR[stride + 1] - (unsigned) CHR[1];\
  397. last[0] = (int)CHR[stride + 0];\
  398. last[1] = (int)CHR[stride + 1];}
  399. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  400. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  401. {
  402. int ct, d;
  403. int i, j;
  404. for (j = 0; j < 4; j++){
  405. ct = ctx->D[j];
  406. for (i = 0; i < 4; i++){
  407. d = deltas[i + j * 4];
  408. ct += d;
  409. last[i] += ct;
  410. Y[i] = av_clip_uint8(last[i]);
  411. }
  412. Y += stride;
  413. ctx->D[j] = ct;
  414. }
  415. }
  416. static inline void tm2_high_chroma(int *data, int stride, int *last, unsigned *CD, int *deltas)
  417. {
  418. int i, j;
  419. for (j = 0; j < 2; j++) {
  420. for (i = 0; i < 2; i++) {
  421. CD[j] += deltas[i + j * 2];
  422. last[i] += CD[j];
  423. data[i] = last[i];
  424. }
  425. data += stride;
  426. }
  427. }
  428. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  429. {
  430. int t;
  431. int l;
  432. int prev;
  433. if (bx > 0)
  434. prev = clast[-3];
  435. else
  436. prev = 0;
  437. t = (CD[0] + CD[1]) >> 1;
  438. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  439. CD[1] = CD[0] + CD[1] - t;
  440. CD[0] = t;
  441. clast[0] = l;
  442. tm2_high_chroma(data, stride, clast, CD, deltas);
  443. }
  444. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  445. {
  446. int i;
  447. int deltas[16];
  448. TM2_INIT_POINTERS();
  449. /* hi-res chroma */
  450. for (i = 0; i < 4; i++) {
  451. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  452. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  453. }
  454. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  455. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  456. /* hi-res luma */
  457. for (i = 0; i < 16; i++)
  458. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  459. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  460. }
  461. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  462. {
  463. int i;
  464. int deltas[16];
  465. TM2_INIT_POINTERS();
  466. /* low-res chroma */
  467. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  468. deltas[1] = deltas[2] = deltas[3] = 0;
  469. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  470. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  471. deltas[1] = deltas[2] = deltas[3] = 0;
  472. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  473. /* hi-res luma */
  474. for (i = 0; i < 16; i++)
  475. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  476. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  477. }
  478. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  479. {
  480. int i;
  481. int t1, t2;
  482. int deltas[16];
  483. TM2_INIT_POINTERS();
  484. /* low-res chroma */
  485. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  486. deltas[1] = deltas[2] = deltas[3] = 0;
  487. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  488. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  489. deltas[1] = deltas[2] = deltas[3] = 0;
  490. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  491. /* low-res luma */
  492. for (i = 0; i < 16; i++)
  493. deltas[i] = 0;
  494. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  495. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  496. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  497. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  498. if (bx > 0)
  499. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  500. else
  501. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  502. last[2] = (last[1] + last[3]) >> 1;
  503. t1 = ctx->D[0] + ctx->D[1];
  504. ctx->D[0] = t1 >> 1;
  505. ctx->D[1] = t1 - (t1 >> 1);
  506. t2 = ctx->D[2] + ctx->D[3];
  507. ctx->D[2] = t2 >> 1;
  508. ctx->D[3] = t2 - (t2 >> 1);
  509. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  510. }
  511. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  512. {
  513. int i;
  514. int ct;
  515. int left, right, diff;
  516. int deltas[16];
  517. TM2_INIT_POINTERS();
  518. /* null chroma */
  519. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  520. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  521. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  522. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  523. /* null luma */
  524. for (i = 0; i < 16; i++)
  525. deltas[i] = 0;
  526. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  527. if (bx > 0)
  528. left = last[-1] - ct;
  529. else
  530. left = 0;
  531. right = last[3];
  532. diff = right - left;
  533. last[0] = left + (diff >> 2);
  534. last[1] = left + (diff >> 1);
  535. last[2] = right - (diff >> 2);
  536. last[3] = right;
  537. {
  538. int tp = left;
  539. ctx->D[0] = (tp + (ct >> 2)) - left;
  540. left += ctx->D[0];
  541. ctx->D[1] = (tp + (ct >> 1)) - left;
  542. left += ctx->D[1];
  543. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  544. left += ctx->D[2];
  545. ctx->D[3] = (tp + ct) - left;
  546. }
  547. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  548. }
  549. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  550. {
  551. int i, j;
  552. TM2_INIT_POINTERS_2();
  553. /* update chroma */
  554. for (j = 0; j < 2; j++) {
  555. for (i = 0; i < 2; i++){
  556. U[i] = Uo[i];
  557. V[i] = Vo[i];
  558. }
  559. U += Ustride; V += Vstride;
  560. Uo += oUstride; Vo += oVstride;
  561. }
  562. U -= Ustride * 2;
  563. V -= Vstride * 2;
  564. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  565. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  566. /* update deltas */
  567. ctx->D[0] = Yo[3] - last[3];
  568. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  569. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  570. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  571. for (j = 0; j < 4; j++) {
  572. for (i = 0; i < 4; i++) {
  573. Y[i] = Yo[i];
  574. last[i] = Yo[i];
  575. }
  576. Y += Ystride;
  577. Yo += oYstride;
  578. }
  579. }
  580. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  581. {
  582. int i, j;
  583. int d;
  584. TM2_INIT_POINTERS_2();
  585. /* update chroma */
  586. for (j = 0; j < 2; j++) {
  587. for (i = 0; i < 2; i++) {
  588. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  589. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  590. }
  591. U += Ustride;
  592. V += Vstride;
  593. Uo += oUstride;
  594. Vo += oVstride;
  595. }
  596. U -= Ustride * 2;
  597. V -= Vstride * 2;
  598. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  599. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  600. /* update deltas */
  601. ctx->D[0] = Yo[3] - last[3];
  602. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  603. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  604. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  605. for (j = 0; j < 4; j++) {
  606. d = last[3];
  607. for (i = 0; i < 4; i++) {
  608. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  609. last[i] = Y[i];
  610. }
  611. ctx->D[j] = last[3] - d;
  612. Y += Ystride;
  613. Yo += oYstride;
  614. }
  615. }
  616. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  617. {
  618. int i, j;
  619. int mx, my;
  620. TM2_INIT_POINTERS_2();
  621. mx = GET_TOK(ctx, TM2_MOT);
  622. my = GET_TOK(ctx, TM2_MOT);
  623. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  624. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  625. if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) {
  626. av_log(ctx->avctx, AV_LOG_ERROR, "MV out of picture\n");
  627. return;
  628. }
  629. Yo += my * oYstride + mx;
  630. Uo += (my >> 1) * oUstride + (mx >> 1);
  631. Vo += (my >> 1) * oVstride + (mx >> 1);
  632. /* copy chroma */
  633. for (j = 0; j < 2; j++) {
  634. for (i = 0; i < 2; i++) {
  635. U[i] = Uo[i];
  636. V[i] = Vo[i];
  637. }
  638. U += Ustride;
  639. V += Vstride;
  640. Uo += oUstride;
  641. Vo += oVstride;
  642. }
  643. U -= Ustride * 2;
  644. V -= Vstride * 2;
  645. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  646. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  647. /* copy luma */
  648. for (j = 0; j < 4; j++) {
  649. for (i = 0; i < 4; i++) {
  650. Y[i] = Yo[i];
  651. }
  652. Y += Ystride;
  653. Yo += oYstride;
  654. }
  655. /* calculate deltas */
  656. Y -= Ystride * 4;
  657. ctx->D[0] = Y[3] - last[3];
  658. ctx->D[1] = Y[3 + Ystride] - Y[3];
  659. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  660. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  661. for (i = 0; i < 4; i++)
  662. last[i] = Y[i + Ystride * 3];
  663. }
  664. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  665. {
  666. int i, j;
  667. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  668. int type;
  669. int keyframe = 1;
  670. int *Y, *U, *V;
  671. uint8_t *dst;
  672. for (i = 0; i < TM2_NUM_STREAMS; i++)
  673. ctx->tok_ptrs[i] = 0;
  674. if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
  675. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  676. return AVERROR_INVALIDDATA;
  677. }
  678. memset(ctx->last, 0, 4 * bw * sizeof(int));
  679. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  680. for (j = 0; j < bh; j++) {
  681. memset(ctx->D, 0, 4 * sizeof(int));
  682. memset(ctx->CD, 0, 4 * sizeof(int));
  683. for (i = 0; i < bw; i++) {
  684. type = GET_TOK(ctx, TM2_TYPE);
  685. switch(type) {
  686. case TM2_HI_RES:
  687. tm2_hi_res_block(ctx, p, i, j);
  688. break;
  689. case TM2_MED_RES:
  690. tm2_med_res_block(ctx, p, i, j);
  691. break;
  692. case TM2_LOW_RES:
  693. tm2_low_res_block(ctx, p, i, j);
  694. break;
  695. case TM2_NULL_RES:
  696. tm2_null_res_block(ctx, p, i, j);
  697. break;
  698. case TM2_UPDATE:
  699. tm2_update_block(ctx, p, i, j);
  700. keyframe = 0;
  701. break;
  702. case TM2_STILL:
  703. tm2_still_block(ctx, p, i, j);
  704. keyframe = 0;
  705. break;
  706. case TM2_MOTION:
  707. tm2_motion_block(ctx, p, i, j);
  708. keyframe = 0;
  709. break;
  710. default:
  711. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  712. }
  713. if (ctx->error)
  714. return AVERROR_INVALIDDATA;
  715. }
  716. }
  717. /* copy data from our buffer to AVFrame */
  718. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  719. U = (ctx->cur?ctx->U2:ctx->U1);
  720. V = (ctx->cur?ctx->V2:ctx->V1);
  721. dst = p->data[0];
  722. for (j = 0; j < h; j++) {
  723. for (i = 0; i < w; i++) {
  724. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  725. dst[3*i+0] = av_clip_uint8(y + v);
  726. dst[3*i+1] = av_clip_uint8(y);
  727. dst[3*i+2] = av_clip_uint8(y + u);
  728. }
  729. /* horizontal edge extension */
  730. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  731. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  732. /* vertical edge extension */
  733. if (j == 0) {
  734. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  735. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  736. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  737. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  738. } else if (j == h - 1) {
  739. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  740. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  741. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  742. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  743. }
  744. Y += ctx->y_stride;
  745. if (j & 1) {
  746. /* horizontal edge extension */
  747. U[-2] = U[-1] = U[0];
  748. V[-2] = V[-1] = V[0];
  749. U[cw + 1] = U[cw] = U[cw - 1];
  750. V[cw + 1] = V[cw] = V[cw - 1];
  751. /* vertical edge extension */
  752. if (j == 1) {
  753. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  754. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  755. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  756. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  757. } else if (j == h - 1) {
  758. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  759. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  760. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  761. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  762. }
  763. U += ctx->uv_stride;
  764. V += ctx->uv_stride;
  765. }
  766. dst += p->linesize[0];
  767. }
  768. return keyframe;
  769. }
  770. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  771. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  772. };
  773. #define TM2_HEADER_SIZE 40
  774. static int decode_frame(AVCodecContext *avctx,
  775. void *data, int *got_frame,
  776. AVPacket *avpkt)
  777. {
  778. TM2Context * const l = avctx->priv_data;
  779. const uint8_t *buf = avpkt->data;
  780. int buf_size = avpkt->size & ~3;
  781. AVFrame * const p = l->pic;
  782. int offset = TM2_HEADER_SIZE;
  783. int i, t, ret;
  784. l->error = 0;
  785. av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
  786. if (!l->buffer) {
  787. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  788. return AVERROR(ENOMEM);
  789. }
  790. if ((ret = ff_reget_buffer(avctx, p)) < 0)
  791. return ret;
  792. l->bdsp.bswap_buf((uint32_t *) l->buffer, (const uint32_t *) buf,
  793. buf_size >> 2);
  794. if ((ret = tm2_read_header(l, l->buffer)) < 0) {
  795. return ret;
  796. }
  797. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  798. if (offset >= buf_size) {
  799. av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n");
  800. return AVERROR_INVALIDDATA;
  801. }
  802. t = tm2_read_stream(l, l->buffer + offset, tm2_stream_order[i],
  803. buf_size - offset);
  804. if (t < 0) {
  805. int j = tm2_stream_order[i];
  806. if (l->tok_lens[j])
  807. memset(l->tokens[j], 0, sizeof(**l->tokens) * l->tok_lens[j]);
  808. return t;
  809. }
  810. offset += t;
  811. }
  812. p->key_frame = tm2_decode_blocks(l, p);
  813. if (p->key_frame)
  814. p->pict_type = AV_PICTURE_TYPE_I;
  815. else
  816. p->pict_type = AV_PICTURE_TYPE_P;
  817. l->cur = !l->cur;
  818. *got_frame = 1;
  819. ret = av_frame_ref(data, l->pic);
  820. return (ret < 0) ? ret : buf_size;
  821. }
  822. static av_cold int decode_init(AVCodecContext *avctx)
  823. {
  824. TM2Context * const l = avctx->priv_data;
  825. int i, w = avctx->width, h = avctx->height;
  826. if ((avctx->width & 3) || (avctx->height & 3)) {
  827. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  828. return AVERROR(EINVAL);
  829. }
  830. l->avctx = avctx;
  831. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  832. l->pic = av_frame_alloc();
  833. if (!l->pic)
  834. return AVERROR(ENOMEM);
  835. ff_bswapdsp_init(&l->bdsp);
  836. l->last = av_malloc_array(w >> 2, 4 * sizeof(*l->last) );
  837. l->clast = av_malloc_array(w >> 2, 4 * sizeof(*l->clast));
  838. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  839. l->tokens[i] = NULL;
  840. l->tok_lens[i] = 0;
  841. }
  842. w += 8;
  843. h += 8;
  844. l->Y1_base = av_calloc(w * h, sizeof(*l->Y1_base));
  845. l->Y2_base = av_calloc(w * h, sizeof(*l->Y2_base));
  846. l->y_stride = w;
  847. w = (w + 1) >> 1;
  848. h = (h + 1) >> 1;
  849. l->U1_base = av_calloc(w * h, sizeof(*l->U1_base));
  850. l->V1_base = av_calloc(w * h, sizeof(*l->V1_base));
  851. l->U2_base = av_calloc(w * h, sizeof(*l->U2_base));
  852. l->V2_base = av_calloc(w * h, sizeof(*l->V1_base));
  853. l->uv_stride = w;
  854. l->cur = 0;
  855. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  856. !l->V1_base || !l->U2_base || !l->V2_base ||
  857. !l->last || !l->clast) {
  858. av_freep(&l->Y1_base);
  859. av_freep(&l->Y2_base);
  860. av_freep(&l->U1_base);
  861. av_freep(&l->U2_base);
  862. av_freep(&l->V1_base);
  863. av_freep(&l->V2_base);
  864. av_freep(&l->last);
  865. av_freep(&l->clast);
  866. av_frame_free(&l->pic);
  867. return AVERROR(ENOMEM);
  868. }
  869. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  870. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  871. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  872. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  873. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  874. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  875. return 0;
  876. }
  877. static av_cold int decode_end(AVCodecContext *avctx)
  878. {
  879. TM2Context * const l = avctx->priv_data;
  880. int i;
  881. av_free(l->last);
  882. av_free(l->clast);
  883. for (i = 0; i < TM2_NUM_STREAMS; i++)
  884. av_freep(&l->tokens[i]);
  885. if (l->Y1) {
  886. av_freep(&l->Y1_base);
  887. av_freep(&l->U1_base);
  888. av_freep(&l->V1_base);
  889. av_freep(&l->Y2_base);
  890. av_freep(&l->U2_base);
  891. av_freep(&l->V2_base);
  892. }
  893. av_freep(&l->buffer);
  894. l->buffer_size = 0;
  895. av_frame_free(&l->pic);
  896. return 0;
  897. }
  898. AVCodec ff_truemotion2_decoder = {
  899. .name = "truemotion2",
  900. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  901. .type = AVMEDIA_TYPE_VIDEO,
  902. .id = AV_CODEC_ID_TRUEMOTION2,
  903. .priv_data_size = sizeof(TM2Context),
  904. .init = decode_init,
  905. .close = decode_end,
  906. .decode = decode_frame,
  907. .capabilities = AV_CODEC_CAP_DR1,
  908. };