You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

774 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "put_bits.h"
  27. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  28. #define WFRAC_BITS 14 /* fractional bits for window */
  29. #include "mpegaudio.h"
  30. /* currently, cannot change these constants (need to modify
  31. quantization stage) */
  32. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  33. #define SAMPLES_BUF_SIZE 4096
  34. typedef struct MpegAudioContext {
  35. PutBitContext pb;
  36. int nb_channels;
  37. int lsf; /* 1 if mpeg2 low bitrate selected */
  38. int bitrate_index; /* bit rate */
  39. int freq_index;
  40. int frame_size; /* frame size, in bits, without padding */
  41. /* padding computation */
  42. int frame_frac, frame_frac_incr, do_padding;
  43. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  44. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  45. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  46. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  47. /* code to group 3 scale factors */
  48. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  49. int sblimit; /* number of used subbands */
  50. const unsigned char *alloc_table;
  51. } MpegAudioContext;
  52. /* define it to use floats in quantization (I don't like floats !) */
  53. #define USE_FLOATS
  54. #include "mpegaudiodata.h"
  55. #include "mpegaudiotab.h"
  56. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  57. {
  58. MpegAudioContext *s = avctx->priv_data;
  59. int freq = avctx->sample_rate;
  60. int bitrate = avctx->bit_rate;
  61. int channels = avctx->channels;
  62. int i, v, table;
  63. float a;
  64. if (channels <= 0 || channels > 2){
  65. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  66. return -1;
  67. }
  68. bitrate = bitrate / 1000;
  69. s->nb_channels = channels;
  70. avctx->frame_size = MPA_FRAME_SIZE;
  71. /* encoding freq */
  72. s->lsf = 0;
  73. for(i=0;i<3;i++) {
  74. if (ff_mpa_freq_tab[i] == freq)
  75. break;
  76. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  77. s->lsf = 1;
  78. break;
  79. }
  80. }
  81. if (i == 3){
  82. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  83. return -1;
  84. }
  85. s->freq_index = i;
  86. /* encoding bitrate & frequency */
  87. for(i=0;i<15;i++) {
  88. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  89. break;
  90. }
  91. if (i == 15){
  92. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  93. return -1;
  94. }
  95. s->bitrate_index = i;
  96. /* compute total header size & pad bit */
  97. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  98. s->frame_size = ((int)a) * 8;
  99. /* frame fractional size to compute padding */
  100. s->frame_frac = 0;
  101. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  102. /* select the right allocation table */
  103. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  104. /* number of used subbands */
  105. s->sblimit = ff_mpa_sblimit_table[table];
  106. s->alloc_table = ff_mpa_alloc_tables[table];
  107. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  108. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  109. for(i=0;i<s->nb_channels;i++)
  110. s->samples_offset[i] = 0;
  111. for(i=0;i<257;i++) {
  112. int v;
  113. v = ff_mpa_enwindow[i];
  114. #if WFRAC_BITS != 16
  115. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  116. #endif
  117. filter_bank[i] = v;
  118. if ((i & 63) != 0)
  119. v = -v;
  120. if (i != 0)
  121. filter_bank[512 - i] = v;
  122. }
  123. for(i=0;i<64;i++) {
  124. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  125. if (v <= 0)
  126. v = 1;
  127. scale_factor_table[i] = v;
  128. #ifdef USE_FLOATS
  129. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  130. #else
  131. #define P 15
  132. scale_factor_shift[i] = 21 - P - (i / 3);
  133. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  134. #endif
  135. }
  136. for(i=0;i<128;i++) {
  137. v = i - 64;
  138. if (v <= -3)
  139. v = 0;
  140. else if (v < 0)
  141. v = 1;
  142. else if (v == 0)
  143. v = 2;
  144. else if (v < 3)
  145. v = 3;
  146. else
  147. v = 4;
  148. scale_diff_table[i] = v;
  149. }
  150. for(i=0;i<17;i++) {
  151. v = ff_mpa_quant_bits[i];
  152. if (v < 0)
  153. v = -v;
  154. else
  155. v = v * 3;
  156. total_quant_bits[i] = 12 * v;
  157. }
  158. avctx->coded_frame= avcodec_alloc_frame();
  159. avctx->coded_frame->key_frame= 1;
  160. return 0;
  161. }
  162. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  163. static void idct32(int *out, int *tab)
  164. {
  165. int i, j;
  166. int *t, *t1, xr;
  167. const int *xp = costab32;
  168. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  169. t = tab + 30;
  170. t1 = tab + 2;
  171. do {
  172. t[0] += t[-4];
  173. t[1] += t[1 - 4];
  174. t -= 4;
  175. } while (t != t1);
  176. t = tab + 28;
  177. t1 = tab + 4;
  178. do {
  179. t[0] += t[-8];
  180. t[1] += t[1-8];
  181. t[2] += t[2-8];
  182. t[3] += t[3-8];
  183. t -= 8;
  184. } while (t != t1);
  185. t = tab;
  186. t1 = tab + 32;
  187. do {
  188. t[ 3] = -t[ 3];
  189. t[ 6] = -t[ 6];
  190. t[11] = -t[11];
  191. t[12] = -t[12];
  192. t[13] = -t[13];
  193. t[15] = -t[15];
  194. t += 16;
  195. } while (t != t1);
  196. t = tab;
  197. t1 = tab + 8;
  198. do {
  199. int x1, x2, x3, x4;
  200. x3 = MUL(t[16], FIX(SQRT2*0.5));
  201. x4 = t[0] - x3;
  202. x3 = t[0] + x3;
  203. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  204. x1 = MUL((t[8] - x2), xp[0]);
  205. x2 = MUL((t[8] + x2), xp[1]);
  206. t[ 0] = x3 + x1;
  207. t[ 8] = x4 - x2;
  208. t[16] = x4 + x2;
  209. t[24] = x3 - x1;
  210. t++;
  211. } while (t != t1);
  212. xp += 2;
  213. t = tab;
  214. t1 = tab + 4;
  215. do {
  216. xr = MUL(t[28],xp[0]);
  217. t[28] = (t[0] - xr);
  218. t[0] = (t[0] + xr);
  219. xr = MUL(t[4],xp[1]);
  220. t[ 4] = (t[24] - xr);
  221. t[24] = (t[24] + xr);
  222. xr = MUL(t[20],xp[2]);
  223. t[20] = (t[8] - xr);
  224. t[ 8] = (t[8] + xr);
  225. xr = MUL(t[12],xp[3]);
  226. t[12] = (t[16] - xr);
  227. t[16] = (t[16] + xr);
  228. t++;
  229. } while (t != t1);
  230. xp += 4;
  231. for (i = 0; i < 4; i++) {
  232. xr = MUL(tab[30-i*4],xp[0]);
  233. tab[30-i*4] = (tab[i*4] - xr);
  234. tab[ i*4] = (tab[i*4] + xr);
  235. xr = MUL(tab[ 2+i*4],xp[1]);
  236. tab[ 2+i*4] = (tab[28-i*4] - xr);
  237. tab[28-i*4] = (tab[28-i*4] + xr);
  238. xr = MUL(tab[31-i*4],xp[0]);
  239. tab[31-i*4] = (tab[1+i*4] - xr);
  240. tab[ 1+i*4] = (tab[1+i*4] + xr);
  241. xr = MUL(tab[ 3+i*4],xp[1]);
  242. tab[ 3+i*4] = (tab[29-i*4] - xr);
  243. tab[29-i*4] = (tab[29-i*4] + xr);
  244. xp += 2;
  245. }
  246. t = tab + 30;
  247. t1 = tab + 1;
  248. do {
  249. xr = MUL(t1[0], *xp);
  250. t1[0] = (t[0] - xr);
  251. t[0] = (t[0] + xr);
  252. t -= 2;
  253. t1 += 2;
  254. xp++;
  255. } while (t >= tab);
  256. for(i=0;i<32;i++) {
  257. out[i] = tab[bitinv32[i]];
  258. }
  259. }
  260. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  261. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  262. {
  263. short *p, *q;
  264. int sum, offset, i, j;
  265. int tmp[64];
  266. int tmp1[32];
  267. int *out;
  268. offset = s->samples_offset[ch];
  269. out = &s->sb_samples[ch][0][0][0];
  270. for(j=0;j<36;j++) {
  271. /* 32 samples at once */
  272. for(i=0;i<32;i++) {
  273. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  274. samples += incr;
  275. }
  276. /* filter */
  277. p = s->samples_buf[ch] + offset;
  278. q = filter_bank;
  279. /* maxsum = 23169 */
  280. for(i=0;i<64;i++) {
  281. sum = p[0*64] * q[0*64];
  282. sum += p[1*64] * q[1*64];
  283. sum += p[2*64] * q[2*64];
  284. sum += p[3*64] * q[3*64];
  285. sum += p[4*64] * q[4*64];
  286. sum += p[5*64] * q[5*64];
  287. sum += p[6*64] * q[6*64];
  288. sum += p[7*64] * q[7*64];
  289. tmp[i] = sum;
  290. p++;
  291. q++;
  292. }
  293. tmp1[0] = tmp[16] >> WSHIFT;
  294. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  295. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  296. idct32(out, tmp1);
  297. /* advance of 32 samples */
  298. offset -= 32;
  299. out += 32;
  300. /* handle the wrap around */
  301. if (offset < 0) {
  302. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  303. s->samples_buf[ch], (512 - 32) * 2);
  304. offset = SAMPLES_BUF_SIZE - 512;
  305. }
  306. }
  307. s->samples_offset[ch] = offset;
  308. }
  309. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  310. unsigned char scale_factors[SBLIMIT][3],
  311. int sb_samples[3][12][SBLIMIT],
  312. int sblimit)
  313. {
  314. int *p, vmax, v, n, i, j, k, code;
  315. int index, d1, d2;
  316. unsigned char *sf = &scale_factors[0][0];
  317. for(j=0;j<sblimit;j++) {
  318. for(i=0;i<3;i++) {
  319. /* find the max absolute value */
  320. p = &sb_samples[i][0][j];
  321. vmax = abs(*p);
  322. for(k=1;k<12;k++) {
  323. p += SBLIMIT;
  324. v = abs(*p);
  325. if (v > vmax)
  326. vmax = v;
  327. }
  328. /* compute the scale factor index using log 2 computations */
  329. if (vmax > 1) {
  330. n = av_log2(vmax);
  331. /* n is the position of the MSB of vmax. now
  332. use at most 2 compares to find the index */
  333. index = (21 - n) * 3 - 3;
  334. if (index >= 0) {
  335. while (vmax <= scale_factor_table[index+1])
  336. index++;
  337. } else {
  338. index = 0; /* very unlikely case of overflow */
  339. }
  340. } else {
  341. index = 62; /* value 63 is not allowed */
  342. }
  343. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  344. j, i, vmax, scale_factor_table[index], index);
  345. /* store the scale factor */
  346. assert(index >=0 && index <= 63);
  347. sf[i] = index;
  348. }
  349. /* compute the transmission factor : look if the scale factors
  350. are close enough to each other */
  351. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  352. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  353. /* handle the 25 cases */
  354. switch(d1 * 5 + d2) {
  355. case 0*5+0:
  356. case 0*5+4:
  357. case 3*5+4:
  358. case 4*5+0:
  359. case 4*5+4:
  360. code = 0;
  361. break;
  362. case 0*5+1:
  363. case 0*5+2:
  364. case 4*5+1:
  365. case 4*5+2:
  366. code = 3;
  367. sf[2] = sf[1];
  368. break;
  369. case 0*5+3:
  370. case 4*5+3:
  371. code = 3;
  372. sf[1] = sf[2];
  373. break;
  374. case 1*5+0:
  375. case 1*5+4:
  376. case 2*5+4:
  377. code = 1;
  378. sf[1] = sf[0];
  379. break;
  380. case 1*5+1:
  381. case 1*5+2:
  382. case 2*5+0:
  383. case 2*5+1:
  384. case 2*5+2:
  385. code = 2;
  386. sf[1] = sf[2] = sf[0];
  387. break;
  388. case 2*5+3:
  389. case 3*5+3:
  390. code = 2;
  391. sf[0] = sf[1] = sf[2];
  392. break;
  393. case 3*5+0:
  394. case 3*5+1:
  395. case 3*5+2:
  396. code = 2;
  397. sf[0] = sf[2] = sf[1];
  398. break;
  399. case 1*5+3:
  400. code = 2;
  401. if (sf[0] > sf[2])
  402. sf[0] = sf[2];
  403. sf[1] = sf[2] = sf[0];
  404. break;
  405. default:
  406. assert(0); //cannot happen
  407. code = 0; /* kill warning */
  408. }
  409. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  410. sf[0], sf[1], sf[2], d1, d2, code);
  411. scale_code[j] = code;
  412. sf += 3;
  413. }
  414. }
  415. /* The most important function : psycho acoustic module. In this
  416. encoder there is basically none, so this is the worst you can do,
  417. but also this is the simpler. */
  418. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  419. {
  420. int i;
  421. for(i=0;i<s->sblimit;i++) {
  422. smr[i] = (int)(fixed_smr[i] * 10);
  423. }
  424. }
  425. #define SB_NOTALLOCATED 0
  426. #define SB_ALLOCATED 1
  427. #define SB_NOMORE 2
  428. /* Try to maximize the smr while using a number of bits inferior to
  429. the frame size. I tried to make the code simpler, faster and
  430. smaller than other encoders :-) */
  431. static void compute_bit_allocation(MpegAudioContext *s,
  432. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  433. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  434. int *padding)
  435. {
  436. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  437. int incr;
  438. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  439. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  440. const unsigned char *alloc;
  441. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  442. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  443. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  444. /* compute frame size and padding */
  445. max_frame_size = s->frame_size;
  446. s->frame_frac += s->frame_frac_incr;
  447. if (s->frame_frac >= 65536) {
  448. s->frame_frac -= 65536;
  449. s->do_padding = 1;
  450. max_frame_size += 8;
  451. } else {
  452. s->do_padding = 0;
  453. }
  454. /* compute the header + bit alloc size */
  455. current_frame_size = 32;
  456. alloc = s->alloc_table;
  457. for(i=0;i<s->sblimit;i++) {
  458. incr = alloc[0];
  459. current_frame_size += incr * s->nb_channels;
  460. alloc += 1 << incr;
  461. }
  462. for(;;) {
  463. /* look for the subband with the largest signal to mask ratio */
  464. max_sb = -1;
  465. max_ch = -1;
  466. max_smr = INT_MIN;
  467. for(ch=0;ch<s->nb_channels;ch++) {
  468. for(i=0;i<s->sblimit;i++) {
  469. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  470. max_smr = smr[ch][i];
  471. max_sb = i;
  472. max_ch = ch;
  473. }
  474. }
  475. }
  476. if (max_sb < 0)
  477. break;
  478. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  479. current_frame_size, max_frame_size, max_sb, max_ch,
  480. bit_alloc[max_ch][max_sb]);
  481. /* find alloc table entry (XXX: not optimal, should use
  482. pointer table) */
  483. alloc = s->alloc_table;
  484. for(i=0;i<max_sb;i++) {
  485. alloc += 1 << alloc[0];
  486. }
  487. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  488. /* nothing was coded for this band: add the necessary bits */
  489. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  490. incr += total_quant_bits[alloc[1]];
  491. } else {
  492. /* increments bit allocation */
  493. b = bit_alloc[max_ch][max_sb];
  494. incr = total_quant_bits[alloc[b + 1]] -
  495. total_quant_bits[alloc[b]];
  496. }
  497. if (current_frame_size + incr <= max_frame_size) {
  498. /* can increase size */
  499. b = ++bit_alloc[max_ch][max_sb];
  500. current_frame_size += incr;
  501. /* decrease smr by the resolution we added */
  502. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  503. /* max allocation size reached ? */
  504. if (b == ((1 << alloc[0]) - 1))
  505. subband_status[max_ch][max_sb] = SB_NOMORE;
  506. else
  507. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  508. } else {
  509. /* cannot increase the size of this subband */
  510. subband_status[max_ch][max_sb] = SB_NOMORE;
  511. }
  512. }
  513. *padding = max_frame_size - current_frame_size;
  514. assert(*padding >= 0);
  515. }
  516. /*
  517. * Output the mpeg audio layer 2 frame. Note how the code is small
  518. * compared to other encoders :-)
  519. */
  520. static void encode_frame(MpegAudioContext *s,
  521. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  522. int padding)
  523. {
  524. int i, j, k, l, bit_alloc_bits, b, ch;
  525. unsigned char *sf;
  526. int q[3];
  527. PutBitContext *p = &s->pb;
  528. /* header */
  529. put_bits(p, 12, 0xfff);
  530. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  531. put_bits(p, 2, 4-2); /* layer 2 */
  532. put_bits(p, 1, 1); /* no error protection */
  533. put_bits(p, 4, s->bitrate_index);
  534. put_bits(p, 2, s->freq_index);
  535. put_bits(p, 1, s->do_padding); /* use padding */
  536. put_bits(p, 1, 0); /* private_bit */
  537. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  538. put_bits(p, 2, 0); /* mode_ext */
  539. put_bits(p, 1, 0); /* no copyright */
  540. put_bits(p, 1, 1); /* original */
  541. put_bits(p, 2, 0); /* no emphasis */
  542. /* bit allocation */
  543. j = 0;
  544. for(i=0;i<s->sblimit;i++) {
  545. bit_alloc_bits = s->alloc_table[j];
  546. for(ch=0;ch<s->nb_channels;ch++) {
  547. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  548. }
  549. j += 1 << bit_alloc_bits;
  550. }
  551. /* scale codes */
  552. for(i=0;i<s->sblimit;i++) {
  553. for(ch=0;ch<s->nb_channels;ch++) {
  554. if (bit_alloc[ch][i])
  555. put_bits(p, 2, s->scale_code[ch][i]);
  556. }
  557. }
  558. /* scale factors */
  559. for(i=0;i<s->sblimit;i++) {
  560. for(ch=0;ch<s->nb_channels;ch++) {
  561. if (bit_alloc[ch][i]) {
  562. sf = &s->scale_factors[ch][i][0];
  563. switch(s->scale_code[ch][i]) {
  564. case 0:
  565. put_bits(p, 6, sf[0]);
  566. put_bits(p, 6, sf[1]);
  567. put_bits(p, 6, sf[2]);
  568. break;
  569. case 3:
  570. case 1:
  571. put_bits(p, 6, sf[0]);
  572. put_bits(p, 6, sf[2]);
  573. break;
  574. case 2:
  575. put_bits(p, 6, sf[0]);
  576. break;
  577. }
  578. }
  579. }
  580. }
  581. /* quantization & write sub band samples */
  582. for(k=0;k<3;k++) {
  583. for(l=0;l<12;l+=3) {
  584. j = 0;
  585. for(i=0;i<s->sblimit;i++) {
  586. bit_alloc_bits = s->alloc_table[j];
  587. for(ch=0;ch<s->nb_channels;ch++) {
  588. b = bit_alloc[ch][i];
  589. if (b) {
  590. int qindex, steps, m, sample, bits;
  591. /* we encode 3 sub band samples of the same sub band at a time */
  592. qindex = s->alloc_table[j+b];
  593. steps = ff_mpa_quant_steps[qindex];
  594. for(m=0;m<3;m++) {
  595. sample = s->sb_samples[ch][k][l + m][i];
  596. /* divide by scale factor */
  597. #ifdef USE_FLOATS
  598. {
  599. float a;
  600. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  601. q[m] = (int)((a + 1.0) * steps * 0.5);
  602. }
  603. #else
  604. {
  605. int q1, e, shift, mult;
  606. e = s->scale_factors[ch][i][k];
  607. shift = scale_factor_shift[e];
  608. mult = scale_factor_mult[e];
  609. /* normalize to P bits */
  610. if (shift < 0)
  611. q1 = sample << (-shift);
  612. else
  613. q1 = sample >> shift;
  614. q1 = (q1 * mult) >> P;
  615. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  616. }
  617. #endif
  618. if (q[m] >= steps)
  619. q[m] = steps - 1;
  620. assert(q[m] >= 0 && q[m] < steps);
  621. }
  622. bits = ff_mpa_quant_bits[qindex];
  623. if (bits < 0) {
  624. /* group the 3 values to save bits */
  625. put_bits(p, -bits,
  626. q[0] + steps * (q[1] + steps * q[2]));
  627. } else {
  628. put_bits(p, bits, q[0]);
  629. put_bits(p, bits, q[1]);
  630. put_bits(p, bits, q[2]);
  631. }
  632. }
  633. }
  634. /* next subband in alloc table */
  635. j += 1 << bit_alloc_bits;
  636. }
  637. }
  638. }
  639. /* padding */
  640. for(i=0;i<padding;i++)
  641. put_bits(p, 1, 0);
  642. /* flush */
  643. flush_put_bits(p);
  644. }
  645. static int MPA_encode_frame(AVCodecContext *avctx,
  646. unsigned char *frame, int buf_size, void *data)
  647. {
  648. MpegAudioContext *s = avctx->priv_data;
  649. const short *samples = data;
  650. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  651. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  652. int padding, i;
  653. for(i=0;i<s->nb_channels;i++) {
  654. filter(s, i, samples + i, s->nb_channels);
  655. }
  656. for(i=0;i<s->nb_channels;i++) {
  657. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  658. s->sb_samples[i], s->sblimit);
  659. }
  660. for(i=0;i<s->nb_channels;i++) {
  661. psycho_acoustic_model(s, smr[i]);
  662. }
  663. compute_bit_allocation(s, smr, bit_alloc, &padding);
  664. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  665. encode_frame(s, bit_alloc, padding);
  666. return put_bits_ptr(&s->pb) - s->pb.buf;
  667. }
  668. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  669. {
  670. av_freep(&avctx->coded_frame);
  671. return 0;
  672. }
  673. AVCodec ff_mp2_encoder = {
  674. .name = "mp2",
  675. .type = AVMEDIA_TYPE_AUDIO,
  676. .id = CODEC_ID_MP2,
  677. .priv_data_size = sizeof(MpegAudioContext),
  678. .init = MPA_encode_init,
  679. .encode = MPA_encode_frame,
  680. .close = MPA_encode_close,
  681. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  682. .supported_samplerates= (const int[]){44100, 48000, 32000, 22050, 24000, 16000, 0},
  683. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  684. };