You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3553 lines
122KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #if HAVE_SYS_MMAN_H
  60. #include <sys/mman.h>
  61. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  62. #define MAP_ANONYMOUS MAP_ANON
  63. #endif
  64. #endif
  65. #if HAVE_VIRTUALALLOC
  66. #define WIN32_LEAN_AND_MEAN
  67. #include <windows.h>
  68. #endif
  69. #include "swscale.h"
  70. #include "swscale_internal.h"
  71. #include "rgb2rgb.h"
  72. #include "libavutil/x86_cpu.h"
  73. #include "libavutil/bswap.h"
  74. unsigned swscale_version(void)
  75. {
  76. return LIBSWSCALE_VERSION_INT;
  77. }
  78. #undef MOVNTQ
  79. #undef PAVGB
  80. //#undef HAVE_MMX2
  81. //#define HAVE_AMD3DNOW
  82. //#undef HAVE_MMX
  83. //#undef ARCH_X86
  84. #define DITHER1XBPP
  85. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  86. #define RET 0xC3 //near return opcode for x86
  87. #ifdef M_PI
  88. #define PI M_PI
  89. #else
  90. #define PI 3.14159265358979323846
  91. #endif
  92. #define isSupportedIn(x) ( \
  93. (x)==PIX_FMT_YUV420P \
  94. || (x)==PIX_FMT_YUVA420P \
  95. || (x)==PIX_FMT_YUYV422 \
  96. || (x)==PIX_FMT_UYVY422 \
  97. || (x)==PIX_FMT_RGB48BE \
  98. || (x)==PIX_FMT_RGB48LE \
  99. || (x)==PIX_FMT_RGB32 \
  100. || (x)==PIX_FMT_RGB32_1 \
  101. || (x)==PIX_FMT_BGR24 \
  102. || (x)==PIX_FMT_BGR565 \
  103. || (x)==PIX_FMT_BGR555 \
  104. || (x)==PIX_FMT_BGR32 \
  105. || (x)==PIX_FMT_BGR32_1 \
  106. || (x)==PIX_FMT_RGB24 \
  107. || (x)==PIX_FMT_RGB565 \
  108. || (x)==PIX_FMT_RGB555 \
  109. || (x)==PIX_FMT_GRAY8 \
  110. || (x)==PIX_FMT_YUV410P \
  111. || (x)==PIX_FMT_YUV440P \
  112. || (x)==PIX_FMT_GRAY16BE \
  113. || (x)==PIX_FMT_GRAY16LE \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_PAL8 \
  118. || (x)==PIX_FMT_BGR8 \
  119. || (x)==PIX_FMT_RGB8 \
  120. || (x)==PIX_FMT_BGR4_BYTE \
  121. || (x)==PIX_FMT_RGB4_BYTE \
  122. || (x)==PIX_FMT_YUV440P \
  123. || (x)==PIX_FMT_MONOWHITE \
  124. || (x)==PIX_FMT_MONOBLACK \
  125. || (x)==PIX_FMT_YUV420PLE \
  126. || (x)==PIX_FMT_YUV422PLE \
  127. || (x)==PIX_FMT_YUV444PLE \
  128. || (x)==PIX_FMT_YUV420PBE \
  129. || (x)==PIX_FMT_YUV422PBE \
  130. || (x)==PIX_FMT_YUV444PBE \
  131. )
  132. #define isSupportedOut(x) ( \
  133. (x)==PIX_FMT_YUV420P \
  134. || (x)==PIX_FMT_YUVA420P \
  135. || (x)==PIX_FMT_YUYV422 \
  136. || (x)==PIX_FMT_UYVY422 \
  137. || (x)==PIX_FMT_YUV444P \
  138. || (x)==PIX_FMT_YUV422P \
  139. || (x)==PIX_FMT_YUV411P \
  140. || isRGB(x) \
  141. || isBGR(x) \
  142. || (x)==PIX_FMT_NV12 \
  143. || (x)==PIX_FMT_NV21 \
  144. || (x)==PIX_FMT_GRAY16BE \
  145. || (x)==PIX_FMT_GRAY16LE \
  146. || (x)==PIX_FMT_GRAY8 \
  147. || (x)==PIX_FMT_YUV410P \
  148. || (x)==PIX_FMT_YUV440P \
  149. || (x)==PIX_FMT_YUV420PLE \
  150. || (x)==PIX_FMT_YUV422PLE \
  151. || (x)==PIX_FMT_YUV444PLE \
  152. || (x)==PIX_FMT_YUV420PBE \
  153. || (x)==PIX_FMT_YUV422PBE \
  154. || (x)==PIX_FMT_YUV444PBE \
  155. )
  156. #define isPacked(x) ( \
  157. (x)==PIX_FMT_PAL8 \
  158. || (x)==PIX_FMT_YUYV422 \
  159. || (x)==PIX_FMT_UYVY422 \
  160. || isRGB(x) \
  161. || isBGR(x) \
  162. )
  163. #define usePal(x) ( \
  164. (x)==PIX_FMT_PAL8 \
  165. || (x)==PIX_FMT_BGR4_BYTE \
  166. || (x)==PIX_FMT_RGB4_BYTE \
  167. || (x)==PIX_FMT_BGR8 \
  168. || (x)==PIX_FMT_RGB8 \
  169. )
  170. #define RGB2YUV_SHIFT 15
  171. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  172. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  173. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  174. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  175. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  176. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  177. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  178. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  179. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  180. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  181. static const double rgb2yuv_table[8][9]={
  182. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  183. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  184. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  185. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  186. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  187. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  188. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  189. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  190. };
  191. /*
  192. NOTES
  193. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  194. TODO
  195. more intelligent misalignment avoidance for the horizontal scaler
  196. write special vertical cubic upscale version
  197. optimize C code (YV12 / minmax)
  198. add support for packed pixel YUV input & output
  199. add support for Y8 output
  200. optimize BGR24 & BGR32
  201. add BGR4 output support
  202. write special BGR->BGR scaler
  203. */
  204. #if ARCH_X86 && CONFIG_GPL
  205. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  206. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  207. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  208. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  209. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  210. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  211. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  212. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  213. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  214. 0x0103010301030103LL,
  215. 0x0200020002000200LL,};
  216. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  217. 0x0602060206020602LL,
  218. 0x0004000400040004LL,};
  219. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  220. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  221. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  222. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  223. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  224. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  225. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  228. #ifdef FAST_BGR2YV12
  229. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  230. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  231. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  232. #else
  233. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  234. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  235. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  236. #endif /* FAST_BGR2YV12 */
  237. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  238. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  239. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  240. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  241. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  242. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  243. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  244. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  245. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  246. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  247. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  248. };
  249. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  250. #endif /* ARCH_X86 && CONFIG_GPL */
  251. // clipping helper table for C implementations:
  252. static unsigned char clip_table[768];
  253. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  254. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_4[2][8])={
  255. { 1, 3, 1, 3, 1, 3, 1, 3, },
  256. { 2, 0, 2, 0, 2, 0, 2, 0, },
  257. };
  258. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_8[2][8])={
  259. { 6, 2, 6, 2, 6, 2, 6, 2, },
  260. { 0, 4, 0, 4, 0, 4, 0, 4, },
  261. };
  262. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_32[8][8])={
  263. { 17, 9, 23, 15, 16, 8, 22, 14, },
  264. { 5, 29, 3, 27, 4, 28, 2, 26, },
  265. { 21, 13, 19, 11, 20, 12, 18, 10, },
  266. { 0, 24, 6, 30, 1, 25, 7, 31, },
  267. { 16, 8, 22, 14, 17, 9, 23, 15, },
  268. { 4, 28, 2, 26, 5, 29, 3, 27, },
  269. { 20, 12, 18, 10, 21, 13, 19, 11, },
  270. { 1, 25, 7, 31, 0, 24, 6, 30, },
  271. };
  272. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_73[8][8])={
  273. { 0, 55, 14, 68, 3, 58, 17, 72, },
  274. { 37, 18, 50, 32, 40, 22, 54, 35, },
  275. { 9, 64, 5, 59, 13, 67, 8, 63, },
  276. { 46, 27, 41, 23, 49, 31, 44, 26, },
  277. { 2, 57, 16, 71, 1, 56, 15, 70, },
  278. { 39, 21, 52, 34, 38, 19, 51, 33, },
  279. { 11, 66, 7, 62, 10, 65, 6, 60, },
  280. { 48, 30, 43, 25, 47, 29, 42, 24, },
  281. };
  282. #if 1
  283. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  284. {117, 62, 158, 103, 113, 58, 155, 100, },
  285. { 34, 199, 21, 186, 31, 196, 17, 182, },
  286. {144, 89, 131, 76, 141, 86, 127, 72, },
  287. { 0, 165, 41, 206, 10, 175, 52, 217, },
  288. {110, 55, 151, 96, 120, 65, 162, 107, },
  289. { 28, 193, 14, 179, 38, 203, 24, 189, },
  290. {138, 83, 124, 69, 148, 93, 134, 79, },
  291. { 7, 172, 48, 213, 3, 168, 45, 210, },
  292. };
  293. #elif 1
  294. // tries to correct a gamma of 1.5
  295. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  296. { 0, 143, 18, 200, 2, 156, 25, 215, },
  297. { 78, 28, 125, 64, 89, 36, 138, 74, },
  298. { 10, 180, 3, 161, 16, 195, 8, 175, },
  299. {109, 51, 93, 38, 121, 60, 105, 47, },
  300. { 1, 152, 23, 210, 0, 147, 20, 205, },
  301. { 85, 33, 134, 71, 81, 30, 130, 67, },
  302. { 14, 190, 6, 171, 12, 185, 5, 166, },
  303. {117, 57, 101, 44, 113, 54, 97, 41, },
  304. };
  305. #elif 1
  306. // tries to correct a gamma of 2.0
  307. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  308. { 0, 124, 8, 193, 0, 140, 12, 213, },
  309. { 55, 14, 104, 42, 66, 19, 119, 52, },
  310. { 3, 168, 1, 145, 6, 187, 3, 162, },
  311. { 86, 31, 70, 21, 99, 39, 82, 28, },
  312. { 0, 134, 11, 206, 0, 129, 9, 200, },
  313. { 62, 17, 114, 48, 58, 16, 109, 45, },
  314. { 5, 181, 2, 157, 4, 175, 1, 151, },
  315. { 95, 36, 78, 26, 90, 34, 74, 24, },
  316. };
  317. #else
  318. // tries to correct a gamma of 2.5
  319. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  320. { 0, 107, 3, 187, 0, 125, 6, 212, },
  321. { 39, 7, 86, 28, 49, 11, 102, 36, },
  322. { 1, 158, 0, 131, 3, 180, 1, 151, },
  323. { 68, 19, 52, 12, 81, 25, 64, 17, },
  324. { 0, 119, 5, 203, 0, 113, 4, 195, },
  325. { 45, 9, 96, 33, 42, 8, 91, 30, },
  326. { 2, 172, 1, 144, 2, 165, 0, 137, },
  327. { 77, 23, 60, 15, 72, 21, 56, 14, },
  328. };
  329. #endif
  330. const char *sws_format_name(enum PixelFormat format)
  331. {
  332. switch (format) {
  333. case PIX_FMT_YUV420P:
  334. return "yuv420p";
  335. case PIX_FMT_YUVA420P:
  336. return "yuva420p";
  337. case PIX_FMT_YUYV422:
  338. return "yuyv422";
  339. case PIX_FMT_RGB24:
  340. return "rgb24";
  341. case PIX_FMT_BGR24:
  342. return "bgr24";
  343. case PIX_FMT_YUV422P:
  344. return "yuv422p";
  345. case PIX_FMT_YUV444P:
  346. return "yuv444p";
  347. case PIX_FMT_RGB32:
  348. return "rgb32";
  349. case PIX_FMT_YUV410P:
  350. return "yuv410p";
  351. case PIX_FMT_YUV411P:
  352. return "yuv411p";
  353. case PIX_FMT_RGB565:
  354. return "rgb565";
  355. case PIX_FMT_RGB555:
  356. return "rgb555";
  357. case PIX_FMT_GRAY16BE:
  358. return "gray16be";
  359. case PIX_FMT_GRAY16LE:
  360. return "gray16le";
  361. case PIX_FMT_GRAY8:
  362. return "gray8";
  363. case PIX_FMT_MONOWHITE:
  364. return "mono white";
  365. case PIX_FMT_MONOBLACK:
  366. return "mono black";
  367. case PIX_FMT_PAL8:
  368. return "Palette";
  369. case PIX_FMT_YUVJ420P:
  370. return "yuvj420p";
  371. case PIX_FMT_YUVJ422P:
  372. return "yuvj422p";
  373. case PIX_FMT_YUVJ444P:
  374. return "yuvj444p";
  375. case PIX_FMT_XVMC_MPEG2_MC:
  376. return "xvmc_mpeg2_mc";
  377. case PIX_FMT_XVMC_MPEG2_IDCT:
  378. return "xvmc_mpeg2_idct";
  379. case PIX_FMT_UYVY422:
  380. return "uyvy422";
  381. case PIX_FMT_UYYVYY411:
  382. return "uyyvyy411";
  383. case PIX_FMT_RGB32_1:
  384. return "rgb32x";
  385. case PIX_FMT_BGR32_1:
  386. return "bgr32x";
  387. case PIX_FMT_BGR32:
  388. return "bgr32";
  389. case PIX_FMT_BGR565:
  390. return "bgr565";
  391. case PIX_FMT_BGR555:
  392. return "bgr555";
  393. case PIX_FMT_BGR8:
  394. return "bgr8";
  395. case PIX_FMT_BGR4:
  396. return "bgr4";
  397. case PIX_FMT_BGR4_BYTE:
  398. return "bgr4 byte";
  399. case PIX_FMT_RGB8:
  400. return "rgb8";
  401. case PIX_FMT_RGB4:
  402. return "rgb4";
  403. case PIX_FMT_RGB4_BYTE:
  404. return "rgb4 byte";
  405. case PIX_FMT_RGB48BE:
  406. return "rgb48be";
  407. case PIX_FMT_RGB48LE:
  408. return "rgb48le";
  409. case PIX_FMT_NV12:
  410. return "nv12";
  411. case PIX_FMT_NV21:
  412. return "nv21";
  413. case PIX_FMT_YUV440P:
  414. return "yuv440p";
  415. case PIX_FMT_VDPAU_H264:
  416. return "vdpau_h264";
  417. case PIX_FMT_VDPAU_MPEG1:
  418. return "vdpau_mpeg1";
  419. case PIX_FMT_VDPAU_MPEG2:
  420. return "vdpau_mpeg2";
  421. case PIX_FMT_VDPAU_WMV3:
  422. return "vdpau_wmv3";
  423. case PIX_FMT_VDPAU_VC1:
  424. return "vdpau_vc1";
  425. case PIX_FMT_YUV420PLE:
  426. return "yuv420ple";
  427. case PIX_FMT_YUV422PLE:
  428. return "yuv422ple";
  429. case PIX_FMT_YUV444PLE:
  430. return "yuv444ple";
  431. case PIX_FMT_YUV420PBE:
  432. return "yuv420pbe";
  433. case PIX_FMT_YUV422PBE:
  434. return "yuv422pbe";
  435. case PIX_FMT_YUV444PBE:
  436. return "yuv444pbe";
  437. default:
  438. return "Unknown format";
  439. }
  440. }
  441. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  442. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  443. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  444. {
  445. //FIXME Optimize (just quickly written not optimized..)
  446. int i;
  447. for (i=0; i<dstW; i++)
  448. {
  449. int val=1<<18;
  450. int j;
  451. for (j=0; j<lumFilterSize; j++)
  452. val += lumSrc[j][i] * lumFilter[j];
  453. dest[i]= av_clip_uint8(val>>19);
  454. }
  455. if (uDest)
  456. for (i=0; i<chrDstW; i++)
  457. {
  458. int u=1<<18;
  459. int v=1<<18;
  460. int j;
  461. for (j=0; j<chrFilterSize; j++)
  462. {
  463. u += chrSrc[j][i] * chrFilter[j];
  464. v += chrSrc[j][i + VOFW] * chrFilter[j];
  465. }
  466. uDest[i]= av_clip_uint8(u>>19);
  467. vDest[i]= av_clip_uint8(v>>19);
  468. }
  469. if (CONFIG_SWSCALE_ALPHA && aDest)
  470. for (i=0; i<dstW; i++){
  471. int val=1<<18;
  472. int j;
  473. for (j=0; j<lumFilterSize; j++)
  474. val += alpSrc[j][i] * lumFilter[j];
  475. aDest[i]= av_clip_uint8(val>>19);
  476. }
  477. }
  478. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  479. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  480. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  481. {
  482. //FIXME Optimize (just quickly written not optimized..)
  483. int i;
  484. for (i=0; i<dstW; i++)
  485. {
  486. int val=1<<18;
  487. int j;
  488. for (j=0; j<lumFilterSize; j++)
  489. val += lumSrc[j][i] * lumFilter[j];
  490. dest[i]= av_clip_uint8(val>>19);
  491. }
  492. if (!uDest)
  493. return;
  494. if (dstFormat == PIX_FMT_NV12)
  495. for (i=0; i<chrDstW; i++)
  496. {
  497. int u=1<<18;
  498. int v=1<<18;
  499. int j;
  500. for (j=0; j<chrFilterSize; j++)
  501. {
  502. u += chrSrc[j][i] * chrFilter[j];
  503. v += chrSrc[j][i + VOFW] * chrFilter[j];
  504. }
  505. uDest[2*i]= av_clip_uint8(u>>19);
  506. uDest[2*i+1]= av_clip_uint8(v>>19);
  507. }
  508. else
  509. for (i=0; i<chrDstW; i++)
  510. {
  511. int u=1<<18;
  512. int v=1<<18;
  513. int j;
  514. for (j=0; j<chrFilterSize; j++)
  515. {
  516. u += chrSrc[j][i] * chrFilter[j];
  517. v += chrSrc[j][i + VOFW] * chrFilter[j];
  518. }
  519. uDest[2*i]= av_clip_uint8(v>>19);
  520. uDest[2*i+1]= av_clip_uint8(u>>19);
  521. }
  522. }
  523. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  524. for (i=0; i<(dstW>>1); i++){\
  525. int j;\
  526. int Y1 = 1<<18;\
  527. int Y2 = 1<<18;\
  528. int U = 1<<18;\
  529. int V = 1<<18;\
  530. int av_unused A1, A2;\
  531. type av_unused *r, *b, *g;\
  532. const int i2= 2*i;\
  533. \
  534. for (j=0; j<lumFilterSize; j++)\
  535. {\
  536. Y1 += lumSrc[j][i2] * lumFilter[j];\
  537. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  538. }\
  539. for (j=0; j<chrFilterSize; j++)\
  540. {\
  541. U += chrSrc[j][i] * chrFilter[j];\
  542. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  543. }\
  544. Y1>>=19;\
  545. Y2>>=19;\
  546. U >>=19;\
  547. V >>=19;\
  548. if (alpha){\
  549. A1 = 1<<18;\
  550. A2 = 1<<18;\
  551. for (j=0; j<lumFilterSize; j++){\
  552. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  553. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  554. }\
  555. A1>>=19;\
  556. A2>>=19;\
  557. }\
  558. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  559. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  560. if ((Y1|Y2|U|V)&256)\
  561. {\
  562. if (Y1>255) Y1=255; \
  563. else if (Y1<0)Y1=0; \
  564. if (Y2>255) Y2=255; \
  565. else if (Y2<0)Y2=0; \
  566. if (U>255) U=255; \
  567. else if (U<0) U=0; \
  568. if (V>255) V=255; \
  569. else if (V<0) V=0; \
  570. }\
  571. if (alpha && ((A1|A2)&256)){\
  572. A1=av_clip_uint8(A1);\
  573. A2=av_clip_uint8(A2);\
  574. }
  575. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  576. for (i=0; i<dstW; i++){\
  577. int j;\
  578. int Y = 0;\
  579. int U = -128<<19;\
  580. int V = -128<<19;\
  581. int av_unused A;\
  582. int R,G,B;\
  583. \
  584. for (j=0; j<lumFilterSize; j++){\
  585. Y += lumSrc[j][i ] * lumFilter[j];\
  586. }\
  587. for (j=0; j<chrFilterSize; j++){\
  588. U += chrSrc[j][i ] * chrFilter[j];\
  589. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  590. }\
  591. Y >>=10;\
  592. U >>=10;\
  593. V >>=10;\
  594. if (alpha){\
  595. A = rnd;\
  596. for (j=0; j<lumFilterSize; j++)\
  597. A += alpSrc[j][i ] * lumFilter[j];\
  598. A >>=19;\
  599. if (A&256)\
  600. A = av_clip_uint8(A);\
  601. }\
  602. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  603. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  604. Y-= c->yuv2rgb_y_offset;\
  605. Y*= c->yuv2rgb_y_coeff;\
  606. Y+= rnd;\
  607. R= Y + V*c->yuv2rgb_v2r_coeff;\
  608. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  609. B= Y + U*c->yuv2rgb_u2b_coeff;\
  610. if ((R|G|B)&(0xC0000000)){\
  611. if (R>=(256<<22)) R=(256<<22)-1; \
  612. else if (R<0)R=0; \
  613. if (G>=(256<<22)) G=(256<<22)-1; \
  614. else if (G<0)G=0; \
  615. if (B>=(256<<22)) B=(256<<22)-1; \
  616. else if (B<0)B=0; \
  617. }\
  618. #define YSCALE_YUV_2_GRAY16_C \
  619. for (i=0; i<(dstW>>1); i++){\
  620. int j;\
  621. int Y1 = 1<<18;\
  622. int Y2 = 1<<18;\
  623. int U = 1<<18;\
  624. int V = 1<<18;\
  625. \
  626. const int i2= 2*i;\
  627. \
  628. for (j=0; j<lumFilterSize; j++)\
  629. {\
  630. Y1 += lumSrc[j][i2] * lumFilter[j];\
  631. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  632. }\
  633. Y1>>=11;\
  634. Y2>>=11;\
  635. if ((Y1|Y2|U|V)&65536)\
  636. {\
  637. if (Y1>65535) Y1=65535; \
  638. else if (Y1<0)Y1=0; \
  639. if (Y2>65535) Y2=65535; \
  640. else if (Y2<0)Y2=0; \
  641. }
  642. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  643. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  644. r = (type *)c->table_rV[V]; \
  645. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  646. b = (type *)c->table_bU[U]; \
  647. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  648. for (i=0; i<(dstW>>1); i++){ \
  649. const int i2= 2*i; \
  650. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  651. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  652. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  653. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  654. type av_unused *r, *b, *g; \
  655. int av_unused A1, A2; \
  656. if (alpha){\
  657. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  658. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  659. }\
  660. #define YSCALE_YUV_2_GRAY16_2_C \
  661. for (i=0; i<(dstW>>1); i++){ \
  662. const int i2= 2*i; \
  663. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  664. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  665. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  666. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  667. r = (type *)c->table_rV[V];\
  668. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  669. b = (type *)c->table_bU[U];\
  670. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  671. for (i=0; i<(dstW>>1); i++){\
  672. const int i2= 2*i;\
  673. int Y1= buf0[i2 ]>>7;\
  674. int Y2= buf0[i2+1]>>7;\
  675. int U= (uvbuf1[i ])>>7;\
  676. int V= (uvbuf1[i+VOFW])>>7;\
  677. type av_unused *r, *b, *g;\
  678. int av_unused A1, A2;\
  679. if (alpha){\
  680. A1= abuf0[i2 ]>>7;\
  681. A2= abuf0[i2+1]>>7;\
  682. }\
  683. #define YSCALE_YUV_2_GRAY16_1_C \
  684. for (i=0; i<(dstW>>1); i++){\
  685. const int i2= 2*i;\
  686. int Y1= buf0[i2 ]<<1;\
  687. int Y2= buf0[i2+1]<<1;\
  688. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  689. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  690. r = (type *)c->table_rV[V];\
  691. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  692. b = (type *)c->table_bU[U];\
  693. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  694. for (i=0; i<(dstW>>1); i++){\
  695. const int i2= 2*i;\
  696. int Y1= buf0[i2 ]>>7;\
  697. int Y2= buf0[i2+1]>>7;\
  698. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  699. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  700. type av_unused *r, *b, *g;\
  701. int av_unused A1, A2;\
  702. if (alpha){\
  703. A1= abuf0[i2 ]>>7;\
  704. A2= abuf0[i2+1]>>7;\
  705. }\
  706. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  707. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  708. r = (type *)c->table_rV[V];\
  709. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  710. b = (type *)c->table_bU[U];\
  711. #define YSCALE_YUV_2_MONO2_C \
  712. const uint8_t * const d128=dither_8x8_220[y&7];\
  713. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  714. for (i=0; i<dstW-7; i+=8){\
  715. int acc;\
  716. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  717. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  718. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  719. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  720. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  721. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  722. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  723. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  724. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  725. dest++;\
  726. }\
  727. #define YSCALE_YUV_2_MONOX_C \
  728. const uint8_t * const d128=dither_8x8_220[y&7];\
  729. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  730. int acc=0;\
  731. for (i=0; i<dstW-1; i+=2){\
  732. int j;\
  733. int Y1=1<<18;\
  734. int Y2=1<<18;\
  735. \
  736. for (j=0; j<lumFilterSize; j++)\
  737. {\
  738. Y1 += lumSrc[j][i] * lumFilter[j];\
  739. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  740. }\
  741. Y1>>=19;\
  742. Y2>>=19;\
  743. if ((Y1|Y2)&256)\
  744. {\
  745. if (Y1>255) Y1=255;\
  746. else if (Y1<0)Y1=0;\
  747. if (Y2>255) Y2=255;\
  748. else if (Y2<0)Y2=0;\
  749. }\
  750. acc+= acc + g[Y1+d128[(i+0)&7]];\
  751. acc+= acc + g[Y2+d128[(i+1)&7]];\
  752. if ((i&7)==6){\
  753. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  754. dest++;\
  755. }\
  756. }
  757. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  758. switch(c->dstFormat)\
  759. {\
  760. case PIX_FMT_RGB48BE:\
  761. case PIX_FMT_RGB48LE:\
  762. func(uint8_t,0)\
  763. ((uint8_t*)dest)[ 0]= r[Y1];\
  764. ((uint8_t*)dest)[ 1]= r[Y1];\
  765. ((uint8_t*)dest)[ 2]= g[Y1];\
  766. ((uint8_t*)dest)[ 3]= g[Y1];\
  767. ((uint8_t*)dest)[ 4]= b[Y1];\
  768. ((uint8_t*)dest)[ 5]= b[Y1];\
  769. ((uint8_t*)dest)[ 6]= r[Y2];\
  770. ((uint8_t*)dest)[ 7]= r[Y2];\
  771. ((uint8_t*)dest)[ 8]= g[Y2];\
  772. ((uint8_t*)dest)[ 9]= g[Y2];\
  773. ((uint8_t*)dest)[10]= b[Y2];\
  774. ((uint8_t*)dest)[11]= b[Y2];\
  775. dest+=12;\
  776. }\
  777. break;\
  778. case PIX_FMT_RGBA:\
  779. case PIX_FMT_BGRA:\
  780. if (CONFIG_SMALL){\
  781. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  782. func(uint32_t,needAlpha)\
  783. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  784. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  785. }\
  786. }else{\
  787. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  788. func(uint32_t,1)\
  789. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  790. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  791. }\
  792. }else{\
  793. func(uint32_t,0)\
  794. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  795. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  796. }\
  797. }\
  798. }\
  799. break;\
  800. case PIX_FMT_ARGB:\
  801. case PIX_FMT_ABGR:\
  802. if (CONFIG_SMALL){\
  803. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  804. func(uint32_t,needAlpha)\
  805. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  806. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  807. }\
  808. }else{\
  809. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  810. func(uint32_t,1)\
  811. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  812. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  813. }\
  814. }else{\
  815. func(uint32_t,0)\
  816. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  817. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  818. }\
  819. }\
  820. } \
  821. break;\
  822. case PIX_FMT_RGB24:\
  823. func(uint8_t,0)\
  824. ((uint8_t*)dest)[0]= r[Y1];\
  825. ((uint8_t*)dest)[1]= g[Y1];\
  826. ((uint8_t*)dest)[2]= b[Y1];\
  827. ((uint8_t*)dest)[3]= r[Y2];\
  828. ((uint8_t*)dest)[4]= g[Y2];\
  829. ((uint8_t*)dest)[5]= b[Y2];\
  830. dest+=6;\
  831. }\
  832. break;\
  833. case PIX_FMT_BGR24:\
  834. func(uint8_t,0)\
  835. ((uint8_t*)dest)[0]= b[Y1];\
  836. ((uint8_t*)dest)[1]= g[Y1];\
  837. ((uint8_t*)dest)[2]= r[Y1];\
  838. ((uint8_t*)dest)[3]= b[Y2];\
  839. ((uint8_t*)dest)[4]= g[Y2];\
  840. ((uint8_t*)dest)[5]= r[Y2];\
  841. dest+=6;\
  842. }\
  843. break;\
  844. case PIX_FMT_RGB565:\
  845. case PIX_FMT_BGR565:\
  846. {\
  847. const int dr1= dither_2x2_8[y&1 ][0];\
  848. const int dg1= dither_2x2_4[y&1 ][0];\
  849. const int db1= dither_2x2_8[(y&1)^1][0];\
  850. const int dr2= dither_2x2_8[y&1 ][1];\
  851. const int dg2= dither_2x2_4[y&1 ][1];\
  852. const int db2= dither_2x2_8[(y&1)^1][1];\
  853. func(uint16_t,0)\
  854. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  855. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  856. }\
  857. }\
  858. break;\
  859. case PIX_FMT_RGB555:\
  860. case PIX_FMT_BGR555:\
  861. {\
  862. const int dr1= dither_2x2_8[y&1 ][0];\
  863. const int dg1= dither_2x2_8[y&1 ][1];\
  864. const int db1= dither_2x2_8[(y&1)^1][0];\
  865. const int dr2= dither_2x2_8[y&1 ][1];\
  866. const int dg2= dither_2x2_8[y&1 ][0];\
  867. const int db2= dither_2x2_8[(y&1)^1][1];\
  868. func(uint16_t,0)\
  869. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  870. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  871. }\
  872. }\
  873. break;\
  874. case PIX_FMT_RGB8:\
  875. case PIX_FMT_BGR8:\
  876. {\
  877. const uint8_t * const d64= dither_8x8_73[y&7];\
  878. const uint8_t * const d32= dither_8x8_32[y&7];\
  879. func(uint8_t,0)\
  880. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  881. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  882. }\
  883. }\
  884. break;\
  885. case PIX_FMT_RGB4:\
  886. case PIX_FMT_BGR4:\
  887. {\
  888. const uint8_t * const d64= dither_8x8_73 [y&7];\
  889. const uint8_t * const d128=dither_8x8_220[y&7];\
  890. func(uint8_t,0)\
  891. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  892. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  893. }\
  894. }\
  895. break;\
  896. case PIX_FMT_RGB4_BYTE:\
  897. case PIX_FMT_BGR4_BYTE:\
  898. {\
  899. const uint8_t * const d64= dither_8x8_73 [y&7];\
  900. const uint8_t * const d128=dither_8x8_220[y&7];\
  901. func(uint8_t,0)\
  902. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  903. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  904. }\
  905. }\
  906. break;\
  907. case PIX_FMT_MONOBLACK:\
  908. case PIX_FMT_MONOWHITE:\
  909. {\
  910. func_monoblack\
  911. }\
  912. break;\
  913. case PIX_FMT_YUYV422:\
  914. func2\
  915. ((uint8_t*)dest)[2*i2+0]= Y1;\
  916. ((uint8_t*)dest)[2*i2+1]= U;\
  917. ((uint8_t*)dest)[2*i2+2]= Y2;\
  918. ((uint8_t*)dest)[2*i2+3]= V;\
  919. } \
  920. break;\
  921. case PIX_FMT_UYVY422:\
  922. func2\
  923. ((uint8_t*)dest)[2*i2+0]= U;\
  924. ((uint8_t*)dest)[2*i2+1]= Y1;\
  925. ((uint8_t*)dest)[2*i2+2]= V;\
  926. ((uint8_t*)dest)[2*i2+3]= Y2;\
  927. } \
  928. break;\
  929. case PIX_FMT_GRAY16BE:\
  930. func_g16\
  931. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  932. ((uint8_t*)dest)[2*i2+1]= Y1;\
  933. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  934. ((uint8_t*)dest)[2*i2+3]= Y2;\
  935. } \
  936. break;\
  937. case PIX_FMT_GRAY16LE:\
  938. func_g16\
  939. ((uint8_t*)dest)[2*i2+0]= Y1;\
  940. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  941. ((uint8_t*)dest)[2*i2+2]= Y2;\
  942. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  943. } \
  944. break;\
  945. }\
  946. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  947. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  948. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  949. {
  950. int i;
  951. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  952. }
  953. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  954. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  955. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  956. {
  957. int i;
  958. int step= fmt_depth(c->dstFormat)/8;
  959. int aidx= 3;
  960. switch(c->dstFormat){
  961. case PIX_FMT_ARGB:
  962. dest++;
  963. aidx= 0;
  964. case PIX_FMT_RGB24:
  965. aidx--;
  966. case PIX_FMT_RGBA:
  967. if (CONFIG_SMALL){
  968. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  969. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  970. dest[aidx]= needAlpha ? A : 255;
  971. dest[0]= R>>22;
  972. dest[1]= G>>22;
  973. dest[2]= B>>22;
  974. dest+= step;
  975. }
  976. }else{
  977. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  978. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  979. dest[aidx]= A;
  980. dest[0]= R>>22;
  981. dest[1]= G>>22;
  982. dest[2]= B>>22;
  983. dest+= step;
  984. }
  985. }else{
  986. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  987. dest[aidx]= 255;
  988. dest[0]= R>>22;
  989. dest[1]= G>>22;
  990. dest[2]= B>>22;
  991. dest+= step;
  992. }
  993. }
  994. }
  995. break;
  996. case PIX_FMT_ABGR:
  997. dest++;
  998. aidx= 0;
  999. case PIX_FMT_BGR24:
  1000. aidx--;
  1001. case PIX_FMT_BGRA:
  1002. if (CONFIG_SMALL){
  1003. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  1004. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  1005. dest[aidx]= needAlpha ? A : 255;
  1006. dest[0]= B>>22;
  1007. dest[1]= G>>22;
  1008. dest[2]= R>>22;
  1009. dest+= step;
  1010. }
  1011. }else{
  1012. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1013. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1014. dest[aidx]= A;
  1015. dest[0]= B>>22;
  1016. dest[1]= G>>22;
  1017. dest[2]= R>>22;
  1018. dest+= step;
  1019. }
  1020. }else{
  1021. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1022. dest[aidx]= 255;
  1023. dest[0]= B>>22;
  1024. dest[1]= G>>22;
  1025. dest[2]= R>>22;
  1026. dest+= step;
  1027. }
  1028. }
  1029. }
  1030. break;
  1031. default:
  1032. assert(0);
  1033. }
  1034. }
  1035. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1036. int i;
  1037. uint8_t *ptr = plane + stride*y;
  1038. for (i=0; i<height; i++){
  1039. memset(ptr, val, width);
  1040. ptr += stride;
  1041. }
  1042. }
  1043. static inline void rgb48ToY(uint8_t *dst, const uint8_t *src, int width)
  1044. {
  1045. int i;
  1046. for (i = 0; i < width; i++) {
  1047. int r = src[i*6+0];
  1048. int g = src[i*6+2];
  1049. int b = src[i*6+4];
  1050. dst[i] = (RY*r + GY*g + BY*b + (33<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1051. }
  1052. }
  1053. static inline void rgb48ToUV(uint8_t *dstU, uint8_t *dstV,
  1054. uint8_t *src1, uint8_t *src2, int width)
  1055. {
  1056. int i;
  1057. assert(src1==src2);
  1058. for (i = 0; i < width; i++) {
  1059. int r = src1[6*i + 0];
  1060. int g = src1[6*i + 2];
  1061. int b = src1[6*i + 4];
  1062. dstU[i] = (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1063. dstV[i] = (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1064. }
  1065. }
  1066. static inline void rgb48ToUV_half(uint8_t *dstU, uint8_t *dstV,
  1067. uint8_t *src1, uint8_t *src2, int width)
  1068. {
  1069. int i;
  1070. assert(src1==src2);
  1071. for (i = 0; i < width; i++) {
  1072. int r= src1[12*i + 0] + src1[12*i + 6];
  1073. int g= src1[12*i + 2] + src1[12*i + 8];
  1074. int b= src1[12*i + 4] + src1[12*i + 10];
  1075. dstU[i]= (RU*r + GU*g + BU*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1076. dstV[i]= (RV*r + GV*g + BV*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1077. }
  1078. }
  1079. #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\
  1080. static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\
  1081. {\
  1082. int i;\
  1083. for (i=0; i<width; i++)\
  1084. {\
  1085. int b= (((const type*)src)[i]>>shb)&maskb;\
  1086. int g= (((const type*)src)[i]>>shg)&maskg;\
  1087. int r= (((const type*)src)[i]>>shr)&maskr;\
  1088. \
  1089. dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\
  1090. }\
  1091. }
  1092. BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1093. BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1094. BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8)
  1095. BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7)
  1096. BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8)
  1097. BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7)
  1098. static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused){
  1099. int i;
  1100. for (i=0; i<width; i++){
  1101. dst[i]= src[4*i];
  1102. }
  1103. }
  1104. #define BGR2UV(type, name, shr, shg, shb, maska, maskr, maskg, maskb, RU, GU, BU, RV, GV, BV, S)\
  1105. static inline void name(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1106. {\
  1107. int i;\
  1108. for (i=0; i<width; i++)\
  1109. {\
  1110. int b= (((const type*)src)[i]&maskb)>>shb;\
  1111. int g= (((const type*)src)[i]&maskg)>>shg;\
  1112. int r= (((const type*)src)[i]&maskr)>>shr;\
  1113. \
  1114. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\
  1115. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\
  1116. }\
  1117. }\
  1118. static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1119. {\
  1120. int i;\
  1121. for (i=0; i<width; i++)\
  1122. {\
  1123. int pix0= ((const type*)src)[2*i+0];\
  1124. int pix1= ((const type*)src)[2*i+1];\
  1125. int g= (pix0&~(maskr|maskb))+(pix1&~(maskr|maskb));\
  1126. int b= ((pix0+pix1-g)&(maskb|(2*maskb)))>>shb;\
  1127. int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\
  1128. g&= maskg|(2*maskg);\
  1129. \
  1130. g>>=shg;\
  1131. \
  1132. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\
  1133. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\
  1134. }\
  1135. }
  1136. BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1137. BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1138. BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8)
  1139. BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7)
  1140. BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8)
  1141. BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7)
  1142. static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal)
  1143. {
  1144. int i;
  1145. for (i=0; i<width; i++)
  1146. {
  1147. int d= src[i];
  1148. dst[i]= pal[d] & 0xFF;
  1149. }
  1150. }
  1151. static inline void palToUV(uint8_t *dstU, uint8_t *dstV,
  1152. const uint8_t *src1, const uint8_t *src2,
  1153. long width, uint32_t *pal)
  1154. {
  1155. int i;
  1156. assert(src1 == src2);
  1157. for (i=0; i<width; i++)
  1158. {
  1159. int p= pal[src1[i]];
  1160. dstU[i]= p>>8;
  1161. dstV[i]= p>>16;
  1162. }
  1163. }
  1164. static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1165. {
  1166. int i, j;
  1167. for (i=0; i<width/8; i++){
  1168. int d= ~src[i];
  1169. for(j=0; j<8; j++)
  1170. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1171. }
  1172. }
  1173. static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1174. {
  1175. int i, j;
  1176. for (i=0; i<width/8; i++){
  1177. int d= src[i];
  1178. for(j=0; j<8; j++)
  1179. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1180. }
  1181. }
  1182. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1183. //Plain C versions
  1184. #if ((!HAVE_MMX || !CONFIG_GPL) && !HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT
  1185. #define COMPILE_C
  1186. #endif
  1187. #if ARCH_PPC
  1188. #if HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT
  1189. #define COMPILE_ALTIVEC
  1190. #endif
  1191. #endif //ARCH_PPC
  1192. #if ARCH_X86
  1193. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1194. #define COMPILE_MMX
  1195. #endif
  1196. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1197. #define COMPILE_MMX2
  1198. #endif
  1199. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1200. #define COMPILE_3DNOW
  1201. #endif
  1202. #endif //ARCH_X86
  1203. #define COMPILE_TEMPLATE_MMX 0
  1204. #define COMPILE_TEMPLATE_MMX2 0
  1205. #define COMPILE_TEMPLATE_AMD3DNOW 0
  1206. #define COMPILE_TEMPLATE_ALTIVEC 0
  1207. #ifdef COMPILE_C
  1208. #define RENAME(a) a ## _C
  1209. #include "swscale_template.c"
  1210. #endif
  1211. #ifdef COMPILE_ALTIVEC
  1212. #undef RENAME
  1213. #undef COMPILE_TEMPLATE_ALTIVEC
  1214. #define COMPILE_TEMPLATE_ALTIVEC 1
  1215. #define RENAME(a) a ## _altivec
  1216. #include "swscale_template.c"
  1217. #endif
  1218. #if ARCH_X86
  1219. //MMX versions
  1220. #ifdef COMPILE_MMX
  1221. #undef RENAME
  1222. #undef COMPILE_TEMPLATE_MMX
  1223. #undef COMPILE_TEMPLATE_MMX2
  1224. #undef COMPILE_TEMPLATE_AMD3DNOW
  1225. #define COMPILE_TEMPLATE_MMX 1
  1226. #define COMPILE_TEMPLATE_MMX2 0
  1227. #define COMPILE_TEMPLATE_AMD3DNOW 0
  1228. #define RENAME(a) a ## _MMX
  1229. #include "swscale_template.c"
  1230. #endif
  1231. //MMX2 versions
  1232. #ifdef COMPILE_MMX2
  1233. #undef RENAME
  1234. #undef COMPILE_TEMPLATE_MMX
  1235. #undef COMPILE_TEMPLATE_MMX2
  1236. #undef COMPILE_TEMPLATE_AMD3DNOW
  1237. #define COMPILE_TEMPLATE_MMX 1
  1238. #define COMPILE_TEMPLATE_MMX2 1
  1239. #define COMPILE_TEMPLATE_AMD3DNOW 0
  1240. #define RENAME(a) a ## _MMX2
  1241. #include "swscale_template.c"
  1242. #endif
  1243. //3DNOW versions
  1244. #ifdef COMPILE_3DNOW
  1245. #undef RENAME
  1246. #undef COMPILE_TEMPLATE_MMX
  1247. #undef COMPILE_TEMPLATE_MMX2
  1248. #undef COMPILE_TEMPLATE_AMD3DNOW
  1249. #define COMPILE_TEMPLATE_MMX 1
  1250. #define COMPILE_TEMPLATE_MMX2 0
  1251. #define COMPILE_TEMPLATE_AMD3DNOW 1
  1252. #define RENAME(a) a ## _3DNow
  1253. #include "swscale_template.c"
  1254. #endif
  1255. #endif //ARCH_X86
  1256. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1257. {
  1258. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1259. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1260. else return getSplineCoeff( 0.0,
  1261. b+ 2.0*c + 3.0*d,
  1262. c + 3.0*d,
  1263. -b- 3.0*c - 6.0*d,
  1264. dist-1.0);
  1265. }
  1266. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1267. int srcW, int dstW, int filterAlign, int one, int flags,
  1268. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1269. {
  1270. int i;
  1271. int filterSize;
  1272. int filter2Size;
  1273. int minFilterSize;
  1274. int64_t *filter=NULL;
  1275. int64_t *filter2=NULL;
  1276. const int64_t fone= 1LL<<54;
  1277. int ret= -1;
  1278. #if ARCH_X86
  1279. if (flags & SWS_CPU_CAPS_MMX)
  1280. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1281. #endif
  1282. // NOTE: the +1 is for the MMX scaler which reads over the end
  1283. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1284. if (FFABS(xInc - 0x10000) <10) // unscaled
  1285. {
  1286. int i;
  1287. filterSize= 1;
  1288. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1289. for (i=0; i<dstW; i++)
  1290. {
  1291. filter[i*filterSize]= fone;
  1292. (*filterPos)[i]=i;
  1293. }
  1294. }
  1295. else if (flags&SWS_POINT) // lame looking point sampling mode
  1296. {
  1297. int i;
  1298. int xDstInSrc;
  1299. filterSize= 1;
  1300. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1301. xDstInSrc= xInc/2 - 0x8000;
  1302. for (i=0; i<dstW; i++)
  1303. {
  1304. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1305. (*filterPos)[i]= xx;
  1306. filter[i]= fone;
  1307. xDstInSrc+= xInc;
  1308. }
  1309. }
  1310. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1311. {
  1312. int i;
  1313. int xDstInSrc;
  1314. filterSize= 2;
  1315. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1316. xDstInSrc= xInc/2 - 0x8000;
  1317. for (i=0; i<dstW; i++)
  1318. {
  1319. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1320. int j;
  1321. (*filterPos)[i]= xx;
  1322. //bilinear upscale / linear interpolate / area averaging
  1323. for (j=0; j<filterSize; j++)
  1324. {
  1325. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1326. if (coeff<0) coeff=0;
  1327. filter[i*filterSize + j]= coeff;
  1328. xx++;
  1329. }
  1330. xDstInSrc+= xInc;
  1331. }
  1332. }
  1333. else
  1334. {
  1335. int xDstInSrc;
  1336. int sizeFactor;
  1337. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1338. else if (flags&SWS_X) sizeFactor= 8;
  1339. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1340. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1341. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1342. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1343. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1344. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1345. else {
  1346. sizeFactor= 0; //GCC warning killer
  1347. assert(0);
  1348. }
  1349. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1350. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1351. if (filterSize > srcW-2) filterSize=srcW-2;
  1352. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1353. xDstInSrc= xInc - 0x10000;
  1354. for (i=0; i<dstW; i++)
  1355. {
  1356. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1357. int j;
  1358. (*filterPos)[i]= xx;
  1359. for (j=0; j<filterSize; j++)
  1360. {
  1361. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1362. double floatd;
  1363. int64_t coeff;
  1364. if (xInc > 1<<16)
  1365. d= d*dstW/srcW;
  1366. floatd= d * (1.0/(1<<30));
  1367. if (flags & SWS_BICUBIC)
  1368. {
  1369. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1370. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1371. int64_t dd = ( d*d)>>30;
  1372. int64_t ddd= (dd*d)>>30;
  1373. if (d < 1LL<<30)
  1374. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1375. else if (d < 1LL<<31)
  1376. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1377. else
  1378. coeff=0.0;
  1379. coeff *= fone>>(30+24);
  1380. }
  1381. /* else if (flags & SWS_X)
  1382. {
  1383. double p= param ? param*0.01 : 0.3;
  1384. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1385. coeff*= pow(2.0, - p*d*d);
  1386. }*/
  1387. else if (flags & SWS_X)
  1388. {
  1389. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1390. double c;
  1391. if (floatd<1.0)
  1392. c = cos(floatd*PI);
  1393. else
  1394. c=-1.0;
  1395. if (c<0.0) c= -pow(-c, A);
  1396. else c= pow( c, A);
  1397. coeff= (c*0.5 + 0.5)*fone;
  1398. }
  1399. else if (flags & SWS_AREA)
  1400. {
  1401. int64_t d2= d - (1<<29);
  1402. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1403. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1404. else coeff=0.0;
  1405. coeff *= fone>>(30+16);
  1406. }
  1407. else if (flags & SWS_GAUSS)
  1408. {
  1409. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1410. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1411. }
  1412. else if (flags & SWS_SINC)
  1413. {
  1414. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1415. }
  1416. else if (flags & SWS_LANCZOS)
  1417. {
  1418. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1419. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1420. if (floatd>p) coeff=0;
  1421. }
  1422. else if (flags & SWS_BILINEAR)
  1423. {
  1424. coeff= (1<<30) - d;
  1425. if (coeff<0) coeff=0;
  1426. coeff *= fone >> 30;
  1427. }
  1428. else if (flags & SWS_SPLINE)
  1429. {
  1430. double p=-2.196152422706632;
  1431. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1432. }
  1433. else {
  1434. coeff= 0.0; //GCC warning killer
  1435. assert(0);
  1436. }
  1437. filter[i*filterSize + j]= coeff;
  1438. xx++;
  1439. }
  1440. xDstInSrc+= 2*xInc;
  1441. }
  1442. }
  1443. /* apply src & dst Filter to filter -> filter2
  1444. av_free(filter);
  1445. */
  1446. assert(filterSize>0);
  1447. filter2Size= filterSize;
  1448. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1449. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1450. assert(filter2Size>0);
  1451. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1452. for (i=0; i<dstW; i++)
  1453. {
  1454. int j, k;
  1455. if(srcFilter){
  1456. for (k=0; k<srcFilter->length; k++){
  1457. for (j=0; j<filterSize; j++)
  1458. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1459. }
  1460. }else{
  1461. for (j=0; j<filterSize; j++)
  1462. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1463. }
  1464. //FIXME dstFilter
  1465. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1466. }
  1467. av_freep(&filter);
  1468. /* try to reduce the filter-size (step1 find size and shift left) */
  1469. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1470. minFilterSize= 0;
  1471. for (i=dstW-1; i>=0; i--)
  1472. {
  1473. int min= filter2Size;
  1474. int j;
  1475. int64_t cutOff=0.0;
  1476. /* get rid off near zero elements on the left by shifting left */
  1477. for (j=0; j<filter2Size; j++)
  1478. {
  1479. int k;
  1480. cutOff += FFABS(filter2[i*filter2Size]);
  1481. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1482. /* preserve monotonicity because the core can't handle the filter otherwise */
  1483. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1484. // move filter coefficients left
  1485. for (k=1; k<filter2Size; k++)
  1486. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1487. filter2[i*filter2Size + k - 1]= 0;
  1488. (*filterPos)[i]++;
  1489. }
  1490. cutOff=0;
  1491. /* count near zeros on the right */
  1492. for (j=filter2Size-1; j>0; j--)
  1493. {
  1494. cutOff += FFABS(filter2[i*filter2Size + j]);
  1495. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1496. min--;
  1497. }
  1498. if (min>minFilterSize) minFilterSize= min;
  1499. }
  1500. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1501. // we can handle the special case 4,
  1502. // so we don't want to go to the full 8
  1503. if (minFilterSize < 5)
  1504. filterAlign = 4;
  1505. // We really don't want to waste our time
  1506. // doing useless computation, so fall back on
  1507. // the scalar C code for very small filters.
  1508. // Vectorizing is worth it only if you have a
  1509. // decent-sized vector.
  1510. if (minFilterSize < 3)
  1511. filterAlign = 1;
  1512. }
  1513. if (flags & SWS_CPU_CAPS_MMX) {
  1514. // special case for unscaled vertical filtering
  1515. if (minFilterSize == 1 && filterAlign == 2)
  1516. filterAlign= 1;
  1517. }
  1518. assert(minFilterSize > 0);
  1519. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1520. assert(filterSize > 0);
  1521. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1522. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1523. goto error;
  1524. *outFilterSize= filterSize;
  1525. if (flags&SWS_PRINT_INFO)
  1526. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1527. /* try to reduce the filter-size (step2 reduce it) */
  1528. for (i=0; i<dstW; i++)
  1529. {
  1530. int j;
  1531. for (j=0; j<filterSize; j++)
  1532. {
  1533. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1534. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1535. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1536. filter[i*filterSize + j]= 0;
  1537. }
  1538. }
  1539. //FIXME try to align filterPos if possible
  1540. //fix borders
  1541. for (i=0; i<dstW; i++)
  1542. {
  1543. int j;
  1544. if ((*filterPos)[i] < 0)
  1545. {
  1546. // move filter coefficients left to compensate for filterPos
  1547. for (j=1; j<filterSize; j++)
  1548. {
  1549. int left= FFMAX(j + (*filterPos)[i], 0);
  1550. filter[i*filterSize + left] += filter[i*filterSize + j];
  1551. filter[i*filterSize + j]=0;
  1552. }
  1553. (*filterPos)[i]= 0;
  1554. }
  1555. if ((*filterPos)[i] + filterSize > srcW)
  1556. {
  1557. int shift= (*filterPos)[i] + filterSize - srcW;
  1558. // move filter coefficients right to compensate for filterPos
  1559. for (j=filterSize-2; j>=0; j--)
  1560. {
  1561. int right= FFMIN(j + shift, filterSize-1);
  1562. filter[i*filterSize +right] += filter[i*filterSize +j];
  1563. filter[i*filterSize +j]=0;
  1564. }
  1565. (*filterPos)[i]= srcW - filterSize;
  1566. }
  1567. }
  1568. // Note the +1 is for the MMX scaler which reads over the end
  1569. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1570. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1571. /* normalize & store in outFilter */
  1572. for (i=0; i<dstW; i++)
  1573. {
  1574. int j;
  1575. int64_t error=0;
  1576. int64_t sum=0;
  1577. for (j=0; j<filterSize; j++)
  1578. {
  1579. sum+= filter[i*filterSize + j];
  1580. }
  1581. sum= (sum + one/2)/ one;
  1582. for (j=0; j<*outFilterSize; j++)
  1583. {
  1584. int64_t v= filter[i*filterSize + j] + error;
  1585. int intV= ROUNDED_DIV(v, sum);
  1586. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1587. error= v - intV*sum;
  1588. }
  1589. }
  1590. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1591. for (i=0; i<*outFilterSize; i++)
  1592. {
  1593. int j= dstW*(*outFilterSize);
  1594. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1595. }
  1596. ret=0;
  1597. error:
  1598. av_free(filter);
  1599. av_free(filter2);
  1600. return ret;
  1601. }
  1602. #ifdef COMPILE_MMX2
  1603. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1604. {
  1605. uint8_t *fragmentA;
  1606. x86_reg imm8OfPShufW1A;
  1607. x86_reg imm8OfPShufW2A;
  1608. x86_reg fragmentLengthA;
  1609. uint8_t *fragmentB;
  1610. x86_reg imm8OfPShufW1B;
  1611. x86_reg imm8OfPShufW2B;
  1612. x86_reg fragmentLengthB;
  1613. int fragmentPos;
  1614. int xpos, i;
  1615. // create an optimized horizontal scaling routine
  1616. //code fragment
  1617. __asm__ volatile(
  1618. "jmp 9f \n\t"
  1619. // Begin
  1620. "0: \n\t"
  1621. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1622. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1623. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1624. "punpcklbw %%mm7, %%mm1 \n\t"
  1625. "punpcklbw %%mm7, %%mm0 \n\t"
  1626. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1627. "1: \n\t"
  1628. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1629. "2: \n\t"
  1630. "psubw %%mm1, %%mm0 \n\t"
  1631. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1632. "pmullw %%mm3, %%mm0 \n\t"
  1633. "psllw $7, %%mm1 \n\t"
  1634. "paddw %%mm1, %%mm0 \n\t"
  1635. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1636. "add $8, %%"REG_a" \n\t"
  1637. // End
  1638. "9: \n\t"
  1639. // "int $3 \n\t"
  1640. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1641. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1642. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1643. "dec %1 \n\t"
  1644. "dec %2 \n\t"
  1645. "sub %0, %1 \n\t"
  1646. "sub %0, %2 \n\t"
  1647. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1648. "sub %0, %3 \n\t"
  1649. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1650. "=r" (fragmentLengthA)
  1651. );
  1652. __asm__ volatile(
  1653. "jmp 9f \n\t"
  1654. // Begin
  1655. "0: \n\t"
  1656. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1657. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1658. "punpcklbw %%mm7, %%mm0 \n\t"
  1659. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1660. "1: \n\t"
  1661. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1662. "2: \n\t"
  1663. "psubw %%mm1, %%mm0 \n\t"
  1664. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1665. "pmullw %%mm3, %%mm0 \n\t"
  1666. "psllw $7, %%mm1 \n\t"
  1667. "paddw %%mm1, %%mm0 \n\t"
  1668. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1669. "add $8, %%"REG_a" \n\t"
  1670. // End
  1671. "9: \n\t"
  1672. // "int $3 \n\t"
  1673. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1674. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1675. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1676. "dec %1 \n\t"
  1677. "dec %2 \n\t"
  1678. "sub %0, %1 \n\t"
  1679. "sub %0, %2 \n\t"
  1680. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1681. "sub %0, %3 \n\t"
  1682. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1683. "=r" (fragmentLengthB)
  1684. );
  1685. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1686. fragmentPos=0;
  1687. for (i=0; i<dstW/numSplits; i++)
  1688. {
  1689. int xx=xpos>>16;
  1690. if ((i&3) == 0)
  1691. {
  1692. int a=0;
  1693. int b=((xpos+xInc)>>16) - xx;
  1694. int c=((xpos+xInc*2)>>16) - xx;
  1695. int d=((xpos+xInc*3)>>16) - xx;
  1696. int inc = (d+1<4);
  1697. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  1698. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  1699. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  1700. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  1701. int maxShift= 3-(d+inc);
  1702. int shift=0;
  1703. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1704. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1705. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1706. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1707. filterPos[i/2]= xx;
  1708. memcpy(funnyCode + fragmentPos, fragment, fragmentLength);
  1709. funnyCode[fragmentPos + imm8OfPShufW1]=
  1710. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  1711. funnyCode[fragmentPos + imm8OfPShufW2]=
  1712. a | (b<<2) | (c<<4) | (d<<6);
  1713. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  1714. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1715. if (shift && i>=shift)
  1716. {
  1717. funnyCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  1718. funnyCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  1719. filterPos[i/2]-=shift;
  1720. }
  1721. fragmentPos+= fragmentLength;
  1722. funnyCode[fragmentPos]= RET;
  1723. }
  1724. xpos+=xInc;
  1725. }
  1726. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1727. }
  1728. #endif /* COMPILE_MMX2 */
  1729. static void globalInit(void){
  1730. // generating tables:
  1731. int i;
  1732. for (i=0; i<768; i++){
  1733. int c= av_clip_uint8(i-256);
  1734. clip_table[i]=c;
  1735. }
  1736. }
  1737. static SwsFunc getSwsFunc(SwsContext *c)
  1738. {
  1739. #if CONFIG_RUNTIME_CPUDETECT
  1740. int flags = c->flags;
  1741. #if ARCH_X86 && CONFIG_GPL
  1742. // ordered per speed fastest first
  1743. if (flags & SWS_CPU_CAPS_MMX2) {
  1744. sws_init_swScale_MMX2(c);
  1745. return swScale_MMX2;
  1746. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1747. sws_init_swScale_3DNow(c);
  1748. return swScale_3DNow;
  1749. } else if (flags & SWS_CPU_CAPS_MMX) {
  1750. sws_init_swScale_MMX(c);
  1751. return swScale_MMX;
  1752. } else {
  1753. sws_init_swScale_C(c);
  1754. return swScale_C;
  1755. }
  1756. #else
  1757. #if ARCH_PPC
  1758. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1759. sws_init_swScale_altivec(c);
  1760. return swScale_altivec;
  1761. } else {
  1762. sws_init_swScale_C(c);
  1763. return swScale_C;
  1764. }
  1765. #endif
  1766. sws_init_swScale_C(c);
  1767. return swScale_C;
  1768. #endif /* ARCH_X86 && CONFIG_GPL */
  1769. #else //CONFIG_RUNTIME_CPUDETECT
  1770. #if COMPILE_TEMPLATE_MMX2
  1771. sws_init_swScale_MMX2(c);
  1772. return swScale_MMX2;
  1773. #elif COMPILE_TEMPLATE_AMD3DNOW
  1774. sws_init_swScale_3DNow(c);
  1775. return swScale_3DNow;
  1776. #elif COMPILE_TEMPLATE_MMX
  1777. sws_init_swScale_MMX(c);
  1778. return swScale_MMX;
  1779. #elif COMPILE_TEMPLATE_ALTIVEC
  1780. sws_init_swScale_altivec(c);
  1781. return swScale_altivec;
  1782. #else
  1783. sws_init_swScale_C(c);
  1784. return swScale_C;
  1785. #endif
  1786. #endif //!CONFIG_RUNTIME_CPUDETECT
  1787. }
  1788. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1789. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1790. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1791. /* Copy Y plane */
  1792. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1793. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1794. else
  1795. {
  1796. int i;
  1797. const uint8_t *srcPtr= src[0];
  1798. uint8_t *dstPtr= dst;
  1799. for (i=0; i<srcSliceH; i++)
  1800. {
  1801. memcpy(dstPtr, srcPtr, c->srcW);
  1802. srcPtr+= srcStride[0];
  1803. dstPtr+= dstStride[0];
  1804. }
  1805. }
  1806. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1807. if (c->dstFormat == PIX_FMT_NV12)
  1808. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1809. else
  1810. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1811. return srcSliceH;
  1812. }
  1813. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1814. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1815. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1816. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1817. return srcSliceH;
  1818. }
  1819. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1820. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1821. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1822. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1823. return srcSliceH;
  1824. }
  1825. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1826. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1827. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1828. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1829. return srcSliceH;
  1830. }
  1831. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1832. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1833. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1834. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1835. return srcSliceH;
  1836. }
  1837. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1838. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1839. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1840. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1841. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1842. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1843. if (dstParam[3])
  1844. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1845. return srcSliceH;
  1846. }
  1847. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1848. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1849. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1850. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1851. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1852. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1853. return srcSliceH;
  1854. }
  1855. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1856. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1857. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1858. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1859. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1860. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1861. if (dstParam[3])
  1862. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1863. return srcSliceH;
  1864. }
  1865. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1866. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1867. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1868. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1869. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1870. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1871. return srcSliceH;
  1872. }
  1873. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1874. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1875. const enum PixelFormat srcFormat= c->srcFormat;
  1876. const enum PixelFormat dstFormat= c->dstFormat;
  1877. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1878. const uint8_t *palette)=NULL;
  1879. int i;
  1880. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1881. uint8_t *srcPtr= src[0];
  1882. if (!usePal(srcFormat))
  1883. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1884. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1885. switch(dstFormat){
  1886. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1887. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1888. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1889. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1890. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1891. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1892. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1893. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1894. }
  1895. for (i=0; i<srcSliceH; i++) {
  1896. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1897. srcPtr+= srcStride[0];
  1898. dstPtr+= dstStride[0];
  1899. }
  1900. return srcSliceH;
  1901. }
  1902. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1903. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1904. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1905. const enum PixelFormat srcFormat= c->srcFormat;
  1906. const enum PixelFormat dstFormat= c->dstFormat;
  1907. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1908. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1909. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1910. const int dstId= fmt_depth(dstFormat) >> 2;
  1911. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1912. /* BGR -> BGR */
  1913. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1914. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1915. switch(srcId | (dstId<<4)){
  1916. case 0x34: conv= rgb16to15; break;
  1917. case 0x36: conv= rgb24to15; break;
  1918. case 0x38: conv= rgb32to15; break;
  1919. case 0x43: conv= rgb15to16; break;
  1920. case 0x46: conv= rgb24to16; break;
  1921. case 0x48: conv= rgb32to16; break;
  1922. case 0x63: conv= rgb15to24; break;
  1923. case 0x64: conv= rgb16to24; break;
  1924. case 0x68: conv= rgb32to24; break;
  1925. case 0x83: conv= rgb15to32; break;
  1926. case 0x84: conv= rgb16to32; break;
  1927. case 0x86: conv= rgb24to32; break;
  1928. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1929. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1930. }
  1931. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1932. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1933. switch(srcId | (dstId<<4)){
  1934. case 0x33: conv= rgb15tobgr15; break;
  1935. case 0x34: conv= rgb16tobgr15; break;
  1936. case 0x36: conv= rgb24tobgr15; break;
  1937. case 0x38: conv= rgb32tobgr15; break;
  1938. case 0x43: conv= rgb15tobgr16; break;
  1939. case 0x44: conv= rgb16tobgr16; break;
  1940. case 0x46: conv= rgb24tobgr16; break;
  1941. case 0x48: conv= rgb32tobgr16; break;
  1942. case 0x63: conv= rgb15tobgr24; break;
  1943. case 0x64: conv= rgb16tobgr24; break;
  1944. case 0x66: conv= rgb24tobgr24; break;
  1945. case 0x68: conv= rgb32tobgr24; break;
  1946. case 0x83: conv= rgb15tobgr32; break;
  1947. case 0x84: conv= rgb16tobgr32; break;
  1948. case 0x86: conv= rgb24tobgr32; break;
  1949. case 0x88: conv= rgb32tobgr32; break;
  1950. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1951. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1952. }
  1953. }else{
  1954. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1955. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1956. }
  1957. if(conv)
  1958. {
  1959. uint8_t *srcPtr= src[0];
  1960. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1961. srcPtr += ALT32_CORR;
  1962. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1963. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1964. else
  1965. {
  1966. int i;
  1967. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1968. for (i=0; i<srcSliceH; i++)
  1969. {
  1970. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1971. srcPtr+= srcStride[0];
  1972. dstPtr+= dstStride[0];
  1973. }
  1974. }
  1975. }
  1976. return srcSliceH;
  1977. }
  1978. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1979. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1980. rgb24toyv12(
  1981. src[0],
  1982. dst[0]+ srcSliceY *dstStride[0],
  1983. dst[1]+(srcSliceY>>1)*dstStride[1],
  1984. dst[2]+(srcSliceY>>1)*dstStride[2],
  1985. c->srcW, srcSliceH,
  1986. dstStride[0], dstStride[1], srcStride[0]);
  1987. if (dst[3])
  1988. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1989. return srcSliceH;
  1990. }
  1991. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1992. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1993. int i;
  1994. /* copy Y */
  1995. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1996. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1997. else{
  1998. uint8_t *srcPtr= src[0];
  1999. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2000. for (i=0; i<srcSliceH; i++)
  2001. {
  2002. memcpy(dstPtr, srcPtr, c->srcW);
  2003. srcPtr+= srcStride[0];
  2004. dstPtr+= dstStride[0];
  2005. }
  2006. }
  2007. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  2008. planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2009. srcSliceH >> 2, srcStride[1], dstStride[1]);
  2010. planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2011. srcSliceH >> 2, srcStride[2], dstStride[2]);
  2012. }else{
  2013. planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2014. srcSliceH >> 2, srcStride[1], dstStride[2]);
  2015. planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2016. srcSliceH >> 2, srcStride[2], dstStride[1]);
  2017. }
  2018. if (dst[3])
  2019. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2020. return srcSliceH;
  2021. }
  2022. /* unscaled copy like stuff (assumes nearly identical formats) */
  2023. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2024. int srcSliceH, uint8_t* dst[], int dstStride[])
  2025. {
  2026. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  2027. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  2028. else
  2029. {
  2030. int i;
  2031. uint8_t *srcPtr= src[0];
  2032. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2033. int length=0;
  2034. /* universal length finder */
  2035. while(length+c->srcW <= FFABS(dstStride[0])
  2036. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  2037. assert(length!=0);
  2038. for (i=0; i<srcSliceH; i++)
  2039. {
  2040. memcpy(dstPtr, srcPtr, length);
  2041. srcPtr+= srcStride[0];
  2042. dstPtr+= dstStride[0];
  2043. }
  2044. }
  2045. return srcSliceH;
  2046. }
  2047. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2048. int srcSliceH, uint8_t* dst[], int dstStride[])
  2049. {
  2050. int plane, i, j;
  2051. for (plane=0; plane<4; plane++)
  2052. {
  2053. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  2054. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  2055. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  2056. uint8_t *srcPtr= src[plane];
  2057. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  2058. if (!dst[plane]) continue;
  2059. // ignore palette for GRAY8
  2060. if (plane == 1 && !dst[2]) continue;
  2061. if (!src[plane] || (plane == 1 && !src[2])){
  2062. if(is16BPS(c->dstFormat))
  2063. length*=2;
  2064. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  2065. }else
  2066. {
  2067. if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
  2068. if (!isBE(c->srcFormat)) srcPtr++;
  2069. for (i=0; i<height; i++){
  2070. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  2071. srcPtr+= srcStride[plane];
  2072. dstPtr+= dstStride[plane];
  2073. }
  2074. }else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
  2075. for (i=0; i<height; i++){
  2076. for (j=0; j<length; j++){
  2077. dstPtr[ j<<1 ] = srcPtr[j];
  2078. dstPtr[(j<<1)+1] = srcPtr[j];
  2079. }
  2080. srcPtr+= srcStride[plane];
  2081. dstPtr+= dstStride[plane];
  2082. }
  2083. }else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
  2084. && isBE(c->srcFormat) != isBE(c->dstFormat)){
  2085. for (i=0; i<height; i++){
  2086. for (j=0; j<length; j++)
  2087. ((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
  2088. srcPtr+= srcStride[plane];
  2089. dstPtr+= dstStride[plane];
  2090. }
  2091. } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  2092. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  2093. else
  2094. {
  2095. if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  2096. length*=2;
  2097. for (i=0; i<height; i++)
  2098. {
  2099. memcpy(dstPtr, srcPtr, length);
  2100. srcPtr+= srcStride[plane];
  2101. dstPtr+= dstStride[plane];
  2102. }
  2103. }
  2104. }
  2105. }
  2106. return srcSliceH;
  2107. }
  2108. static void getSubSampleFactors(int *h, int *v, int format){
  2109. switch(format){
  2110. case PIX_FMT_UYVY422:
  2111. case PIX_FMT_YUYV422:
  2112. *h=1;
  2113. *v=0;
  2114. break;
  2115. case PIX_FMT_YUV420P:
  2116. case PIX_FMT_YUV420PLE:
  2117. case PIX_FMT_YUV420PBE:
  2118. case PIX_FMT_YUVA420P:
  2119. case PIX_FMT_GRAY16BE:
  2120. case PIX_FMT_GRAY16LE:
  2121. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2122. case PIX_FMT_NV12:
  2123. case PIX_FMT_NV21:
  2124. *h=1;
  2125. *v=1;
  2126. break;
  2127. case PIX_FMT_YUV440P:
  2128. *h=0;
  2129. *v=1;
  2130. break;
  2131. case PIX_FMT_YUV410P:
  2132. *h=2;
  2133. *v=2;
  2134. break;
  2135. case PIX_FMT_YUV444P:
  2136. case PIX_FMT_YUV444PLE:
  2137. case PIX_FMT_YUV444PBE:
  2138. *h=0;
  2139. *v=0;
  2140. break;
  2141. case PIX_FMT_YUV422P:
  2142. case PIX_FMT_YUV422PLE:
  2143. case PIX_FMT_YUV422PBE:
  2144. *h=1;
  2145. *v=0;
  2146. break;
  2147. case PIX_FMT_YUV411P:
  2148. *h=2;
  2149. *v=0;
  2150. break;
  2151. default:
  2152. *h=0;
  2153. *v=0;
  2154. break;
  2155. }
  2156. }
  2157. static uint16_t roundToInt16(int64_t f){
  2158. int r= (f + (1<<15))>>16;
  2159. if (r<-0x7FFF) return 0x8000;
  2160. else if (r> 0x7FFF) return 0x7FFF;
  2161. else return r;
  2162. }
  2163. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2164. int64_t crv = inv_table[0];
  2165. int64_t cbu = inv_table[1];
  2166. int64_t cgu = -inv_table[2];
  2167. int64_t cgv = -inv_table[3];
  2168. int64_t cy = 1<<16;
  2169. int64_t oy = 0;
  2170. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2171. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2172. c->brightness= brightness;
  2173. c->contrast = contrast;
  2174. c->saturation= saturation;
  2175. c->srcRange = srcRange;
  2176. c->dstRange = dstRange;
  2177. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2178. c->uOffset= 0x0400040004000400LL;
  2179. c->vOffset= 0x0400040004000400LL;
  2180. if (!srcRange){
  2181. cy= (cy*255) / 219;
  2182. oy= 16<<16;
  2183. }else{
  2184. crv= (crv*224) / 255;
  2185. cbu= (cbu*224) / 255;
  2186. cgu= (cgu*224) / 255;
  2187. cgv= (cgv*224) / 255;
  2188. }
  2189. cy = (cy *contrast )>>16;
  2190. crv= (crv*contrast * saturation)>>32;
  2191. cbu= (cbu*contrast * saturation)>>32;
  2192. cgu= (cgu*contrast * saturation)>>32;
  2193. cgv= (cgv*contrast * saturation)>>32;
  2194. oy -= 256*brightness;
  2195. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2196. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2197. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2198. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2199. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2200. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2201. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2202. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2203. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2204. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2205. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2206. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2207. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2208. //FIXME factorize
  2209. #ifdef COMPILE_ALTIVEC
  2210. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2211. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2212. #endif
  2213. return 0;
  2214. }
  2215. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2216. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2217. *inv_table = c->srcColorspaceTable;
  2218. *table = c->dstColorspaceTable;
  2219. *srcRange = c->srcRange;
  2220. *dstRange = c->dstRange;
  2221. *brightness= c->brightness;
  2222. *contrast = c->contrast;
  2223. *saturation= c->saturation;
  2224. return 0;
  2225. }
  2226. static int handle_jpeg(enum PixelFormat *format)
  2227. {
  2228. switch (*format) {
  2229. case PIX_FMT_YUVJ420P:
  2230. *format = PIX_FMT_YUV420P;
  2231. return 1;
  2232. case PIX_FMT_YUVJ422P:
  2233. *format = PIX_FMT_YUV422P;
  2234. return 1;
  2235. case PIX_FMT_YUVJ444P:
  2236. *format = PIX_FMT_YUV444P;
  2237. return 1;
  2238. case PIX_FMT_YUVJ440P:
  2239. *format = PIX_FMT_YUV440P;
  2240. return 1;
  2241. default:
  2242. return 0;
  2243. }
  2244. }
  2245. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2246. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  2247. {
  2248. SwsContext *c;
  2249. int i;
  2250. int usesVFilter, usesHFilter;
  2251. int unscaled, needsDither;
  2252. int srcRange, dstRange;
  2253. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2254. #if ARCH_X86
  2255. if (flags & SWS_CPU_CAPS_MMX)
  2256. __asm__ volatile("emms\n\t"::: "memory");
  2257. #endif
  2258. #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
  2259. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2260. #if COMPILE_TEMPLATE_MMX2
  2261. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2262. #elif COMPILE_TEMPLATE_AMD3DNOW
  2263. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2264. #elif COMPILE_TEMPLATE_MMX
  2265. flags |= SWS_CPU_CAPS_MMX;
  2266. #elif COMPILE_TEMPLATE_ALTIVEC
  2267. flags |= SWS_CPU_CAPS_ALTIVEC;
  2268. #elif ARCH_BFIN
  2269. flags |= SWS_CPU_CAPS_BFIN;
  2270. #endif
  2271. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2272. if (clip_table[512] != 255) globalInit();
  2273. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2274. unscaled = (srcW == dstW && srcH == dstH);
  2275. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2276. && (fmt_depth(dstFormat))<24
  2277. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2278. srcRange = handle_jpeg(&srcFormat);
  2279. dstRange = handle_jpeg(&dstFormat);
  2280. if (!isSupportedIn(srcFormat))
  2281. {
  2282. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2283. return NULL;
  2284. }
  2285. if (!isSupportedOut(dstFormat))
  2286. {
  2287. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2288. return NULL;
  2289. }
  2290. i= flags & ( SWS_POINT
  2291. |SWS_AREA
  2292. |SWS_BILINEAR
  2293. |SWS_FAST_BILINEAR
  2294. |SWS_BICUBIC
  2295. |SWS_X
  2296. |SWS_GAUSS
  2297. |SWS_LANCZOS
  2298. |SWS_SINC
  2299. |SWS_SPLINE
  2300. |SWS_BICUBLIN);
  2301. if(!i || (i & (i-1)))
  2302. {
  2303. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2304. return NULL;
  2305. }
  2306. /* sanity check */
  2307. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2308. {
  2309. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2310. srcW, srcH, dstW, dstH);
  2311. return NULL;
  2312. }
  2313. if(srcW > VOFW || dstW > VOFW){
  2314. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2315. return NULL;
  2316. }
  2317. if (!dstFilter) dstFilter= &dummyFilter;
  2318. if (!srcFilter) srcFilter= &dummyFilter;
  2319. c= av_mallocz(sizeof(SwsContext));
  2320. c->av_class = &sws_context_class;
  2321. c->srcW= srcW;
  2322. c->srcH= srcH;
  2323. c->dstW= dstW;
  2324. c->dstH= dstH;
  2325. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2326. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2327. c->flags= flags;
  2328. c->dstFormat= dstFormat;
  2329. c->srcFormat= srcFormat;
  2330. c->vRounder= 4* 0x0001000100010001ULL;
  2331. usesHFilter= usesVFilter= 0;
  2332. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2333. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2334. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2335. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2336. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2337. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2338. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2339. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2340. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2341. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2342. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2343. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2344. // drop some chroma lines if the user wants it
  2345. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2346. c->chrSrcVSubSample+= c->vChrDrop;
  2347. // drop every other pixel for chroma calculation unless user wants full chroma
  2348. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2349. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2350. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2351. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2352. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2353. c->chrSrcHSubSample=1;
  2354. if (param){
  2355. c->param[0] = param[0];
  2356. c->param[1] = param[1];
  2357. }else{
  2358. c->param[0] =
  2359. c->param[1] = SWS_PARAM_DEFAULT;
  2360. }
  2361. // Note the -((-x)>>y) is so that we always round toward +inf.
  2362. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2363. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2364. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2365. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2366. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2367. /* unscaled special cases */
  2368. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2369. {
  2370. /* yv12_to_nv12 */
  2371. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2372. {
  2373. c->swScale= PlanarToNV12Wrapper;
  2374. }
  2375. /* yuv2bgr */
  2376. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2377. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2378. {
  2379. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2380. }
  2381. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2382. {
  2383. c->swScale= yvu9toyv12Wrapper;
  2384. }
  2385. /* bgr24toYV12 */
  2386. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2387. c->swScale= bgr24toyv12Wrapper;
  2388. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2389. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2390. && (isBGR(dstFormat) || isRGB(dstFormat))
  2391. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2392. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2393. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2394. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2395. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2396. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2397. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2398. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2399. && dstFormat != PIX_FMT_RGB32_1
  2400. && dstFormat != PIX_FMT_BGR32_1
  2401. && srcFormat != PIX_FMT_RGB48LE && dstFormat != PIX_FMT_RGB48LE
  2402. && srcFormat != PIX_FMT_RGB48BE && dstFormat != PIX_FMT_RGB48BE
  2403. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2404. c->swScale= rgb2rgbWrapper;
  2405. if ((usePal(srcFormat) && (
  2406. dstFormat == PIX_FMT_RGB32 ||
  2407. dstFormat == PIX_FMT_RGB32_1 ||
  2408. dstFormat == PIX_FMT_RGB24 ||
  2409. dstFormat == PIX_FMT_BGR32 ||
  2410. dstFormat == PIX_FMT_BGR32_1 ||
  2411. dstFormat == PIX_FMT_BGR24)))
  2412. c->swScale= pal2rgbWrapper;
  2413. if (srcFormat == PIX_FMT_YUV422P)
  2414. {
  2415. if (dstFormat == PIX_FMT_YUYV422)
  2416. c->swScale= YUV422PToYuy2Wrapper;
  2417. else if (dstFormat == PIX_FMT_UYVY422)
  2418. c->swScale= YUV422PToUyvyWrapper;
  2419. }
  2420. /* LQ converters if -sws 0 or -sws 4*/
  2421. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2422. /* yv12_to_yuy2 */
  2423. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2424. {
  2425. if (dstFormat == PIX_FMT_YUYV422)
  2426. c->swScale= PlanarToYuy2Wrapper;
  2427. else if (dstFormat == PIX_FMT_UYVY422)
  2428. c->swScale= PlanarToUyvyWrapper;
  2429. }
  2430. }
  2431. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2432. c->swScale= YUYV2YUV420Wrapper;
  2433. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2434. c->swScale= UYVY2YUV420Wrapper;
  2435. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2436. c->swScale= YUYV2YUV422Wrapper;
  2437. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2438. c->swScale= UYVY2YUV422Wrapper;
  2439. #ifdef COMPILE_ALTIVEC
  2440. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2441. !(c->flags & SWS_BITEXACT) &&
  2442. srcFormat == PIX_FMT_YUV420P) {
  2443. // unscaled YV12 -> packed YUV, we want speed
  2444. if (dstFormat == PIX_FMT_YUYV422)
  2445. c->swScale= yv12toyuy2_unscaled_altivec;
  2446. else if (dstFormat == PIX_FMT_UYVY422)
  2447. c->swScale= yv12touyvy_unscaled_altivec;
  2448. }
  2449. #endif
  2450. /* simple copy */
  2451. if ( srcFormat == dstFormat
  2452. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2453. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2454. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2455. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  2456. || (isGray(dstFormat) && isGray(srcFormat))
  2457. || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
  2458. && c->chrDstHSubSample == c->chrSrcHSubSample
  2459. && c->chrDstVSubSample == c->chrSrcVSubSample
  2460. && dstFormat != PIX_FMT_NV12 && dstFormat != PIX_FMT_NV21
  2461. && srcFormat != PIX_FMT_NV12 && srcFormat != PIX_FMT_NV21))
  2462. {
  2463. if (isPacked(c->srcFormat))
  2464. c->swScale= packedCopy;
  2465. else /* Planar YUV or gray */
  2466. c->swScale= planarCopy;
  2467. }
  2468. #if ARCH_BFIN
  2469. if (flags & SWS_CPU_CAPS_BFIN)
  2470. ff_bfin_get_unscaled_swscale (c);
  2471. #endif
  2472. if (c->swScale){
  2473. if (flags&SWS_PRINT_INFO)
  2474. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2475. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2476. return c;
  2477. }
  2478. }
  2479. if (flags & SWS_CPU_CAPS_MMX2)
  2480. {
  2481. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2482. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2483. {
  2484. if (flags&SWS_PRINT_INFO)
  2485. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2486. }
  2487. if (usesHFilter) c->canMMX2BeUsed=0;
  2488. }
  2489. else
  2490. c->canMMX2BeUsed=0;
  2491. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2492. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2493. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2494. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2495. // n-2 is the last chrominance sample available
  2496. // this is not perfect, but no one should notice the difference, the more correct variant
  2497. // would be like the vertical one, but that would require some special code for the
  2498. // first and last pixel
  2499. if (flags&SWS_FAST_BILINEAR)
  2500. {
  2501. if (c->canMMX2BeUsed)
  2502. {
  2503. c->lumXInc+= 20;
  2504. c->chrXInc+= 20;
  2505. }
  2506. //we don't use the x86 asm scaler if MMX is available
  2507. else if (flags & SWS_CPU_CAPS_MMX)
  2508. {
  2509. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2510. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2511. }
  2512. }
  2513. /* precalculate horizontal scaler filter coefficients */
  2514. {
  2515. const int filterAlign=
  2516. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2517. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2518. 1;
  2519. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2520. srcW , dstW, filterAlign, 1<<14,
  2521. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2522. srcFilter->lumH, dstFilter->lumH, c->param);
  2523. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2524. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2525. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2526. srcFilter->chrH, dstFilter->chrH, c->param);
  2527. #define MAX_FUNNY_CODE_SIZE 10000
  2528. #if defined(COMPILE_MMX2)
  2529. // can't downscale !!!
  2530. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2531. {
  2532. #ifdef MAP_ANONYMOUS
  2533. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2534. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2535. #elif HAVE_VIRTUALALLOC
  2536. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2537. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2538. #else
  2539. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2540. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2541. #endif
  2542. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2543. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2544. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2545. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2546. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2547. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2548. }
  2549. #endif /* defined(COMPILE_MMX2) */
  2550. } // initialize horizontal stuff
  2551. /* precalculate vertical scaler filter coefficients */
  2552. {
  2553. const int filterAlign=
  2554. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2555. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2556. 1;
  2557. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2558. srcH , dstH, filterAlign, (1<<12),
  2559. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2560. srcFilter->lumV, dstFilter->lumV, c->param);
  2561. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2562. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2563. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2564. srcFilter->chrV, dstFilter->chrV, c->param);
  2565. #ifdef COMPILE_ALTIVEC
  2566. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2567. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2568. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2569. int j;
  2570. short *p = (short *)&c->vYCoeffsBank[i];
  2571. for (j=0;j<8;j++)
  2572. p[j] = c->vLumFilter[i];
  2573. }
  2574. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2575. int j;
  2576. short *p = (short *)&c->vCCoeffsBank[i];
  2577. for (j=0;j<8;j++)
  2578. p[j] = c->vChrFilter[i];
  2579. }
  2580. #endif
  2581. }
  2582. // calculate buffer sizes so that they won't run out while handling these damn slices
  2583. c->vLumBufSize= c->vLumFilterSize;
  2584. c->vChrBufSize= c->vChrFilterSize;
  2585. for (i=0; i<dstH; i++)
  2586. {
  2587. int chrI= i*c->chrDstH / dstH;
  2588. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2589. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2590. nextSlice>>= c->chrSrcVSubSample;
  2591. nextSlice<<= c->chrSrcVSubSample;
  2592. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2593. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2594. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2595. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2596. }
  2597. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2598. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2599. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2600. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2601. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2602. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2603. /* align at 16 bytes for AltiVec */
  2604. for (i=0; i<c->vLumBufSize; i++)
  2605. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2606. for (i=0; i<c->vChrBufSize; i++)
  2607. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2608. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2609. for (i=0; i<c->vLumBufSize; i++)
  2610. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2611. //try to avoid drawing green stuff between the right end and the stride end
  2612. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2613. assert(2*VOFW == VOF);
  2614. assert(c->chrDstH <= dstH);
  2615. if (flags&SWS_PRINT_INFO)
  2616. {
  2617. #ifdef DITHER1XBPP
  2618. const char *dither= " dithered";
  2619. #else
  2620. const char *dither= "";
  2621. #endif
  2622. if (flags&SWS_FAST_BILINEAR)
  2623. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2624. else if (flags&SWS_BILINEAR)
  2625. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2626. else if (flags&SWS_BICUBIC)
  2627. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2628. else if (flags&SWS_X)
  2629. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2630. else if (flags&SWS_POINT)
  2631. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2632. else if (flags&SWS_AREA)
  2633. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2634. else if (flags&SWS_BICUBLIN)
  2635. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2636. else if (flags&SWS_GAUSS)
  2637. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2638. else if (flags&SWS_SINC)
  2639. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2640. else if (flags&SWS_LANCZOS)
  2641. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2642. else if (flags&SWS_SPLINE)
  2643. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2644. else
  2645. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2646. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2647. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2648. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2649. else
  2650. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2651. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2652. if (flags & SWS_CPU_CAPS_MMX2)
  2653. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2654. else if (flags & SWS_CPU_CAPS_3DNOW)
  2655. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2656. else if (flags & SWS_CPU_CAPS_MMX)
  2657. av_log(c, AV_LOG_INFO, "using MMX\n");
  2658. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2659. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2660. else
  2661. av_log(c, AV_LOG_INFO, "using C\n");
  2662. }
  2663. if (flags & SWS_PRINT_INFO)
  2664. {
  2665. if (flags & SWS_CPU_CAPS_MMX)
  2666. {
  2667. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2668. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2669. else
  2670. {
  2671. if (c->hLumFilterSize==4)
  2672. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2673. else if (c->hLumFilterSize==8)
  2674. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2675. else
  2676. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2677. if (c->hChrFilterSize==4)
  2678. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2679. else if (c->hChrFilterSize==8)
  2680. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2681. else
  2682. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2683. }
  2684. }
  2685. else
  2686. {
  2687. #if ARCH_X86
  2688. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2689. #else
  2690. if (flags & SWS_FAST_BILINEAR)
  2691. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2692. else
  2693. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2694. #endif
  2695. }
  2696. if (isPlanarYUV(dstFormat))
  2697. {
  2698. if (c->vLumFilterSize==1)
  2699. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2700. else
  2701. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2702. }
  2703. else
  2704. {
  2705. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2706. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2707. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2708. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2709. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2710. else
  2711. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2712. }
  2713. if (dstFormat==PIX_FMT_BGR24)
  2714. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2715. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2716. else if (dstFormat==PIX_FMT_RGB32)
  2717. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2718. else if (dstFormat==PIX_FMT_BGR565)
  2719. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2720. else if (dstFormat==PIX_FMT_BGR555)
  2721. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2722. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2723. }
  2724. if (flags & SWS_PRINT_INFO)
  2725. {
  2726. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2727. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2728. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2729. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2730. }
  2731. c->swScale= getSwsFunc(c);
  2732. return c;
  2733. }
  2734. static void reset_ptr(uint8_t* src[], int format){
  2735. if(!isALPHA(format))
  2736. src[3]=NULL;
  2737. if(!isPlanarYUV(format)){
  2738. src[3]=src[2]=NULL;
  2739. if( format != PIX_FMT_PAL8
  2740. && format != PIX_FMT_RGB8
  2741. && format != PIX_FMT_BGR8
  2742. && format != PIX_FMT_RGB4_BYTE
  2743. && format != PIX_FMT_BGR4_BYTE
  2744. )
  2745. src[1]= NULL;
  2746. }
  2747. }
  2748. /**
  2749. * swscale wrapper, so we don't need to export the SwsContext.
  2750. * Assumes planar YUV to be in YUV order instead of YVU.
  2751. */
  2752. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2753. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2754. int i;
  2755. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2756. uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
  2757. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2758. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2759. return 0;
  2760. }
  2761. if (c->sliceDir == 0) {
  2762. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2763. }
  2764. if (usePal(c->srcFormat)){
  2765. for (i=0; i<256; i++){
  2766. int p, r, g, b,y,u,v;
  2767. if(c->srcFormat == PIX_FMT_PAL8){
  2768. p=((uint32_t*)(src[1]))[i];
  2769. r= (p>>16)&0xFF;
  2770. g= (p>> 8)&0xFF;
  2771. b= p &0xFF;
  2772. }else if(c->srcFormat == PIX_FMT_RGB8){
  2773. r= (i>>5 )*36;
  2774. g= ((i>>2)&7)*36;
  2775. b= (i&3 )*85;
  2776. }else if(c->srcFormat == PIX_FMT_BGR8){
  2777. b= (i>>6 )*85;
  2778. g= ((i>>3)&7)*36;
  2779. r= (i&7 )*36;
  2780. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2781. r= (i>>3 )*255;
  2782. g= ((i>>1)&3)*85;
  2783. b= (i&1 )*255;
  2784. }else {
  2785. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2786. b= (i>>3 )*255;
  2787. g= ((i>>1)&3)*85;
  2788. r= (i&1 )*255;
  2789. }
  2790. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2791. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2792. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2793. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2794. switch(c->dstFormat) {
  2795. case PIX_FMT_BGR32:
  2796. #if !HAVE_BIGENDIAN
  2797. case PIX_FMT_RGB24:
  2798. #endif
  2799. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2800. break;
  2801. case PIX_FMT_BGR32_1:
  2802. #if HAVE_BIGENDIAN
  2803. case PIX_FMT_BGR24:
  2804. #endif
  2805. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2806. break;
  2807. case PIX_FMT_RGB32_1:
  2808. #if HAVE_BIGENDIAN
  2809. case PIX_FMT_RGB24:
  2810. #endif
  2811. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2812. break;
  2813. case PIX_FMT_RGB32:
  2814. #if !HAVE_BIGENDIAN
  2815. case PIX_FMT_BGR24:
  2816. #endif
  2817. default:
  2818. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2819. }
  2820. }
  2821. }
  2822. // copy strides, so they can safely be modified
  2823. if (c->sliceDir == 1) {
  2824. // slices go from top to bottom
  2825. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2826. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2827. reset_ptr(src2, c->srcFormat);
  2828. reset_ptr(dst2, c->dstFormat);
  2829. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
  2830. } else {
  2831. // slices go from bottom to top => we flip the image internally
  2832. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2833. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2834. src2[0] += (srcSliceH-1)*srcStride[0];
  2835. if (!usePal(c->srcFormat))
  2836. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2837. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2838. src2[3] += (srcSliceH-1)*srcStride[3];
  2839. dst2[0] += ( c->dstH -1)*dstStride[0];
  2840. dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
  2841. dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
  2842. dst2[3] += ( c->dstH -1)*dstStride[3];
  2843. reset_ptr(src2, c->srcFormat);
  2844. reset_ptr(dst2, c->dstFormat);
  2845. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2846. }
  2847. }
  2848. #if LIBSWSCALE_VERSION_MAJOR < 1
  2849. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2850. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2851. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2852. }
  2853. #endif
  2854. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2855. float lumaSharpen, float chromaSharpen,
  2856. float chromaHShift, float chromaVShift,
  2857. int verbose)
  2858. {
  2859. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2860. if (lumaGBlur!=0.0){
  2861. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2862. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2863. }else{
  2864. filter->lumH= sws_getIdentityVec();
  2865. filter->lumV= sws_getIdentityVec();
  2866. }
  2867. if (chromaGBlur!=0.0){
  2868. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2869. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2870. }else{
  2871. filter->chrH= sws_getIdentityVec();
  2872. filter->chrV= sws_getIdentityVec();
  2873. }
  2874. if (chromaSharpen!=0.0){
  2875. SwsVector *id= sws_getIdentityVec();
  2876. sws_scaleVec(filter->chrH, -chromaSharpen);
  2877. sws_scaleVec(filter->chrV, -chromaSharpen);
  2878. sws_addVec(filter->chrH, id);
  2879. sws_addVec(filter->chrV, id);
  2880. sws_freeVec(id);
  2881. }
  2882. if (lumaSharpen!=0.0){
  2883. SwsVector *id= sws_getIdentityVec();
  2884. sws_scaleVec(filter->lumH, -lumaSharpen);
  2885. sws_scaleVec(filter->lumV, -lumaSharpen);
  2886. sws_addVec(filter->lumH, id);
  2887. sws_addVec(filter->lumV, id);
  2888. sws_freeVec(id);
  2889. }
  2890. if (chromaHShift != 0.0)
  2891. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2892. if (chromaVShift != 0.0)
  2893. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2894. sws_normalizeVec(filter->chrH, 1.0);
  2895. sws_normalizeVec(filter->chrV, 1.0);
  2896. sws_normalizeVec(filter->lumH, 1.0);
  2897. sws_normalizeVec(filter->lumV, 1.0);
  2898. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2899. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2900. return filter;
  2901. }
  2902. SwsVector *sws_getGaussianVec(double variance, double quality){
  2903. const int length= (int)(variance*quality + 0.5) | 1;
  2904. int i;
  2905. double *coeff= av_malloc(length*sizeof(double));
  2906. double middle= (length-1)*0.5;
  2907. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2908. vec->coeff= coeff;
  2909. vec->length= length;
  2910. for (i=0; i<length; i++)
  2911. {
  2912. double dist= i-middle;
  2913. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2914. }
  2915. sws_normalizeVec(vec, 1.0);
  2916. return vec;
  2917. }
  2918. SwsVector *sws_getConstVec(double c, int length){
  2919. int i;
  2920. double *coeff= av_malloc(length*sizeof(double));
  2921. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2922. vec->coeff= coeff;
  2923. vec->length= length;
  2924. for (i=0; i<length; i++)
  2925. coeff[i]= c;
  2926. return vec;
  2927. }
  2928. SwsVector *sws_getIdentityVec(void){
  2929. return sws_getConstVec(1.0, 1);
  2930. }
  2931. double sws_dcVec(SwsVector *a){
  2932. int i;
  2933. double sum=0;
  2934. for (i=0; i<a->length; i++)
  2935. sum+= a->coeff[i];
  2936. return sum;
  2937. }
  2938. void sws_scaleVec(SwsVector *a, double scalar){
  2939. int i;
  2940. for (i=0; i<a->length; i++)
  2941. a->coeff[i]*= scalar;
  2942. }
  2943. void sws_normalizeVec(SwsVector *a, double height){
  2944. sws_scaleVec(a, height/sws_dcVec(a));
  2945. }
  2946. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2947. int length= a->length + b->length - 1;
  2948. double *coeff= av_malloc(length*sizeof(double));
  2949. int i, j;
  2950. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2951. vec->coeff= coeff;
  2952. vec->length= length;
  2953. for (i=0; i<length; i++) coeff[i]= 0.0;
  2954. for (i=0; i<a->length; i++)
  2955. {
  2956. for (j=0; j<b->length; j++)
  2957. {
  2958. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2959. }
  2960. }
  2961. return vec;
  2962. }
  2963. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2964. int length= FFMAX(a->length, b->length);
  2965. double *coeff= av_malloc(length*sizeof(double));
  2966. int i;
  2967. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2968. vec->coeff= coeff;
  2969. vec->length= length;
  2970. for (i=0; i<length; i++) coeff[i]= 0.0;
  2971. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2972. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2973. return vec;
  2974. }
  2975. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2976. int length= FFMAX(a->length, b->length);
  2977. double *coeff= av_malloc(length*sizeof(double));
  2978. int i;
  2979. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2980. vec->coeff= coeff;
  2981. vec->length= length;
  2982. for (i=0; i<length; i++) coeff[i]= 0.0;
  2983. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2984. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2985. return vec;
  2986. }
  2987. /* shift left / or right if "shift" is negative */
  2988. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2989. int length= a->length + FFABS(shift)*2;
  2990. double *coeff= av_malloc(length*sizeof(double));
  2991. int i;
  2992. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2993. vec->coeff= coeff;
  2994. vec->length= length;
  2995. for (i=0; i<length; i++) coeff[i]= 0.0;
  2996. for (i=0; i<a->length; i++)
  2997. {
  2998. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2999. }
  3000. return vec;
  3001. }
  3002. void sws_shiftVec(SwsVector *a, int shift){
  3003. SwsVector *shifted= sws_getShiftedVec(a, shift);
  3004. av_free(a->coeff);
  3005. a->coeff= shifted->coeff;
  3006. a->length= shifted->length;
  3007. av_free(shifted);
  3008. }
  3009. void sws_addVec(SwsVector *a, SwsVector *b){
  3010. SwsVector *sum= sws_sumVec(a, b);
  3011. av_free(a->coeff);
  3012. a->coeff= sum->coeff;
  3013. a->length= sum->length;
  3014. av_free(sum);
  3015. }
  3016. void sws_subVec(SwsVector *a, SwsVector *b){
  3017. SwsVector *diff= sws_diffVec(a, b);
  3018. av_free(a->coeff);
  3019. a->coeff= diff->coeff;
  3020. a->length= diff->length;
  3021. av_free(diff);
  3022. }
  3023. void sws_convVec(SwsVector *a, SwsVector *b){
  3024. SwsVector *conv= sws_getConvVec(a, b);
  3025. av_free(a->coeff);
  3026. a->coeff= conv->coeff;
  3027. a->length= conv->length;
  3028. av_free(conv);
  3029. }
  3030. SwsVector *sws_cloneVec(SwsVector *a){
  3031. double *coeff= av_malloc(a->length*sizeof(double));
  3032. int i;
  3033. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3034. vec->coeff= coeff;
  3035. vec->length= a->length;
  3036. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  3037. return vec;
  3038. }
  3039. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  3040. int i;
  3041. double max=0;
  3042. double min=0;
  3043. double range;
  3044. for (i=0; i<a->length; i++)
  3045. if (a->coeff[i]>max) max= a->coeff[i];
  3046. for (i=0; i<a->length; i++)
  3047. if (a->coeff[i]<min) min= a->coeff[i];
  3048. range= max - min;
  3049. for (i=0; i<a->length; i++)
  3050. {
  3051. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  3052. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  3053. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  3054. av_log(log_ctx, log_level, "|\n");
  3055. }
  3056. }
  3057. #if LIBSWSCALE_VERSION_MAJOR < 1
  3058. void sws_printVec(SwsVector *a){
  3059. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  3060. }
  3061. #endif
  3062. void sws_freeVec(SwsVector *a){
  3063. if (!a) return;
  3064. av_freep(&a->coeff);
  3065. a->length=0;
  3066. av_free(a);
  3067. }
  3068. void sws_freeFilter(SwsFilter *filter){
  3069. if (!filter) return;
  3070. if (filter->lumH) sws_freeVec(filter->lumH);
  3071. if (filter->lumV) sws_freeVec(filter->lumV);
  3072. if (filter->chrH) sws_freeVec(filter->chrH);
  3073. if (filter->chrV) sws_freeVec(filter->chrV);
  3074. av_free(filter);
  3075. }
  3076. void sws_freeContext(SwsContext *c){
  3077. int i;
  3078. if (!c) return;
  3079. if (c->lumPixBuf)
  3080. {
  3081. for (i=0; i<c->vLumBufSize; i++)
  3082. av_freep(&c->lumPixBuf[i]);
  3083. av_freep(&c->lumPixBuf);
  3084. }
  3085. if (c->chrPixBuf)
  3086. {
  3087. for (i=0; i<c->vChrBufSize; i++)
  3088. av_freep(&c->chrPixBuf[i]);
  3089. av_freep(&c->chrPixBuf);
  3090. }
  3091. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  3092. for (i=0; i<c->vLumBufSize; i++)
  3093. av_freep(&c->alpPixBuf[i]);
  3094. av_freep(&c->alpPixBuf);
  3095. }
  3096. av_freep(&c->vLumFilter);
  3097. av_freep(&c->vChrFilter);
  3098. av_freep(&c->hLumFilter);
  3099. av_freep(&c->hChrFilter);
  3100. #ifdef COMPILE_ALTIVEC
  3101. av_freep(&c->vYCoeffsBank);
  3102. av_freep(&c->vCCoeffsBank);
  3103. #endif
  3104. av_freep(&c->vLumFilterPos);
  3105. av_freep(&c->vChrFilterPos);
  3106. av_freep(&c->hLumFilterPos);
  3107. av_freep(&c->hChrFilterPos);
  3108. #if ARCH_X86 && CONFIG_GPL
  3109. #ifdef MAP_ANONYMOUS
  3110. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  3111. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  3112. #elif HAVE_VIRTUALALLOC
  3113. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3114. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3115. #else
  3116. av_free(c->funnyYCode );
  3117. av_free(c->funnyUVCode);
  3118. #endif
  3119. c->funnyYCode=NULL;
  3120. c->funnyUVCode=NULL;
  3121. #endif /* ARCH_X86 && CONFIG_GPL */
  3122. av_freep(&c->lumMmx2Filter);
  3123. av_freep(&c->chrMmx2Filter);
  3124. av_freep(&c->lumMmx2FilterPos);
  3125. av_freep(&c->chrMmx2FilterPos);
  3126. av_freep(&c->yuvTable);
  3127. av_free(c);
  3128. }
  3129. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3130. int srcW, int srcH, enum PixelFormat srcFormat,
  3131. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3132. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  3133. {
  3134. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3135. if (!param)
  3136. param = default_param;
  3137. if (context) {
  3138. if (context->srcW != srcW || context->srcH != srcH ||
  3139. context->srcFormat != srcFormat ||
  3140. context->dstW != dstW || context->dstH != dstH ||
  3141. context->dstFormat != dstFormat || context->flags != flags ||
  3142. context->param[0] != param[0] || context->param[1] != param[1])
  3143. {
  3144. sws_freeContext(context);
  3145. context = NULL;
  3146. }
  3147. }
  3148. if (!context) {
  3149. return sws_getContext(srcW, srcH, srcFormat,
  3150. dstW, dstH, dstFormat, flags,
  3151. srcFilter, dstFilter, param);
  3152. }
  3153. return context;
  3154. }