You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

235 lines
6.3KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file libavcodec/mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. av_cold void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. DECLARE_ALIGNED(16, float, ff_sine_32 [ 32]);
  47. DECLARE_ALIGNED(16, float, ff_sine_64 [ 64]);
  48. DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
  49. DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
  50. DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
  51. DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
  52. DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
  53. DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
  54. float * const ff_sine_windows[] = {
  55. NULL, NULL, NULL, NULL, NULL, // unused
  56. ff_sine_32 , ff_sine_64 ,
  57. ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
  58. };
  59. // Generate a sine window.
  60. av_cold void ff_sine_window_init(float *window, int n) {
  61. int i;
  62. for(i = 0; i < n; i++)
  63. window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
  64. }
  65. /**
  66. * init MDCT or IMDCT computation.
  67. */
  68. av_cold int ff_mdct_init(MDCTContext *s, int nbits, int inverse, double scale)
  69. {
  70. int n, n4, i;
  71. double alpha, theta;
  72. memset(s, 0, sizeof(*s));
  73. n = 1 << nbits;
  74. s->nbits = nbits;
  75. s->n = n;
  76. n4 = n >> 2;
  77. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  78. if (!s->tcos)
  79. goto fail;
  80. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  81. if (!s->tsin)
  82. goto fail;
  83. theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
  84. scale = sqrt(fabs(scale));
  85. for(i=0;i<n4;i++) {
  86. alpha = 2 * M_PI * (i + theta) / n;
  87. s->tcos[i] = -cos(alpha) * scale;
  88. s->tsin[i] = -sin(alpha) * scale;
  89. }
  90. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  91. goto fail;
  92. return 0;
  93. fail:
  94. av_freep(&s->tcos);
  95. av_freep(&s->tsin);
  96. return -1;
  97. }
  98. /* complex multiplication: p = a * b */
  99. #define CMUL(pre, pim, are, aim, bre, bim) \
  100. {\
  101. FFTSample _are = (are);\
  102. FFTSample _aim = (aim);\
  103. FFTSample _bre = (bre);\
  104. FFTSample _bim = (bim);\
  105. (pre) = _are * _bre - _aim * _bim;\
  106. (pim) = _are * _bim + _aim * _bre;\
  107. }
  108. /**
  109. * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  110. * thus excluding the parts that can be derived by symmetry
  111. * @param output N/2 samples
  112. * @param input N/2 samples
  113. */
  114. void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
  115. {
  116. int k, n8, n4, n2, n, j;
  117. const uint16_t *revtab = s->fft.revtab;
  118. const FFTSample *tcos = s->tcos;
  119. const FFTSample *tsin = s->tsin;
  120. const FFTSample *in1, *in2;
  121. FFTComplex *z = (FFTComplex *)output;
  122. n = 1 << s->nbits;
  123. n2 = n >> 1;
  124. n4 = n >> 2;
  125. n8 = n >> 3;
  126. /* pre rotation */
  127. in1 = input;
  128. in2 = input + n2 - 1;
  129. for(k = 0; k < n4; k++) {
  130. j=revtab[k];
  131. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  132. in1 += 2;
  133. in2 -= 2;
  134. }
  135. ff_fft_calc(&s->fft, z);
  136. /* post rotation + reordering */
  137. for(k = 0; k < n8; k++) {
  138. FFTSample r0, i0, r1, i1;
  139. CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
  140. CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
  141. z[n8-k-1].re = r0;
  142. z[n8-k-1].im = i0;
  143. z[n8+k ].re = r1;
  144. z[n8+k ].im = i1;
  145. }
  146. }
  147. /**
  148. * Compute inverse MDCT of size N = 2^nbits
  149. * @param output N samples
  150. * @param input N/2 samples
  151. */
  152. void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
  153. {
  154. int k;
  155. int n = 1 << s->nbits;
  156. int n2 = n >> 1;
  157. int n4 = n >> 2;
  158. ff_imdct_half_c(s, output+n4, input);
  159. for(k = 0; k < n4; k++) {
  160. output[k] = -output[n2-k-1];
  161. output[n-k-1] = output[n2+k];
  162. }
  163. }
  164. /**
  165. * Compute MDCT of size N = 2^nbits
  166. * @param input N samples
  167. * @param out N/2 samples
  168. */
  169. void ff_mdct_calc_c(MDCTContext *s, FFTSample *out, const FFTSample *input)
  170. {
  171. int i, j, n, n8, n4, n2, n3;
  172. FFTSample re, im;
  173. const uint16_t *revtab = s->fft.revtab;
  174. const FFTSample *tcos = s->tcos;
  175. const FFTSample *tsin = s->tsin;
  176. FFTComplex *x = (FFTComplex *)out;
  177. n = 1 << s->nbits;
  178. n2 = n >> 1;
  179. n4 = n >> 2;
  180. n8 = n >> 3;
  181. n3 = 3 * n4;
  182. /* pre rotation */
  183. for(i=0;i<n8;i++) {
  184. re = -input[2*i+3*n4] - input[n3-1-2*i];
  185. im = -input[n4+2*i] + input[n4-1-2*i];
  186. j = revtab[i];
  187. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  188. re = input[2*i] - input[n2-1-2*i];
  189. im = -(input[n2+2*i] + input[n-1-2*i]);
  190. j = revtab[n8 + i];
  191. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  192. }
  193. ff_fft_calc(&s->fft, x);
  194. /* post rotation */
  195. for(i=0;i<n8;i++) {
  196. FFTSample r0, i0, r1, i1;
  197. CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
  198. CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
  199. x[n8-i-1].re = r0;
  200. x[n8-i-1].im = i0;
  201. x[n8+i ].re = r1;
  202. x[n8+i ].im = i1;
  203. }
  204. }
  205. av_cold void ff_mdct_end(MDCTContext *s)
  206. {
  207. av_freep(&s->tcos);
  208. av_freep(&s->tsin);
  209. ff_fft_end(&s->fft);
  210. }