You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1427 lines
42KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "libavcore/audioconvert.h"
  28. #include "libavutil/crc.h"
  29. #include "avcodec.h"
  30. #include "libavutil/common.h" /* for av_reverse */
  31. #include "put_bits.h"
  32. #include "ac3.h"
  33. #include "audioconvert.h"
  34. typedef struct AC3EncodeContext {
  35. PutBitContext pb;
  36. int nb_channels;
  37. int nb_all_channels;
  38. int lfe_channel;
  39. const uint8_t *channel_map;
  40. int bit_rate;
  41. unsigned int sample_rate;
  42. unsigned int bitstream_id;
  43. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  44. unsigned int frame_size; /* current frame size in words */
  45. unsigned int bits_written;
  46. unsigned int samples_written;
  47. int sr_shift;
  48. unsigned int frame_size_code;
  49. unsigned int sr_code; /* frequency */
  50. unsigned int channel_mode;
  51. int lfe;
  52. unsigned int bitstream_mode;
  53. short last_samples[AC3_MAX_CHANNELS][256];
  54. unsigned int chbwcod[AC3_MAX_CHANNELS];
  55. int nb_coefs[AC3_MAX_CHANNELS];
  56. /* bitrate allocation control */
  57. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  58. AC3BitAllocParameters bit_alloc;
  59. int coarse_snr_offset;
  60. int fast_gain_code[AC3_MAX_CHANNELS];
  61. int fine_snr_offset[AC3_MAX_CHANNELS];
  62. /* mantissa encoding */
  63. int mant1_cnt, mant2_cnt, mant4_cnt;
  64. } AC3EncodeContext;
  65. static int16_t costab[64];
  66. static int16_t sintab[64];
  67. static int16_t xcos1[128];
  68. static int16_t xsin1[128];
  69. #define MDCT_NBITS 9
  70. #define N (1 << MDCT_NBITS)
  71. /* new exponents are sent if their Norm 1 exceed this number */
  72. #define EXP_DIFF_THRESHOLD 1000
  73. static inline int16_t fix15(float a)
  74. {
  75. int v;
  76. v = (int)(a * (float)(1 << 15));
  77. if (v < -32767)
  78. v = -32767;
  79. else if (v > 32767)
  80. v = 32767;
  81. return v;
  82. }
  83. typedef struct IComplex {
  84. short re,im;
  85. } IComplex;
  86. static av_cold void fft_init(int ln)
  87. {
  88. int i, n;
  89. float alpha;
  90. n = 1 << ln;
  91. for(i=0;i<(n/2);i++) {
  92. alpha = 2 * M_PI * (float)i / (float)n;
  93. costab[i] = fix15(cos(alpha));
  94. sintab[i] = fix15(sin(alpha));
  95. }
  96. }
  97. /* butter fly op */
  98. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  99. {\
  100. int ax, ay, bx, by;\
  101. bx=pre1;\
  102. by=pim1;\
  103. ax=qre1;\
  104. ay=qim1;\
  105. pre = (bx + ax) >> 1;\
  106. pim = (by + ay) >> 1;\
  107. qre = (bx - ax) >> 1;\
  108. qim = (by - ay) >> 1;\
  109. }
  110. #define CMUL(pre, pim, are, aim, bre, bim) \
  111. {\
  112. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  113. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  114. }
  115. /* do a 2^n point complex fft on 2^ln points. */
  116. static void fft(IComplex *z, int ln)
  117. {
  118. int j, l, np, np2;
  119. int nblocks, nloops;
  120. register IComplex *p,*q;
  121. int tmp_re, tmp_im;
  122. np = 1 << ln;
  123. /* reverse */
  124. for(j=0;j<np;j++) {
  125. int k = av_reverse[j] >> (8 - ln);
  126. if (k < j)
  127. FFSWAP(IComplex, z[k], z[j]);
  128. }
  129. /* pass 0 */
  130. p=&z[0];
  131. j=(np >> 1);
  132. do {
  133. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  134. p[0].re, p[0].im, p[1].re, p[1].im);
  135. p+=2;
  136. } while (--j != 0);
  137. /* pass 1 */
  138. p=&z[0];
  139. j=np >> 2;
  140. do {
  141. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  142. p[0].re, p[0].im, p[2].re, p[2].im);
  143. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  144. p[1].re, p[1].im, p[3].im, -p[3].re);
  145. p+=4;
  146. } while (--j != 0);
  147. /* pass 2 .. ln-1 */
  148. nblocks = np >> 3;
  149. nloops = 1 << 2;
  150. np2 = np >> 1;
  151. do {
  152. p = z;
  153. q = z + nloops;
  154. for (j = 0; j < nblocks; ++j) {
  155. BF(p->re, p->im, q->re, q->im,
  156. p->re, p->im, q->re, q->im);
  157. p++;
  158. q++;
  159. for(l = nblocks; l < np2; l += nblocks) {
  160. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  161. BF(p->re, p->im, q->re, q->im,
  162. p->re, p->im, tmp_re, tmp_im);
  163. p++;
  164. q++;
  165. }
  166. p += nloops;
  167. q += nloops;
  168. }
  169. nblocks = nblocks >> 1;
  170. nloops = nloops << 1;
  171. } while (nblocks != 0);
  172. }
  173. /* do a 512 point mdct */
  174. static void mdct512(int32_t *out, int16_t *in)
  175. {
  176. int i, re, im, re1, im1;
  177. int16_t rot[N];
  178. IComplex x[N/4];
  179. /* shift to simplify computations */
  180. for(i=0;i<N/4;i++)
  181. rot[i] = -in[i + 3*N/4];
  182. for(i=N/4;i<N;i++)
  183. rot[i] = in[i - N/4];
  184. /* pre rotation */
  185. for(i=0;i<N/4;i++) {
  186. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  187. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  188. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  189. }
  190. fft(x, MDCT_NBITS - 2);
  191. /* post rotation */
  192. for(i=0;i<N/4;i++) {
  193. re = x[i].re;
  194. im = x[i].im;
  195. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  196. out[2*i] = im1;
  197. out[N/2-1-2*i] = re1;
  198. }
  199. }
  200. /* XXX: use another norm ? */
  201. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  202. {
  203. int sum, i;
  204. sum = 0;
  205. for(i=0;i<n;i++) {
  206. sum += abs(exp1[i] - exp2[i]);
  207. }
  208. return sum;
  209. }
  210. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  211. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  212. int ch, int is_lfe)
  213. {
  214. int i, j;
  215. int exp_diff;
  216. /* estimate if the exponent variation & decide if they should be
  217. reused in the next frame */
  218. exp_strategy[0][ch] = EXP_NEW;
  219. for(i=1;i<NB_BLOCKS;i++) {
  220. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  221. dprintf(NULL, "exp_diff=%d\n", exp_diff);
  222. if (exp_diff > EXP_DIFF_THRESHOLD)
  223. exp_strategy[i][ch] = EXP_NEW;
  224. else
  225. exp_strategy[i][ch] = EXP_REUSE;
  226. }
  227. if (is_lfe)
  228. return;
  229. /* now select the encoding strategy type : if exponents are often
  230. recoded, we use a coarse encoding */
  231. i = 0;
  232. while (i < NB_BLOCKS) {
  233. j = i + 1;
  234. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  235. j++;
  236. switch(j - i) {
  237. case 1:
  238. exp_strategy[i][ch] = EXP_D45;
  239. break;
  240. case 2:
  241. case 3:
  242. exp_strategy[i][ch] = EXP_D25;
  243. break;
  244. default:
  245. exp_strategy[i][ch] = EXP_D15;
  246. break;
  247. }
  248. i = j;
  249. }
  250. }
  251. /* set exp[i] to min(exp[i], exp1[i]) */
  252. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  253. {
  254. int i;
  255. for(i=0;i<n;i++) {
  256. if (exp1[i] < exp[i])
  257. exp[i] = exp1[i];
  258. }
  259. }
  260. /* update the exponents so that they are the ones the decoder will
  261. decode. Return the number of bits used to code the exponents */
  262. static int encode_exp(uint8_t encoded_exp[N/2],
  263. uint8_t exp[N/2],
  264. int nb_exps,
  265. int exp_strategy)
  266. {
  267. int group_size, nb_groups, i, j, k, exp_min;
  268. uint8_t exp1[N/2];
  269. switch(exp_strategy) {
  270. case EXP_D15:
  271. group_size = 1;
  272. break;
  273. case EXP_D25:
  274. group_size = 2;
  275. break;
  276. default:
  277. case EXP_D45:
  278. group_size = 4;
  279. break;
  280. }
  281. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  282. /* for each group, compute the minimum exponent */
  283. exp1[0] = exp[0]; /* DC exponent is handled separately */
  284. k = 1;
  285. for(i=1;i<=nb_groups;i++) {
  286. exp_min = exp[k];
  287. assert(exp_min >= 0 && exp_min <= 24);
  288. for(j=1;j<group_size;j++) {
  289. if (exp[k+j] < exp_min)
  290. exp_min = exp[k+j];
  291. }
  292. exp1[i] = exp_min;
  293. k += group_size;
  294. }
  295. /* constraint for DC exponent */
  296. if (exp1[0] > 15)
  297. exp1[0] = 15;
  298. /* Decrease the delta between each groups to within 2
  299. * so that they can be differentially encoded */
  300. for (i=1;i<=nb_groups;i++)
  301. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  302. for (i=nb_groups-1;i>=0;i--)
  303. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  304. /* now we have the exponent values the decoder will see */
  305. encoded_exp[0] = exp1[0];
  306. k = 1;
  307. for(i=1;i<=nb_groups;i++) {
  308. for(j=0;j<group_size;j++) {
  309. encoded_exp[k+j] = exp1[i];
  310. }
  311. k += group_size;
  312. }
  313. #if defined(DEBUG)
  314. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  315. for(i=0;i<=nb_groups * group_size;i++) {
  316. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  317. }
  318. av_log(NULL, AV_LOG_DEBUG, "\n");
  319. #endif
  320. return 4 + (nb_groups / 3) * 7;
  321. }
  322. /* return the size in bits taken by the mantissa */
  323. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  324. {
  325. int bits, mant, i;
  326. bits = 0;
  327. for(i=0;i<nb_coefs;i++) {
  328. mant = m[i];
  329. switch(mant) {
  330. case 0:
  331. /* nothing */
  332. break;
  333. case 1:
  334. /* 3 mantissa in 5 bits */
  335. if (s->mant1_cnt == 0)
  336. bits += 5;
  337. if (++s->mant1_cnt == 3)
  338. s->mant1_cnt = 0;
  339. break;
  340. case 2:
  341. /* 3 mantissa in 7 bits */
  342. if (s->mant2_cnt == 0)
  343. bits += 7;
  344. if (++s->mant2_cnt == 3)
  345. s->mant2_cnt = 0;
  346. break;
  347. case 3:
  348. bits += 3;
  349. break;
  350. case 4:
  351. /* 2 mantissa in 7 bits */
  352. if (s->mant4_cnt == 0)
  353. bits += 7;
  354. if (++s->mant4_cnt == 2)
  355. s->mant4_cnt = 0;
  356. break;
  357. case 14:
  358. bits += 14;
  359. break;
  360. case 15:
  361. bits += 16;
  362. break;
  363. default:
  364. bits += mant - 1;
  365. break;
  366. }
  367. }
  368. return bits;
  369. }
  370. static void bit_alloc_masking(AC3EncodeContext *s,
  371. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  372. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  373. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  374. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  375. {
  376. int blk, ch;
  377. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  378. for(blk=0; blk<NB_BLOCKS; blk++) {
  379. for(ch=0;ch<s->nb_all_channels;ch++) {
  380. if(exp_strategy[blk][ch] == EXP_REUSE) {
  381. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  382. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  383. } else {
  384. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  385. s->nb_coefs[ch],
  386. psd[blk][ch], band_psd[blk][ch]);
  387. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  388. 0, s->nb_coefs[ch],
  389. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  390. ch == s->lfe_channel,
  391. DBA_NONE, 0, NULL, NULL, NULL,
  392. mask[blk][ch]);
  393. }
  394. }
  395. }
  396. }
  397. static int bit_alloc(AC3EncodeContext *s,
  398. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  399. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  400. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  401. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  402. {
  403. int i, ch;
  404. int snr_offset;
  405. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  406. /* compute size */
  407. for(i=0;i<NB_BLOCKS;i++) {
  408. s->mant1_cnt = 0;
  409. s->mant2_cnt = 0;
  410. s->mant4_cnt = 0;
  411. for(ch=0;ch<s->nb_all_channels;ch++) {
  412. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  413. s->nb_coefs[ch], snr_offset,
  414. s->bit_alloc.floor, ff_ac3_bap_tab,
  415. bap[i][ch]);
  416. frame_bits += compute_mantissa_size(s, bap[i][ch],
  417. s->nb_coefs[ch]);
  418. }
  419. }
  420. #if 0
  421. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  422. coarse_snr_offset, fine_snr_offset, frame_bits,
  423. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  424. #endif
  425. return 16 * s->frame_size - frame_bits;
  426. }
  427. #define SNR_INC1 4
  428. static int compute_bit_allocation(AC3EncodeContext *s,
  429. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  430. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  431. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  432. int frame_bits)
  433. {
  434. int i, ch;
  435. int coarse_snr_offset, fine_snr_offset;
  436. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  437. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  438. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  439. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  440. /* init default parameters */
  441. s->slow_decay_code = 2;
  442. s->fast_decay_code = 1;
  443. s->slow_gain_code = 1;
  444. s->db_per_bit_code = 2;
  445. s->floor_code = 4;
  446. for(ch=0;ch<s->nb_all_channels;ch++)
  447. s->fast_gain_code[ch] = 4;
  448. /* compute real values */
  449. s->bit_alloc.sr_code = s->sr_code;
  450. s->bit_alloc.sr_shift = s->sr_shift;
  451. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  452. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  453. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  454. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  455. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  456. /* header size */
  457. frame_bits += 65;
  458. // if (s->channel_mode == 2)
  459. // frame_bits += 2;
  460. frame_bits += frame_bits_inc[s->channel_mode];
  461. /* audio blocks */
  462. for(i=0;i<NB_BLOCKS;i++) {
  463. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  464. if (s->channel_mode == AC3_CHMODE_STEREO) {
  465. frame_bits++; /* rematstr */
  466. if(i==0) frame_bits += 4;
  467. }
  468. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  469. if (s->lfe)
  470. frame_bits++; /* lfeexpstr */
  471. for(ch=0;ch<s->nb_channels;ch++) {
  472. if (exp_strategy[i][ch] != EXP_REUSE)
  473. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  474. }
  475. frame_bits++; /* baie */
  476. frame_bits++; /* snr */
  477. frame_bits += 2; /* delta / skip */
  478. }
  479. frame_bits++; /* cplinu for block 0 */
  480. /* bit alloc info */
  481. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  482. /* csnroffset[6] */
  483. /* (fsnoffset[4] + fgaincod[4]) * c */
  484. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  485. /* auxdatae, crcrsv */
  486. frame_bits += 2;
  487. /* CRC */
  488. frame_bits += 16;
  489. /* calculate psd and masking curve before doing bit allocation */
  490. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  491. /* now the big work begins : do the bit allocation. Modify the snr
  492. offset until we can pack everything in the requested frame size */
  493. coarse_snr_offset = s->coarse_snr_offset;
  494. while (coarse_snr_offset >= 0 &&
  495. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  496. coarse_snr_offset -= SNR_INC1;
  497. if (coarse_snr_offset < 0) {
  498. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  499. return -1;
  500. }
  501. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  502. bit_alloc(s, mask, psd, bap1, frame_bits,
  503. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  504. coarse_snr_offset += SNR_INC1;
  505. memcpy(bap, bap1, sizeof(bap1));
  506. }
  507. while ((coarse_snr_offset + 1) <= 63 &&
  508. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  509. coarse_snr_offset++;
  510. memcpy(bap, bap1, sizeof(bap1));
  511. }
  512. fine_snr_offset = 0;
  513. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  514. bit_alloc(s, mask, psd, bap1, frame_bits,
  515. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  516. fine_snr_offset += SNR_INC1;
  517. memcpy(bap, bap1, sizeof(bap1));
  518. }
  519. while ((fine_snr_offset + 1) <= 15 &&
  520. bit_alloc(s, mask, psd, bap1, frame_bits,
  521. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  522. fine_snr_offset++;
  523. memcpy(bap, bap1, sizeof(bap1));
  524. }
  525. s->coarse_snr_offset = coarse_snr_offset;
  526. for(ch=0;ch<s->nb_all_channels;ch++)
  527. s->fine_snr_offset[ch] = fine_snr_offset;
  528. #if defined(DEBUG_BITALLOC)
  529. {
  530. int j;
  531. for(i=0;i<6;i++) {
  532. for(ch=0;ch<s->nb_all_channels;ch++) {
  533. printf("Block #%d Ch%d:\n", i, ch);
  534. printf("bap=");
  535. for(j=0;j<s->nb_coefs[ch];j++) {
  536. printf("%d ",bap[i][ch][j]);
  537. }
  538. printf("\n");
  539. }
  540. }
  541. }
  542. #endif
  543. return 0;
  544. }
  545. static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
  546. int64_t *channel_layout)
  547. {
  548. int ch_layout;
  549. if (channels < 1 || channels > AC3_MAX_CHANNELS)
  550. return -1;
  551. if ((uint64_t)*channel_layout > 0x7FF)
  552. return -1;
  553. ch_layout = *channel_layout;
  554. if (!ch_layout)
  555. ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
  556. if (av_get_channel_layout_nb_channels(ch_layout) != channels)
  557. return -1;
  558. s->lfe = !!(ch_layout & AV_CH_LOW_FREQUENCY);
  559. s->nb_all_channels = channels;
  560. s->nb_channels = channels - s->lfe;
  561. s->lfe_channel = s->lfe ? s->nb_channels : -1;
  562. if (s->lfe)
  563. ch_layout -= AV_CH_LOW_FREQUENCY;
  564. switch (ch_layout) {
  565. case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
  566. case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
  567. case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
  568. case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
  569. case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
  570. case AV_CH_LAYOUT_QUAD:
  571. case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
  572. case AV_CH_LAYOUT_5POINT0:
  573. case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
  574. default:
  575. return -1;
  576. }
  577. s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe];
  578. *channel_layout = ch_layout;
  579. if (s->lfe)
  580. *channel_layout |= AV_CH_LOW_FREQUENCY;
  581. return 0;
  582. }
  583. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  584. {
  585. int freq = avctx->sample_rate;
  586. int bitrate = avctx->bit_rate;
  587. AC3EncodeContext *s = avctx->priv_data;
  588. int i, j, ch;
  589. float alpha;
  590. int bw_code;
  591. avctx->frame_size = AC3_FRAME_SIZE;
  592. ac3_common_init();
  593. if (!avctx->channel_layout) {
  594. av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
  595. "encoder will guess the layout, but it "
  596. "might be incorrect.\n");
  597. }
  598. if (set_channel_info(s, avctx->channels, &avctx->channel_layout)) {
  599. av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
  600. return -1;
  601. }
  602. /* frequency */
  603. for(i=0;i<3;i++) {
  604. for(j=0;j<3;j++)
  605. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  606. goto found;
  607. }
  608. return -1;
  609. found:
  610. s->sample_rate = freq;
  611. s->sr_shift = i;
  612. s->sr_code = j;
  613. s->bitstream_id = 8 + s->sr_shift;
  614. s->bitstream_mode = 0; /* complete main audio service */
  615. /* bitrate & frame size */
  616. for(i=0;i<19;i++) {
  617. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  618. break;
  619. }
  620. if (i == 19)
  621. return -1;
  622. s->bit_rate = bitrate;
  623. s->frame_size_code = i << 1;
  624. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  625. s->bits_written = 0;
  626. s->samples_written = 0;
  627. s->frame_size = s->frame_size_min;
  628. /* bit allocation init */
  629. if(avctx->cutoff) {
  630. /* calculate bandwidth based on user-specified cutoff frequency */
  631. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  632. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  633. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  634. } else {
  635. /* use default bandwidth setting */
  636. /* XXX: should compute the bandwidth according to the frame
  637. size, so that we avoid annoying high frequency artifacts */
  638. bw_code = 50;
  639. }
  640. for(ch=0;ch<s->nb_channels;ch++) {
  641. /* bandwidth for each channel */
  642. s->chbwcod[ch] = bw_code;
  643. s->nb_coefs[ch] = bw_code * 3 + 73;
  644. }
  645. if (s->lfe) {
  646. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  647. }
  648. /* initial snr offset */
  649. s->coarse_snr_offset = 40;
  650. /* mdct init */
  651. fft_init(MDCT_NBITS - 2);
  652. for(i=0;i<N/4;i++) {
  653. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  654. xcos1[i] = fix15(-cos(alpha));
  655. xsin1[i] = fix15(-sin(alpha));
  656. }
  657. avctx->coded_frame= avcodec_alloc_frame();
  658. avctx->coded_frame->key_frame= 1;
  659. return 0;
  660. }
  661. /* output the AC-3 frame header */
  662. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  663. {
  664. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  665. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  666. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  667. put_bits(&s->pb, 2, s->sr_code);
  668. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  669. put_bits(&s->pb, 5, s->bitstream_id);
  670. put_bits(&s->pb, 3, s->bitstream_mode);
  671. put_bits(&s->pb, 3, s->channel_mode);
  672. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  673. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  674. if (s->channel_mode & 0x04)
  675. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  676. if (s->channel_mode == AC3_CHMODE_STEREO)
  677. put_bits(&s->pb, 2, 0); /* surround not indicated */
  678. put_bits(&s->pb, 1, s->lfe); /* LFE */
  679. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  680. put_bits(&s->pb, 1, 0); /* no compression control word */
  681. put_bits(&s->pb, 1, 0); /* no lang code */
  682. put_bits(&s->pb, 1, 0); /* no audio production info */
  683. put_bits(&s->pb, 1, 0); /* no copyright */
  684. put_bits(&s->pb, 1, 1); /* original bitstream */
  685. put_bits(&s->pb, 1, 0); /* no time code 1 */
  686. put_bits(&s->pb, 1, 0); /* no time code 2 */
  687. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  688. }
  689. /* symetric quantization on 'levels' levels */
  690. static inline int sym_quant(int c, int e, int levels)
  691. {
  692. int v;
  693. if (c >= 0) {
  694. v = (levels * (c << e)) >> 24;
  695. v = (v + 1) >> 1;
  696. v = (levels >> 1) + v;
  697. } else {
  698. v = (levels * ((-c) << e)) >> 24;
  699. v = (v + 1) >> 1;
  700. v = (levels >> 1) - v;
  701. }
  702. assert (v >= 0 && v < levels);
  703. return v;
  704. }
  705. /* asymetric quantization on 2^qbits levels */
  706. static inline int asym_quant(int c, int e, int qbits)
  707. {
  708. int lshift, m, v;
  709. lshift = e + qbits - 24;
  710. if (lshift >= 0)
  711. v = c << lshift;
  712. else
  713. v = c >> (-lshift);
  714. /* rounding */
  715. v = (v + 1) >> 1;
  716. m = (1 << (qbits-1));
  717. if (v >= m)
  718. v = m - 1;
  719. assert(v >= -m);
  720. return v & ((1 << qbits)-1);
  721. }
  722. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
  723. frame */
  724. static void output_audio_block(AC3EncodeContext *s,
  725. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  726. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  727. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  728. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  729. int8_t global_exp[AC3_MAX_CHANNELS],
  730. int block_num)
  731. {
  732. int ch, nb_groups, group_size, i, baie, rbnd;
  733. uint8_t *p;
  734. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  735. int exp0, exp1;
  736. int mant1_cnt, mant2_cnt, mant4_cnt;
  737. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  738. int delta0, delta1, delta2;
  739. for(ch=0;ch<s->nb_channels;ch++)
  740. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  741. for(ch=0;ch<s->nb_channels;ch++)
  742. put_bits(&s->pb, 1, 1); /* no dither */
  743. put_bits(&s->pb, 1, 0); /* no dynamic range */
  744. if (block_num == 0) {
  745. /* for block 0, even if no coupling, we must say it. This is a
  746. waste of bit :-) */
  747. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  748. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  749. } else {
  750. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  751. }
  752. if (s->channel_mode == AC3_CHMODE_STEREO)
  753. {
  754. if(block_num==0)
  755. {
  756. /* first block must define rematrixing (rematstr) */
  757. put_bits(&s->pb, 1, 1);
  758. /* dummy rematrixing rematflg(1:4)=0 */
  759. for (rbnd=0;rbnd<4;rbnd++)
  760. put_bits(&s->pb, 1, 0);
  761. }
  762. else
  763. {
  764. /* no matrixing (but should be used in the future) */
  765. put_bits(&s->pb, 1, 0);
  766. }
  767. }
  768. #if defined(DEBUG)
  769. {
  770. static int count = 0;
  771. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  772. }
  773. #endif
  774. /* exponent strategy */
  775. for(ch=0;ch<s->nb_channels;ch++) {
  776. put_bits(&s->pb, 2, exp_strategy[ch]);
  777. }
  778. if (s->lfe) {
  779. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  780. }
  781. for(ch=0;ch<s->nb_channels;ch++) {
  782. if (exp_strategy[ch] != EXP_REUSE)
  783. put_bits(&s->pb, 6, s->chbwcod[ch]);
  784. }
  785. /* exponents */
  786. for (ch = 0; ch < s->nb_all_channels; ch++) {
  787. switch(exp_strategy[ch]) {
  788. case EXP_REUSE:
  789. continue;
  790. case EXP_D15:
  791. group_size = 1;
  792. break;
  793. case EXP_D25:
  794. group_size = 2;
  795. break;
  796. default:
  797. case EXP_D45:
  798. group_size = 4;
  799. break;
  800. }
  801. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  802. p = encoded_exp[ch];
  803. /* first exponent */
  804. exp1 = *p++;
  805. put_bits(&s->pb, 4, exp1);
  806. /* next ones are delta encoded */
  807. for(i=0;i<nb_groups;i++) {
  808. /* merge three delta in one code */
  809. exp0 = exp1;
  810. exp1 = p[0];
  811. p += group_size;
  812. delta0 = exp1 - exp0 + 2;
  813. exp0 = exp1;
  814. exp1 = p[0];
  815. p += group_size;
  816. delta1 = exp1 - exp0 + 2;
  817. exp0 = exp1;
  818. exp1 = p[0];
  819. p += group_size;
  820. delta2 = exp1 - exp0 + 2;
  821. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  822. }
  823. if (ch != s->lfe_channel)
  824. put_bits(&s->pb, 2, 0); /* no gain range info */
  825. }
  826. /* bit allocation info */
  827. baie = (block_num == 0);
  828. put_bits(&s->pb, 1, baie);
  829. if (baie) {
  830. put_bits(&s->pb, 2, s->slow_decay_code);
  831. put_bits(&s->pb, 2, s->fast_decay_code);
  832. put_bits(&s->pb, 2, s->slow_gain_code);
  833. put_bits(&s->pb, 2, s->db_per_bit_code);
  834. put_bits(&s->pb, 3, s->floor_code);
  835. }
  836. /* snr offset */
  837. put_bits(&s->pb, 1, baie); /* always present with bai */
  838. if (baie) {
  839. put_bits(&s->pb, 6, s->coarse_snr_offset);
  840. for(ch=0;ch<s->nb_all_channels;ch++) {
  841. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  842. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  843. }
  844. }
  845. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  846. put_bits(&s->pb, 1, 0); /* no data to skip */
  847. /* mantissa encoding : we use two passes to handle the grouping. A
  848. one pass method may be faster, but it would necessitate to
  849. modify the output stream. */
  850. /* first pass: quantize */
  851. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  852. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  853. for (ch = 0; ch < s->nb_all_channels; ch++) {
  854. int b, c, e, v;
  855. for(i=0;i<s->nb_coefs[ch];i++) {
  856. c = mdct_coefs[ch][i];
  857. e = encoded_exp[ch][i] - global_exp[ch];
  858. b = bap[ch][i];
  859. switch(b) {
  860. case 0:
  861. v = 0;
  862. break;
  863. case 1:
  864. v = sym_quant(c, e, 3);
  865. switch(mant1_cnt) {
  866. case 0:
  867. qmant1_ptr = &qmant[ch][i];
  868. v = 9 * v;
  869. mant1_cnt = 1;
  870. break;
  871. case 1:
  872. *qmant1_ptr += 3 * v;
  873. mant1_cnt = 2;
  874. v = 128;
  875. break;
  876. default:
  877. *qmant1_ptr += v;
  878. mant1_cnt = 0;
  879. v = 128;
  880. break;
  881. }
  882. break;
  883. case 2:
  884. v = sym_quant(c, e, 5);
  885. switch(mant2_cnt) {
  886. case 0:
  887. qmant2_ptr = &qmant[ch][i];
  888. v = 25 * v;
  889. mant2_cnt = 1;
  890. break;
  891. case 1:
  892. *qmant2_ptr += 5 * v;
  893. mant2_cnt = 2;
  894. v = 128;
  895. break;
  896. default:
  897. *qmant2_ptr += v;
  898. mant2_cnt = 0;
  899. v = 128;
  900. break;
  901. }
  902. break;
  903. case 3:
  904. v = sym_quant(c, e, 7);
  905. break;
  906. case 4:
  907. v = sym_quant(c, e, 11);
  908. switch(mant4_cnt) {
  909. case 0:
  910. qmant4_ptr = &qmant[ch][i];
  911. v = 11 * v;
  912. mant4_cnt = 1;
  913. break;
  914. default:
  915. *qmant4_ptr += v;
  916. mant4_cnt = 0;
  917. v = 128;
  918. break;
  919. }
  920. break;
  921. case 5:
  922. v = sym_quant(c, e, 15);
  923. break;
  924. case 14:
  925. v = asym_quant(c, e, 14);
  926. break;
  927. case 15:
  928. v = asym_quant(c, e, 16);
  929. break;
  930. default:
  931. v = asym_quant(c, e, b - 1);
  932. break;
  933. }
  934. qmant[ch][i] = v;
  935. }
  936. }
  937. /* second pass : output the values */
  938. for (ch = 0; ch < s->nb_all_channels; ch++) {
  939. int b, q;
  940. for(i=0;i<s->nb_coefs[ch];i++) {
  941. q = qmant[ch][i];
  942. b = bap[ch][i];
  943. switch(b) {
  944. case 0:
  945. break;
  946. case 1:
  947. if (q != 128)
  948. put_bits(&s->pb, 5, q);
  949. break;
  950. case 2:
  951. if (q != 128)
  952. put_bits(&s->pb, 7, q);
  953. break;
  954. case 3:
  955. put_bits(&s->pb, 3, q);
  956. break;
  957. case 4:
  958. if (q != 128)
  959. put_bits(&s->pb, 7, q);
  960. break;
  961. case 14:
  962. put_bits(&s->pb, 14, q);
  963. break;
  964. case 15:
  965. put_bits(&s->pb, 16, q);
  966. break;
  967. default:
  968. put_bits(&s->pb, b - 1, q);
  969. break;
  970. }
  971. }
  972. }
  973. }
  974. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  975. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  976. {
  977. unsigned int c;
  978. c = 0;
  979. while (a) {
  980. if (a & 1)
  981. c ^= b;
  982. a = a >> 1;
  983. b = b << 1;
  984. if (b & (1 << 16))
  985. b ^= poly;
  986. }
  987. return c;
  988. }
  989. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  990. {
  991. unsigned int r;
  992. r = 1;
  993. while (n) {
  994. if (n & 1)
  995. r = mul_poly(r, a, poly);
  996. a = mul_poly(a, a, poly);
  997. n >>= 1;
  998. }
  999. return r;
  1000. }
  1001. /* compute log2(max(abs(tab[]))) */
  1002. static int log2_tab(int16_t *tab, int n)
  1003. {
  1004. int i, v;
  1005. v = 0;
  1006. for(i=0;i<n;i++) {
  1007. v |= abs(tab[i]);
  1008. }
  1009. return av_log2(v);
  1010. }
  1011. static void lshift_tab(int16_t *tab, int n, int lshift)
  1012. {
  1013. int i;
  1014. if (lshift > 0) {
  1015. for(i=0;i<n;i++) {
  1016. tab[i] <<= lshift;
  1017. }
  1018. } else if (lshift < 0) {
  1019. lshift = -lshift;
  1020. for(i=0;i<n;i++) {
  1021. tab[i] >>= lshift;
  1022. }
  1023. }
  1024. }
  1025. /* fill the end of the frame and compute the two crcs */
  1026. static int output_frame_end(AC3EncodeContext *s)
  1027. {
  1028. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  1029. uint8_t *frame;
  1030. frame_size = s->frame_size; /* frame size in words */
  1031. /* align to 8 bits */
  1032. flush_put_bits(&s->pb);
  1033. /* add zero bytes to reach the frame size */
  1034. frame = s->pb.buf;
  1035. n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
  1036. assert(n >= 0);
  1037. if(n>0)
  1038. memset(put_bits_ptr(&s->pb), 0, n);
  1039. /* Now we must compute both crcs : this is not so easy for crc1
  1040. because it is at the beginning of the data... */
  1041. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1042. crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1043. frame + 4, 2 * frame_size_58 - 4));
  1044. /* XXX: could precompute crc_inv */
  1045. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1046. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1047. AV_WB16(frame+2,crc1);
  1048. crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1049. frame + 2 * frame_size_58,
  1050. (frame_size - frame_size_58) * 2 - 2));
  1051. AV_WB16(frame+2*frame_size-2,crc2);
  1052. // printf("n=%d frame_size=%d\n", n, frame_size);
  1053. return frame_size * 2;
  1054. }
  1055. static int AC3_encode_frame(AVCodecContext *avctx,
  1056. unsigned char *frame, int buf_size, void *data)
  1057. {
  1058. AC3EncodeContext *s = avctx->priv_data;
  1059. const int16_t *samples = data;
  1060. int i, j, k, v, ch;
  1061. int16_t input_samples[N];
  1062. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1063. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1064. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1065. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1066. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1067. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1068. int frame_bits;
  1069. frame_bits = 0;
  1070. for(ch=0;ch<s->nb_all_channels;ch++) {
  1071. int ich = s->channel_map[ch];
  1072. /* fixed mdct to the six sub blocks & exponent computation */
  1073. for(i=0;i<NB_BLOCKS;i++) {
  1074. const int16_t *sptr;
  1075. int sinc;
  1076. /* compute input samples */
  1077. memcpy(input_samples, s->last_samples[ich], N/2 * sizeof(int16_t));
  1078. sinc = s->nb_all_channels;
  1079. sptr = samples + (sinc * (N/2) * i) + ich;
  1080. for(j=0;j<N/2;j++) {
  1081. v = *sptr;
  1082. input_samples[j + N/2] = v;
  1083. s->last_samples[ich][j] = v;
  1084. sptr += sinc;
  1085. }
  1086. /* apply the MDCT window */
  1087. for(j=0;j<N/2;j++) {
  1088. input_samples[j] = MUL16(input_samples[j],
  1089. ff_ac3_window[j]) >> 15;
  1090. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1091. ff_ac3_window[j]) >> 15;
  1092. }
  1093. /* Normalize the samples to use the maximum available
  1094. precision */
  1095. v = 14 - log2_tab(input_samples, N);
  1096. if (v < 0)
  1097. v = 0;
  1098. exp_samples[i][ch] = v - 9;
  1099. lshift_tab(input_samples, N, v);
  1100. /* do the MDCT */
  1101. mdct512(mdct_coef[i][ch], input_samples);
  1102. /* compute "exponents". We take into account the
  1103. normalization there */
  1104. for(j=0;j<N/2;j++) {
  1105. int e;
  1106. v = abs(mdct_coef[i][ch][j]);
  1107. if (v == 0)
  1108. e = 24;
  1109. else {
  1110. e = 23 - av_log2(v) + exp_samples[i][ch];
  1111. if (e >= 24) {
  1112. e = 24;
  1113. mdct_coef[i][ch][j] = 0;
  1114. }
  1115. }
  1116. exp[i][ch][j] = e;
  1117. }
  1118. }
  1119. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1120. /* compute the exponents as the decoder will see them. The
  1121. EXP_REUSE case must be handled carefully : we select the
  1122. min of the exponents */
  1123. i = 0;
  1124. while (i < NB_BLOCKS) {
  1125. j = i + 1;
  1126. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1127. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1128. j++;
  1129. }
  1130. frame_bits += encode_exp(encoded_exp[i][ch],
  1131. exp[i][ch], s->nb_coefs[ch],
  1132. exp_strategy[i][ch]);
  1133. /* copy encoded exponents for reuse case */
  1134. for(k=i+1;k<j;k++) {
  1135. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1136. s->nb_coefs[ch] * sizeof(uint8_t));
  1137. }
  1138. i = j;
  1139. }
  1140. }
  1141. /* adjust for fractional frame sizes */
  1142. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1143. s->bits_written -= s->bit_rate;
  1144. s->samples_written -= s->sample_rate;
  1145. }
  1146. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1147. s->bits_written += s->frame_size * 16;
  1148. s->samples_written += AC3_FRAME_SIZE;
  1149. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1150. /* everything is known... let's output the frame */
  1151. output_frame_header(s, frame);
  1152. for(i=0;i<NB_BLOCKS;i++) {
  1153. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1154. bap[i], mdct_coef[i], exp_samples[i], i);
  1155. }
  1156. return output_frame_end(s);
  1157. }
  1158. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1159. {
  1160. av_freep(&avctx->coded_frame);
  1161. return 0;
  1162. }
  1163. #if 0
  1164. /*************************************************************************/
  1165. /* TEST */
  1166. #undef random
  1167. #define FN (N/4)
  1168. void fft_test(void)
  1169. {
  1170. IComplex in[FN], in1[FN];
  1171. int k, n, i;
  1172. float sum_re, sum_im, a;
  1173. /* FFT test */
  1174. for(i=0;i<FN;i++) {
  1175. in[i].re = random() % 65535 - 32767;
  1176. in[i].im = random() % 65535 - 32767;
  1177. in1[i] = in[i];
  1178. }
  1179. fft(in, 7);
  1180. /* do it by hand */
  1181. for(k=0;k<FN;k++) {
  1182. sum_re = 0;
  1183. sum_im = 0;
  1184. for(n=0;n<FN;n++) {
  1185. a = -2 * M_PI * (n * k) / FN;
  1186. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1187. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1188. }
  1189. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1190. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1191. }
  1192. }
  1193. void mdct_test(void)
  1194. {
  1195. int16_t input[N];
  1196. int32_t output[N/2];
  1197. float input1[N];
  1198. float output1[N/2];
  1199. float s, a, err, e, emax;
  1200. int i, k, n;
  1201. for(i=0;i<N;i++) {
  1202. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1203. input1[i] = input[i];
  1204. }
  1205. mdct512(output, input);
  1206. /* do it by hand */
  1207. for(k=0;k<N/2;k++) {
  1208. s = 0;
  1209. for(n=0;n<N;n++) {
  1210. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1211. s += input1[n] * cos(a);
  1212. }
  1213. output1[k] = -2 * s / N;
  1214. }
  1215. err = 0;
  1216. emax = 0;
  1217. for(i=0;i<N/2;i++) {
  1218. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1219. e = output[i] - output1[i];
  1220. if (e > emax)
  1221. emax = e;
  1222. err += e * e;
  1223. }
  1224. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1225. }
  1226. void test_ac3(void)
  1227. {
  1228. AC3EncodeContext ctx;
  1229. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1230. short samples[AC3_FRAME_SIZE];
  1231. int ret, i;
  1232. AC3_encode_init(&ctx, 44100, 64000, 1);
  1233. fft_test();
  1234. mdct_test();
  1235. for(i=0;i<AC3_FRAME_SIZE;i++)
  1236. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1237. ret = AC3_encode_frame(&ctx, frame, samples);
  1238. printf("ret=%d\n", ret);
  1239. }
  1240. #endif
  1241. AVCodec ac3_encoder = {
  1242. "ac3",
  1243. AVMEDIA_TYPE_AUDIO,
  1244. CODEC_ID_AC3,
  1245. sizeof(AC3EncodeContext),
  1246. AC3_encode_init,
  1247. AC3_encode_frame,
  1248. AC3_encode_close,
  1249. NULL,
  1250. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  1251. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1252. .channel_layouts = (const int64_t[]){
  1253. AV_CH_LAYOUT_MONO,
  1254. AV_CH_LAYOUT_STEREO,
  1255. AV_CH_LAYOUT_2_1,
  1256. AV_CH_LAYOUT_SURROUND,
  1257. AV_CH_LAYOUT_2_2,
  1258. AV_CH_LAYOUT_QUAD,
  1259. AV_CH_LAYOUT_4POINT0,
  1260. AV_CH_LAYOUT_5POINT0,
  1261. AV_CH_LAYOUT_5POINT0_BACK,
  1262. (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
  1263. (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
  1264. (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
  1265. (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
  1266. (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
  1267. (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
  1268. (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
  1269. AV_CH_LAYOUT_5POINT1,
  1270. AV_CH_LAYOUT_5POINT1_BACK,
  1271. 0 },
  1272. };