You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1162 lines
40KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #include "random.h"
  38. /**
  39. * Table of bin locations for rematrixing bands
  40. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  41. */
  42. static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
  43. /**
  44. * table for exponent to scale_factor mapping
  45. * scale_factors[i] = 2 ^ -i
  46. */
  47. static float scale_factors[25];
  48. /** table for grouping exponents */
  49. static uint8_t exp_ungroup_tab[128][3];
  50. /** tables for ungrouping mantissas */
  51. static float b1_mantissas[32][3];
  52. static float b2_mantissas[128][3];
  53. static float b3_mantissas[8];
  54. static float b4_mantissas[128][2];
  55. static float b5_mantissas[16];
  56. /**
  57. * Quantization table: levels for symmetric. bits for asymmetric.
  58. * reference: Table 7.18 Mapping of bap to Quantizer
  59. */
  60. static const uint8_t quantization_tab[16] = {
  61. 0, 3, 5, 7, 11, 15,
  62. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  63. };
  64. /** dynamic range table. converts codes to scale factors. */
  65. static float dynamic_range_tab[256];
  66. /** Adjustments in dB gain */
  67. #define LEVEL_MINUS_3DB 0.7071067811865476
  68. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  69. #define LEVEL_MINUS_6DB 0.5000000000000000
  70. #define LEVEL_MINUS_9DB 0.3535533905932738
  71. #define LEVEL_ZERO 0.0000000000000000
  72. #define LEVEL_ONE 1.0000000000000000
  73. static const float gain_levels[6] = {
  74. LEVEL_ZERO,
  75. LEVEL_ONE,
  76. LEVEL_MINUS_3DB,
  77. LEVEL_MINUS_4POINT5DB,
  78. LEVEL_MINUS_6DB,
  79. LEVEL_MINUS_9DB
  80. };
  81. /**
  82. * Table for center mix levels
  83. * reference: Section 5.4.2.4 cmixlev
  84. */
  85. static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
  86. /**
  87. * Table for surround mix levels
  88. * reference: Section 5.4.2.5 surmixlev
  89. */
  90. static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
  91. /**
  92. * Table for default stereo downmixing coefficients
  93. * reference: Section 7.8.2 Downmixing Into Two Channels
  94. */
  95. static const uint8_t ac3_default_coeffs[8][5][2] = {
  96. { { 1, 0 }, { 0, 1 }, },
  97. { { 2, 2 }, },
  98. { { 1, 0 }, { 0, 1 }, },
  99. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  100. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  101. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  102. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  103. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  104. };
  105. /* override ac3.h to include coupling channel */
  106. #undef AC3_MAX_CHANNELS
  107. #define AC3_MAX_CHANNELS 7
  108. #define CPL_CH 0
  109. #define AC3_OUTPUT_LFEON 8
  110. typedef struct {
  111. int channel_mode; ///< channel mode (acmod)
  112. int dolby_surround_mode; ///< dolby surround mode
  113. int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags
  114. int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags
  115. int dither_all; ///< true if all channels are dithered
  116. int cpl_in_use; ///< coupling in use
  117. int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling
  118. int phase_flags_in_use; ///< phase flags in use
  119. int cpl_band_struct[18]; ///< coupling band structure
  120. int rematrixing_strategy; ///< rematrixing strategy
  121. int num_rematrixing_bands; ///< number of rematrixing bands
  122. int rematrixing_flags[4]; ///< rematrixing flags
  123. int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
  124. int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
  125. int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
  126. int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode
  127. int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments
  128. uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
  129. uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
  130. uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
  131. int sampling_rate; ///< sample frequency, in Hz
  132. int bit_rate; ///< stream bit rate, in bits-per-second
  133. int frame_size; ///< current frame size, in bytes
  134. int channels; ///< number of total channels
  135. int fbw_channels; ///< number of full-bandwidth channels
  136. int lfe_on; ///< lfe channel in use
  137. int lfe_ch; ///< index of LFE channel
  138. int output_mode; ///< output channel configuration
  139. int out_channels; ///< number of output channels
  140. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  141. float dynamic_range[2]; ///< dynamic range
  142. float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
  143. int num_cpl_bands; ///< number of coupling bands
  144. int num_cpl_subbands; ///< number of coupling sub bands
  145. int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin
  146. int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin
  147. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  148. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  149. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  150. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  151. int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  152. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  153. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
  154. /* For IMDCT. */
  155. MDCTContext imdct_512; ///< for 512 sample IMDCT
  156. MDCTContext imdct_256; ///< for 256 sample IMDCT
  157. DSPContext dsp; ///< for optimization
  158. float add_bias; ///< offset for float_to_int16 conversion
  159. float mul_bias; ///< scaling for float_to_int16 conversion
  160. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
  161. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  162. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
  163. DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
  164. DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
  165. DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
  166. /* Miscellaneous. */
  167. GetBitContext gb; ///< bitstream reader
  168. AVRandomState dith_state; ///< for dither generation
  169. AVCodecContext *avctx; ///< parent context
  170. } AC3DecodeContext;
  171. /**
  172. * Generate a Kaiser-Bessel Derived Window.
  173. */
  174. static void ac3_window_init(float *window)
  175. {
  176. int i, j;
  177. double sum = 0.0, bessel, tmp;
  178. double local_window[256];
  179. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  180. for (i = 0; i < 256; i++) {
  181. tmp = i * (256 - i) * alpha2;
  182. bessel = 1.0;
  183. for (j = 100; j > 0; j--) /* default to 100 iterations */
  184. bessel = bessel * tmp / (j * j) + 1;
  185. sum += bessel;
  186. local_window[i] = sum;
  187. }
  188. sum++;
  189. for (i = 0; i < 256; i++)
  190. window[i] = sqrt(local_window[i] / sum);
  191. }
  192. /**
  193. * Symmetrical Dequantization
  194. * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  195. * Tables 7.19 to 7.23
  196. */
  197. static inline float
  198. symmetric_dequant(int code, int levels)
  199. {
  200. return (code - (levels >> 1)) * (2.0f / levels);
  201. }
  202. /*
  203. * Initialize tables at runtime.
  204. */
  205. static void ac3_tables_init(void)
  206. {
  207. int i;
  208. /* generate grouped mantissa tables
  209. reference: Section 7.3.5 Ungrouping of Mantissas */
  210. for(i=0; i<32; i++) {
  211. /* bap=1 mantissas */
  212. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  213. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  214. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  215. }
  216. for(i=0; i<128; i++) {
  217. /* bap=2 mantissas */
  218. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  219. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  220. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  221. /* bap=4 mantissas */
  222. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  223. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  224. }
  225. /* generate ungrouped mantissa tables
  226. reference: Tables 7.21 and 7.23 */
  227. for(i=0; i<7; i++) {
  228. /* bap=3 mantissas */
  229. b3_mantissas[i] = symmetric_dequant(i, 7);
  230. }
  231. for(i=0; i<15; i++) {
  232. /* bap=5 mantissas */
  233. b5_mantissas[i] = symmetric_dequant(i, 15);
  234. }
  235. /* generate dynamic range table
  236. reference: Section 7.7.1 Dynamic Range Control */
  237. for(i=0; i<256; i++) {
  238. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  239. dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  240. }
  241. /* generate scale factors for exponents and asymmetrical dequantization
  242. reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
  243. for (i = 0; i < 25; i++)
  244. scale_factors[i] = pow(2.0, -i);
  245. /* generate exponent tables
  246. reference: Section 7.1.3 Exponent Decoding */
  247. for(i=0; i<128; i++) {
  248. exp_ungroup_tab[i][0] = i / 25;
  249. exp_ungroup_tab[i][1] = (i % 25) / 5;
  250. exp_ungroup_tab[i][2] = (i % 25) % 5;
  251. }
  252. }
  253. /**
  254. * AVCodec initialization
  255. */
  256. static int ac3_decode_init(AVCodecContext *avctx)
  257. {
  258. AC3DecodeContext *ctx = avctx->priv_data;
  259. ctx->avctx = avctx;
  260. ac3_common_init();
  261. ac3_tables_init();
  262. ff_mdct_init(&ctx->imdct_256, 8, 1);
  263. ff_mdct_init(&ctx->imdct_512, 9, 1);
  264. ac3_window_init(ctx->window);
  265. dsputil_init(&ctx->dsp, avctx);
  266. av_init_random(0, &ctx->dith_state);
  267. /* set bias values for float to int16 conversion */
  268. if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
  269. ctx->add_bias = 385.0f;
  270. ctx->mul_bias = 1.0f;
  271. } else {
  272. ctx->add_bias = 0.0f;
  273. ctx->mul_bias = 32767.0f;
  274. }
  275. return 0;
  276. }
  277. /**
  278. * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  279. * GetBitContext within AC3DecodeContext must point to
  280. * start of the synchronized ac3 bitstream.
  281. */
  282. static int ac3_parse_header(AC3DecodeContext *ctx)
  283. {
  284. AC3HeaderInfo hdr;
  285. GetBitContext *gb = &ctx->gb;
  286. float center_mix_level, surround_mix_level;
  287. int err, i;
  288. err = ff_ac3_parse_header(gb->buffer, &hdr);
  289. if(err)
  290. return err;
  291. /* get decoding parameters from header info */
  292. ctx->bit_alloc_params.sr_code = hdr.sr_code;
  293. ctx->channel_mode = hdr.channel_mode;
  294. center_mix_level = gain_levels[center_levels[hdr.center_mix_level]];
  295. surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]];
  296. ctx->dolby_surround_mode = hdr.dolby_surround_mode;
  297. ctx->lfe_on = hdr.lfe_on;
  298. ctx->bit_alloc_params.sr_shift = hdr.sr_shift;
  299. ctx->sampling_rate = hdr.sample_rate;
  300. ctx->bit_rate = hdr.bit_rate;
  301. ctx->channels = hdr.channels;
  302. ctx->fbw_channels = ctx->channels - ctx->lfe_on;
  303. ctx->lfe_ch = ctx->fbw_channels + 1;
  304. ctx->frame_size = hdr.frame_size;
  305. /* set default output to all source channels */
  306. ctx->out_channels = ctx->channels;
  307. ctx->output_mode = ctx->channel_mode;
  308. if(ctx->lfe_on)
  309. ctx->output_mode |= AC3_OUTPUT_LFEON;
  310. /* skip over portion of header which has already been read */
  311. skip_bits(gb, 16); // skip the sync_word
  312. skip_bits(gb, 16); // skip crc1
  313. skip_bits(gb, 8); // skip fscod and frmsizecod
  314. skip_bits(gb, 11); // skip bsid, bsmod, and acmod
  315. if(ctx->channel_mode == AC3_CHMODE_STEREO) {
  316. skip_bits(gb, 2); // skip dsurmod
  317. } else {
  318. if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO)
  319. skip_bits(gb, 2); // skip cmixlev
  320. if(ctx->channel_mode & 4)
  321. skip_bits(gb, 2); // skip surmixlev
  322. }
  323. skip_bits1(gb); // skip lfeon
  324. /* read the rest of the bsi. read twice for dual mono mode. */
  325. i = !(ctx->channel_mode);
  326. do {
  327. skip_bits(gb, 5); // skip dialog normalization
  328. if (get_bits1(gb))
  329. skip_bits(gb, 8); //skip compression
  330. if (get_bits1(gb))
  331. skip_bits(gb, 8); //skip language code
  332. if (get_bits1(gb))
  333. skip_bits(gb, 7); //skip audio production information
  334. } while (i--);
  335. skip_bits(gb, 2); //skip copyright bit and original bitstream bit
  336. /* skip the timecodes (or extra bitstream information for Alternate Syntax)
  337. TODO: read & use the xbsi1 downmix levels */
  338. if (get_bits1(gb))
  339. skip_bits(gb, 14); //skip timecode1 / xbsi1
  340. if (get_bits1(gb))
  341. skip_bits(gb, 14); //skip timecode2 / xbsi2
  342. /* skip additional bitstream info */
  343. if (get_bits1(gb)) {
  344. i = get_bits(gb, 6);
  345. do {
  346. skip_bits(gb, 8);
  347. } while(i--);
  348. }
  349. /* set stereo downmixing coefficients
  350. reference: Section 7.8.2 Downmixing Into Two Channels */
  351. for(i=0; i<ctx->fbw_channels; i++) {
  352. ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]];
  353. ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]];
  354. }
  355. if(ctx->channel_mode > 1 && ctx->channel_mode & 1) {
  356. ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level;
  357. }
  358. if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) {
  359. int nf = ctx->channel_mode - 2;
  360. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB;
  361. }
  362. if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) {
  363. int nf = ctx->channel_mode - 4;
  364. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level;
  365. }
  366. return 0;
  367. }
  368. /**
  369. * Decode the grouped exponents according to exponent strategy.
  370. * reference: Section 7.1.3 Exponent Decoding
  371. */
  372. static void decode_exponents(GetBitContext *gb, int exp_strategy, int ngrps,
  373. uint8_t absexp, int8_t *dexps)
  374. {
  375. int i, j, grp, group_size;
  376. int dexp[256];
  377. int expacc, prevexp;
  378. /* unpack groups */
  379. group_size = exp_strategy + (exp_strategy == EXP_D45);
  380. for(grp=0,i=0; grp<ngrps; grp++) {
  381. expacc = get_bits(gb, 7);
  382. dexp[i++] = exp_ungroup_tab[expacc][0];
  383. dexp[i++] = exp_ungroup_tab[expacc][1];
  384. dexp[i++] = exp_ungroup_tab[expacc][2];
  385. }
  386. /* convert to absolute exps and expand groups */
  387. prevexp = absexp;
  388. for(i=0; i<ngrps*3; i++) {
  389. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  390. for(j=0; j<group_size; j++) {
  391. dexps[(i*group_size)+j] = prevexp;
  392. }
  393. }
  394. }
  395. /**
  396. * Generate transform coefficients for each coupled channel in the coupling
  397. * range using the coupling coefficients and coupling coordinates.
  398. * reference: Section 7.4.3 Coupling Coordinate Format
  399. */
  400. static void uncouple_channels(AC3DecodeContext *ctx)
  401. {
  402. int i, j, ch, bnd, subbnd;
  403. subbnd = -1;
  404. i = ctx->start_freq[CPL_CH];
  405. for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) {
  406. do {
  407. subbnd++;
  408. for(j=0; j<12; j++) {
  409. for(ch=1; ch<=ctx->fbw_channels; ch++) {
  410. if(ctx->channel_in_cpl[ch])
  411. ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f;
  412. }
  413. i++;
  414. }
  415. } while(ctx->cpl_band_struct[subbnd]);
  416. }
  417. }
  418. /**
  419. * Grouped mantissas for 3-level 5-level and 11-level quantization
  420. */
  421. typedef struct {
  422. float b1_mant[3];
  423. float b2_mant[3];
  424. float b4_mant[2];
  425. int b1ptr;
  426. int b2ptr;
  427. int b4ptr;
  428. } mant_groups;
  429. /**
  430. * Get the transform coefficients for a particular channel
  431. * reference: Section 7.3 Quantization and Decoding of Mantissas
  432. */
  433. static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
  434. {
  435. GetBitContext *gb = &ctx->gb;
  436. int i, gcode, tbap, start, end;
  437. uint8_t *exps;
  438. uint8_t *bap;
  439. float *coeffs;
  440. exps = ctx->dexps[ch_index];
  441. bap = ctx->bap[ch_index];
  442. coeffs = ctx->transform_coeffs[ch_index];
  443. start = ctx->start_freq[ch_index];
  444. end = ctx->end_freq[ch_index];
  445. for (i = start; i < end; i++) {
  446. tbap = bap[i];
  447. switch (tbap) {
  448. case 0:
  449. coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
  450. break;
  451. case 1:
  452. if(m->b1ptr > 2) {
  453. gcode = get_bits(gb, 5);
  454. m->b1_mant[0] = b1_mantissas[gcode][0];
  455. m->b1_mant[1] = b1_mantissas[gcode][1];
  456. m->b1_mant[2] = b1_mantissas[gcode][2];
  457. m->b1ptr = 0;
  458. }
  459. coeffs[i] = m->b1_mant[m->b1ptr++];
  460. break;
  461. case 2:
  462. if(m->b2ptr > 2) {
  463. gcode = get_bits(gb, 7);
  464. m->b2_mant[0] = b2_mantissas[gcode][0];
  465. m->b2_mant[1] = b2_mantissas[gcode][1];
  466. m->b2_mant[2] = b2_mantissas[gcode][2];
  467. m->b2ptr = 0;
  468. }
  469. coeffs[i] = m->b2_mant[m->b2ptr++];
  470. break;
  471. case 3:
  472. coeffs[i] = b3_mantissas[get_bits(gb, 3)];
  473. break;
  474. case 4:
  475. if(m->b4ptr > 1) {
  476. gcode = get_bits(gb, 7);
  477. m->b4_mant[0] = b4_mantissas[gcode][0];
  478. m->b4_mant[1] = b4_mantissas[gcode][1];
  479. m->b4ptr = 0;
  480. }
  481. coeffs[i] = m->b4_mant[m->b4ptr++];
  482. break;
  483. case 5:
  484. coeffs[i] = b5_mantissas[get_bits(gb, 4)];
  485. break;
  486. default:
  487. /* asymmetric dequantization */
  488. coeffs[i] = get_sbits(gb, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
  489. break;
  490. }
  491. coeffs[i] *= scale_factors[exps[i]];
  492. }
  493. return 0;
  494. }
  495. /**
  496. * Remove random dithering from coefficients with zero-bit mantissas
  497. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  498. */
  499. static void remove_dithering(AC3DecodeContext *ctx) {
  500. int ch, i;
  501. int end=0;
  502. float *coeffs;
  503. uint8_t *bap;
  504. for(ch=1; ch<=ctx->fbw_channels; ch++) {
  505. if(!ctx->dither_flag[ch]) {
  506. coeffs = ctx->transform_coeffs[ch];
  507. bap = ctx->bap[ch];
  508. if(ctx->channel_in_cpl[ch])
  509. end = ctx->start_freq[CPL_CH];
  510. else
  511. end = ctx->end_freq[ch];
  512. for(i=0; i<end; i++) {
  513. if(bap[i] == 0)
  514. coeffs[i] = 0.0f;
  515. }
  516. if(ctx->channel_in_cpl[ch]) {
  517. bap = ctx->bap[CPL_CH];
  518. for(; i<ctx->end_freq[CPL_CH]; i++) {
  519. if(bap[i] == 0)
  520. coeffs[i] = 0.0f;
  521. }
  522. }
  523. }
  524. }
  525. }
  526. /**
  527. * Get the transform coefficients.
  528. */
  529. static int get_transform_coeffs(AC3DecodeContext * ctx)
  530. {
  531. int ch, end;
  532. int got_cplchan = 0;
  533. mant_groups m;
  534. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  535. for (ch = 1; ch <= ctx->channels; ch++) {
  536. /* transform coefficients for full-bandwidth channel */
  537. if (get_transform_coeffs_ch(ctx, ch, &m))
  538. return -1;
  539. /* tranform coefficients for coupling channel come right after the
  540. coefficients for the first coupled channel*/
  541. if (ctx->channel_in_cpl[ch]) {
  542. if (!got_cplchan) {
  543. if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
  544. av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
  545. return -1;
  546. }
  547. uncouple_channels(ctx);
  548. got_cplchan = 1;
  549. }
  550. end = ctx->end_freq[CPL_CH];
  551. } else {
  552. end = ctx->end_freq[ch];
  553. }
  554. do
  555. ctx->transform_coeffs[ch][end] = 0;
  556. while(++end < 256);
  557. }
  558. /* if any channel doesn't use dithering, zero appropriate coefficients */
  559. if(!ctx->dither_all)
  560. remove_dithering(ctx);
  561. return 0;
  562. }
  563. /**
  564. * Stereo rematrixing.
  565. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  566. */
  567. static void do_rematrixing(AC3DecodeContext *ctx)
  568. {
  569. int bnd, i;
  570. int end, bndend;
  571. float tmp0, tmp1;
  572. end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]);
  573. for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) {
  574. if(ctx->rematrixing_flags[bnd]) {
  575. bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
  576. for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
  577. tmp0 = ctx->transform_coeffs[1][i];
  578. tmp1 = ctx->transform_coeffs[2][i];
  579. ctx->transform_coeffs[1][i] = tmp0 + tmp1;
  580. ctx->transform_coeffs[2][i] = tmp0 - tmp1;
  581. }
  582. }
  583. }
  584. }
  585. /**
  586. * Perform the 256-point IMDCT
  587. */
  588. static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
  589. {
  590. int i, k;
  591. DECLARE_ALIGNED_16(float, x[128]);
  592. FFTComplex z[2][64];
  593. float *o_ptr = ctx->tmp_output;
  594. for(i=0; i<2; i++) {
  595. /* de-interleave coefficients */
  596. for(k=0; k<128; k++) {
  597. x[k] = ctx->transform_coeffs[chindex][2*k+i];
  598. }
  599. /* run standard IMDCT */
  600. ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
  601. /* reverse the post-rotation & reordering from standard IMDCT */
  602. for(k=0; k<32; k++) {
  603. z[i][32+k].re = -o_ptr[128+2*k];
  604. z[i][32+k].im = -o_ptr[2*k];
  605. z[i][31-k].re = o_ptr[2*k+1];
  606. z[i][31-k].im = o_ptr[128+2*k+1];
  607. }
  608. }
  609. /* apply AC-3 post-rotation & reordering */
  610. for(k=0; k<64; k++) {
  611. o_ptr[ 2*k ] = -z[0][ k].im;
  612. o_ptr[ 2*k+1] = z[0][63-k].re;
  613. o_ptr[128+2*k ] = -z[0][ k].re;
  614. o_ptr[128+2*k+1] = z[0][63-k].im;
  615. o_ptr[256+2*k ] = -z[1][ k].re;
  616. o_ptr[256+2*k+1] = z[1][63-k].im;
  617. o_ptr[384+2*k ] = z[1][ k].im;
  618. o_ptr[384+2*k+1] = -z[1][63-k].re;
  619. }
  620. }
  621. /**
  622. * Inverse MDCT Transform.
  623. * Convert frequency domain coefficients to time-domain audio samples.
  624. * reference: Section 7.9.4 Transformation Equations
  625. */
  626. static inline void do_imdct(AC3DecodeContext *ctx)
  627. {
  628. int ch;
  629. int channels;
  630. /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
  631. channels = ctx->fbw_channels;
  632. if(ctx->output_mode & AC3_OUTPUT_LFEON)
  633. channels++;
  634. for (ch=1; ch<=channels; ch++) {
  635. if (ctx->block_switch[ch]) {
  636. do_imdct_256(ctx, ch);
  637. } else {
  638. ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
  639. ctx->transform_coeffs[ch],
  640. ctx->tmp_imdct);
  641. }
  642. /* For the first half of the block, apply the window, add the delay
  643. from the previous block, and send to output */
  644. ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
  645. ctx->window, ctx->delay[ch-1], 0, 256, 1);
  646. /* For the second half of the block, apply the window and store the
  647. samples to delay, to be combined with the next block */
  648. ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
  649. ctx->window, 256);
  650. }
  651. }
  652. /**
  653. * Downmix the output to mono or stereo.
  654. */
  655. static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels,
  656. int output_mode, float coef[AC3_MAX_CHANNELS][2])
  657. {
  658. int i, j;
  659. float v0, v1, s0, s1;
  660. for(i=0; i<256; i++) {
  661. v0 = v1 = s0 = s1 = 0.0f;
  662. for(j=0; j<fbw_channels; j++) {
  663. v0 += samples[j][i] * coef[j][0];
  664. v1 += samples[j][i] * coef[j][1];
  665. s0 += coef[j][0];
  666. s1 += coef[j][1];
  667. }
  668. v0 /= s0;
  669. v1 /= s1;
  670. if(output_mode == AC3_CHMODE_MONO) {
  671. samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  672. } else if(output_mode == AC3_CHMODE_STEREO) {
  673. samples[0][i] = v0;
  674. samples[1][i] = v1;
  675. }
  676. }
  677. }
  678. /**
  679. * Parse an audio block from AC-3 bitstream.
  680. */
  681. static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
  682. {
  683. int fbw_channels = ctx->fbw_channels;
  684. int channel_mode = ctx->channel_mode;
  685. int i, bnd, seg, ch;
  686. GetBitContext *gb = &ctx->gb;
  687. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  688. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  689. /* block switch flags */
  690. for (ch = 1; ch <= fbw_channels; ch++)
  691. ctx->block_switch[ch] = get_bits1(gb);
  692. /* dithering flags */
  693. ctx->dither_all = 1;
  694. for (ch = 1; ch <= fbw_channels; ch++) {
  695. ctx->dither_flag[ch] = get_bits1(gb);
  696. if(!ctx->dither_flag[ch])
  697. ctx->dither_all = 0;
  698. }
  699. /* dynamic range */
  700. i = !(ctx->channel_mode);
  701. do {
  702. if(get_bits1(gb)) {
  703. ctx->dynamic_range[i] = dynamic_range_tab[get_bits(gb, 8)];
  704. } else if(blk == 0) {
  705. ctx->dynamic_range[i] = 1.0f;
  706. }
  707. } while(i--);
  708. /* coupling strategy */
  709. if (get_bits1(gb)) {
  710. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  711. ctx->cpl_in_use = get_bits1(gb);
  712. if (ctx->cpl_in_use) {
  713. /* coupling in use */
  714. int cpl_begin_freq, cpl_end_freq;
  715. /* determine which channels are coupled */
  716. for (ch = 1; ch <= fbw_channels; ch++)
  717. ctx->channel_in_cpl[ch] = get_bits1(gb);
  718. /* phase flags in use */
  719. if (channel_mode == AC3_CHMODE_STEREO)
  720. ctx->phase_flags_in_use = get_bits1(gb);
  721. /* coupling frequency range and band structure */
  722. cpl_begin_freq = get_bits(gb, 4);
  723. cpl_end_freq = get_bits(gb, 4);
  724. if (3 + cpl_end_freq - cpl_begin_freq < 0) {
  725. av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
  726. return -1;
  727. }
  728. ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
  729. ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
  730. ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
  731. for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) {
  732. if (get_bits1(gb)) {
  733. ctx->cpl_band_struct[bnd] = 1;
  734. ctx->num_cpl_bands--;
  735. }
  736. }
  737. } else {
  738. /* coupling not in use */
  739. for (ch = 1; ch <= fbw_channels; ch++)
  740. ctx->channel_in_cpl[ch] = 0;
  741. }
  742. }
  743. /* coupling coordinates */
  744. if (ctx->cpl_in_use) {
  745. int cpl_coords_exist = 0;
  746. for (ch = 1; ch <= fbw_channels; ch++) {
  747. if (ctx->channel_in_cpl[ch]) {
  748. if (get_bits1(gb)) {
  749. int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
  750. cpl_coords_exist = 1;
  751. master_cpl_coord = 3 * get_bits(gb, 2);
  752. for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) {
  753. cpl_coord_exp = get_bits(gb, 4);
  754. cpl_coord_mant = get_bits(gb, 4);
  755. if (cpl_coord_exp == 15)
  756. ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
  757. else
  758. ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
  759. ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
  760. }
  761. }
  762. }
  763. }
  764. /* phase flags */
  765. if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) {
  766. for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) {
  767. if (get_bits1(gb))
  768. ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd];
  769. }
  770. }
  771. }
  772. /* stereo rematrixing strategy and band structure */
  773. if (channel_mode == AC3_CHMODE_STEREO) {
  774. ctx->rematrixing_strategy = get_bits1(gb);
  775. if (ctx->rematrixing_strategy) {
  776. ctx->num_rematrixing_bands = 4;
  777. if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61)
  778. ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37);
  779. for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++)
  780. ctx->rematrixing_flags[bnd] = get_bits1(gb);
  781. }
  782. }
  783. /* exponent strategies for each channel */
  784. ctx->exp_strategy[CPL_CH] = EXP_REUSE;
  785. ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE;
  786. for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) {
  787. if(ch == ctx->lfe_ch)
  788. ctx->exp_strategy[ch] = get_bits(gb, 1);
  789. else
  790. ctx->exp_strategy[ch] = get_bits(gb, 2);
  791. if(ctx->exp_strategy[ch] != EXP_REUSE)
  792. bit_alloc_stages[ch] = 3;
  793. }
  794. /* channel bandwidth */
  795. for (ch = 1; ch <= fbw_channels; ch++) {
  796. ctx->start_freq[ch] = 0;
  797. if (ctx->exp_strategy[ch] != EXP_REUSE) {
  798. int prev = ctx->end_freq[ch];
  799. if (ctx->channel_in_cpl[ch])
  800. ctx->end_freq[ch] = ctx->start_freq[CPL_CH];
  801. else {
  802. int bandwidth_code = get_bits(gb, 6);
  803. if (bandwidth_code > 60) {
  804. av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
  805. return -1;
  806. }
  807. ctx->end_freq[ch] = bandwidth_code * 3 + 73;
  808. }
  809. if(blk > 0 && ctx->end_freq[ch] != prev)
  810. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  811. }
  812. }
  813. ctx->start_freq[ctx->lfe_ch] = 0;
  814. ctx->end_freq[ctx->lfe_ch] = 7;
  815. /* decode exponents for each channel */
  816. for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) {
  817. if (ctx->exp_strategy[ch] != EXP_REUSE) {
  818. int group_size, num_groups;
  819. group_size = 3 << (ctx->exp_strategy[ch] - 1);
  820. if(ch == CPL_CH)
  821. num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size;
  822. else if(ch == ctx->lfe_ch)
  823. num_groups = 2;
  824. else
  825. num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size;
  826. ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
  827. decode_exponents(gb, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0],
  828. &ctx->dexps[ch][ctx->start_freq[ch]+!!ch]);
  829. if(ch != CPL_CH && ch != ctx->lfe_ch)
  830. skip_bits(gb, 2); /* skip gainrng */
  831. }
  832. }
  833. /* bit allocation information */
  834. if (get_bits1(gb)) {
  835. ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gb, 2)] >> ctx->bit_alloc_params.sr_shift;
  836. ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gb, 2)] >> ctx->bit_alloc_params.sr_shift;
  837. ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gb, 2)];
  838. ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gb, 2)];
  839. ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gb, 3)];
  840. for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) {
  841. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  842. }
  843. }
  844. /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
  845. if (get_bits1(gb)) {
  846. int csnr;
  847. csnr = (get_bits(gb, 6) - 15) << 4;
  848. for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */
  849. ctx->snr_offset[ch] = (csnr + get_bits(gb, 4)) << 2;
  850. ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gb, 3)];
  851. }
  852. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  853. }
  854. /* coupling leak information */
  855. if (ctx->cpl_in_use && get_bits1(gb)) {
  856. ctx->bit_alloc_params.cpl_fast_leak = get_bits(gb, 3);
  857. ctx->bit_alloc_params.cpl_slow_leak = get_bits(gb, 3);
  858. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  859. }
  860. /* delta bit allocation information */
  861. if (get_bits1(gb)) {
  862. /* delta bit allocation exists (strategy) */
  863. for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) {
  864. ctx->dba_mode[ch] = get_bits(gb, 2);
  865. if (ctx->dba_mode[ch] == DBA_RESERVED) {
  866. av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  867. return -1;
  868. }
  869. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  870. }
  871. /* channel delta offset, len and bit allocation */
  872. for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) {
  873. if (ctx->dba_mode[ch] == DBA_NEW) {
  874. ctx->dba_nsegs[ch] = get_bits(gb, 3);
  875. for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) {
  876. ctx->dba_offsets[ch][seg] = get_bits(gb, 5);
  877. ctx->dba_lengths[ch][seg] = get_bits(gb, 4);
  878. ctx->dba_values[ch][seg] = get_bits(gb, 3);
  879. }
  880. }
  881. }
  882. } else if(blk == 0) {
  883. for(ch=0; ch<=ctx->channels; ch++) {
  884. ctx->dba_mode[ch] = DBA_NONE;
  885. }
  886. }
  887. /* Bit allocation */
  888. for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) {
  889. if(bit_alloc_stages[ch] > 2) {
  890. /* Exponent mapping into PSD and PSD integration */
  891. ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
  892. ctx->start_freq[ch], ctx->end_freq[ch],
  893. ctx->psd[ch], ctx->band_psd[ch]);
  894. }
  895. if(bit_alloc_stages[ch] > 1) {
  896. /* Compute excitation function, Compute masking curve, and
  897. Apply delta bit allocation */
  898. ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch],
  899. ctx->start_freq[ch], ctx->end_freq[ch],
  900. ctx->fast_gain[ch], (ch == ctx->lfe_ch),
  901. ctx->dba_mode[ch], ctx->dba_nsegs[ch],
  902. ctx->dba_offsets[ch], ctx->dba_lengths[ch],
  903. ctx->dba_values[ch], ctx->mask[ch]);
  904. }
  905. if(bit_alloc_stages[ch] > 0) {
  906. /* Compute bit allocation */
  907. ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
  908. ctx->start_freq[ch], ctx->end_freq[ch],
  909. ctx->snr_offset[ch],
  910. ctx->bit_alloc_params.floor,
  911. ctx->bap[ch]);
  912. }
  913. }
  914. /* unused dummy data */
  915. if (get_bits1(gb)) {
  916. int skipl = get_bits(gb, 9);
  917. while(skipl--)
  918. skip_bits(gb, 8);
  919. }
  920. /* unpack the transform coefficients
  921. this also uncouples channels if coupling is in use. */
  922. if (get_transform_coeffs(ctx)) {
  923. av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  924. return -1;
  925. }
  926. /* recover coefficients if rematrixing is in use */
  927. if(ctx->channel_mode == AC3_CHMODE_STEREO)
  928. do_rematrixing(ctx);
  929. /* apply scaling to coefficients (headroom, dynrng) */
  930. for(ch=1; ch<=ctx->channels; ch++) {
  931. float gain = 2.0f * ctx->mul_bias;
  932. if(ctx->channel_mode == AC3_CHMODE_DUALMONO) {
  933. gain *= ctx->dynamic_range[ch-1];
  934. } else {
  935. gain *= ctx->dynamic_range[0];
  936. }
  937. for(i=0; i<ctx->end_freq[ch]; i++) {
  938. ctx->transform_coeffs[ch][i] *= gain;
  939. }
  940. }
  941. do_imdct(ctx);
  942. /* downmix output if needed */
  943. if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
  944. ctx->fbw_channels == ctx->out_channels)) {
  945. ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode,
  946. ctx->downmix_coeffs);
  947. }
  948. /* convert float to 16-bit integer */
  949. for(ch=0; ch<ctx->out_channels; ch++) {
  950. for(i=0; i<256; i++) {
  951. ctx->output[ch][i] += ctx->add_bias;
  952. }
  953. ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
  954. }
  955. return 0;
  956. }
  957. /**
  958. * Decode a single AC-3 frame.
  959. */
  960. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  961. {
  962. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  963. int16_t *out_samples = (int16_t *)data;
  964. int i, blk, ch, err;
  965. /* initialize the GetBitContext with the start of valid AC-3 Frame */
  966. init_get_bits(&ctx->gb, buf, buf_size * 8);
  967. /* parse the syncinfo */
  968. err = ac3_parse_header(ctx);
  969. if(err) {
  970. switch(err) {
  971. case AC3_PARSE_ERROR_SYNC:
  972. av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
  973. break;
  974. case AC3_PARSE_ERROR_BSID:
  975. av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
  976. break;
  977. case AC3_PARSE_ERROR_SAMPLE_RATE:
  978. av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
  979. break;
  980. case AC3_PARSE_ERROR_FRAME_SIZE:
  981. av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
  982. break;
  983. default:
  984. av_log(avctx, AV_LOG_ERROR, "invalid header\n");
  985. break;
  986. }
  987. return -1;
  988. }
  989. avctx->sample_rate = ctx->sampling_rate;
  990. avctx->bit_rate = ctx->bit_rate;
  991. /* check that reported frame size fits in input buffer */
  992. if(ctx->frame_size > buf_size) {
  993. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  994. return -1;
  995. }
  996. /* channel config */
  997. ctx->out_channels = ctx->channels;
  998. if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
  999. avctx->request_channels < ctx->channels) {
  1000. ctx->out_channels = avctx->request_channels;
  1001. ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
  1002. }
  1003. avctx->channels = ctx->out_channels;
  1004. /* parse the audio blocks */
  1005. for (blk = 0; blk < NB_BLOCKS; blk++) {
  1006. if (ac3_parse_audio_block(ctx, blk)) {
  1007. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  1008. *data_size = 0;
  1009. return ctx->frame_size;
  1010. }
  1011. for (i = 0; i < 256; i++)
  1012. for (ch = 0; ch < ctx->out_channels; ch++)
  1013. *(out_samples++) = ctx->int_output[ch][i];
  1014. }
  1015. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  1016. return ctx->frame_size;
  1017. }
  1018. /**
  1019. * Uninitialize the AC-3 decoder.
  1020. */
  1021. static int ac3_decode_end(AVCodecContext *avctx)
  1022. {
  1023. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  1024. ff_mdct_end(&ctx->imdct_512);
  1025. ff_mdct_end(&ctx->imdct_256);
  1026. return 0;
  1027. }
  1028. AVCodec ac3_decoder = {
  1029. .name = "ac3",
  1030. .type = CODEC_TYPE_AUDIO,
  1031. .id = CODEC_ID_AC3,
  1032. .priv_data_size = sizeof (AC3DecodeContext),
  1033. .init = ac3_decode_init,
  1034. .close = ac3_decode_end,
  1035. .decode = ac3_decode_frame,
  1036. };