You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1562 lines
51KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. //#undef NDEBUG
  29. //#include <assert.h>
  30. #define SQ(a) ((a)*(a))
  31. #define P_LEFT P[1]
  32. #define P_TOP P[2]
  33. #define P_TOPRIGHT P[3]
  34. #define P_MEDIAN P[4]
  35. #define P_MV1 P[9]
  36. static inline int sad_hpel_motion_search(MpegEncContext * s,
  37. int *mx_ptr, int *my_ptr, int dmin,
  38. int xmin, int ymin, int xmax, int ymax,
  39. int pred_x, int pred_y, Picture *picture,
  40. int n, int size, uint16_t * const mv_penalty);
  41. static inline int update_map_generation(MpegEncContext * s)
  42. {
  43. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  44. if(s->me.map_generation==0){
  45. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  46. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  47. }
  48. return s->me.map_generation;
  49. }
  50. /* shape adaptive search stuff */
  51. typedef struct Minima{
  52. int height;
  53. int x, y;
  54. int checked;
  55. }Minima;
  56. static int minima_cmp(const void *a, const void *b){
  57. Minima *da = (Minima *) a;
  58. Minima *db = (Minima *) b;
  59. return da->height - db->height;
  60. }
  61. /* SIMPLE */
  62. #define RENAME(a) simple_ ## a
  63. #define CMP(d, x, y, size)\
  64. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);
  65. #define CMP_HPEL(d, dx, dy, x, y, size)\
  66. {\
  67. const int dxy= (dx) + 2*(dy);\
  68. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  69. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  70. }
  71. #define CMP_QPEL(d, dx, dy, x, y, size)\
  72. {\
  73. const int dxy= (dx) + 4*(dy);\
  74. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  75. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  76. }
  77. #include "motion_est_template.c"
  78. #undef RENAME
  79. #undef CMP
  80. #undef CMP_HPEL
  81. #undef CMP_QPEL
  82. #undef INIT
  83. /* SIMPLE CHROMA */
  84. #define RENAME(a) simple_chroma_ ## a
  85. #define CMP(d, x, y, size)\
  86. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);\
  87. if(chroma_cmp){\
  88. int dxy= ((x)&1) + 2*((y)&1);\
  89. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  90. \
  91. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  92. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride);\
  93. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  94. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride);\
  95. }
  96. #define CMP_HPEL(d, dx, dy, x, y, size)\
  97. {\
  98. const int dxy= (dx) + 2*(dy);\
  99. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  100. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  101. if(chroma_cmp_sub){\
  102. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  103. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  104. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  105. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  106. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  107. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  108. }\
  109. }
  110. #define CMP_QPEL(d, dx, dy, x, y, size)\
  111. {\
  112. const int dxy= (dx) + 4*(dy);\
  113. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  114. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  115. if(chroma_cmp_sub){\
  116. int cxy, c;\
  117. int cx= (4*(x) + (dx))/2;\
  118. int cy= (4*(y) + (dy))/2;\
  119. cx= (cx>>1)|(cx&1);\
  120. cy= (cy>>1)|(cy&1);\
  121. cxy= (cx&1) + 2*(cy&1);\
  122. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  123. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  124. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  125. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  126. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  127. }\
  128. }
  129. #include "motion_est_template.c"
  130. #undef RENAME
  131. #undef CMP
  132. #undef CMP_HPEL
  133. #undef CMP_QPEL
  134. #undef INIT
  135. /* SIMPLE DIRECT HPEL */
  136. #define RENAME(a) simple_direct_hpel_ ## a
  137. //FIXME precalc divisions stuff
  138. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  139. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  140. const int hx= 2*(x) + (dx);\
  141. const int hy= 2*(y) + (dy);\
  142. if(s->mv_type==MV_TYPE_8X8){\
  143. int i;\
  144. for(i=0; i<4; i++){\
  145. int fx = s->me.direct_basis_mv[i][0] + hx;\
  146. int fy = s->me.direct_basis_mv[i][1] + hy;\
  147. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  148. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  149. int fxy= (fx&1) + 2*(fy&1);\
  150. int bxy= (bx&1) + 2*(by&1);\
  151. \
  152. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  153. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  154. hpel_avg[1][bxy](dst, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  155. }\
  156. }else{\
  157. int fx = s->me.direct_basis_mv[0][0] + hx;\
  158. int fy = s->me.direct_basis_mv[0][1] + hy;\
  159. int bx = hx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  160. int by = hy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  161. int fxy= (fx&1) + 2*(fy&1);\
  162. int bxy= (bx&1) + 2*(by&1);\
  163. \
  164. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  165. hpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  166. }\
  167. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  168. }else\
  169. d= 256*256*256*32;
  170. #define CMP_HPEL(d, dx, dy, x, y, size)\
  171. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  172. #define CMP(d, x, y, size)\
  173. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  174. #include "motion_est_template.c"
  175. #undef RENAME
  176. #undef CMP
  177. #undef CMP_HPEL
  178. #undef CMP_QPEL
  179. #undef INIT
  180. #undef CMP_DIRECT
  181. /* SIMPLE DIRECT QPEL */
  182. #define RENAME(a) simple_direct_qpel_ ## a
  183. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  184. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  185. const int qx= 4*(x) + (dx);\
  186. const int qy= 4*(y) + (dy);\
  187. if(s->mv_type==MV_TYPE_8X8){\
  188. int i;\
  189. for(i=0; i<4; i++){\
  190. int fx = s->me.direct_basis_mv[i][0] + qx;\
  191. int fy = s->me.direct_basis_mv[i][1] + qy;\
  192. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  193. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  194. int fxy= (fx&3) + 4*(fy&3);\
  195. int bxy= (bx&3) + 4*(by&3);\
  196. \
  197. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  198. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  199. qpel_avg[1][bxy](dst, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  200. }\
  201. }else{\
  202. int fx = s->me.direct_basis_mv[0][0] + qx;\
  203. int fy = s->me.direct_basis_mv[0][1] + qy;\
  204. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  205. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  206. int fxy= (fx&3) + 4*(fy&3);\
  207. int bxy= (bx&3) + 4*(by&3);\
  208. \
  209. qpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  210. qpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  211. }\
  212. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  213. }else\
  214. d= 256*256*256*32;
  215. #define CMP_QPEL(d, dx, dy, x, y, size)\
  216. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  217. #define CMP(d, x, y, size)\
  218. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  219. #include "motion_est_template.c"
  220. #undef RENAME
  221. #undef CMP
  222. #undef CMP_HPEL
  223. #undef CMP_QPEL
  224. #undef INIT
  225. #undef CMP__DIRECT
  226. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride){
  227. return 0;
  228. }
  229. static void set_cmp(MpegEncContext *s, me_cmp_func *cmp, int type){
  230. DSPContext* c= &s->dsp;
  231. int i;
  232. memset(cmp, 0, sizeof(void*)*11);
  233. switch(type&0xFF){
  234. case FF_CMP_SAD:
  235. cmp[0]= c->sad[0];
  236. cmp[1]= c->sad[1];
  237. break;
  238. case FF_CMP_SATD:
  239. cmp[0]= c->hadamard8_diff[0];
  240. cmp[1]= c->hadamard8_diff[1];
  241. break;
  242. case FF_CMP_SSE:
  243. cmp[0]= c->sse[0];
  244. cmp[1]= c->sse[1];
  245. break;
  246. case FF_CMP_DCT:
  247. cmp[0]= c->dct_sad[0];
  248. cmp[1]= c->dct_sad[1];
  249. break;
  250. case FF_CMP_PSNR:
  251. cmp[0]= c->quant_psnr[0];
  252. cmp[1]= c->quant_psnr[1];
  253. break;
  254. case FF_CMP_BIT:
  255. cmp[0]= c->bit[0];
  256. cmp[1]= c->bit[1];
  257. break;
  258. case FF_CMP_RD:
  259. cmp[0]= c->rd[0];
  260. cmp[1]= c->rd[1];
  261. break;
  262. case FF_CMP_ZERO:
  263. for(i=0; i<7; i++){
  264. cmp[i]= zero_cmp;
  265. }
  266. break;
  267. default:
  268. fprintf(stderr,"internal error in cmp function selection\n");
  269. }
  270. };
  271. static inline int get_penalty_factor(MpegEncContext *s, int type){
  272. switch(type){
  273. default:
  274. case FF_CMP_SAD:
  275. return s->qscale;
  276. case FF_CMP_DCT:
  277. case FF_CMP_SATD:
  278. case FF_CMP_SSE:
  279. return s->qscale*8;
  280. case FF_CMP_BIT:
  281. return 1;
  282. case FF_CMP_RD:
  283. return (s->qscale*s->qscale*105 + 64)>>7;
  284. }
  285. }
  286. void ff_init_me(MpegEncContext *s){
  287. set_cmp(s, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  288. set_cmp(s, s->dsp.me_cmp, s->avctx->me_cmp);
  289. set_cmp(s, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  290. set_cmp(s, s->dsp.mb_cmp, s->avctx->mb_cmp);
  291. if(s->flags&CODEC_FLAG_QPEL){
  292. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  293. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  294. else
  295. s->me.sub_motion_search= simple_qpel_motion_search;
  296. }else{
  297. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  298. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  299. else if(s->avctx->me_sub_cmp == FF_CMP_SAD && s->avctx->me_cmp == FF_CMP_SAD)
  300. s->me.sub_motion_search= sad_hpel_motion_search;
  301. else
  302. s->me.sub_motion_search= simple_hpel_motion_search;
  303. }
  304. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  305. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  306. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  307. }else{
  308. s->me.motion_search[0]= simple_epzs_motion_search;
  309. s->me.motion_search[1]= simple_epzs_motion_search4;
  310. }
  311. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  312. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  313. }else{
  314. s->me.pre_motion_search= simple_epzs_motion_search;
  315. }
  316. }
  317. static int pix_dev(UINT8 * pix, int line_size, int mean)
  318. {
  319. int s, i, j;
  320. s = 0;
  321. for (i = 0; i < 16; i++) {
  322. for (j = 0; j < 16; j += 8) {
  323. s += ABS(pix[0]-mean);
  324. s += ABS(pix[1]-mean);
  325. s += ABS(pix[2]-mean);
  326. s += ABS(pix[3]-mean);
  327. s += ABS(pix[4]-mean);
  328. s += ABS(pix[5]-mean);
  329. s += ABS(pix[6]-mean);
  330. s += ABS(pix[7]-mean);
  331. pix += 8;
  332. }
  333. pix += line_size - 16;
  334. }
  335. return s;
  336. }
  337. static inline void no_motion_search(MpegEncContext * s,
  338. int *mx_ptr, int *my_ptr)
  339. {
  340. *mx_ptr = 16 * s->mb_x;
  341. *my_ptr = 16 * s->mb_y;
  342. }
  343. static int full_motion_search(MpegEncContext * s,
  344. int *mx_ptr, int *my_ptr, int range,
  345. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  346. {
  347. int x1, y1, x2, y2, xx, yy, x, y;
  348. int mx, my, dmin, d;
  349. UINT8 *pix;
  350. xx = 16 * s->mb_x;
  351. yy = 16 * s->mb_y;
  352. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  353. if (x1 < xmin)
  354. x1 = xmin;
  355. x2 = xx + range - 1;
  356. if (x2 > xmax)
  357. x2 = xmax;
  358. y1 = yy - range + 1;
  359. if (y1 < ymin)
  360. y1 = ymin;
  361. y2 = yy + range - 1;
  362. if (y2 > ymax)
  363. y2 = ymax;
  364. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  365. dmin = 0x7fffffff;
  366. mx = 0;
  367. my = 0;
  368. for (y = y1; y <= y2; y++) {
  369. for (x = x1; x <= x2; x++) {
  370. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x,
  371. s->linesize);
  372. if (d < dmin ||
  373. (d == dmin &&
  374. (abs(x - xx) + abs(y - yy)) <
  375. (abs(mx - xx) + abs(my - yy)))) {
  376. dmin = d;
  377. mx = x;
  378. my = y;
  379. }
  380. }
  381. }
  382. *mx_ptr = mx;
  383. *my_ptr = my;
  384. #if 0
  385. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  386. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  387. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  388. }
  389. #endif
  390. return dmin;
  391. }
  392. static int log_motion_search(MpegEncContext * s,
  393. int *mx_ptr, int *my_ptr, int range,
  394. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  395. {
  396. int x1, y1, x2, y2, xx, yy, x, y;
  397. int mx, my, dmin, d;
  398. UINT8 *pix;
  399. xx = s->mb_x << 4;
  400. yy = s->mb_y << 4;
  401. /* Left limit */
  402. x1 = xx - range;
  403. if (x1 < xmin)
  404. x1 = xmin;
  405. /* Right limit */
  406. x2 = xx + range;
  407. if (x2 > xmax)
  408. x2 = xmax;
  409. /* Upper limit */
  410. y1 = yy - range;
  411. if (y1 < ymin)
  412. y1 = ymin;
  413. /* Lower limit */
  414. y2 = yy + range;
  415. if (y2 > ymax)
  416. y2 = ymax;
  417. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  418. dmin = 0x7fffffff;
  419. mx = 0;
  420. my = 0;
  421. do {
  422. for (y = y1; y <= y2; y += range) {
  423. for (x = x1; x <= x2; x += range) {
  424. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  425. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  426. dmin = d;
  427. mx = x;
  428. my = y;
  429. }
  430. }
  431. }
  432. range = range >> 1;
  433. x1 = mx - range;
  434. if (x1 < xmin)
  435. x1 = xmin;
  436. x2 = mx + range;
  437. if (x2 > xmax)
  438. x2 = xmax;
  439. y1 = my - range;
  440. if (y1 < ymin)
  441. y1 = ymin;
  442. y2 = my + range;
  443. if (y2 > ymax)
  444. y2 = ymax;
  445. } while (range >= 1);
  446. #ifdef DEBUG
  447. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  448. #endif
  449. *mx_ptr = mx;
  450. *my_ptr = my;
  451. return dmin;
  452. }
  453. static int phods_motion_search(MpegEncContext * s,
  454. int *mx_ptr, int *my_ptr, int range,
  455. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  456. {
  457. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  458. int mx, my, dminx, dminy;
  459. UINT8 *pix;
  460. xx = s->mb_x << 4;
  461. yy = s->mb_y << 4;
  462. /* Left limit */
  463. x1 = xx - range;
  464. if (x1 < xmin)
  465. x1 = xmin;
  466. /* Right limit */
  467. x2 = xx + range;
  468. if (x2 > xmax)
  469. x2 = xmax;
  470. /* Upper limit */
  471. y1 = yy - range;
  472. if (y1 < ymin)
  473. y1 = ymin;
  474. /* Lower limit */
  475. y2 = yy + range;
  476. if (y2 > ymax)
  477. y2 = ymax;
  478. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  479. mx = 0;
  480. my = 0;
  481. x = xx;
  482. y = yy;
  483. do {
  484. dminx = 0x7fffffff;
  485. dminy = 0x7fffffff;
  486. lastx = x;
  487. for (x = x1; x <= x2; x += range) {
  488. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  489. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  490. dminx = d;
  491. mx = x;
  492. }
  493. }
  494. x = lastx;
  495. for (y = y1; y <= y2; y += range) {
  496. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  497. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  498. dminy = d;
  499. my = y;
  500. }
  501. }
  502. range = range >> 1;
  503. x = mx;
  504. y = my;
  505. x1 = mx - range;
  506. if (x1 < xmin)
  507. x1 = xmin;
  508. x2 = mx + range;
  509. if (x2 > xmax)
  510. x2 = xmax;
  511. y1 = my - range;
  512. if (y1 < ymin)
  513. y1 = ymin;
  514. y2 = my + range;
  515. if (y2 > ymax)
  516. y2 = ymax;
  517. } while (range >= 1);
  518. #ifdef DEBUG
  519. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  520. #endif
  521. /* half pixel search */
  522. *mx_ptr = mx;
  523. *my_ptr = my;
  524. return dminy;
  525. }
  526. #define Z_THRESHOLD 256
  527. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  528. {\
  529. d= pix_abs_ ## suffix(pix, ptr+((x)>>1), s->linesize);\
  530. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  531. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  532. }
  533. static inline int sad_hpel_motion_search(MpegEncContext * s,
  534. int *mx_ptr, int *my_ptr, int dmin,
  535. int xmin, int ymin, int xmax, int ymax,
  536. int pred_x, int pred_y, Picture *picture,
  537. int n, int size, uint16_t * const mv_penalty)
  538. {
  539. uint8_t *ref_picture= picture->data[0];
  540. uint32_t *score_map= s->me.score_map;
  541. const int penalty_factor= s->me.sub_penalty_factor;
  542. int mx, my, xx, yy, dminh;
  543. UINT8 *pix, *ptr;
  544. op_pixels_abs_func pix_abs_x2;
  545. op_pixels_abs_func pix_abs_y2;
  546. op_pixels_abs_func pix_abs_xy2;
  547. if(size==0){
  548. pix_abs_x2 = s->dsp.pix_abs16x16_x2;
  549. pix_abs_y2 = s->dsp.pix_abs16x16_y2;
  550. pix_abs_xy2= s->dsp.pix_abs16x16_xy2;
  551. }else{
  552. pix_abs_x2 = s->dsp.pix_abs8x8_x2;
  553. pix_abs_y2 = s->dsp.pix_abs8x8_y2;
  554. pix_abs_xy2= s->dsp.pix_abs8x8_xy2;
  555. }
  556. if(s->me.skip){
  557. // printf("S");
  558. *mx_ptr = 0;
  559. *my_ptr = 0;
  560. return dmin;
  561. }
  562. // printf("N");
  563. xx = 16 * s->mb_x + 8*(n&1);
  564. yy = 16 * s->mb_y + 8*(n>>1);
  565. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  566. mx = *mx_ptr;
  567. my = *my_ptr;
  568. ptr = ref_picture + ((yy + my) * s->linesize) + (xx + mx);
  569. dminh = dmin;
  570. if (mx > xmin && mx < xmax &&
  571. my > ymin && my < ymax) {
  572. int dx=0, dy=0;
  573. int d, pen_x, pen_y;
  574. const int index= (my<<ME_MAP_SHIFT) + mx;
  575. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  576. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  577. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  578. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  579. mx<<=1;
  580. my<<=1;
  581. pen_x= pred_x + mx;
  582. pen_y= pred_y + my;
  583. ptr-= s->linesize;
  584. if(t<=b){
  585. CHECK_SAD_HALF_MV(y2 , 0, -1)
  586. if(l<=r){
  587. CHECK_SAD_HALF_MV(xy2, -1, -1)
  588. if(t+r<=b+l){
  589. CHECK_SAD_HALF_MV(xy2, +1, -1)
  590. ptr+= s->linesize;
  591. }else{
  592. ptr+= s->linesize;
  593. CHECK_SAD_HALF_MV(xy2, -1, +1)
  594. }
  595. CHECK_SAD_HALF_MV(x2 , -1, 0)
  596. }else{
  597. CHECK_SAD_HALF_MV(xy2, +1, -1)
  598. if(t+l<=b+r){
  599. CHECK_SAD_HALF_MV(xy2, -1, -1)
  600. ptr+= s->linesize;
  601. }else{
  602. ptr+= s->linesize;
  603. CHECK_SAD_HALF_MV(xy2, +1, +1)
  604. }
  605. CHECK_SAD_HALF_MV(x2 , +1, 0)
  606. }
  607. }else{
  608. if(l<=r){
  609. if(t+l<=b+r){
  610. CHECK_SAD_HALF_MV(xy2, -1, -1)
  611. ptr+= s->linesize;
  612. }else{
  613. ptr+= s->linesize;
  614. CHECK_SAD_HALF_MV(xy2, +1, +1)
  615. }
  616. CHECK_SAD_HALF_MV(x2 , -1, 0)
  617. CHECK_SAD_HALF_MV(xy2, -1, +1)
  618. }else{
  619. if(t+r<=b+l){
  620. CHECK_SAD_HALF_MV(xy2, +1, -1)
  621. ptr+= s->linesize;
  622. }else{
  623. ptr+= s->linesize;
  624. CHECK_SAD_HALF_MV(xy2, -1, +1)
  625. }
  626. CHECK_SAD_HALF_MV(x2 , +1, 0)
  627. CHECK_SAD_HALF_MV(xy2, +1, +1)
  628. }
  629. CHECK_SAD_HALF_MV(y2 , 0, +1)
  630. }
  631. mx+=dx;
  632. my+=dy;
  633. }else{
  634. mx<<=1;
  635. my<<=1;
  636. }
  637. *mx_ptr = mx;
  638. *my_ptr = my;
  639. return dminh;
  640. }
  641. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  642. {
  643. const int xy= s->mb_x + 1 + (s->mb_y + 1)*(s->mb_width + 2);
  644. s->p_mv_table[xy][0] = mx;
  645. s->p_mv_table[xy][1] = my;
  646. /* has allready been set to the 4 MV if 4MV is done */
  647. if(mv4){
  648. int mot_xy= s->block_index[0];
  649. s->motion_val[mot_xy ][0]= mx;
  650. s->motion_val[mot_xy ][1]= my;
  651. s->motion_val[mot_xy+1][0]= mx;
  652. s->motion_val[mot_xy+1][1]= my;
  653. mot_xy += s->block_wrap[0];
  654. s->motion_val[mot_xy ][0]= mx;
  655. s->motion_val[mot_xy ][1]= my;
  656. s->motion_val[mot_xy+1][0]= mx;
  657. s->motion_val[mot_xy+1][1]= my;
  658. }
  659. }
  660. static inline void get_limits(MpegEncContext *s, int *range, int *xmin, int *ymin, int *xmax, int *ymax, int f_code)
  661. {
  662. *range = 8 * (1 << (f_code - 1));
  663. /* XXX: temporary kludge to avoid overflow for msmpeg4 */
  664. if (s->out_format == FMT_H263 && !s->h263_msmpeg4)
  665. *range *= 2;
  666. if (s->unrestricted_mv) {
  667. *xmin = -16;
  668. *ymin = -16;
  669. if (s->h263_plus)
  670. *range *= 2;
  671. if(s->avctx->codec->id!=CODEC_ID_MPEG4){
  672. *xmax = s->mb_width*16;
  673. *ymax = s->mb_height*16;
  674. }else {
  675. *xmax = s->width;
  676. *ymax = s->height;
  677. }
  678. } else {
  679. *xmin = 0;
  680. *ymin = 0;
  681. *xmax = s->mb_width*16 - 16;
  682. *ymax = s->mb_height*16 - 16;
  683. }
  684. }
  685. static inline int mv4_search(MpegEncContext *s, int xmin, int ymin, int xmax, int ymax, int mx, int my, int shift)
  686. {
  687. int block;
  688. int P[10][2];
  689. uint8_t *ref_picture= s->last_picture.data[0];
  690. int dmin_sum=0;
  691. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  692. for(block=0; block<4; block++){
  693. int mx4, my4;
  694. int pred_x4, pred_y4;
  695. int dmin4;
  696. static const int off[4]= {2, 1, 1, -1};
  697. const int mot_stride = s->block_wrap[0];
  698. const int mot_xy = s->block_index[block];
  699. // const int block_x= (block&1);
  700. // const int block_y= (block>>1);
  701. #if 1 // this saves us a bit of cliping work and shouldnt affect compression in a negative way
  702. const int rel_xmin4= xmin;
  703. const int rel_xmax4= xmax;
  704. const int rel_ymin4= ymin;
  705. const int rel_ymax4= ymax;
  706. #else
  707. const int rel_xmin4= xmin - block_x*8;
  708. const int rel_xmax4= xmax - block_x*8 + 8;
  709. const int rel_ymin4= ymin - block_y*8;
  710. const int rel_ymax4= ymax - block_y*8 + 8;
  711. #endif
  712. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  713. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  714. if(P_LEFT[0] > (rel_xmax4<<shift)) P_LEFT[0] = (rel_xmax4<<shift);
  715. /* special case for first line */
  716. if (s->mb_y == 0 && block<2) {
  717. pred_x4= P_LEFT[0];
  718. pred_y4= P_LEFT[1];
  719. } else {
  720. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  721. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  722. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + off[block]][0];
  723. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + off[block]][1];
  724. if(P_TOP[1] > (rel_ymax4<<shift)) P_TOP[1] = (rel_ymax4<<shift);
  725. if(P_TOPRIGHT[0] < (rel_xmin4<<shift)) P_TOPRIGHT[0]= (rel_xmin4<<shift);
  726. if(P_TOPRIGHT[0] > (rel_xmax4<<shift)) P_TOPRIGHT[0]= (rel_xmax4<<shift);
  727. if(P_TOPRIGHT[1] > (rel_ymax4<<shift)) P_TOPRIGHT[1]= (rel_ymax4<<shift);
  728. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  729. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  730. if(s->out_format == FMT_H263){
  731. pred_x4 = P_MEDIAN[0];
  732. pred_y4 = P_MEDIAN[1];
  733. }else { /* mpeg1 at least */
  734. pred_x4= P_LEFT[0];
  735. pred_y4= P_LEFT[1];
  736. }
  737. }
  738. P_MV1[0]= mx;
  739. P_MV1[1]= my;
  740. dmin4 = s->me.motion_search[1](s, block, &mx4, &my4, P, pred_x4, pred_y4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  741. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  742. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  743. pred_x4, pred_y4, &s->last_picture, block, 1, mv_penalty);
  744. s->motion_val[ s->block_index[block] ][0]= mx4;
  745. s->motion_val[ s->block_index[block] ][1]= my4;
  746. dmin_sum+= dmin4;
  747. }
  748. return dmin_sum;
  749. }
  750. void ff_estimate_p_frame_motion(MpegEncContext * s,
  751. int mb_x, int mb_y)
  752. {
  753. UINT8 *pix, *ppix;
  754. int sum, varc, vard, mx, my, range, dmin, xx, yy;
  755. int xmin, ymin, xmax, ymax;
  756. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  757. int pred_x=0, pred_y=0;
  758. int P[10][2];
  759. const int shift= 1+s->quarter_sample;
  760. int mb_type=0;
  761. uint8_t *ref_picture= s->last_picture.data[0];
  762. Picture * const pic= &s->current_picture;
  763. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  764. assert(s->quarter_sample==0 || s->quarter_sample==1);
  765. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  766. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  767. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  768. rel_xmin= xmin - mb_x*16;
  769. rel_xmax= xmax - mb_x*16;
  770. rel_ymin= ymin - mb_y*16;
  771. rel_ymax= ymax - mb_y*16;
  772. s->me.skip=0;
  773. switch(s->me_method) {
  774. case ME_ZERO:
  775. default:
  776. no_motion_search(s, &mx, &my);
  777. mx-= mb_x*16;
  778. my-= mb_y*16;
  779. dmin = 0;
  780. break;
  781. case ME_FULL:
  782. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  783. mx-= mb_x*16;
  784. my-= mb_y*16;
  785. break;
  786. case ME_LOG:
  787. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  788. mx-= mb_x*16;
  789. my-= mb_y*16;
  790. break;
  791. case ME_PHODS:
  792. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  793. mx-= mb_x*16;
  794. my-= mb_y*16;
  795. break;
  796. case ME_X1:
  797. case ME_EPZS:
  798. {
  799. const int mot_stride = s->block_wrap[0];
  800. const int mot_xy = s->block_index[0];
  801. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  802. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  803. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  804. if(mb_y) {
  805. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  806. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  807. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + 2][0];
  808. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + 2][1];
  809. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1] = (rel_ymax<<shift);
  810. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  811. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  812. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  813. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  814. if(s->out_format == FMT_H263){
  815. pred_x = P_MEDIAN[0];
  816. pred_y = P_MEDIAN[1];
  817. }else { /* mpeg1 at least */
  818. pred_x= P_LEFT[0];
  819. pred_y= P_LEFT[1];
  820. }
  821. }else{
  822. pred_x= P_LEFT[0];
  823. pred_y= P_LEFT[1];
  824. }
  825. }
  826. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  827. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  828. break;
  829. }
  830. /* intra / predictive decision */
  831. xx = mb_x * 16;
  832. yy = mb_y * 16;
  833. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  834. /* At this point (mx,my) are full-pell and the relative displacement */
  835. ppix = ref_picture + ((yy+my) * s->linesize) + (xx+mx);
  836. sum = s->dsp.pix_sum(pix, s->linesize);
  837. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  838. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize)+128)>>8;
  839. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  840. pic->mb_var [s->mb_width * mb_y + mb_x] = varc;
  841. pic->mc_mb_var[s->mb_width * mb_y + mb_x] = vard;
  842. pic->mb_mean [s->mb_width * mb_y + mb_x] = (sum+128)>>8;
  843. pic->mb_var_sum += varc;
  844. pic->mc_mb_var_sum += vard;
  845. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  846. #if 0
  847. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  848. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  849. #endif
  850. if(s->flags&CODEC_FLAG_HQ){
  851. if (vard <= 64 || vard < varc)
  852. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  853. else
  854. s->scene_change_score+= s->qscale;
  855. if (vard*2 + 200 > varc)
  856. mb_type|= MB_TYPE_INTRA;
  857. if (varc*2 + 200 > vard){
  858. mb_type|= MB_TYPE_INTER;
  859. s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  860. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  861. }else{
  862. mx <<=shift;
  863. my <<=shift;
  864. }
  865. if((s->flags&CODEC_FLAG_4MV)
  866. && !s->me.skip && varc>50 && vard>10){
  867. mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  868. mb_type|=MB_TYPE_INTER4V;
  869. set_p_mv_tables(s, mx, my, 0);
  870. }else
  871. set_p_mv_tables(s, mx, my, 1);
  872. }else{
  873. if (vard <= 64 || vard < varc) {
  874. // if (sadP <= 32 || sadP < sadI + 500) {
  875. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  876. mb_type|= MB_TYPE_INTER;
  877. if (s->me_method != ME_ZERO) {
  878. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  879. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  880. if((s->flags&CODEC_FLAG_4MV)
  881. && !s->me.skip && varc>50 && vard>10){
  882. int dmin4= mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  883. if(dmin4 + 128 <dmin)
  884. mb_type= MB_TYPE_INTER4V;
  885. }
  886. set_p_mv_tables(s, mx, my, mb_type!=MB_TYPE_INTER4V);
  887. } else {
  888. mx <<=shift;
  889. my <<=shift;
  890. }
  891. #if 0
  892. if (vard < 10) {
  893. skip++;
  894. fprintf(stderr,"\nEarly skip: %d vard: %2d varc: %5d dmin: %d",
  895. skip, vard, varc, dmin);
  896. }
  897. #endif
  898. }else{
  899. s->scene_change_score+= 20;
  900. mb_type|= MB_TYPE_INTRA;
  901. mx = 0;
  902. my = 0;
  903. }
  904. }
  905. s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  906. }
  907. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  908. int mb_x, int mb_y)
  909. {
  910. int mx, my, range, dmin;
  911. int xmin, ymin, xmax, ymax;
  912. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  913. int pred_x=0, pred_y=0;
  914. int P[10][2];
  915. const int shift= 1+s->quarter_sample;
  916. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  917. const int mv_stride= s->mb_width + 2;
  918. const int xy= mb_x + 1 + (mb_y + 1)*mv_stride;
  919. assert(s->quarter_sample==0 || s->quarter_sample==1);
  920. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  921. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  922. rel_xmin= xmin - mb_x*16;
  923. rel_xmax= xmax - mb_x*16;
  924. rel_ymin= ymin - mb_y*16;
  925. rel_ymax= ymax - mb_y*16;
  926. s->me.skip=0;
  927. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  928. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  929. if(P_LEFT[0] < (rel_xmin<<shift)) P_LEFT[0] = (rel_xmin<<shift);
  930. /* special case for first line */
  931. if (mb_y == s->mb_height-1) {
  932. pred_x= P_LEFT[0];
  933. pred_y= P_LEFT[1];
  934. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  935. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  936. } else {
  937. P_TOP[0] = s->p_mv_table[xy + mv_stride ][0];
  938. P_TOP[1] = s->p_mv_table[xy + mv_stride ][1];
  939. P_TOPRIGHT[0] = s->p_mv_table[xy + mv_stride - 1][0];
  940. P_TOPRIGHT[1] = s->p_mv_table[xy + mv_stride - 1][1];
  941. if(P_TOP[1] < (rel_ymin<<shift)) P_TOP[1] = (rel_ymin<<shift);
  942. if(P_TOPRIGHT[0] > (rel_xmax<<shift)) P_TOPRIGHT[0]= (rel_xmax<<shift);
  943. if(P_TOPRIGHT[1] < (rel_ymin<<shift)) P_TOPRIGHT[1]= (rel_ymin<<shift);
  944. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  945. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  946. pred_x = P_MEDIAN[0];
  947. pred_y = P_MEDIAN[1];
  948. }
  949. dmin = s->me.pre_motion_search(s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  950. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  951. s->p_mv_table[xy][0] = mx<<shift;
  952. s->p_mv_table[xy][1] = my<<shift;
  953. return dmin;
  954. }
  955. int ff_estimate_motion_b(MpegEncContext * s,
  956. int mb_x, int mb_y, int16_t (*mv_table)[2], Picture *picture, int f_code)
  957. {
  958. int mx, my, range, dmin;
  959. int xmin, ymin, xmax, ymax;
  960. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  961. int pred_x=0, pred_y=0;
  962. int P[10][2];
  963. const int shift= 1+s->quarter_sample;
  964. const int mot_stride = s->mb_width + 2;
  965. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  966. uint8_t * const ref_picture= picture->data[0];
  967. uint16_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  968. int mv_scale;
  969. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  970. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  971. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, f_code);
  972. rel_xmin= xmin - mb_x*16;
  973. rel_xmax= xmax - mb_x*16;
  974. rel_ymin= ymin - mb_y*16;
  975. rel_ymax= ymax - mb_y*16;
  976. switch(s->me_method) {
  977. case ME_ZERO:
  978. default:
  979. no_motion_search(s, &mx, &my);
  980. dmin = 0;
  981. mx-= mb_x*16;
  982. my-= mb_y*16;
  983. break;
  984. case ME_FULL:
  985. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  986. mx-= mb_x*16;
  987. my-= mb_y*16;
  988. break;
  989. case ME_LOG:
  990. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  991. mx-= mb_x*16;
  992. my-= mb_y*16;
  993. break;
  994. case ME_PHODS:
  995. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  996. mx-= mb_x*16;
  997. my-= mb_y*16;
  998. break;
  999. case ME_X1:
  1000. case ME_EPZS:
  1001. {
  1002. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1003. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1004. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  1005. /* special case for first line */
  1006. if (mb_y) {
  1007. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1008. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1009. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1010. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1011. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1]= (rel_ymax<<shift);
  1012. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  1013. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  1014. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1015. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1016. }
  1017. pred_x= P_LEFT[0];
  1018. pred_y= P_LEFT[1];
  1019. }
  1020. if(mv_table == s->b_forw_mv_table){
  1021. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1022. }else{
  1023. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1024. }
  1025. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1026. picture, s->p_mv_table, mv_scale, mv_penalty);
  1027. break;
  1028. }
  1029. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1030. pred_x, pred_y, picture, 0, 0, mv_penalty);
  1031. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1032. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1033. mv_table[mot_xy][0]= mx;
  1034. mv_table[mot_xy][1]= my;
  1035. return dmin;
  1036. }
  1037. static inline int check_bidir_mv(MpegEncContext * s,
  1038. int mb_x, int mb_y,
  1039. int motion_fx, int motion_fy,
  1040. int motion_bx, int motion_by,
  1041. int pred_fx, int pred_fy,
  1042. int pred_bx, int pred_by)
  1043. {
  1044. //FIXME optimize?
  1045. //FIXME move into template?
  1046. //FIXME better f_code prediction (max mv & distance)
  1047. UINT16 *mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1048. uint8_t *dest_y = s->me.scratchpad;
  1049. uint8_t *ptr;
  1050. int dxy;
  1051. int src_x, src_y;
  1052. int fbmin;
  1053. if(s->quarter_sample){
  1054. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1055. src_x = mb_x * 16 + (motion_fx >> 2);
  1056. src_y = mb_y * 16 + (motion_fy >> 2);
  1057. assert(src_x >=-16 && src_x<=s->width);
  1058. assert(src_y >=-16 && src_y<=s->height);
  1059. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1060. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1061. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1062. src_x = mb_x * 16 + (motion_bx >> 2);
  1063. src_y = mb_y * 16 + (motion_by >> 2);
  1064. assert(src_x >=-16 && src_x<=s->width);
  1065. assert(src_y >=-16 && src_y<=s->height);
  1066. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1067. s->dsp.avg_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1068. }else{
  1069. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1070. src_x = mb_x * 16 + (motion_fx >> 1);
  1071. src_y = mb_y * 16 + (motion_fy >> 1);
  1072. assert(src_x >=-16 && src_x<=s->width);
  1073. assert(src_y >=-16 && src_y<=s->height);
  1074. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1075. s->dsp.put_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1076. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1077. src_x = mb_x * 16 + (motion_bx >> 1);
  1078. src_y = mb_y * 16 + (motion_by >> 1);
  1079. assert(src_x >=-16 && src_x<=s->width);
  1080. assert(src_y >=-16 && src_y<=s->height);
  1081. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1082. s->dsp.avg_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1083. }
  1084. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.sub_penalty_factor
  1085. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.sub_penalty_factor;
  1086. + s->dsp.me_sub_cmp[0](s, s->new_picture.data[0] + mb_x*16 + mb_y*16*s->linesize, dest_y, s->linesize);
  1087. return fbmin;
  1088. }
  1089. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1090. static inline int bidir_refine(MpegEncContext * s,
  1091. int mb_x, int mb_y)
  1092. {
  1093. const int mot_stride = s->mb_width + 2;
  1094. const int xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1095. int fbmin;
  1096. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1097. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1098. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1099. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1100. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1101. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1102. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1103. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1104. //FIXME do refinement and add flag
  1105. fbmin= check_bidir_mv(s, mb_x, mb_y,
  1106. motion_fx, motion_fy,
  1107. motion_bx, motion_by,
  1108. pred_fx, pred_fy,
  1109. pred_bx, pred_by);
  1110. return fbmin;
  1111. }
  1112. static inline int direct_search(MpegEncContext * s,
  1113. int mb_x, int mb_y)
  1114. {
  1115. int P[10][2];
  1116. const int mot_stride = s->mb_width + 2;
  1117. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1118. const int shift= 1+s->quarter_sample;
  1119. int dmin, i;
  1120. const int time_pp= s->pp_time;
  1121. const int time_pb= s->pb_time;
  1122. int mx, my, xmin, xmax, ymin, ymax;
  1123. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1124. uint16_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1125. ymin= xmin=(-32)>>shift;
  1126. ymax= xmax= 31>>shift;
  1127. if(s->co_located_type_table[mb_x + mb_y*s->mb_width]==CO_LOCATED_TYPE_4MV){
  1128. s->mv_type= MV_TYPE_8X8;
  1129. }else{
  1130. s->mv_type= MV_TYPE_16X16;
  1131. }
  1132. for(i=0; i<4; i++){
  1133. int index= s->block_index[i];
  1134. int min, max;
  1135. s->me.co_located_mv[i][0]= s->motion_val[index][0];
  1136. s->me.co_located_mv[i][1]= s->motion_val[index][1];
  1137. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1138. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1139. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1140. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1141. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1142. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1143. max+= (2*mb_x + (i& 1))*8 - 1; // +-1 is for the simpler rounding
  1144. min+= (2*mb_x + (i& 1))*8 + 1;
  1145. xmax= FFMIN(xmax, s->width - max);
  1146. xmin= FFMAX(xmin, - 16 - min);
  1147. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1148. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1149. max+= (2*mb_y + (i>>1))*8 - 1; // +-1 is for the simpler rounding
  1150. min+= (2*mb_y + (i>>1))*8 + 1;
  1151. ymax= FFMIN(ymax, s->height - max);
  1152. ymin= FFMAX(ymin, - 16 - min);
  1153. if(s->mv_type == MV_TYPE_16X16) break;
  1154. }
  1155. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1156. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1157. s->b_direct_mv_table[mot_xy][0]= 0;
  1158. s->b_direct_mv_table[mot_xy][1]= 0;
  1159. return 256*256*256*64;
  1160. }
  1161. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1162. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1163. /* special case for first line */
  1164. if (mb_y) {
  1165. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1166. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1167. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1168. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1169. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1170. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1171. }
  1172. if(s->flags&CODEC_FLAG_QPEL){
  1173. dmin = simple_direct_qpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1174. &s->last_picture, mv_table, 1<<14, mv_penalty);
  1175. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1176. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1177. }else{
  1178. dmin = simple_direct_hpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1179. &s->last_picture, mv_table, 1<<15, mv_penalty);
  1180. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1181. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1182. }
  1183. s->b_direct_mv_table[mot_xy][0]= mx;
  1184. s->b_direct_mv_table[mot_xy][1]= my;
  1185. return dmin;
  1186. }
  1187. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1188. int mb_x, int mb_y)
  1189. {
  1190. const int penalty_factor= s->me.penalty_factor;
  1191. int fmin, bmin, dmin, fbmin;
  1192. int type=0;
  1193. dmin= direct_search(s, mb_x, mb_y);
  1194. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, &s->last_picture, s->f_code);
  1195. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, &s->next_picture, s->b_code) - penalty_factor;
  1196. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1197. fbmin= bidir_refine(s, mb_x, mb_y);
  1198. {
  1199. int score= dmin;
  1200. type=MB_TYPE_DIRECT;
  1201. if(fmin<score){
  1202. score=fmin;
  1203. type= MB_TYPE_FORWARD;
  1204. }
  1205. if(bmin<score){
  1206. score=bmin;
  1207. type= MB_TYPE_BACKWARD;
  1208. }
  1209. if(fbmin<score){
  1210. score=fbmin;
  1211. type= MB_TYPE_BIDIR;
  1212. }
  1213. score= ((unsigned)(score*score + 128*256))>>16;
  1214. s->current_picture.mc_mb_var_sum += score;
  1215. s->current_picture.mc_mb_var[mb_y*s->mb_width + mb_x] = score; //FIXME use SSD
  1216. }
  1217. if(s->flags&CODEC_FLAG_HQ){
  1218. type= MB_TYPE_FORWARD | MB_TYPE_BACKWARD | MB_TYPE_BIDIR | MB_TYPE_DIRECT; //FIXME something smarter
  1219. if(dmin>256*256*16) type&= ~MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1220. }
  1221. s->mb_type[mb_y*s->mb_width + mb_x]= type;
  1222. }
  1223. /* find best f_code for ME which do unlimited searches */
  1224. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1225. {
  1226. if(s->me_method>=ME_EPZS){
  1227. int score[8];
  1228. int i, y;
  1229. UINT8 * fcode_tab= s->fcode_tab;
  1230. int best_fcode=-1;
  1231. int best_score=-10000000;
  1232. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1233. for(y=0; y<s->mb_height; y++){
  1234. int x;
  1235. int xy= (y+1)* (s->mb_width+2) + 1;
  1236. i= y*s->mb_width;
  1237. for(x=0; x<s->mb_width; x++){
  1238. if(s->mb_type[i] & type){
  1239. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1240. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1241. int j;
  1242. for(j=0; j<fcode && j<8; j++){
  1243. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[i] < s->current_picture.mb_var[i])
  1244. score[j]-= 170;
  1245. }
  1246. }
  1247. i++;
  1248. xy++;
  1249. }
  1250. }
  1251. for(i=1; i<8; i++){
  1252. if(score[i] > best_score){
  1253. best_score= score[i];
  1254. best_fcode= i;
  1255. }
  1256. // printf("%d %d\n", i, score[i]);
  1257. }
  1258. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1259. return best_fcode;
  1260. /* for(i=0; i<=MAX_FCODE; i++){
  1261. printf("%d ", mv_num[i]);
  1262. }
  1263. printf("\n");*/
  1264. }else{
  1265. return 1;
  1266. }
  1267. }
  1268. void ff_fix_long_p_mvs(MpegEncContext * s)
  1269. {
  1270. const int f_code= s->f_code;
  1271. int y;
  1272. UINT8 * fcode_tab= s->fcode_tab;
  1273. //int clip=0;
  1274. //int noclip=0;
  1275. /* clip / convert to intra 16x16 type MVs */
  1276. for(y=0; y<s->mb_height; y++){
  1277. int x;
  1278. int xy= (y+1)* (s->mb_width+2)+1;
  1279. int i= y*s->mb_width;
  1280. for(x=0; x<s->mb_width; x++){
  1281. if(s->mb_type[i]&MB_TYPE_INTER){
  1282. if( fcode_tab[s->p_mv_table[xy][0] + MAX_MV] > f_code
  1283. || fcode_tab[s->p_mv_table[xy][0] + MAX_MV] == 0
  1284. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] > f_code
  1285. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] == 0 ){
  1286. s->mb_type[i] &= ~MB_TYPE_INTER;
  1287. s->mb_type[i] |= MB_TYPE_INTRA;
  1288. s->p_mv_table[xy][0] = 0;
  1289. s->p_mv_table[xy][1] = 0;
  1290. //clip++;
  1291. }
  1292. //else
  1293. // noclip++;
  1294. }
  1295. xy++;
  1296. i++;
  1297. }
  1298. }
  1299. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1300. if(s->flags&CODEC_FLAG_4MV){
  1301. const int wrap= 2+ s->mb_width*2;
  1302. /* clip / convert to intra 8x8 type MVs */
  1303. for(y=0; y<s->mb_height; y++){
  1304. int xy= (y*2 + 1)*wrap + 1;
  1305. int i= y*s->mb_width;
  1306. int x;
  1307. for(x=0; x<s->mb_width; x++){
  1308. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1309. int block;
  1310. for(block=0; block<4; block++){
  1311. int off= (block& 1) + (block>>1)*wrap;
  1312. int mx= s->motion_val[ xy + off ][0];
  1313. int my= s->motion_val[ xy + off ][1];
  1314. if( fcode_tab[mx + MAX_MV] > f_code
  1315. || fcode_tab[mx + MAX_MV] == 0
  1316. || fcode_tab[my + MAX_MV] > f_code
  1317. || fcode_tab[my + MAX_MV] == 0 ){
  1318. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1319. s->mb_type[i] |= MB_TYPE_INTRA;
  1320. }
  1321. }
  1322. }
  1323. xy+=2;
  1324. i++;
  1325. }
  1326. }
  1327. }
  1328. }
  1329. void ff_fix_long_b_mvs(MpegEncContext * s, int16_t (*mv_table)[2], int f_code, int type)
  1330. {
  1331. int y;
  1332. UINT8 * fcode_tab= s->fcode_tab;
  1333. /* clip / convert to intra 16x16 type MVs */
  1334. for(y=0; y<s->mb_height; y++){
  1335. int x;
  1336. int xy= (y+1)* (s->mb_width+2)+1;
  1337. int i= y*s->mb_width;
  1338. for(x=0; x<s->mb_width; x++){
  1339. if( fcode_tab[mv_table[xy][0] + MAX_MV] > f_code
  1340. || fcode_tab[mv_table[xy][0] + MAX_MV] == 0){
  1341. if(mv_table[xy][0]>0) mv_table[xy][0]= (16<<f_code)-1;
  1342. else mv_table[xy][0]= -(16<<f_code);
  1343. }
  1344. if( fcode_tab[mv_table[xy][1] + MAX_MV] > f_code
  1345. || fcode_tab[mv_table[xy][1] + MAX_MV] == 0){
  1346. if(mv_table[xy][1]>0) mv_table[xy][1]= (16<<f_code)-1;
  1347. else mv_table[xy][1]= -(16<<f_code);
  1348. }
  1349. xy++;
  1350. i++;
  1351. }
  1352. }
  1353. }