You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3446 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevcdec.h"
  41. #include "profiles.h"
  42. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  43. /**
  44. * NOTE: Each function hls_foo correspond to the function foo in the
  45. * specification (HLS stands for High Level Syntax).
  46. */
  47. /**
  48. * Section 5.7
  49. */
  50. /* free everything allocated by pic_arrays_init() */
  51. static void pic_arrays_free(HEVCContext *s)
  52. {
  53. av_freep(&s->sao);
  54. av_freep(&s->deblock);
  55. av_freep(&s->skip_flag);
  56. av_freep(&s->tab_ct_depth);
  57. av_freep(&s->tab_ipm);
  58. av_freep(&s->cbf_luma);
  59. av_freep(&s->is_pcm);
  60. av_freep(&s->qp_y_tab);
  61. av_freep(&s->tab_slice_address);
  62. av_freep(&s->filter_slice_edges);
  63. av_freep(&s->horizontal_bs);
  64. av_freep(&s->vertical_bs);
  65. av_freep(&s->sh.entry_point_offset);
  66. av_freep(&s->sh.size);
  67. av_freep(&s->sh.offset);
  68. av_buffer_pool_uninit(&s->tab_mvf_pool);
  69. av_buffer_pool_uninit(&s->rpl_tab_pool);
  70. }
  71. /* allocate arrays that depend on frame dimensions */
  72. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  73. {
  74. int log2_min_cb_size = sps->log2_min_cb_size;
  75. int width = sps->width;
  76. int height = sps->height;
  77. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  78. ((height >> log2_min_cb_size) + 1);
  79. int ctb_count = sps->ctb_width * sps->ctb_height;
  80. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  81. s->bs_width = (width >> 2) + 1;
  82. s->bs_height = (height >> 2) + 1;
  83. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  84. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  85. if (!s->sao || !s->deblock)
  86. goto fail;
  87. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  88. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. if (!s->skip_flag || !s->tab_ct_depth)
  90. goto fail;
  91. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  92. s->tab_ipm = av_mallocz(min_pu_size);
  93. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  94. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  95. goto fail;
  96. s->filter_slice_edges = av_mallocz(ctb_count);
  97. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  98. sizeof(*s->tab_slice_address));
  99. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  100. sizeof(*s->qp_y_tab));
  101. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  102. goto fail;
  103. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  104. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. if (!s->horizontal_bs || !s->vertical_bs)
  106. goto fail;
  107. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  108. av_buffer_allocz);
  109. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  110. av_buffer_allocz);
  111. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  112. goto fail;
  113. return 0;
  114. fail:
  115. pic_arrays_free(s);
  116. return AVERROR(ENOMEM);
  117. }
  118. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  119. {
  120. int i = 0;
  121. int j = 0;
  122. uint8_t luma_weight_l0_flag[16];
  123. uint8_t chroma_weight_l0_flag[16];
  124. uint8_t luma_weight_l1_flag[16];
  125. uint8_t chroma_weight_l1_flag[16];
  126. int luma_log2_weight_denom;
  127. luma_log2_weight_denom = get_ue_golomb_long(gb);
  128. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  129. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  130. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  131. if (s->ps.sps->chroma_format_idc != 0) {
  132. int delta = get_se_golomb(gb);
  133. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  134. }
  135. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  136. luma_weight_l0_flag[i] = get_bits1(gb);
  137. if (!luma_weight_l0_flag[i]) {
  138. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  139. s->sh.luma_offset_l0[i] = 0;
  140. }
  141. }
  142. if (s->ps.sps->chroma_format_idc != 0) {
  143. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  144. chroma_weight_l0_flag[i] = get_bits1(gb);
  145. } else {
  146. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  147. chroma_weight_l0_flag[i] = 0;
  148. }
  149. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  150. if (luma_weight_l0_flag[i]) {
  151. int delta_luma_weight_l0 = get_se_golomb(gb);
  152. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  153. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  154. }
  155. if (chroma_weight_l0_flag[i]) {
  156. for (j = 0; j < 2; j++) {
  157. int delta_chroma_weight_l0 = get_se_golomb(gb);
  158. int delta_chroma_offset_l0 = get_se_golomb(gb);
  159. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  160. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  161. return AVERROR_INVALIDDATA;
  162. }
  163. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  164. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  165. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  166. }
  167. } else {
  168. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  169. s->sh.chroma_offset_l0[i][0] = 0;
  170. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  171. s->sh.chroma_offset_l0[i][1] = 0;
  172. }
  173. }
  174. if (s->sh.slice_type == HEVC_SLICE_B) {
  175. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  176. luma_weight_l1_flag[i] = get_bits1(gb);
  177. if (!luma_weight_l1_flag[i]) {
  178. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  179. s->sh.luma_offset_l1[i] = 0;
  180. }
  181. }
  182. if (s->ps.sps->chroma_format_idc != 0) {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  184. chroma_weight_l1_flag[i] = get_bits1(gb);
  185. } else {
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  187. chroma_weight_l1_flag[i] = 0;
  188. }
  189. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  190. if (luma_weight_l1_flag[i]) {
  191. int delta_luma_weight_l1 = get_se_golomb(gb);
  192. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  193. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  194. }
  195. if (chroma_weight_l1_flag[i]) {
  196. for (j = 0; j < 2; j++) {
  197. int delta_chroma_weight_l1 = get_se_golomb(gb);
  198. int delta_chroma_offset_l1 = get_se_golomb(gb);
  199. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  200. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  201. return AVERROR_INVALIDDATA;
  202. }
  203. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  204. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  205. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  206. }
  207. } else {
  208. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  209. s->sh.chroma_offset_l1[i][0] = 0;
  210. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  211. s->sh.chroma_offset_l1[i][1] = 0;
  212. }
  213. }
  214. }
  215. return 0;
  216. }
  217. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  218. {
  219. const HEVCSPS *sps = s->ps.sps;
  220. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  221. int prev_delta_msb = 0;
  222. unsigned int nb_sps = 0, nb_sh;
  223. int i;
  224. rps->nb_refs = 0;
  225. if (!sps->long_term_ref_pics_present_flag)
  226. return 0;
  227. if (sps->num_long_term_ref_pics_sps > 0)
  228. nb_sps = get_ue_golomb_long(gb);
  229. nb_sh = get_ue_golomb_long(gb);
  230. if (nb_sps > sps->num_long_term_ref_pics_sps)
  231. return AVERROR_INVALIDDATA;
  232. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  233. return AVERROR_INVALIDDATA;
  234. rps->nb_refs = nb_sh + nb_sps;
  235. for (i = 0; i < rps->nb_refs; i++) {
  236. uint8_t delta_poc_msb_present;
  237. if (i < nb_sps) {
  238. uint8_t lt_idx_sps = 0;
  239. if (sps->num_long_term_ref_pics_sps > 1)
  240. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  241. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  242. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  243. } else {
  244. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  245. rps->used[i] = get_bits1(gb);
  246. }
  247. delta_poc_msb_present = get_bits1(gb);
  248. if (delta_poc_msb_present) {
  249. int64_t delta = get_ue_golomb_long(gb);
  250. int64_t poc;
  251. if (i && i != nb_sps)
  252. delta += prev_delta_msb;
  253. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  254. if (poc != (int32_t)poc)
  255. return AVERROR_INVALIDDATA;
  256. rps->poc[i] = poc;
  257. prev_delta_msb = delta;
  258. }
  259. }
  260. return 0;
  261. }
  262. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  263. const HEVCSPS *sps)
  264. {
  265. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  266. unsigned int num = 0, den = 0;
  267. avctx->pix_fmt = sps->pix_fmt;
  268. avctx->coded_width = sps->width;
  269. avctx->coded_height = sps->height;
  270. avctx->width = sps->output_width;
  271. avctx->height = sps->output_height;
  272. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  273. avctx->profile = sps->ptl.general_ptl.profile_idc;
  274. avctx->level = sps->ptl.general_ptl.level_idc;
  275. ff_set_sar(avctx, sps->vui.sar);
  276. if (sps->vui.video_signal_type_present_flag)
  277. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  278. : AVCOL_RANGE_MPEG;
  279. else
  280. avctx->color_range = AVCOL_RANGE_MPEG;
  281. if (sps->vui.colour_description_present_flag) {
  282. avctx->color_primaries = sps->vui.colour_primaries;
  283. avctx->color_trc = sps->vui.transfer_characteristic;
  284. avctx->colorspace = sps->vui.matrix_coeffs;
  285. } else {
  286. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  287. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  288. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  289. }
  290. if (vps->vps_timing_info_present_flag) {
  291. num = vps->vps_num_units_in_tick;
  292. den = vps->vps_time_scale;
  293. } else if (sps->vui.vui_timing_info_present_flag) {
  294. num = sps->vui.vui_num_units_in_tick;
  295. den = sps->vui.vui_time_scale;
  296. }
  297. if (num != 0 && den != 0)
  298. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  299. num, den, 1 << 30);
  300. }
  301. static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt)
  302. {
  303. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  304. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  305. int ret, i;
  306. pic_arrays_free(s);
  307. s->ps.sps = NULL;
  308. s->ps.vps = NULL;
  309. if (!sps)
  310. return 0;
  311. ret = pic_arrays_init(s, sps);
  312. if (ret < 0)
  313. goto fail;
  314. export_stream_params(s->avctx, &s->ps, sps);
  315. switch (sps->pix_fmt) {
  316. case AV_PIX_FMT_YUV420P:
  317. case AV_PIX_FMT_YUVJ420P:
  318. #if CONFIG_HEVC_DXVA2_HWACCEL
  319. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  320. #endif
  321. #if CONFIG_HEVC_D3D11VA_HWACCEL
  322. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  323. #endif
  324. #if CONFIG_HEVC_VAAPI_HWACCEL
  325. *fmt++ = AV_PIX_FMT_VAAPI;
  326. #endif
  327. #if CONFIG_HEVC_VDPAU_HWACCEL
  328. *fmt++ = AV_PIX_FMT_VDPAU;
  329. #endif
  330. break;
  331. case AV_PIX_FMT_YUV420P10:
  332. #if CONFIG_HEVC_DXVA2_HWACCEL
  333. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  334. #endif
  335. #if CONFIG_HEVC_D3D11VA_HWACCEL
  336. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  337. #endif
  338. #if CONFIG_HEVC_VAAPI_HWACCEL
  339. *fmt++ = AV_PIX_FMT_VAAPI;
  340. #endif
  341. break;
  342. }
  343. if (pix_fmt == AV_PIX_FMT_NONE) {
  344. *fmt++ = sps->pix_fmt;
  345. *fmt = AV_PIX_FMT_NONE;
  346. ret = ff_thread_get_format(s->avctx, pix_fmts);
  347. if (ret < 0)
  348. goto fail;
  349. s->avctx->pix_fmt = ret;
  350. }
  351. else {
  352. s->avctx->pix_fmt = pix_fmt;
  353. }
  354. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  355. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  356. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  357. for (i = 0; i < 3; i++) {
  358. av_freep(&s->sao_pixel_buffer_h[i]);
  359. av_freep(&s->sao_pixel_buffer_v[i]);
  360. }
  361. if (sps->sao_enabled && !s->avctx->hwaccel) {
  362. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  363. int c_idx;
  364. for(c_idx = 0; c_idx < c_count; c_idx++) {
  365. int w = sps->width >> sps->hshift[c_idx];
  366. int h = sps->height >> sps->vshift[c_idx];
  367. s->sao_pixel_buffer_h[c_idx] =
  368. av_malloc((w * 2 * sps->ctb_height) <<
  369. sps->pixel_shift);
  370. s->sao_pixel_buffer_v[c_idx] =
  371. av_malloc((h * 2 * sps->ctb_width) <<
  372. sps->pixel_shift);
  373. }
  374. }
  375. s->ps.sps = sps;
  376. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  377. return 0;
  378. fail:
  379. pic_arrays_free(s);
  380. s->ps.sps = NULL;
  381. return ret;
  382. }
  383. static int hls_slice_header(HEVCContext *s)
  384. {
  385. GetBitContext *gb = &s->HEVClc->gb;
  386. SliceHeader *sh = &s->sh;
  387. int i, ret;
  388. // Coded parameters
  389. sh->first_slice_in_pic_flag = get_bits1(gb);
  390. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  391. s->seq_decode = (s->seq_decode + 1) & 0xff;
  392. s->max_ra = INT_MAX;
  393. if (IS_IDR(s))
  394. ff_hevc_clear_refs(s);
  395. }
  396. sh->no_output_of_prior_pics_flag = 0;
  397. if (IS_IRAP(s))
  398. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  399. sh->pps_id = get_ue_golomb_long(gb);
  400. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  401. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  402. return AVERROR_INVALIDDATA;
  403. }
  404. if (!sh->first_slice_in_pic_flag &&
  405. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  406. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  407. return AVERROR_INVALIDDATA;
  408. }
  409. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  410. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  411. sh->no_output_of_prior_pics_flag = 1;
  412. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  413. const HEVCSPS* last_sps = s->ps.sps;
  414. s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  415. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  416. if (s->ps.sps->width != last_sps->width || s->ps.sps->height != last_sps->height ||
  417. s->ps.sps->temporal_layer[s->ps.sps->max_sub_layers - 1].max_dec_pic_buffering !=
  418. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  419. sh->no_output_of_prior_pics_flag = 0;
  420. }
  421. ff_hevc_clear_refs(s);
  422. ret = set_sps(s, s->ps.sps, AV_PIX_FMT_NONE);
  423. if (ret < 0)
  424. return ret;
  425. s->seq_decode = (s->seq_decode + 1) & 0xff;
  426. s->max_ra = INT_MAX;
  427. }
  428. sh->dependent_slice_segment_flag = 0;
  429. if (!sh->first_slice_in_pic_flag) {
  430. int slice_address_length;
  431. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  432. sh->dependent_slice_segment_flag = get_bits1(gb);
  433. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  434. s->ps.sps->ctb_height);
  435. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  436. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  437. av_log(s->avctx, AV_LOG_ERROR,
  438. "Invalid slice segment address: %u.\n",
  439. sh->slice_segment_addr);
  440. return AVERROR_INVALIDDATA;
  441. }
  442. if (!sh->dependent_slice_segment_flag) {
  443. sh->slice_addr = sh->slice_segment_addr;
  444. s->slice_idx++;
  445. }
  446. } else {
  447. sh->slice_segment_addr = sh->slice_addr = 0;
  448. s->slice_idx = 0;
  449. s->slice_initialized = 0;
  450. }
  451. if (!sh->dependent_slice_segment_flag) {
  452. s->slice_initialized = 0;
  453. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  454. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  455. sh->slice_type = get_ue_golomb_long(gb);
  456. if (!(sh->slice_type == HEVC_SLICE_I ||
  457. sh->slice_type == HEVC_SLICE_P ||
  458. sh->slice_type == HEVC_SLICE_B)) {
  459. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  460. sh->slice_type);
  461. return AVERROR_INVALIDDATA;
  462. }
  463. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  464. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  465. return AVERROR_INVALIDDATA;
  466. }
  467. // when flag is not present, picture is inferred to be output
  468. sh->pic_output_flag = 1;
  469. if (s->ps.pps->output_flag_present_flag)
  470. sh->pic_output_flag = get_bits1(gb);
  471. if (s->ps.sps->separate_colour_plane_flag)
  472. sh->colour_plane_id = get_bits(gb, 2);
  473. if (!IS_IDR(s)) {
  474. int poc, pos;
  475. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  476. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  477. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  478. av_log(s->avctx, AV_LOG_WARNING,
  479. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  480. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  481. return AVERROR_INVALIDDATA;
  482. poc = s->poc;
  483. }
  484. s->poc = poc;
  485. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  486. pos = get_bits_left(gb);
  487. if (!sh->short_term_ref_pic_set_sps_flag) {
  488. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  489. if (ret < 0)
  490. return ret;
  491. sh->short_term_rps = &sh->slice_rps;
  492. } else {
  493. int numbits, rps_idx;
  494. if (!s->ps.sps->nb_st_rps) {
  495. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  496. return AVERROR_INVALIDDATA;
  497. }
  498. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  499. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  500. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  501. }
  502. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  503. pos = get_bits_left(gb);
  504. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  505. if (ret < 0) {
  506. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  507. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  508. return AVERROR_INVALIDDATA;
  509. }
  510. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  511. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  512. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  513. else
  514. sh->slice_temporal_mvp_enabled_flag = 0;
  515. } else {
  516. s->sh.short_term_rps = NULL;
  517. s->poc = 0;
  518. }
  519. /* 8.3.1 */
  520. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  521. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  522. s->nal_unit_type != HEVC_NAL_TSA_N &&
  523. s->nal_unit_type != HEVC_NAL_STSA_N &&
  524. s->nal_unit_type != HEVC_NAL_RADL_N &&
  525. s->nal_unit_type != HEVC_NAL_RADL_R &&
  526. s->nal_unit_type != HEVC_NAL_RASL_N &&
  527. s->nal_unit_type != HEVC_NAL_RASL_R)
  528. s->pocTid0 = s->poc;
  529. if (s->ps.sps->sao_enabled) {
  530. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  531. if (s->ps.sps->chroma_format_idc) {
  532. sh->slice_sample_adaptive_offset_flag[1] =
  533. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  534. }
  535. } else {
  536. sh->slice_sample_adaptive_offset_flag[0] = 0;
  537. sh->slice_sample_adaptive_offset_flag[1] = 0;
  538. sh->slice_sample_adaptive_offset_flag[2] = 0;
  539. }
  540. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  541. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  542. int nb_refs;
  543. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  544. if (sh->slice_type == HEVC_SLICE_B)
  545. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  546. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  547. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  548. if (sh->slice_type == HEVC_SLICE_B)
  549. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  550. }
  551. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  552. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  553. sh->nb_refs[L0], sh->nb_refs[L1]);
  554. return AVERROR_INVALIDDATA;
  555. }
  556. sh->rpl_modification_flag[0] = 0;
  557. sh->rpl_modification_flag[1] = 0;
  558. nb_refs = ff_hevc_frame_nb_refs(s);
  559. if (!nb_refs) {
  560. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  564. sh->rpl_modification_flag[0] = get_bits1(gb);
  565. if (sh->rpl_modification_flag[0]) {
  566. for (i = 0; i < sh->nb_refs[L0]; i++)
  567. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  568. }
  569. if (sh->slice_type == HEVC_SLICE_B) {
  570. sh->rpl_modification_flag[1] = get_bits1(gb);
  571. if (sh->rpl_modification_flag[1] == 1)
  572. for (i = 0; i < sh->nb_refs[L1]; i++)
  573. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  574. }
  575. }
  576. if (sh->slice_type == HEVC_SLICE_B)
  577. sh->mvd_l1_zero_flag = get_bits1(gb);
  578. if (s->ps.pps->cabac_init_present_flag)
  579. sh->cabac_init_flag = get_bits1(gb);
  580. else
  581. sh->cabac_init_flag = 0;
  582. sh->collocated_ref_idx = 0;
  583. if (sh->slice_temporal_mvp_enabled_flag) {
  584. sh->collocated_list = L0;
  585. if (sh->slice_type == HEVC_SLICE_B)
  586. sh->collocated_list = !get_bits1(gb);
  587. if (sh->nb_refs[sh->collocated_list] > 1) {
  588. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  589. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  590. av_log(s->avctx, AV_LOG_ERROR,
  591. "Invalid collocated_ref_idx: %d.\n",
  592. sh->collocated_ref_idx);
  593. return AVERROR_INVALIDDATA;
  594. }
  595. }
  596. }
  597. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  598. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  599. int ret = pred_weight_table(s, gb);
  600. if (ret < 0)
  601. return ret;
  602. }
  603. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  604. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  605. av_log(s->avctx, AV_LOG_ERROR,
  606. "Invalid number of merging MVP candidates: %d.\n",
  607. sh->max_num_merge_cand);
  608. return AVERROR_INVALIDDATA;
  609. }
  610. }
  611. sh->slice_qp_delta = get_se_golomb(gb);
  612. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  613. sh->slice_cb_qp_offset = get_se_golomb(gb);
  614. sh->slice_cr_qp_offset = get_se_golomb(gb);
  615. } else {
  616. sh->slice_cb_qp_offset = 0;
  617. sh->slice_cr_qp_offset = 0;
  618. }
  619. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  620. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  621. else
  622. sh->cu_chroma_qp_offset_enabled_flag = 0;
  623. if (s->ps.pps->deblocking_filter_control_present_flag) {
  624. int deblocking_filter_override_flag = 0;
  625. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  626. deblocking_filter_override_flag = get_bits1(gb);
  627. if (deblocking_filter_override_flag) {
  628. sh->disable_deblocking_filter_flag = get_bits1(gb);
  629. if (!sh->disable_deblocking_filter_flag) {
  630. sh->beta_offset = get_se_golomb(gb) * 2;
  631. sh->tc_offset = get_se_golomb(gb) * 2;
  632. }
  633. } else {
  634. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  635. sh->beta_offset = s->ps.pps->beta_offset;
  636. sh->tc_offset = s->ps.pps->tc_offset;
  637. }
  638. } else {
  639. sh->disable_deblocking_filter_flag = 0;
  640. sh->beta_offset = 0;
  641. sh->tc_offset = 0;
  642. }
  643. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  644. (sh->slice_sample_adaptive_offset_flag[0] ||
  645. sh->slice_sample_adaptive_offset_flag[1] ||
  646. !sh->disable_deblocking_filter_flag)) {
  647. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  648. } else {
  649. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  650. }
  651. } else if (!s->slice_initialized) {
  652. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  653. return AVERROR_INVALIDDATA;
  654. }
  655. sh->num_entry_point_offsets = 0;
  656. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  657. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  658. // It would be possible to bound this tighter but this here is simpler
  659. if (num_entry_point_offsets > get_bits_left(gb)) {
  660. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  661. return AVERROR_INVALIDDATA;
  662. }
  663. sh->num_entry_point_offsets = num_entry_point_offsets;
  664. if (sh->num_entry_point_offsets > 0) {
  665. int offset_len = get_ue_golomb_long(gb) + 1;
  666. if (offset_len < 1 || offset_len > 32) {
  667. sh->num_entry_point_offsets = 0;
  668. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  669. return AVERROR_INVALIDDATA;
  670. }
  671. av_freep(&sh->entry_point_offset);
  672. av_freep(&sh->offset);
  673. av_freep(&sh->size);
  674. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  675. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  676. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  677. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  678. sh->num_entry_point_offsets = 0;
  679. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  680. return AVERROR(ENOMEM);
  681. }
  682. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  683. unsigned val = get_bits_long(gb, offset_len);
  684. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  685. }
  686. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  687. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  688. s->threads_number = 1;
  689. } else
  690. s->enable_parallel_tiles = 0;
  691. } else
  692. s->enable_parallel_tiles = 0;
  693. }
  694. if (s->ps.pps->slice_header_extension_present_flag) {
  695. unsigned int length = get_ue_golomb_long(gb);
  696. if (length*8LL > get_bits_left(gb)) {
  697. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  698. return AVERROR_INVALIDDATA;
  699. }
  700. for (i = 0; i < length; i++)
  701. skip_bits(gb, 8); // slice_header_extension_data_byte
  702. }
  703. // Inferred parameters
  704. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  705. if (sh->slice_qp > 51 ||
  706. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  707. av_log(s->avctx, AV_LOG_ERROR,
  708. "The slice_qp %d is outside the valid range "
  709. "[%d, 51].\n",
  710. sh->slice_qp,
  711. -s->ps.sps->qp_bd_offset);
  712. return AVERROR_INVALIDDATA;
  713. }
  714. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  715. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  716. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  717. return AVERROR_INVALIDDATA;
  718. }
  719. if (get_bits_left(gb) < 0) {
  720. av_log(s->avctx, AV_LOG_ERROR,
  721. "Overread slice header by %d bits\n", -get_bits_left(gb));
  722. return AVERROR_INVALIDDATA;
  723. }
  724. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  725. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  726. s->HEVClc->qp_y = s->sh.slice_qp;
  727. s->slice_initialized = 1;
  728. s->HEVClc->tu.cu_qp_offset_cb = 0;
  729. s->HEVClc->tu.cu_qp_offset_cr = 0;
  730. return 0;
  731. }
  732. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  733. #define SET_SAO(elem, value) \
  734. do { \
  735. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  736. sao->elem = value; \
  737. else if (sao_merge_left_flag) \
  738. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  739. else if (sao_merge_up_flag) \
  740. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  741. else \
  742. sao->elem = 0; \
  743. } while (0)
  744. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  745. {
  746. HEVCLocalContext *lc = s->HEVClc;
  747. int sao_merge_left_flag = 0;
  748. int sao_merge_up_flag = 0;
  749. SAOParams *sao = &CTB(s->sao, rx, ry);
  750. int c_idx, i;
  751. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  752. s->sh.slice_sample_adaptive_offset_flag[1]) {
  753. if (rx > 0) {
  754. if (lc->ctb_left_flag)
  755. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  756. }
  757. if (ry > 0 && !sao_merge_left_flag) {
  758. if (lc->ctb_up_flag)
  759. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  760. }
  761. }
  762. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  763. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  764. s->ps.pps->log2_sao_offset_scale_chroma;
  765. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  766. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  767. continue;
  768. }
  769. if (c_idx == 2) {
  770. sao->type_idx[2] = sao->type_idx[1];
  771. sao->eo_class[2] = sao->eo_class[1];
  772. } else {
  773. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  774. }
  775. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  776. continue;
  777. for (i = 0; i < 4; i++)
  778. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  779. if (sao->type_idx[c_idx] == SAO_BAND) {
  780. for (i = 0; i < 4; i++) {
  781. if (sao->offset_abs[c_idx][i]) {
  782. SET_SAO(offset_sign[c_idx][i],
  783. ff_hevc_sao_offset_sign_decode(s));
  784. } else {
  785. sao->offset_sign[c_idx][i] = 0;
  786. }
  787. }
  788. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  789. } else if (c_idx != 2) {
  790. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  791. }
  792. // Inferred parameters
  793. sao->offset_val[c_idx][0] = 0;
  794. for (i = 0; i < 4; i++) {
  795. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  796. if (sao->type_idx[c_idx] == SAO_EDGE) {
  797. if (i > 1)
  798. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  799. } else if (sao->offset_sign[c_idx][i]) {
  800. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  801. }
  802. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  803. }
  804. }
  805. }
  806. #undef SET_SAO
  807. #undef CTB
  808. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  809. HEVCLocalContext *lc = s->HEVClc;
  810. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  811. if (log2_res_scale_abs_plus1 != 0) {
  812. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  813. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  814. (1 - 2 * res_scale_sign_flag);
  815. } else {
  816. lc->tu.res_scale_val = 0;
  817. }
  818. return 0;
  819. }
  820. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  821. int xBase, int yBase, int cb_xBase, int cb_yBase,
  822. int log2_cb_size, int log2_trafo_size,
  823. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  824. {
  825. HEVCLocalContext *lc = s->HEVClc;
  826. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  827. int i;
  828. if (lc->cu.pred_mode == MODE_INTRA) {
  829. int trafo_size = 1 << log2_trafo_size;
  830. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  831. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  832. }
  833. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  834. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  835. int scan_idx = SCAN_DIAG;
  836. int scan_idx_c = SCAN_DIAG;
  837. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  838. (s->ps.sps->chroma_format_idc == 2 &&
  839. (cbf_cb[1] || cbf_cr[1]));
  840. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  841. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  842. if (lc->tu.cu_qp_delta != 0)
  843. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  844. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  845. lc->tu.is_cu_qp_delta_coded = 1;
  846. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  847. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  848. av_log(s->avctx, AV_LOG_ERROR,
  849. "The cu_qp_delta %d is outside the valid range "
  850. "[%d, %d].\n",
  851. lc->tu.cu_qp_delta,
  852. -(26 + s->ps.sps->qp_bd_offset / 2),
  853. (25 + s->ps.sps->qp_bd_offset / 2));
  854. return AVERROR_INVALIDDATA;
  855. }
  856. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  857. }
  858. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  859. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  860. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  861. if (cu_chroma_qp_offset_flag) {
  862. int cu_chroma_qp_offset_idx = 0;
  863. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  864. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  865. av_log(s->avctx, AV_LOG_ERROR,
  866. "cu_chroma_qp_offset_idx not yet tested.\n");
  867. }
  868. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  869. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  870. } else {
  871. lc->tu.cu_qp_offset_cb = 0;
  872. lc->tu.cu_qp_offset_cr = 0;
  873. }
  874. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  875. }
  876. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  877. if (lc->tu.intra_pred_mode >= 6 &&
  878. lc->tu.intra_pred_mode <= 14) {
  879. scan_idx = SCAN_VERT;
  880. } else if (lc->tu.intra_pred_mode >= 22 &&
  881. lc->tu.intra_pred_mode <= 30) {
  882. scan_idx = SCAN_HORIZ;
  883. }
  884. if (lc->tu.intra_pred_mode_c >= 6 &&
  885. lc->tu.intra_pred_mode_c <= 14) {
  886. scan_idx_c = SCAN_VERT;
  887. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  888. lc->tu.intra_pred_mode_c <= 30) {
  889. scan_idx_c = SCAN_HORIZ;
  890. }
  891. }
  892. lc->tu.cross_pf = 0;
  893. if (cbf_luma)
  894. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  895. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  896. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  897. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  898. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  899. (lc->cu.pred_mode == MODE_INTER ||
  900. (lc->tu.chroma_mode_c == 4)));
  901. if (lc->tu.cross_pf) {
  902. hls_cross_component_pred(s, 0);
  903. }
  904. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  905. if (lc->cu.pred_mode == MODE_INTRA) {
  906. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  907. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  908. }
  909. if (cbf_cb[i])
  910. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  911. log2_trafo_size_c, scan_idx_c, 1);
  912. else
  913. if (lc->tu.cross_pf) {
  914. ptrdiff_t stride = s->frame->linesize[1];
  915. int hshift = s->ps.sps->hshift[1];
  916. int vshift = s->ps.sps->vshift[1];
  917. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  918. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  919. int size = 1 << log2_trafo_size_c;
  920. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  921. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  922. for (i = 0; i < (size * size); i++) {
  923. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  924. }
  925. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  926. }
  927. }
  928. if (lc->tu.cross_pf) {
  929. hls_cross_component_pred(s, 1);
  930. }
  931. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  932. if (lc->cu.pred_mode == MODE_INTRA) {
  933. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  934. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  935. }
  936. if (cbf_cr[i])
  937. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  938. log2_trafo_size_c, scan_idx_c, 2);
  939. else
  940. if (lc->tu.cross_pf) {
  941. ptrdiff_t stride = s->frame->linesize[2];
  942. int hshift = s->ps.sps->hshift[2];
  943. int vshift = s->ps.sps->vshift[2];
  944. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  945. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  946. int size = 1 << log2_trafo_size_c;
  947. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  948. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  949. for (i = 0; i < (size * size); i++) {
  950. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  951. }
  952. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  953. }
  954. }
  955. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  956. int trafo_size_h = 1 << (log2_trafo_size + 1);
  957. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  958. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  959. if (lc->cu.pred_mode == MODE_INTRA) {
  960. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  961. trafo_size_h, trafo_size_v);
  962. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  963. }
  964. if (cbf_cb[i])
  965. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  966. log2_trafo_size, scan_idx_c, 1);
  967. }
  968. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  969. if (lc->cu.pred_mode == MODE_INTRA) {
  970. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  971. trafo_size_h, trafo_size_v);
  972. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  973. }
  974. if (cbf_cr[i])
  975. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  976. log2_trafo_size, scan_idx_c, 2);
  977. }
  978. }
  979. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  980. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  981. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  982. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  983. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  984. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  985. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  986. if (s->ps.sps->chroma_format_idc == 2) {
  987. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  988. trafo_size_h, trafo_size_v);
  989. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  990. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  991. }
  992. } else if (blk_idx == 3) {
  993. int trafo_size_h = 1 << (log2_trafo_size + 1);
  994. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  995. ff_hevc_set_neighbour_available(s, xBase, yBase,
  996. trafo_size_h, trafo_size_v);
  997. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  998. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  999. if (s->ps.sps->chroma_format_idc == 2) {
  1000. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1001. trafo_size_h, trafo_size_v);
  1002. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1003. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1004. }
  1005. }
  1006. }
  1007. return 0;
  1008. }
  1009. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1010. {
  1011. int cb_size = 1 << log2_cb_size;
  1012. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1013. int min_pu_width = s->ps.sps->min_pu_width;
  1014. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1015. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1016. int i, j;
  1017. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1018. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1019. s->is_pcm[i + j * min_pu_width] = 2;
  1020. }
  1021. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1022. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1023. int log2_cb_size, int log2_trafo_size,
  1024. int trafo_depth, int blk_idx,
  1025. const int *base_cbf_cb, const int *base_cbf_cr)
  1026. {
  1027. HEVCLocalContext *lc = s->HEVClc;
  1028. uint8_t split_transform_flag;
  1029. int cbf_cb[2];
  1030. int cbf_cr[2];
  1031. int ret;
  1032. cbf_cb[0] = base_cbf_cb[0];
  1033. cbf_cb[1] = base_cbf_cb[1];
  1034. cbf_cr[0] = base_cbf_cr[0];
  1035. cbf_cr[1] = base_cbf_cr[1];
  1036. if (lc->cu.intra_split_flag) {
  1037. if (trafo_depth == 1) {
  1038. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1039. if (s->ps.sps->chroma_format_idc == 3) {
  1040. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1041. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1042. } else {
  1043. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1044. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1045. }
  1046. }
  1047. } else {
  1048. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1049. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1050. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1051. }
  1052. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1053. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1054. trafo_depth < lc->cu.max_trafo_depth &&
  1055. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1056. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1057. } else {
  1058. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1059. lc->cu.pred_mode == MODE_INTER &&
  1060. lc->cu.part_mode != PART_2Nx2N &&
  1061. trafo_depth == 0;
  1062. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1063. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1064. inter_split;
  1065. }
  1066. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1067. if (trafo_depth == 0 || cbf_cb[0]) {
  1068. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1069. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1070. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1071. }
  1072. }
  1073. if (trafo_depth == 0 || cbf_cr[0]) {
  1074. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1075. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1076. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1077. }
  1078. }
  1079. }
  1080. if (split_transform_flag) {
  1081. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1082. const int x1 = x0 + trafo_size_split;
  1083. const int y1 = y0 + trafo_size_split;
  1084. #define SUBDIVIDE(x, y, idx) \
  1085. do { \
  1086. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1087. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1088. cbf_cb, cbf_cr); \
  1089. if (ret < 0) \
  1090. return ret; \
  1091. } while (0)
  1092. SUBDIVIDE(x0, y0, 0);
  1093. SUBDIVIDE(x1, y0, 1);
  1094. SUBDIVIDE(x0, y1, 2);
  1095. SUBDIVIDE(x1, y1, 3);
  1096. #undef SUBDIVIDE
  1097. } else {
  1098. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1099. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1100. int min_tu_width = s->ps.sps->min_tb_width;
  1101. int cbf_luma = 1;
  1102. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1103. cbf_cb[0] || cbf_cr[0] ||
  1104. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1105. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1106. }
  1107. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1108. log2_cb_size, log2_trafo_size,
  1109. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1110. if (ret < 0)
  1111. return ret;
  1112. // TODO: store cbf_luma somewhere else
  1113. if (cbf_luma) {
  1114. int i, j;
  1115. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1116. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1117. int x_tu = (x0 + j) >> log2_min_tu_size;
  1118. int y_tu = (y0 + i) >> log2_min_tu_size;
  1119. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1120. }
  1121. }
  1122. if (!s->sh.disable_deblocking_filter_flag) {
  1123. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1124. if (s->ps.pps->transquant_bypass_enable_flag &&
  1125. lc->cu.cu_transquant_bypass_flag)
  1126. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1127. }
  1128. }
  1129. return 0;
  1130. }
  1131. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1132. {
  1133. HEVCLocalContext *lc = s->HEVClc;
  1134. GetBitContext gb;
  1135. int cb_size = 1 << log2_cb_size;
  1136. ptrdiff_t stride0 = s->frame->linesize[0];
  1137. ptrdiff_t stride1 = s->frame->linesize[1];
  1138. ptrdiff_t stride2 = s->frame->linesize[2];
  1139. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1140. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1141. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1142. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1143. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1144. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1145. s->ps.sps->pcm.bit_depth_chroma;
  1146. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1147. int ret;
  1148. if (!s->sh.disable_deblocking_filter_flag)
  1149. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1150. ret = init_get_bits(&gb, pcm, length);
  1151. if (ret < 0)
  1152. return ret;
  1153. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1154. if (s->ps.sps->chroma_format_idc) {
  1155. s->hevcdsp.put_pcm(dst1, stride1,
  1156. cb_size >> s->ps.sps->hshift[1],
  1157. cb_size >> s->ps.sps->vshift[1],
  1158. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1159. s->hevcdsp.put_pcm(dst2, stride2,
  1160. cb_size >> s->ps.sps->hshift[2],
  1161. cb_size >> s->ps.sps->vshift[2],
  1162. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1163. }
  1164. return 0;
  1165. }
  1166. /**
  1167. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1168. *
  1169. * @param s HEVC decoding context
  1170. * @param dst target buffer for block data at block position
  1171. * @param dststride stride of the dst buffer
  1172. * @param ref reference picture buffer at origin (0, 0)
  1173. * @param mv motion vector (relative to block position) to get pixel data from
  1174. * @param x_off horizontal position of block from origin (0, 0)
  1175. * @param y_off vertical position of block from origin (0, 0)
  1176. * @param block_w width of block
  1177. * @param block_h height of block
  1178. * @param luma_weight weighting factor applied to the luma prediction
  1179. * @param luma_offset additive offset applied to the luma prediction value
  1180. */
  1181. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1182. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1183. int block_w, int block_h, int luma_weight, int luma_offset)
  1184. {
  1185. HEVCLocalContext *lc = s->HEVClc;
  1186. uint8_t *src = ref->data[0];
  1187. ptrdiff_t srcstride = ref->linesize[0];
  1188. int pic_width = s->ps.sps->width;
  1189. int pic_height = s->ps.sps->height;
  1190. int mx = mv->x & 3;
  1191. int my = mv->y & 3;
  1192. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1193. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1194. int idx = ff_hevc_pel_weight[block_w];
  1195. x_off += mv->x >> 2;
  1196. y_off += mv->y >> 2;
  1197. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1198. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1199. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1200. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1201. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1202. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1203. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1204. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1205. edge_emu_stride, srcstride,
  1206. block_w + QPEL_EXTRA,
  1207. block_h + QPEL_EXTRA,
  1208. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1209. pic_width, pic_height);
  1210. src = lc->edge_emu_buffer + buf_offset;
  1211. srcstride = edge_emu_stride;
  1212. }
  1213. if (!weight_flag)
  1214. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1215. block_h, mx, my, block_w);
  1216. else
  1217. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1218. block_h, s->sh.luma_log2_weight_denom,
  1219. luma_weight, luma_offset, mx, my, block_w);
  1220. }
  1221. /**
  1222. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1223. *
  1224. * @param s HEVC decoding context
  1225. * @param dst target buffer for block data at block position
  1226. * @param dststride stride of the dst buffer
  1227. * @param ref0 reference picture0 buffer at origin (0, 0)
  1228. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1229. * @param x_off horizontal position of block from origin (0, 0)
  1230. * @param y_off vertical position of block from origin (0, 0)
  1231. * @param block_w width of block
  1232. * @param block_h height of block
  1233. * @param ref1 reference picture1 buffer at origin (0, 0)
  1234. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1235. * @param current_mv current motion vector structure
  1236. */
  1237. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1238. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1239. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1240. {
  1241. HEVCLocalContext *lc = s->HEVClc;
  1242. ptrdiff_t src0stride = ref0->linesize[0];
  1243. ptrdiff_t src1stride = ref1->linesize[0];
  1244. int pic_width = s->ps.sps->width;
  1245. int pic_height = s->ps.sps->height;
  1246. int mx0 = mv0->x & 3;
  1247. int my0 = mv0->y & 3;
  1248. int mx1 = mv1->x & 3;
  1249. int my1 = mv1->y & 3;
  1250. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1251. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1252. int x_off0 = x_off + (mv0->x >> 2);
  1253. int y_off0 = y_off + (mv0->y >> 2);
  1254. int x_off1 = x_off + (mv1->x >> 2);
  1255. int y_off1 = y_off + (mv1->y >> 2);
  1256. int idx = ff_hevc_pel_weight[block_w];
  1257. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1258. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1259. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1260. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1261. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1262. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1263. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1264. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1265. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1266. edge_emu_stride, src0stride,
  1267. block_w + QPEL_EXTRA,
  1268. block_h + QPEL_EXTRA,
  1269. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1270. pic_width, pic_height);
  1271. src0 = lc->edge_emu_buffer + buf_offset;
  1272. src0stride = edge_emu_stride;
  1273. }
  1274. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1275. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1276. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1277. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1278. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1279. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1280. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1281. edge_emu_stride, src1stride,
  1282. block_w + QPEL_EXTRA,
  1283. block_h + QPEL_EXTRA,
  1284. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1285. pic_width, pic_height);
  1286. src1 = lc->edge_emu_buffer2 + buf_offset;
  1287. src1stride = edge_emu_stride;
  1288. }
  1289. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1290. block_h, mx0, my0, block_w);
  1291. if (!weight_flag)
  1292. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1293. block_h, mx1, my1, block_w);
  1294. else
  1295. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1296. block_h, s->sh.luma_log2_weight_denom,
  1297. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1298. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1299. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1300. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1301. mx1, my1, block_w);
  1302. }
  1303. /**
  1304. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1305. *
  1306. * @param s HEVC decoding context
  1307. * @param dst1 target buffer for block data at block position (U plane)
  1308. * @param dst2 target buffer for block data at block position (V plane)
  1309. * @param dststride stride of the dst1 and dst2 buffers
  1310. * @param ref reference picture buffer at origin (0, 0)
  1311. * @param mv motion vector (relative to block position) to get pixel data from
  1312. * @param x_off horizontal position of block from origin (0, 0)
  1313. * @param y_off vertical position of block from origin (0, 0)
  1314. * @param block_w width of block
  1315. * @param block_h height of block
  1316. * @param chroma_weight weighting factor applied to the chroma prediction
  1317. * @param chroma_offset additive offset applied to the chroma prediction value
  1318. */
  1319. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1320. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1321. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1322. {
  1323. HEVCLocalContext *lc = s->HEVClc;
  1324. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1325. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1326. const Mv *mv = &current_mv->mv[reflist];
  1327. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1328. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1329. int idx = ff_hevc_pel_weight[block_w];
  1330. int hshift = s->ps.sps->hshift[1];
  1331. int vshift = s->ps.sps->vshift[1];
  1332. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1333. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1334. intptr_t _mx = mx << (1 - hshift);
  1335. intptr_t _my = my << (1 - vshift);
  1336. x_off += mv->x >> (2 + hshift);
  1337. y_off += mv->y >> (2 + vshift);
  1338. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1339. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1340. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1341. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1342. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1343. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1344. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1345. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1346. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1347. edge_emu_stride, srcstride,
  1348. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1349. x_off - EPEL_EXTRA_BEFORE,
  1350. y_off - EPEL_EXTRA_BEFORE,
  1351. pic_width, pic_height);
  1352. src0 = lc->edge_emu_buffer + buf_offset0;
  1353. srcstride = edge_emu_stride;
  1354. }
  1355. if (!weight_flag)
  1356. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1357. block_h, _mx, _my, block_w);
  1358. else
  1359. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1360. block_h, s->sh.chroma_log2_weight_denom,
  1361. chroma_weight, chroma_offset, _mx, _my, block_w);
  1362. }
  1363. /**
  1364. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1365. *
  1366. * @param s HEVC decoding context
  1367. * @param dst target buffer for block data at block position
  1368. * @param dststride stride of the dst buffer
  1369. * @param ref0 reference picture0 buffer at origin (0, 0)
  1370. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1371. * @param x_off horizontal position of block from origin (0, 0)
  1372. * @param y_off vertical position of block from origin (0, 0)
  1373. * @param block_w width of block
  1374. * @param block_h height of block
  1375. * @param ref1 reference picture1 buffer at origin (0, 0)
  1376. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1377. * @param current_mv current motion vector structure
  1378. * @param cidx chroma component(cb, cr)
  1379. */
  1380. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1381. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1382. {
  1383. HEVCLocalContext *lc = s->HEVClc;
  1384. uint8_t *src1 = ref0->data[cidx+1];
  1385. uint8_t *src2 = ref1->data[cidx+1];
  1386. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1387. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1388. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1389. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1390. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1391. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1392. Mv *mv0 = &current_mv->mv[0];
  1393. Mv *mv1 = &current_mv->mv[1];
  1394. int hshift = s->ps.sps->hshift[1];
  1395. int vshift = s->ps.sps->vshift[1];
  1396. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1397. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1398. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1399. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1400. intptr_t _mx0 = mx0 << (1 - hshift);
  1401. intptr_t _my0 = my0 << (1 - vshift);
  1402. intptr_t _mx1 = mx1 << (1 - hshift);
  1403. intptr_t _my1 = my1 << (1 - vshift);
  1404. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1405. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1406. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1407. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1408. int idx = ff_hevc_pel_weight[block_w];
  1409. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1410. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1411. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1412. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1413. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1414. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1415. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1416. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1417. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1418. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1419. edge_emu_stride, src1stride,
  1420. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1421. x_off0 - EPEL_EXTRA_BEFORE,
  1422. y_off0 - EPEL_EXTRA_BEFORE,
  1423. pic_width, pic_height);
  1424. src1 = lc->edge_emu_buffer + buf_offset1;
  1425. src1stride = edge_emu_stride;
  1426. }
  1427. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1428. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1429. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1430. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1431. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1432. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1433. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1434. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1435. edge_emu_stride, src2stride,
  1436. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1437. x_off1 - EPEL_EXTRA_BEFORE,
  1438. y_off1 - EPEL_EXTRA_BEFORE,
  1439. pic_width, pic_height);
  1440. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1441. src2stride = edge_emu_stride;
  1442. }
  1443. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1444. block_h, _mx0, _my0, block_w);
  1445. if (!weight_flag)
  1446. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1447. src2, src2stride, lc->tmp,
  1448. block_h, _mx1, _my1, block_w);
  1449. else
  1450. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1451. src2, src2stride, lc->tmp,
  1452. block_h,
  1453. s->sh.chroma_log2_weight_denom,
  1454. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1455. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1456. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1457. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1458. _mx1, _my1, block_w);
  1459. }
  1460. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1461. const Mv *mv, int y0, int height)
  1462. {
  1463. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1464. if (s->threads_type == FF_THREAD_FRAME )
  1465. ff_thread_await_progress(&ref->tf, y, 0);
  1466. }
  1467. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1468. int nPbH, int log2_cb_size, int part_idx,
  1469. int merge_idx, MvField *mv)
  1470. {
  1471. HEVCLocalContext *lc = s->HEVClc;
  1472. enum InterPredIdc inter_pred_idc = PRED_L0;
  1473. int mvp_flag;
  1474. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1475. mv->pred_flag = 0;
  1476. if (s->sh.slice_type == HEVC_SLICE_B)
  1477. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1478. if (inter_pred_idc != PRED_L1) {
  1479. if (s->sh.nb_refs[L0])
  1480. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1481. mv->pred_flag = PF_L0;
  1482. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1483. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1484. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1485. part_idx, merge_idx, mv, mvp_flag, 0);
  1486. mv->mv[0].x += lc->pu.mvd.x;
  1487. mv->mv[0].y += lc->pu.mvd.y;
  1488. }
  1489. if (inter_pred_idc != PRED_L0) {
  1490. if (s->sh.nb_refs[L1])
  1491. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1492. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1493. AV_ZERO32(&lc->pu.mvd);
  1494. } else {
  1495. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1496. }
  1497. mv->pred_flag += PF_L1;
  1498. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1499. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1500. part_idx, merge_idx, mv, mvp_flag, 1);
  1501. mv->mv[1].x += lc->pu.mvd.x;
  1502. mv->mv[1].y += lc->pu.mvd.y;
  1503. }
  1504. }
  1505. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1506. int nPbW, int nPbH,
  1507. int log2_cb_size, int partIdx, int idx)
  1508. {
  1509. #define POS(c_idx, x, y) \
  1510. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1511. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1512. HEVCLocalContext *lc = s->HEVClc;
  1513. int merge_idx = 0;
  1514. struct MvField current_mv = {{{ 0 }}};
  1515. int min_pu_width = s->ps.sps->min_pu_width;
  1516. MvField *tab_mvf = s->ref->tab_mvf;
  1517. RefPicList *refPicList = s->ref->refPicList;
  1518. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1519. uint8_t *dst0 = POS(0, x0, y0);
  1520. uint8_t *dst1 = POS(1, x0, y0);
  1521. uint8_t *dst2 = POS(2, x0, y0);
  1522. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1523. int min_cb_width = s->ps.sps->min_cb_width;
  1524. int x_cb = x0 >> log2_min_cb_size;
  1525. int y_cb = y0 >> log2_min_cb_size;
  1526. int x_pu, y_pu;
  1527. int i, j;
  1528. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1529. if (!skip_flag)
  1530. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1531. if (skip_flag || lc->pu.merge_flag) {
  1532. if (s->sh.max_num_merge_cand > 1)
  1533. merge_idx = ff_hevc_merge_idx_decode(s);
  1534. else
  1535. merge_idx = 0;
  1536. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1537. partIdx, merge_idx, &current_mv);
  1538. } else {
  1539. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1540. partIdx, merge_idx, &current_mv);
  1541. }
  1542. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1543. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1544. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1545. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1546. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1547. if (current_mv.pred_flag & PF_L0) {
  1548. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1549. if (!ref0)
  1550. return;
  1551. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1552. }
  1553. if (current_mv.pred_flag & PF_L1) {
  1554. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1555. if (!ref1)
  1556. return;
  1557. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1558. }
  1559. if (current_mv.pred_flag == PF_L0) {
  1560. int x0_c = x0 >> s->ps.sps->hshift[1];
  1561. int y0_c = y0 >> s->ps.sps->vshift[1];
  1562. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1563. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1564. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1565. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1566. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1567. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1568. if (s->ps.sps->chroma_format_idc) {
  1569. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1570. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1571. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1572. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1573. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1574. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1575. }
  1576. } else if (current_mv.pred_flag == PF_L1) {
  1577. int x0_c = x0 >> s->ps.sps->hshift[1];
  1578. int y0_c = y0 >> s->ps.sps->vshift[1];
  1579. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1580. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1581. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1582. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1583. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1584. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1585. if (s->ps.sps->chroma_format_idc) {
  1586. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1587. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1588. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1589. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1590. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1591. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1592. }
  1593. } else if (current_mv.pred_flag == PF_BI) {
  1594. int x0_c = x0 >> s->ps.sps->hshift[1];
  1595. int y0_c = y0 >> s->ps.sps->vshift[1];
  1596. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1597. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1598. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1599. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1600. ref1->frame, &current_mv.mv[1], &current_mv);
  1601. if (s->ps.sps->chroma_format_idc) {
  1602. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1603. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1604. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1605. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1606. }
  1607. }
  1608. }
  1609. /**
  1610. * 8.4.1
  1611. */
  1612. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1613. int prev_intra_luma_pred_flag)
  1614. {
  1615. HEVCLocalContext *lc = s->HEVClc;
  1616. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1617. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1618. int min_pu_width = s->ps.sps->min_pu_width;
  1619. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1620. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1621. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1622. int cand_up = (lc->ctb_up_flag || y0b) ?
  1623. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1624. int cand_left = (lc->ctb_left_flag || x0b) ?
  1625. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1626. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1627. MvField *tab_mvf = s->ref->tab_mvf;
  1628. int intra_pred_mode;
  1629. int candidate[3];
  1630. int i, j;
  1631. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1632. if ((y0 - 1) < y_ctb)
  1633. cand_up = INTRA_DC;
  1634. if (cand_left == cand_up) {
  1635. if (cand_left < 2) {
  1636. candidate[0] = INTRA_PLANAR;
  1637. candidate[1] = INTRA_DC;
  1638. candidate[2] = INTRA_ANGULAR_26;
  1639. } else {
  1640. candidate[0] = cand_left;
  1641. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1642. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1643. }
  1644. } else {
  1645. candidate[0] = cand_left;
  1646. candidate[1] = cand_up;
  1647. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1648. candidate[2] = INTRA_PLANAR;
  1649. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1650. candidate[2] = INTRA_DC;
  1651. } else {
  1652. candidate[2] = INTRA_ANGULAR_26;
  1653. }
  1654. }
  1655. if (prev_intra_luma_pred_flag) {
  1656. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1657. } else {
  1658. if (candidate[0] > candidate[1])
  1659. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1660. if (candidate[0] > candidate[2])
  1661. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1662. if (candidate[1] > candidate[2])
  1663. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1664. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1665. for (i = 0; i < 3; i++)
  1666. if (intra_pred_mode >= candidate[i])
  1667. intra_pred_mode++;
  1668. }
  1669. /* write the intra prediction units into the mv array */
  1670. if (!size_in_pus)
  1671. size_in_pus = 1;
  1672. for (i = 0; i < size_in_pus; i++) {
  1673. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1674. intra_pred_mode, size_in_pus);
  1675. for (j = 0; j < size_in_pus; j++) {
  1676. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1677. }
  1678. }
  1679. return intra_pred_mode;
  1680. }
  1681. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1682. int log2_cb_size, int ct_depth)
  1683. {
  1684. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1685. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1686. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1687. int y;
  1688. for (y = 0; y < length; y++)
  1689. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1690. ct_depth, length);
  1691. }
  1692. static const uint8_t tab_mode_idx[] = {
  1693. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1694. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1695. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1696. int log2_cb_size)
  1697. {
  1698. HEVCLocalContext *lc = s->HEVClc;
  1699. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1700. uint8_t prev_intra_luma_pred_flag[4];
  1701. int split = lc->cu.part_mode == PART_NxN;
  1702. int pb_size = (1 << log2_cb_size) >> split;
  1703. int side = split + 1;
  1704. int chroma_mode;
  1705. int i, j;
  1706. for (i = 0; i < side; i++)
  1707. for (j = 0; j < side; j++)
  1708. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1709. for (i = 0; i < side; i++) {
  1710. for (j = 0; j < side; j++) {
  1711. if (prev_intra_luma_pred_flag[2 * i + j])
  1712. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1713. else
  1714. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1715. lc->pu.intra_pred_mode[2 * i + j] =
  1716. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1717. prev_intra_luma_pred_flag[2 * i + j]);
  1718. }
  1719. }
  1720. if (s->ps.sps->chroma_format_idc == 3) {
  1721. for (i = 0; i < side; i++) {
  1722. for (j = 0; j < side; j++) {
  1723. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1724. if (chroma_mode != 4) {
  1725. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1726. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1727. else
  1728. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1729. } else {
  1730. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1731. }
  1732. }
  1733. }
  1734. } else if (s->ps.sps->chroma_format_idc == 2) {
  1735. int mode_idx;
  1736. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1737. if (chroma_mode != 4) {
  1738. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1739. mode_idx = 34;
  1740. else
  1741. mode_idx = intra_chroma_table[chroma_mode];
  1742. } else {
  1743. mode_idx = lc->pu.intra_pred_mode[0];
  1744. }
  1745. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1746. } else if (s->ps.sps->chroma_format_idc != 0) {
  1747. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1748. if (chroma_mode != 4) {
  1749. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1750. lc->pu.intra_pred_mode_c[0] = 34;
  1751. else
  1752. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1753. } else {
  1754. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1755. }
  1756. }
  1757. }
  1758. static void intra_prediction_unit_default_value(HEVCContext *s,
  1759. int x0, int y0,
  1760. int log2_cb_size)
  1761. {
  1762. HEVCLocalContext *lc = s->HEVClc;
  1763. int pb_size = 1 << log2_cb_size;
  1764. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1765. int min_pu_width = s->ps.sps->min_pu_width;
  1766. MvField *tab_mvf = s->ref->tab_mvf;
  1767. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1768. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1769. int j, k;
  1770. if (size_in_pus == 0)
  1771. size_in_pus = 1;
  1772. for (j = 0; j < size_in_pus; j++)
  1773. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1774. if (lc->cu.pred_mode == MODE_INTRA)
  1775. for (j = 0; j < size_in_pus; j++)
  1776. for (k = 0; k < size_in_pus; k++)
  1777. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1778. }
  1779. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1780. {
  1781. int cb_size = 1 << log2_cb_size;
  1782. HEVCLocalContext *lc = s->HEVClc;
  1783. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1784. int length = cb_size >> log2_min_cb_size;
  1785. int min_cb_width = s->ps.sps->min_cb_width;
  1786. int x_cb = x0 >> log2_min_cb_size;
  1787. int y_cb = y0 >> log2_min_cb_size;
  1788. int idx = log2_cb_size - 2;
  1789. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1790. int x, y, ret;
  1791. lc->cu.x = x0;
  1792. lc->cu.y = y0;
  1793. lc->cu.pred_mode = MODE_INTRA;
  1794. lc->cu.part_mode = PART_2Nx2N;
  1795. lc->cu.intra_split_flag = 0;
  1796. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1797. for (x = 0; x < 4; x++)
  1798. lc->pu.intra_pred_mode[x] = 1;
  1799. if (s->ps.pps->transquant_bypass_enable_flag) {
  1800. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1801. if (lc->cu.cu_transquant_bypass_flag)
  1802. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1803. } else
  1804. lc->cu.cu_transquant_bypass_flag = 0;
  1805. if (s->sh.slice_type != HEVC_SLICE_I) {
  1806. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1807. x = y_cb * min_cb_width + x_cb;
  1808. for (y = 0; y < length; y++) {
  1809. memset(&s->skip_flag[x], skip_flag, length);
  1810. x += min_cb_width;
  1811. }
  1812. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1813. } else {
  1814. x = y_cb * min_cb_width + x_cb;
  1815. for (y = 0; y < length; y++) {
  1816. memset(&s->skip_flag[x], 0, length);
  1817. x += min_cb_width;
  1818. }
  1819. }
  1820. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1821. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1822. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1823. if (!s->sh.disable_deblocking_filter_flag)
  1824. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1825. } else {
  1826. int pcm_flag = 0;
  1827. if (s->sh.slice_type != HEVC_SLICE_I)
  1828. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1829. if (lc->cu.pred_mode != MODE_INTRA ||
  1830. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1831. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1832. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1833. lc->cu.pred_mode == MODE_INTRA;
  1834. }
  1835. if (lc->cu.pred_mode == MODE_INTRA) {
  1836. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1837. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1838. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1839. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1840. }
  1841. if (pcm_flag) {
  1842. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1843. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1844. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1845. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1846. if (ret < 0)
  1847. return ret;
  1848. } else {
  1849. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1850. }
  1851. } else {
  1852. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1853. switch (lc->cu.part_mode) {
  1854. case PART_2Nx2N:
  1855. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1856. break;
  1857. case PART_2NxN:
  1858. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1859. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1860. break;
  1861. case PART_Nx2N:
  1862. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1863. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1864. break;
  1865. case PART_2NxnU:
  1866. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1867. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1868. break;
  1869. case PART_2NxnD:
  1870. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1871. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1872. break;
  1873. case PART_nLx2N:
  1874. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1875. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1876. break;
  1877. case PART_nRx2N:
  1878. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1879. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1880. break;
  1881. case PART_NxN:
  1882. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1883. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1884. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1885. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1886. break;
  1887. }
  1888. }
  1889. if (!pcm_flag) {
  1890. int rqt_root_cbf = 1;
  1891. if (lc->cu.pred_mode != MODE_INTRA &&
  1892. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1893. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1894. }
  1895. if (rqt_root_cbf) {
  1896. const static int cbf[2] = { 0 };
  1897. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1898. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1899. s->ps.sps->max_transform_hierarchy_depth_inter;
  1900. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1901. log2_cb_size,
  1902. log2_cb_size, 0, 0, cbf, cbf);
  1903. if (ret < 0)
  1904. return ret;
  1905. } else {
  1906. if (!s->sh.disable_deblocking_filter_flag)
  1907. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1908. }
  1909. }
  1910. }
  1911. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1912. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1913. x = y_cb * min_cb_width + x_cb;
  1914. for (y = 0; y < length; y++) {
  1915. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1916. x += min_cb_width;
  1917. }
  1918. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1919. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1920. lc->qPy_pred = lc->qp_y;
  1921. }
  1922. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1923. return 0;
  1924. }
  1925. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1926. int log2_cb_size, int cb_depth)
  1927. {
  1928. HEVCLocalContext *lc = s->HEVClc;
  1929. const int cb_size = 1 << log2_cb_size;
  1930. int ret;
  1931. int split_cu;
  1932. lc->ct_depth = cb_depth;
  1933. if (x0 + cb_size <= s->ps.sps->width &&
  1934. y0 + cb_size <= s->ps.sps->height &&
  1935. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1936. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1937. } else {
  1938. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1939. }
  1940. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1941. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1942. lc->tu.is_cu_qp_delta_coded = 0;
  1943. lc->tu.cu_qp_delta = 0;
  1944. }
  1945. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1946. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1947. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1948. }
  1949. if (split_cu) {
  1950. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1951. const int cb_size_split = cb_size >> 1;
  1952. const int x1 = x0 + cb_size_split;
  1953. const int y1 = y0 + cb_size_split;
  1954. int more_data = 0;
  1955. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1956. if (more_data < 0)
  1957. return more_data;
  1958. if (more_data && x1 < s->ps.sps->width) {
  1959. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1960. if (more_data < 0)
  1961. return more_data;
  1962. }
  1963. if (more_data && y1 < s->ps.sps->height) {
  1964. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1965. if (more_data < 0)
  1966. return more_data;
  1967. }
  1968. if (more_data && x1 < s->ps.sps->width &&
  1969. y1 < s->ps.sps->height) {
  1970. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1971. if (more_data < 0)
  1972. return more_data;
  1973. }
  1974. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1975. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1976. lc->qPy_pred = lc->qp_y;
  1977. if (more_data)
  1978. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1979. (y1 + cb_size_split) < s->ps.sps->height);
  1980. else
  1981. return 0;
  1982. } else {
  1983. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1984. if (ret < 0)
  1985. return ret;
  1986. if ((!((x0 + cb_size) %
  1987. (1 << (s->ps.sps->log2_ctb_size))) ||
  1988. (x0 + cb_size >= s->ps.sps->width)) &&
  1989. (!((y0 + cb_size) %
  1990. (1 << (s->ps.sps->log2_ctb_size))) ||
  1991. (y0 + cb_size >= s->ps.sps->height))) {
  1992. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1993. return !end_of_slice_flag;
  1994. } else {
  1995. return 1;
  1996. }
  1997. }
  1998. return 0;
  1999. }
  2000. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2001. int ctb_addr_ts)
  2002. {
  2003. HEVCLocalContext *lc = s->HEVClc;
  2004. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2005. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2006. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2007. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2008. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2009. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2010. lc->first_qp_group = 1;
  2011. lc->end_of_tiles_x = s->ps.sps->width;
  2012. } else if (s->ps.pps->tiles_enabled_flag) {
  2013. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2014. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2015. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2016. lc->first_qp_group = 1;
  2017. }
  2018. } else {
  2019. lc->end_of_tiles_x = s->ps.sps->width;
  2020. }
  2021. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2022. lc->boundary_flags = 0;
  2023. if (s->ps.pps->tiles_enabled_flag) {
  2024. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2025. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2026. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2027. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2028. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2029. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2030. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2031. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2032. } else {
  2033. if (ctb_addr_in_slice <= 0)
  2034. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2035. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2036. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2037. }
  2038. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2039. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2040. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2041. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2042. }
  2043. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2044. {
  2045. HEVCContext *s = avctxt->priv_data;
  2046. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2047. int more_data = 1;
  2048. int x_ctb = 0;
  2049. int y_ctb = 0;
  2050. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2051. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2052. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2053. return AVERROR_INVALIDDATA;
  2054. }
  2055. if (s->sh.dependent_slice_segment_flag) {
  2056. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2057. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2058. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2059. return AVERROR_INVALIDDATA;
  2060. }
  2061. }
  2062. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2063. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2064. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2065. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2066. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2067. ff_hevc_cabac_init(s, ctb_addr_ts);
  2068. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2069. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2070. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2071. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2072. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2073. if (more_data < 0) {
  2074. s->tab_slice_address[ctb_addr_rs] = -1;
  2075. return more_data;
  2076. }
  2077. ctb_addr_ts++;
  2078. ff_hevc_save_states(s, ctb_addr_ts);
  2079. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2080. }
  2081. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2082. y_ctb + ctb_size >= s->ps.sps->height)
  2083. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2084. return ctb_addr_ts;
  2085. }
  2086. static int hls_slice_data(HEVCContext *s)
  2087. {
  2088. int arg[2];
  2089. int ret[2];
  2090. arg[0] = 0;
  2091. arg[1] = 1;
  2092. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2093. return ret[0];
  2094. }
  2095. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2096. {
  2097. HEVCContext *s1 = avctxt->priv_data, *s;
  2098. HEVCLocalContext *lc;
  2099. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2100. int more_data = 1;
  2101. int *ctb_row_p = input_ctb_row;
  2102. int ctb_row = ctb_row_p[job];
  2103. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2104. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2105. int thread = ctb_row % s1->threads_number;
  2106. int ret;
  2107. s = s1->sList[self_id];
  2108. lc = s->HEVClc;
  2109. if(ctb_row) {
  2110. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2111. if (ret < 0)
  2112. return ret;
  2113. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2114. }
  2115. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2116. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2117. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2118. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2119. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2120. if (atomic_load(&s1->wpp_err)) {
  2121. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2122. return 0;
  2123. }
  2124. ff_hevc_cabac_init(s, ctb_addr_ts);
  2125. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2126. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2127. if (more_data < 0) {
  2128. s->tab_slice_address[ctb_addr_rs] = -1;
  2129. atomic_store(&s1->wpp_err, 1);
  2130. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2131. return more_data;
  2132. }
  2133. ctb_addr_ts++;
  2134. ff_hevc_save_states(s, ctb_addr_ts);
  2135. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2136. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2137. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2138. atomic_store(&s1->wpp_err, 1);
  2139. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2140. return 0;
  2141. }
  2142. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2143. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2144. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2145. return ctb_addr_ts;
  2146. }
  2147. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2148. x_ctb+=ctb_size;
  2149. if(x_ctb >= s->ps.sps->width) {
  2150. break;
  2151. }
  2152. }
  2153. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2154. return 0;
  2155. }
  2156. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2157. {
  2158. const uint8_t *data = nal->data;
  2159. int length = nal->size;
  2160. HEVCLocalContext *lc = s->HEVClc;
  2161. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2162. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2163. int64_t offset;
  2164. int64_t startheader, cmpt = 0;
  2165. int i, j, res = 0;
  2166. if (!ret || !arg) {
  2167. av_free(ret);
  2168. av_free(arg);
  2169. return AVERROR(ENOMEM);
  2170. }
  2171. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2172. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2173. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2174. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2175. );
  2176. res = AVERROR_INVALIDDATA;
  2177. goto error;
  2178. }
  2179. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2180. if (!s->sList[1]) {
  2181. for (i = 1; i < s->threads_number; i++) {
  2182. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2183. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2184. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2185. s->sList[i]->HEVClc = s->HEVClcList[i];
  2186. }
  2187. }
  2188. offset = (lc->gb.index >> 3);
  2189. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2190. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2191. startheader--;
  2192. cmpt++;
  2193. }
  2194. }
  2195. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2196. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2197. for (j = 0, cmpt = 0, startheader = offset
  2198. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2199. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2200. startheader--;
  2201. cmpt++;
  2202. }
  2203. }
  2204. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2205. s->sh.offset[i - 1] = offset;
  2206. }
  2207. if (s->sh.num_entry_point_offsets != 0) {
  2208. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2209. if (length < offset) {
  2210. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2211. res = AVERROR_INVALIDDATA;
  2212. goto error;
  2213. }
  2214. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2215. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2216. }
  2217. s->data = data;
  2218. for (i = 1; i < s->threads_number; i++) {
  2219. s->sList[i]->HEVClc->first_qp_group = 1;
  2220. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2221. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2222. s->sList[i]->HEVClc = s->HEVClcList[i];
  2223. }
  2224. atomic_store(&s->wpp_err, 0);
  2225. ff_reset_entries(s->avctx);
  2226. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2227. arg[i] = i;
  2228. ret[i] = 0;
  2229. }
  2230. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2231. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2232. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2233. res += ret[i];
  2234. error:
  2235. av_free(ret);
  2236. av_free(arg);
  2237. return res;
  2238. }
  2239. static int set_side_data(HEVCContext *s)
  2240. {
  2241. AVFrame *out = s->ref->frame;
  2242. if (s->sei_frame_packing_present &&
  2243. s->frame_packing_arrangement_type >= 3 &&
  2244. s->frame_packing_arrangement_type <= 5 &&
  2245. s->content_interpretation_type > 0 &&
  2246. s->content_interpretation_type < 3) {
  2247. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2248. if (!stereo)
  2249. return AVERROR(ENOMEM);
  2250. switch (s->frame_packing_arrangement_type) {
  2251. case 3:
  2252. if (s->quincunx_subsampling)
  2253. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2254. else
  2255. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2256. break;
  2257. case 4:
  2258. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2259. break;
  2260. case 5:
  2261. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2262. break;
  2263. }
  2264. if (s->content_interpretation_type == 2)
  2265. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2266. }
  2267. if (s->sei_display_orientation_present &&
  2268. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2269. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2270. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2271. AV_FRAME_DATA_DISPLAYMATRIX,
  2272. sizeof(int32_t) * 9);
  2273. if (!rotation)
  2274. return AVERROR(ENOMEM);
  2275. av_display_rotation_set((int32_t *)rotation->data, angle);
  2276. av_display_matrix_flip((int32_t *)rotation->data,
  2277. s->sei_hflip, s->sei_vflip);
  2278. }
  2279. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2280. // so the side data persists for the entire coded video sequence.
  2281. if (s->sei_mastering_display_info_present > 0 &&
  2282. IS_IRAP(s) && s->no_rasl_output_flag) {
  2283. s->sei_mastering_display_info_present--;
  2284. }
  2285. if (s->sei_mastering_display_info_present) {
  2286. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2287. const int mapping[3] = {2, 0, 1};
  2288. const int chroma_den = 50000;
  2289. const int luma_den = 10000;
  2290. int i;
  2291. AVMasteringDisplayMetadata *metadata =
  2292. av_mastering_display_metadata_create_side_data(out);
  2293. if (!metadata)
  2294. return AVERROR(ENOMEM);
  2295. for (i = 0; i < 3; i++) {
  2296. const int j = mapping[i];
  2297. metadata->display_primaries[i][0].num = s->display_primaries[j][0];
  2298. metadata->display_primaries[i][0].den = chroma_den;
  2299. metadata->display_primaries[i][1].num = s->display_primaries[j][1];
  2300. metadata->display_primaries[i][1].den = chroma_den;
  2301. }
  2302. metadata->white_point[0].num = s->white_point[0];
  2303. metadata->white_point[0].den = chroma_den;
  2304. metadata->white_point[1].num = s->white_point[1];
  2305. metadata->white_point[1].den = chroma_den;
  2306. metadata->max_luminance.num = s->max_mastering_luminance;
  2307. metadata->max_luminance.den = luma_den;
  2308. metadata->min_luminance.num = s->min_mastering_luminance;
  2309. metadata->min_luminance.den = luma_den;
  2310. metadata->has_luminance = 1;
  2311. metadata->has_primaries = 1;
  2312. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2313. av_log(s->avctx, AV_LOG_DEBUG,
  2314. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2315. av_q2d(metadata->display_primaries[0][0]),
  2316. av_q2d(metadata->display_primaries[0][1]),
  2317. av_q2d(metadata->display_primaries[1][0]),
  2318. av_q2d(metadata->display_primaries[1][1]),
  2319. av_q2d(metadata->display_primaries[2][0]),
  2320. av_q2d(metadata->display_primaries[2][1]),
  2321. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2322. av_log(s->avctx, AV_LOG_DEBUG,
  2323. "min_luminance=%f, max_luminance=%f\n",
  2324. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2325. }
  2326. if (s->a53_caption) {
  2327. AVFrameSideData* sd = av_frame_new_side_data(out,
  2328. AV_FRAME_DATA_A53_CC,
  2329. s->a53_caption_size);
  2330. if (sd)
  2331. memcpy(sd->data, s->a53_caption, s->a53_caption_size);
  2332. av_freep(&s->a53_caption);
  2333. s->a53_caption_size = 0;
  2334. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2335. }
  2336. return 0;
  2337. }
  2338. static int hevc_frame_start(HEVCContext *s)
  2339. {
  2340. HEVCLocalContext *lc = s->HEVClc;
  2341. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2342. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2343. int ret;
  2344. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2345. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2346. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2347. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2348. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2349. s->is_decoded = 0;
  2350. s->first_nal_type = s->nal_unit_type;
  2351. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2352. if (s->ps.pps->tiles_enabled_flag)
  2353. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2354. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2355. if (ret < 0)
  2356. goto fail;
  2357. ret = ff_hevc_frame_rps(s);
  2358. if (ret < 0) {
  2359. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2360. goto fail;
  2361. }
  2362. s->ref->frame->key_frame = IS_IRAP(s);
  2363. ret = set_side_data(s);
  2364. if (ret < 0)
  2365. goto fail;
  2366. s->frame->pict_type = 3 - s->sh.slice_type;
  2367. if (!IS_IRAP(s))
  2368. ff_hevc_bump_frame(s);
  2369. av_frame_unref(s->output_frame);
  2370. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2371. if (ret < 0)
  2372. goto fail;
  2373. if (!s->avctx->hwaccel)
  2374. ff_thread_finish_setup(s->avctx);
  2375. return 0;
  2376. fail:
  2377. if (s->ref)
  2378. ff_hevc_unref_frame(s, s->ref, ~0);
  2379. s->ref = NULL;
  2380. return ret;
  2381. }
  2382. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2383. {
  2384. HEVCLocalContext *lc = s->HEVClc;
  2385. GetBitContext *gb = &lc->gb;
  2386. int ctb_addr_ts, ret;
  2387. *gb = nal->gb;
  2388. s->nal_unit_type = nal->type;
  2389. s->temporal_id = nal->temporal_id;
  2390. switch (s->nal_unit_type) {
  2391. case HEVC_NAL_VPS:
  2392. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2393. if (ret < 0)
  2394. goto fail;
  2395. break;
  2396. case HEVC_NAL_SPS:
  2397. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2398. s->apply_defdispwin);
  2399. if (ret < 0)
  2400. goto fail;
  2401. break;
  2402. case HEVC_NAL_PPS:
  2403. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2404. if (ret < 0)
  2405. goto fail;
  2406. break;
  2407. case HEVC_NAL_SEI_PREFIX:
  2408. case HEVC_NAL_SEI_SUFFIX:
  2409. ret = ff_hevc_decode_nal_sei(s);
  2410. if (ret < 0)
  2411. goto fail;
  2412. break;
  2413. case HEVC_NAL_TRAIL_R:
  2414. case HEVC_NAL_TRAIL_N:
  2415. case HEVC_NAL_TSA_N:
  2416. case HEVC_NAL_TSA_R:
  2417. case HEVC_NAL_STSA_N:
  2418. case HEVC_NAL_STSA_R:
  2419. case HEVC_NAL_BLA_W_LP:
  2420. case HEVC_NAL_BLA_W_RADL:
  2421. case HEVC_NAL_BLA_N_LP:
  2422. case HEVC_NAL_IDR_W_RADL:
  2423. case HEVC_NAL_IDR_N_LP:
  2424. case HEVC_NAL_CRA_NUT:
  2425. case HEVC_NAL_RADL_N:
  2426. case HEVC_NAL_RADL_R:
  2427. case HEVC_NAL_RASL_N:
  2428. case HEVC_NAL_RASL_R:
  2429. ret = hls_slice_header(s);
  2430. if (ret < 0)
  2431. return ret;
  2432. if (s->sh.first_slice_in_pic_flag) {
  2433. if (s->max_ra == INT_MAX) {
  2434. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2435. s->max_ra = s->poc;
  2436. } else {
  2437. if (IS_IDR(s))
  2438. s->max_ra = INT_MIN;
  2439. }
  2440. }
  2441. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2442. s->poc <= s->max_ra) {
  2443. s->is_decoded = 0;
  2444. break;
  2445. } else {
  2446. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2447. s->max_ra = INT_MIN;
  2448. }
  2449. ret = hevc_frame_start(s);
  2450. if (ret < 0)
  2451. return ret;
  2452. } else if (!s->ref) {
  2453. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2454. goto fail;
  2455. }
  2456. if (s->nal_unit_type != s->first_nal_type) {
  2457. av_log(s->avctx, AV_LOG_ERROR,
  2458. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2459. s->first_nal_type, s->nal_unit_type);
  2460. return AVERROR_INVALIDDATA;
  2461. }
  2462. if (!s->sh.dependent_slice_segment_flag &&
  2463. s->sh.slice_type != HEVC_SLICE_I) {
  2464. ret = ff_hevc_slice_rpl(s);
  2465. if (ret < 0) {
  2466. av_log(s->avctx, AV_LOG_WARNING,
  2467. "Error constructing the reference lists for the current slice.\n");
  2468. goto fail;
  2469. }
  2470. }
  2471. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2472. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2473. if (ret < 0)
  2474. goto fail;
  2475. }
  2476. if (s->avctx->hwaccel) {
  2477. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2478. if (ret < 0)
  2479. goto fail;
  2480. } else {
  2481. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2482. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2483. else
  2484. ctb_addr_ts = hls_slice_data(s);
  2485. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2486. s->is_decoded = 1;
  2487. }
  2488. if (ctb_addr_ts < 0) {
  2489. ret = ctb_addr_ts;
  2490. goto fail;
  2491. }
  2492. }
  2493. break;
  2494. case HEVC_NAL_EOS_NUT:
  2495. case HEVC_NAL_EOB_NUT:
  2496. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2497. s->max_ra = INT_MAX;
  2498. break;
  2499. case HEVC_NAL_AUD:
  2500. case HEVC_NAL_FD_NUT:
  2501. break;
  2502. default:
  2503. av_log(s->avctx, AV_LOG_INFO,
  2504. "Skipping NAL unit %d\n", s->nal_unit_type);
  2505. }
  2506. return 0;
  2507. fail:
  2508. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2509. return ret;
  2510. return 0;
  2511. }
  2512. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2513. {
  2514. int i, ret = 0;
  2515. s->ref = NULL;
  2516. s->last_eos = s->eos;
  2517. s->eos = 0;
  2518. /* split the input packet into NAL units, so we know the upper bound on the
  2519. * number of slices in the frame */
  2520. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2521. s->nal_length_size, s->avctx->codec_id, 1);
  2522. if (ret < 0) {
  2523. av_log(s->avctx, AV_LOG_ERROR,
  2524. "Error splitting the input into NAL units.\n");
  2525. return ret;
  2526. }
  2527. for (i = 0; i < s->pkt.nb_nals; i++) {
  2528. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2529. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT)
  2530. s->eos = 1;
  2531. }
  2532. /* decode the NAL units */
  2533. for (i = 0; i < s->pkt.nb_nals; i++) {
  2534. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2535. if (ret < 0) {
  2536. av_log(s->avctx, AV_LOG_WARNING,
  2537. "Error parsing NAL unit #%d.\n", i);
  2538. goto fail;
  2539. }
  2540. }
  2541. fail:
  2542. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2543. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2544. return ret;
  2545. }
  2546. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2547. {
  2548. int i;
  2549. for (i = 0; i < 16; i++)
  2550. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2551. }
  2552. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2553. {
  2554. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2555. int pixel_shift;
  2556. int i, j;
  2557. if (!desc)
  2558. return AVERROR(EINVAL);
  2559. pixel_shift = desc->comp[0].depth > 8;
  2560. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2561. s->poc);
  2562. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2563. * on BE arches */
  2564. #if HAVE_BIGENDIAN
  2565. if (pixel_shift && !s->checksum_buf) {
  2566. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2567. FFMAX3(frame->linesize[0], frame->linesize[1],
  2568. frame->linesize[2]));
  2569. if (!s->checksum_buf)
  2570. return AVERROR(ENOMEM);
  2571. }
  2572. #endif
  2573. for (i = 0; frame->data[i]; i++) {
  2574. int width = s->avctx->coded_width;
  2575. int height = s->avctx->coded_height;
  2576. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2577. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2578. uint8_t md5[16];
  2579. av_md5_init(s->md5_ctx);
  2580. for (j = 0; j < h; j++) {
  2581. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2582. #if HAVE_BIGENDIAN
  2583. if (pixel_shift) {
  2584. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2585. (const uint16_t *) src, w);
  2586. src = s->checksum_buf;
  2587. }
  2588. #endif
  2589. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2590. }
  2591. av_md5_final(s->md5_ctx, md5);
  2592. if (!memcmp(md5, s->md5[i], 16)) {
  2593. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2594. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2595. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2596. } else {
  2597. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2598. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2599. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2600. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2601. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2602. return AVERROR_INVALIDDATA;
  2603. }
  2604. }
  2605. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2606. return 0;
  2607. }
  2608. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2609. {
  2610. AVCodecContext *avctx = s->avctx;
  2611. GetByteContext gb;
  2612. int ret, i;
  2613. bytestream2_init(&gb, buf, length);
  2614. if (length > 3 && (buf[0] || buf[1] || buf[2] > 1)) {
  2615. /* It seems the extradata is encoded as hvcC format.
  2616. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2617. * is finalized. When finalized, configurationVersion will be 1 and we
  2618. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2619. int i, j, num_arrays, nal_len_size;
  2620. s->is_nalff = 1;
  2621. bytestream2_skip(&gb, 21);
  2622. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2623. num_arrays = bytestream2_get_byte(&gb);
  2624. /* nal units in the hvcC always have length coded with 2 bytes,
  2625. * so put a fake nal_length_size = 2 while parsing them */
  2626. s->nal_length_size = 2;
  2627. /* Decode nal units from hvcC. */
  2628. for (i = 0; i < num_arrays; i++) {
  2629. int type = bytestream2_get_byte(&gb) & 0x3f;
  2630. int cnt = bytestream2_get_be16(&gb);
  2631. for (j = 0; j < cnt; j++) {
  2632. // +2 for the nal size field
  2633. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2634. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2635. av_log(s->avctx, AV_LOG_ERROR,
  2636. "Invalid NAL unit size in extradata.\n");
  2637. return AVERROR_INVALIDDATA;
  2638. }
  2639. ret = decode_nal_units(s, gb.buffer, nalsize);
  2640. if (ret < 0) {
  2641. av_log(avctx, AV_LOG_ERROR,
  2642. "Decoding nal unit %d %d from hvcC failed\n",
  2643. type, i);
  2644. return ret;
  2645. }
  2646. bytestream2_skip(&gb, nalsize);
  2647. }
  2648. }
  2649. /* Now store right nal length size, that will be used to parse
  2650. * all other nals */
  2651. s->nal_length_size = nal_len_size;
  2652. } else {
  2653. s->is_nalff = 0;
  2654. ret = decode_nal_units(s, buf, length);
  2655. if (ret < 0)
  2656. return ret;
  2657. }
  2658. /* export stream parameters from the first SPS */
  2659. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2660. if (s->ps.sps_list[i]) {
  2661. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2662. export_stream_params(s->avctx, &s->ps, sps);
  2663. break;
  2664. }
  2665. }
  2666. return 0;
  2667. }
  2668. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2669. AVPacket *avpkt)
  2670. {
  2671. int ret;
  2672. int new_extradata_size;
  2673. uint8_t *new_extradata;
  2674. HEVCContext *s = avctx->priv_data;
  2675. if (!avpkt->size) {
  2676. ret = ff_hevc_output_frame(s, data, 1);
  2677. if (ret < 0)
  2678. return ret;
  2679. *got_output = ret;
  2680. return 0;
  2681. }
  2682. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2683. &new_extradata_size);
  2684. if (new_extradata && new_extradata_size > 0) {
  2685. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2686. if (ret < 0)
  2687. return ret;
  2688. }
  2689. s->ref = NULL;
  2690. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2691. if (ret < 0)
  2692. return ret;
  2693. if (avctx->hwaccel) {
  2694. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2695. av_log(avctx, AV_LOG_ERROR,
  2696. "hardware accelerator failed to decode picture\n");
  2697. ff_hevc_unref_frame(s, s->ref, ~0);
  2698. return ret;
  2699. }
  2700. } else {
  2701. /* verify the SEI checksum */
  2702. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2703. s->is_md5) {
  2704. ret = verify_md5(s, s->ref->frame);
  2705. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2706. ff_hevc_unref_frame(s, s->ref, ~0);
  2707. return ret;
  2708. }
  2709. }
  2710. }
  2711. s->is_md5 = 0;
  2712. if (s->is_decoded) {
  2713. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2714. s->is_decoded = 0;
  2715. }
  2716. if (s->output_frame->buf[0]) {
  2717. av_frame_move_ref(data, s->output_frame);
  2718. *got_output = 1;
  2719. }
  2720. return avpkt->size;
  2721. }
  2722. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2723. {
  2724. int ret;
  2725. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2726. if (ret < 0)
  2727. return ret;
  2728. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2729. if (!dst->tab_mvf_buf)
  2730. goto fail;
  2731. dst->tab_mvf = src->tab_mvf;
  2732. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2733. if (!dst->rpl_tab_buf)
  2734. goto fail;
  2735. dst->rpl_tab = src->rpl_tab;
  2736. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2737. if (!dst->rpl_buf)
  2738. goto fail;
  2739. dst->poc = src->poc;
  2740. dst->ctb_count = src->ctb_count;
  2741. dst->window = src->window;
  2742. dst->flags = src->flags;
  2743. dst->sequence = src->sequence;
  2744. if (src->hwaccel_picture_private) {
  2745. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2746. if (!dst->hwaccel_priv_buf)
  2747. goto fail;
  2748. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2749. }
  2750. return 0;
  2751. fail:
  2752. ff_hevc_unref_frame(s, dst, ~0);
  2753. return AVERROR(ENOMEM);
  2754. }
  2755. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2756. {
  2757. HEVCContext *s = avctx->priv_data;
  2758. int i;
  2759. pic_arrays_free(s);
  2760. av_freep(&s->md5_ctx);
  2761. av_freep(&s->cabac_state);
  2762. for (i = 0; i < 3; i++) {
  2763. av_freep(&s->sao_pixel_buffer_h[i]);
  2764. av_freep(&s->sao_pixel_buffer_v[i]);
  2765. }
  2766. av_frame_free(&s->output_frame);
  2767. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2768. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2769. av_frame_free(&s->DPB[i].frame);
  2770. }
  2771. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2772. av_buffer_unref(&s->ps.vps_list[i]);
  2773. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2774. av_buffer_unref(&s->ps.sps_list[i]);
  2775. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2776. av_buffer_unref(&s->ps.pps_list[i]);
  2777. s->ps.sps = NULL;
  2778. s->ps.pps = NULL;
  2779. s->ps.vps = NULL;
  2780. av_freep(&s->sh.entry_point_offset);
  2781. av_freep(&s->sh.offset);
  2782. av_freep(&s->sh.size);
  2783. for (i = 1; i < s->threads_number; i++) {
  2784. HEVCLocalContext *lc = s->HEVClcList[i];
  2785. if (lc) {
  2786. av_freep(&s->HEVClcList[i]);
  2787. av_freep(&s->sList[i]);
  2788. }
  2789. }
  2790. if (s->HEVClc == s->HEVClcList[0])
  2791. s->HEVClc = NULL;
  2792. av_freep(&s->HEVClcList[0]);
  2793. ff_h2645_packet_uninit(&s->pkt);
  2794. return 0;
  2795. }
  2796. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2797. {
  2798. HEVCContext *s = avctx->priv_data;
  2799. int i;
  2800. s->avctx = avctx;
  2801. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2802. if (!s->HEVClc)
  2803. goto fail;
  2804. s->HEVClcList[0] = s->HEVClc;
  2805. s->sList[0] = s;
  2806. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2807. if (!s->cabac_state)
  2808. goto fail;
  2809. s->output_frame = av_frame_alloc();
  2810. if (!s->output_frame)
  2811. goto fail;
  2812. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2813. s->DPB[i].frame = av_frame_alloc();
  2814. if (!s->DPB[i].frame)
  2815. goto fail;
  2816. s->DPB[i].tf.f = s->DPB[i].frame;
  2817. }
  2818. s->max_ra = INT_MAX;
  2819. s->md5_ctx = av_md5_alloc();
  2820. if (!s->md5_ctx)
  2821. goto fail;
  2822. ff_bswapdsp_init(&s->bdsp);
  2823. s->context_initialized = 1;
  2824. s->eos = 0;
  2825. ff_hevc_reset_sei(s);
  2826. return 0;
  2827. fail:
  2828. hevc_decode_free(avctx);
  2829. return AVERROR(ENOMEM);
  2830. }
  2831. static int hevc_update_thread_context(AVCodecContext *dst,
  2832. const AVCodecContext *src)
  2833. {
  2834. HEVCContext *s = dst->priv_data;
  2835. HEVCContext *s0 = src->priv_data;
  2836. int i, ret;
  2837. if (!s->context_initialized) {
  2838. ret = hevc_init_context(dst);
  2839. if (ret < 0)
  2840. return ret;
  2841. }
  2842. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2843. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2844. if (s0->DPB[i].frame->buf[0]) {
  2845. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2846. if (ret < 0)
  2847. return ret;
  2848. }
  2849. }
  2850. if (s->ps.sps != s0->ps.sps)
  2851. s->ps.sps = NULL;
  2852. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2853. av_buffer_unref(&s->ps.vps_list[i]);
  2854. if (s0->ps.vps_list[i]) {
  2855. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2856. if (!s->ps.vps_list[i])
  2857. return AVERROR(ENOMEM);
  2858. }
  2859. }
  2860. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2861. av_buffer_unref(&s->ps.sps_list[i]);
  2862. if (s0->ps.sps_list[i]) {
  2863. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2864. if (!s->ps.sps_list[i])
  2865. return AVERROR(ENOMEM);
  2866. }
  2867. }
  2868. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2869. av_buffer_unref(&s->ps.pps_list[i]);
  2870. if (s0->ps.pps_list[i]) {
  2871. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2872. if (!s->ps.pps_list[i])
  2873. return AVERROR(ENOMEM);
  2874. }
  2875. }
  2876. if (s->ps.sps != s0->ps.sps)
  2877. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2878. return ret;
  2879. s->seq_decode = s0->seq_decode;
  2880. s->seq_output = s0->seq_output;
  2881. s->pocTid0 = s0->pocTid0;
  2882. s->max_ra = s0->max_ra;
  2883. s->eos = s0->eos;
  2884. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2885. s->is_nalff = s0->is_nalff;
  2886. s->nal_length_size = s0->nal_length_size;
  2887. s->threads_number = s0->threads_number;
  2888. s->threads_type = s0->threads_type;
  2889. if (s0->eos) {
  2890. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2891. s->max_ra = INT_MAX;
  2892. }
  2893. return 0;
  2894. }
  2895. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2896. {
  2897. HEVCContext *s = avctx->priv_data;
  2898. int ret;
  2899. avctx->internal->allocate_progress = 1;
  2900. ret = hevc_init_context(avctx);
  2901. if (ret < 0)
  2902. return ret;
  2903. s->enable_parallel_tiles = 0;
  2904. s->picture_struct = 0;
  2905. s->eos = 1;
  2906. atomic_init(&s->wpp_err, 0);
  2907. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2908. s->threads_number = avctx->thread_count;
  2909. else
  2910. s->threads_number = 1;
  2911. if (avctx->extradata_size > 0 && avctx->extradata) {
  2912. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2913. if (ret < 0) {
  2914. hevc_decode_free(avctx);
  2915. return ret;
  2916. }
  2917. }
  2918. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2919. s->threads_type = FF_THREAD_FRAME;
  2920. else
  2921. s->threads_type = FF_THREAD_SLICE;
  2922. return 0;
  2923. }
  2924. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2925. {
  2926. HEVCContext *s = avctx->priv_data;
  2927. int ret;
  2928. memset(s, 0, sizeof(*s));
  2929. ret = hevc_init_context(avctx);
  2930. if (ret < 0)
  2931. return ret;
  2932. return 0;
  2933. }
  2934. static void hevc_decode_flush(AVCodecContext *avctx)
  2935. {
  2936. HEVCContext *s = avctx->priv_data;
  2937. ff_hevc_flush_dpb(s);
  2938. s->max_ra = INT_MAX;
  2939. s->eos = 1;
  2940. }
  2941. #define OFFSET(x) offsetof(HEVCContext, x)
  2942. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2943. static const AVOption options[] = {
  2944. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2945. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2946. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2947. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2948. { NULL },
  2949. };
  2950. static const AVClass hevc_decoder_class = {
  2951. .class_name = "HEVC decoder",
  2952. .item_name = av_default_item_name,
  2953. .option = options,
  2954. .version = LIBAVUTIL_VERSION_INT,
  2955. };
  2956. AVCodec ff_hevc_decoder = {
  2957. .name = "hevc",
  2958. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2959. .type = AVMEDIA_TYPE_VIDEO,
  2960. .id = AV_CODEC_ID_HEVC,
  2961. .priv_data_size = sizeof(HEVCContext),
  2962. .priv_class = &hevc_decoder_class,
  2963. .init = hevc_decode_init,
  2964. .close = hevc_decode_free,
  2965. .decode = hevc_decode_frame,
  2966. .flush = hevc_decode_flush,
  2967. .update_thread_context = hevc_update_thread_context,
  2968. .init_thread_copy = hevc_init_thread_copy,
  2969. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2970. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2971. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  2972. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2973. };