You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

821 lines
29KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define ALIGN 32
  27. unsigned swresample_version(void)
  28. {
  29. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  30. return LIBSWRESAMPLE_VERSION_INT;
  31. }
  32. const char *swresample_configuration(void)
  33. {
  34. return FFMPEG_CONFIGURATION;
  35. }
  36. const char *swresample_license(void)
  37. {
  38. #define LICENSE_PREFIX "libswresample license: "
  39. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  40. }
  41. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  42. if(!s || s->in_convert) // s needs to be allocated but not initialized
  43. return AVERROR(EINVAL);
  44. s->channel_map = channel_map;
  45. return 0;
  46. }
  47. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  48. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  49. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  50. int log_offset, void *log_ctx){
  51. if(!s) s= swr_alloc();
  52. if(!s) return NULL;
  53. s->log_level_offset= log_offset;
  54. s->log_ctx= log_ctx;
  55. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  56. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  57. av_opt_set_int(s, "osr", out_sample_rate, 0);
  58. av_opt_set_int(s, "icl", in_ch_layout, 0);
  59. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  60. av_opt_set_int(s, "isr", in_sample_rate, 0);
  61. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  62. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  63. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  64. av_opt_set_int(s, "uch", 0, 0);
  65. return s;
  66. }
  67. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  68. a->fmt = fmt;
  69. a->bps = av_get_bytes_per_sample(fmt);
  70. a->planar= av_sample_fmt_is_planar(fmt);
  71. }
  72. static void free_temp(AudioData *a){
  73. av_free(a->data);
  74. memset(a, 0, sizeof(*a));
  75. }
  76. static void clear_context(SwrContext *s){
  77. s->in_buffer_index= 0;
  78. s->in_buffer_count= 0;
  79. s->resample_in_constraint= 0;
  80. memset(s->in.ch, 0, sizeof(s->in.ch));
  81. memset(s->out.ch, 0, sizeof(s->out.ch));
  82. free_temp(&s->postin);
  83. free_temp(&s->midbuf);
  84. free_temp(&s->preout);
  85. free_temp(&s->in_buffer);
  86. free_temp(&s->silence);
  87. free_temp(&s->drop_temp);
  88. free_temp(&s->dither.noise);
  89. free_temp(&s->dither.temp);
  90. swri_audio_convert_free(&s-> in_convert);
  91. swri_audio_convert_free(&s->out_convert);
  92. swri_audio_convert_free(&s->full_convert);
  93. swri_rematrix_free(s);
  94. s->flushed = 0;
  95. }
  96. av_cold void swr_free(SwrContext **ss){
  97. SwrContext *s= *ss;
  98. if(s){
  99. clear_context(s);
  100. if (s->resampler)
  101. s->resampler->free(&s->resample);
  102. }
  103. av_freep(ss);
  104. }
  105. av_cold void swr_close(SwrContext *s){
  106. clear_context(s);
  107. }
  108. av_cold int swr_init(struct SwrContext *s){
  109. int ret;
  110. clear_context(s);
  111. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  112. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  113. return AVERROR(EINVAL);
  114. }
  115. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  116. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  117. return AVERROR(EINVAL);
  118. }
  119. if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
  120. av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
  121. s->in_ch_layout = 0;
  122. }
  123. if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
  124. av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
  125. s->out_ch_layout = 0;
  126. }
  127. switch(s->engine){
  128. #if CONFIG_LIBSOXR
  129. extern struct Resampler const soxr_resampler;
  130. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  131. #endif
  132. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  133. default:
  134. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  135. return AVERROR(EINVAL);
  136. }
  137. if(!s->used_ch_count)
  138. s->used_ch_count= s->in.ch_count;
  139. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  140. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  141. s-> in_ch_layout= 0;
  142. }
  143. if(!s-> in_ch_layout)
  144. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  145. if(!s->out_ch_layout)
  146. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  147. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  148. s->rematrix_custom;
  149. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  150. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  151. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  152. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  153. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  154. && !s->rematrix
  155. && s->engine != SWR_ENGINE_SOXR){
  156. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  157. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  158. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  159. }else{
  160. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  161. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  162. }
  163. }
  164. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  165. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  166. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  167. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  168. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  169. return AVERROR(EINVAL);
  170. }
  171. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  172. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  173. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  174. if (!s->async && s->min_compensation >= FLT_MAX/2)
  175. s->async = 1;
  176. s->firstpts =
  177. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  178. } else
  179. s->firstpts = AV_NOPTS_VALUE;
  180. if (s->async) {
  181. if (s->min_compensation >= FLT_MAX/2)
  182. s->min_compensation = 0.001;
  183. if (s->async > 1.0001) {
  184. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  185. }
  186. }
  187. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  188. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  189. }else
  190. s->resampler->free(&s->resample);
  191. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  192. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  193. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  194. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  195. && s->resample){
  196. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  197. return -1;
  198. }
  199. #define RSC 1 //FIXME finetune
  200. if(!s-> in.ch_count)
  201. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  202. if(!s->used_ch_count)
  203. s->used_ch_count= s->in.ch_count;
  204. if(!s->out.ch_count)
  205. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  206. if(!s-> in.ch_count){
  207. av_assert0(!s->in_ch_layout);
  208. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  209. return -1;
  210. }
  211. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  212. char l1[1024], l2[1024];
  213. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  214. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  215. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  216. "but there is not enough information to do it\n", l1, l2);
  217. return -1;
  218. }
  219. av_assert0(s->used_ch_count);
  220. av_assert0(s->out.ch_count);
  221. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  222. s->in_buffer= s->in;
  223. s->silence = s->in;
  224. s->drop_temp= s->out;
  225. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  226. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  227. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  228. return 0;
  229. }
  230. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  231. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  232. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  233. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  234. if (!s->in_convert || !s->out_convert)
  235. return AVERROR(ENOMEM);
  236. s->postin= s->in;
  237. s->preout= s->out;
  238. s->midbuf= s->in;
  239. if(s->channel_map){
  240. s->postin.ch_count=
  241. s->midbuf.ch_count= s->used_ch_count;
  242. if(s->resample)
  243. s->in_buffer.ch_count= s->used_ch_count;
  244. }
  245. if(!s->resample_first){
  246. s->midbuf.ch_count= s->out.ch_count;
  247. if(s->resample)
  248. s->in_buffer.ch_count = s->out.ch_count;
  249. }
  250. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  251. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  252. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  253. if(s->resample){
  254. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  255. }
  256. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  257. return ret;
  258. if(s->rematrix || s->dither.method)
  259. return swri_rematrix_init(s);
  260. return 0;
  261. }
  262. int swri_realloc_audio(AudioData *a, int count){
  263. int i, countb;
  264. AudioData old;
  265. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  266. return AVERROR(EINVAL);
  267. if(a->count >= count)
  268. return 0;
  269. count*=2;
  270. countb= FFALIGN(count*a->bps, ALIGN);
  271. old= *a;
  272. av_assert0(a->bps);
  273. av_assert0(a->ch_count);
  274. a->data= av_mallocz(countb*a->ch_count);
  275. if(!a->data)
  276. return AVERROR(ENOMEM);
  277. for(i=0; i<a->ch_count; i++){
  278. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  279. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  280. }
  281. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  282. av_freep(&old.data);
  283. a->count= count;
  284. return 1;
  285. }
  286. static void copy(AudioData *out, AudioData *in,
  287. int count){
  288. av_assert0(out->planar == in->planar);
  289. av_assert0(out->bps == in->bps);
  290. av_assert0(out->ch_count == in->ch_count);
  291. if(out->planar){
  292. int ch;
  293. for(ch=0; ch<out->ch_count; ch++)
  294. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  295. }else
  296. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  297. }
  298. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  299. int i;
  300. if(!in_arg){
  301. memset(out->ch, 0, sizeof(out->ch));
  302. }else if(out->planar){
  303. for(i=0; i<out->ch_count; i++)
  304. out->ch[i]= in_arg[i];
  305. }else{
  306. for(i=0; i<out->ch_count; i++)
  307. out->ch[i]= in_arg[0] + i*out->bps;
  308. }
  309. }
  310. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  311. int i;
  312. if(out->planar){
  313. for(i=0; i<out->ch_count; i++)
  314. in_arg[i]= out->ch[i];
  315. }else{
  316. in_arg[0]= out->ch[0];
  317. }
  318. }
  319. /**
  320. *
  321. * out may be equal in.
  322. */
  323. static void buf_set(AudioData *out, AudioData *in, int count){
  324. int ch;
  325. if(in->planar){
  326. for(ch=0; ch<out->ch_count; ch++)
  327. out->ch[ch]= in->ch[ch] + count*out->bps;
  328. }else{
  329. for(ch=out->ch_count-1; ch>=0; ch--)
  330. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  331. }
  332. }
  333. /**
  334. *
  335. * @return number of samples output per channel
  336. */
  337. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  338. const AudioData * in_param, int in_count){
  339. AudioData in, out, tmp;
  340. int ret_sum=0;
  341. int border=0;
  342. int padless = ARCH_X86 && s->engine == SWR_ENGINE_SWR ? 7 : 0;
  343. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  344. av_assert1(s->in_buffer.planar == in_param->planar);
  345. av_assert1(s->in_buffer.fmt == in_param->fmt);
  346. tmp=out=*out_param;
  347. in = *in_param;
  348. border = s->resampler->invert_initial_buffer(s->resample, &s->in_buffer,
  349. &in, in_count, &s->in_buffer_index, &s->in_buffer_count);
  350. if (border == INT_MAX) return 0;
  351. else if (border < 0) return border;
  352. else if (border) { buf_set(&in, &in, border); in_count -= border; s->resample_in_constraint = 0; }
  353. do{
  354. int ret, size, consumed;
  355. if(!s->resample_in_constraint && s->in_buffer_count){
  356. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  357. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  358. out_count -= ret;
  359. ret_sum += ret;
  360. buf_set(&out, &out, ret);
  361. s->in_buffer_count -= consumed;
  362. s->in_buffer_index += consumed;
  363. if(!in_count)
  364. break;
  365. if(s->in_buffer_count <= border){
  366. buf_set(&in, &in, -s->in_buffer_count);
  367. in_count += s->in_buffer_count;
  368. s->in_buffer_count=0;
  369. s->in_buffer_index=0;
  370. border = 0;
  371. }
  372. }
  373. if((s->flushed || in_count > padless) && !s->in_buffer_count){
  374. s->in_buffer_index=0;
  375. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, FFMAX(in_count-padless, 0), &consumed);
  376. out_count -= ret;
  377. ret_sum += ret;
  378. buf_set(&out, &out, ret);
  379. in_count -= consumed;
  380. buf_set(&in, &in, consumed);
  381. }
  382. //TODO is this check sane considering the advanced copy avoidance below
  383. size= s->in_buffer_index + s->in_buffer_count + in_count;
  384. if( size > s->in_buffer.count
  385. && s->in_buffer_count + in_count <= s->in_buffer_index){
  386. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  387. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  388. s->in_buffer_index=0;
  389. }else
  390. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  391. return ret;
  392. if(in_count){
  393. int count= in_count;
  394. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  395. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  396. copy(&tmp, &in, /*in_*/count);
  397. s->in_buffer_count += count;
  398. in_count -= count;
  399. border += count;
  400. buf_set(&in, &in, count);
  401. s->resample_in_constraint= 0;
  402. if(s->in_buffer_count != count || in_count)
  403. continue;
  404. if (padless) {
  405. padless = 0;
  406. continue;
  407. }
  408. }
  409. break;
  410. }while(1);
  411. s->resample_in_constraint= !!out_count;
  412. return ret_sum;
  413. }
  414. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  415. AudioData *in , int in_count){
  416. AudioData *postin, *midbuf, *preout;
  417. int ret/*, in_max*/;
  418. AudioData preout_tmp, midbuf_tmp;
  419. if(s->full_convert){
  420. av_assert0(!s->resample);
  421. swri_audio_convert(s->full_convert, out, in, in_count);
  422. return out_count;
  423. }
  424. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  425. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  426. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  427. return ret;
  428. if(s->resample_first){
  429. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  430. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  431. return ret;
  432. }else{
  433. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  434. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  435. return ret;
  436. }
  437. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  438. return ret;
  439. postin= &s->postin;
  440. midbuf_tmp= s->midbuf;
  441. midbuf= &midbuf_tmp;
  442. preout_tmp= s->preout;
  443. preout= &preout_tmp;
  444. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  445. postin= in;
  446. if(s->resample_first ? !s->resample : !s->rematrix)
  447. midbuf= postin;
  448. if(s->resample_first ? !s->rematrix : !s->resample)
  449. preout= midbuf;
  450. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar
  451. && !(s->out_sample_fmt==AV_SAMPLE_FMT_S32P && (s->dither.output_sample_bits&31))){
  452. if(preout==in){
  453. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  454. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  455. copy(out, in, out_count);
  456. return out_count;
  457. }
  458. else if(preout==postin) preout= midbuf= postin= out;
  459. else if(preout==midbuf) preout= midbuf= out;
  460. else preout= out;
  461. }
  462. if(in != postin){
  463. swri_audio_convert(s->in_convert, postin, in, in_count);
  464. }
  465. if(s->resample_first){
  466. if(postin != midbuf)
  467. out_count= resample(s, midbuf, out_count, postin, in_count);
  468. if(midbuf != preout)
  469. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  470. }else{
  471. if(postin != midbuf)
  472. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  473. if(midbuf != preout)
  474. out_count= resample(s, preout, out_count, midbuf, in_count);
  475. }
  476. if(preout != out && out_count){
  477. AudioData *conv_src = preout;
  478. if(s->dither.method){
  479. int ch;
  480. int dither_count= FFMAX(out_count, 1<<16);
  481. if (preout == in) {
  482. conv_src = &s->dither.temp;
  483. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  484. return ret;
  485. }
  486. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  487. return ret;
  488. if(ret)
  489. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  490. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  491. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  492. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  493. s->dither.noise_pos = 0;
  494. if (s->dither.method < SWR_DITHER_NS){
  495. if (s->mix_2_1_simd) {
  496. int len1= out_count&~15;
  497. int off = len1 * preout->bps;
  498. if(len1)
  499. for(ch=0; ch<preout->ch_count; ch++)
  500. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_simd_one, 0, 0, len1);
  501. if(out_count != len1)
  502. for(ch=0; ch<preout->ch_count; ch++)
  503. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  504. } else {
  505. for(ch=0; ch<preout->ch_count; ch++)
  506. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  507. }
  508. } else {
  509. switch(s->int_sample_fmt) {
  510. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  511. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  512. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  513. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  514. }
  515. }
  516. s->dither.noise_pos += out_count;
  517. }
  518. //FIXME packed doesn't need more than 1 chan here!
  519. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  520. }
  521. return out_count;
  522. }
  523. int swr_is_initialized(struct SwrContext *s) {
  524. return !!s->in_buffer.ch_count;
  525. }
  526. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  527. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  528. AudioData * in= &s->in;
  529. AudioData *out= &s->out;
  530. if (!swr_is_initialized(s)) {
  531. av_log(s, AV_LOG_ERROR, "Context has not been initialized\n");
  532. return AVERROR(EINVAL);
  533. }
  534. while(s->drop_output > 0){
  535. int ret;
  536. uint8_t *tmp_arg[SWR_CH_MAX];
  537. #define MAX_DROP_STEP 16384
  538. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  539. return ret;
  540. reversefill_audiodata(&s->drop_temp, tmp_arg);
  541. s->drop_output *= -1; //FIXME find a less hackish solution
  542. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
  543. s->drop_output *= -1;
  544. in_count = 0;
  545. if(ret>0) {
  546. s->drop_output -= ret;
  547. continue;
  548. }
  549. if(s->drop_output || !out_arg)
  550. return 0;
  551. }
  552. if(!in_arg){
  553. if(s->resample){
  554. if (!s->flushed)
  555. s->resampler->flush(s);
  556. s->resample_in_constraint = 0;
  557. s->flushed = 1;
  558. }else if(!s->in_buffer_count){
  559. return 0;
  560. }
  561. }else
  562. fill_audiodata(in , (void*)in_arg);
  563. fill_audiodata(out, out_arg);
  564. if(s->resample){
  565. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  566. if(ret>0 && !s->drop_output)
  567. s->outpts += ret * (int64_t)s->in_sample_rate;
  568. return ret;
  569. }else{
  570. AudioData tmp= *in;
  571. int ret2=0;
  572. int ret, size;
  573. size = FFMIN(out_count, s->in_buffer_count);
  574. if(size){
  575. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  576. ret= swr_convert_internal(s, out, size, &tmp, size);
  577. if(ret<0)
  578. return ret;
  579. ret2= ret;
  580. s->in_buffer_count -= ret;
  581. s->in_buffer_index += ret;
  582. buf_set(out, out, ret);
  583. out_count -= ret;
  584. if(!s->in_buffer_count)
  585. s->in_buffer_index = 0;
  586. }
  587. if(in_count){
  588. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  589. if(in_count > out_count) { //FIXME move after swr_convert_internal
  590. if( size > s->in_buffer.count
  591. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  592. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  593. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  594. s->in_buffer_index=0;
  595. }else
  596. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  597. return ret;
  598. }
  599. if(out_count){
  600. size = FFMIN(in_count, out_count);
  601. ret= swr_convert_internal(s, out, size, in, size);
  602. if(ret<0)
  603. return ret;
  604. buf_set(in, in, ret);
  605. in_count -= ret;
  606. ret2 += ret;
  607. }
  608. if(in_count){
  609. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  610. copy(&tmp, in, in_count);
  611. s->in_buffer_count += in_count;
  612. }
  613. }
  614. if(ret2>0 && !s->drop_output)
  615. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  616. return ret2;
  617. }
  618. }
  619. int swr_drop_output(struct SwrContext *s, int count){
  620. s->drop_output += count;
  621. if(s->drop_output <= 0)
  622. return 0;
  623. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  624. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  625. }
  626. int swr_inject_silence(struct SwrContext *s, int count){
  627. int ret, i;
  628. uint8_t *tmp_arg[SWR_CH_MAX];
  629. if(count <= 0)
  630. return 0;
  631. #define MAX_SILENCE_STEP 16384
  632. while (count > MAX_SILENCE_STEP) {
  633. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  634. return ret;
  635. count -= MAX_SILENCE_STEP;
  636. }
  637. if((ret=swri_realloc_audio(&s->silence, count))<0)
  638. return ret;
  639. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  640. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  641. } else
  642. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  643. reversefill_audiodata(&s->silence, tmp_arg);
  644. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  645. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  646. return ret;
  647. }
  648. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  649. if (s->resampler && s->resample){
  650. return s->resampler->get_delay(s, base);
  651. }else{
  652. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  653. }
  654. }
  655. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  656. int ret;
  657. if (!s || compensation_distance < 0)
  658. return AVERROR(EINVAL);
  659. if (!compensation_distance && sample_delta)
  660. return AVERROR(EINVAL);
  661. if (!s->resample) {
  662. s->flags |= SWR_FLAG_RESAMPLE;
  663. ret = swr_init(s);
  664. if (ret < 0)
  665. return ret;
  666. }
  667. if (!s->resampler->set_compensation){
  668. return AVERROR(EINVAL);
  669. }else{
  670. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  671. }
  672. }
  673. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  674. if(pts == INT64_MIN)
  675. return s->outpts;
  676. if (s->firstpts == AV_NOPTS_VALUE)
  677. s->outpts = s->firstpts = pts;
  678. if(s->min_compensation >= FLT_MAX) {
  679. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  680. } else {
  681. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  682. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  683. if(fabs(fdelta) > s->min_compensation) {
  684. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  685. int ret;
  686. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  687. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  688. if(ret<0){
  689. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  690. }
  691. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  692. int duration = s->out_sample_rate * s->soft_compensation_duration;
  693. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  694. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  695. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  696. swr_set_compensation(s, comp, duration);
  697. }
  698. }
  699. return s->outpts;
  700. }
  701. }