You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1486 lines
55KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264pred.h"
  33. #include "rectangle.h"
  34. #define interlaced_dct interlaced_dct_is_a_bad_name
  35. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  36. #define LUMA_DC_BLOCK_INDEX 25
  37. #define CHROMA_DC_BLOCK_INDEX 26
  38. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  39. #define COEFF_TOKEN_VLC_BITS 8
  40. #define TOTAL_ZEROS_VLC_BITS 9
  41. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  42. #define RUN_VLC_BITS 3
  43. #define RUN7_VLC_BITS 6
  44. #define MAX_SPS_COUNT 32
  45. #define MAX_PPS_COUNT 256
  46. #define MAX_MMCO_COUNT 66
  47. #define MAX_DELAYED_PIC_COUNT 16
  48. /* Compiling in interlaced support reduces the speed
  49. * of progressive decoding by about 2%. */
  50. #define ALLOW_INTERLACE
  51. #define ALLOW_NOCHROMA
  52. #define FMO 0
  53. /**
  54. * The maximum number of slices supported by the decoder.
  55. * must be a power of 2
  56. */
  57. #define MAX_SLICES 16
  58. #ifdef ALLOW_INTERLACE
  59. #define MB_MBAFF h->mb_mbaff
  60. #define MB_FIELD h->mb_field_decoding_flag
  61. #define FRAME_MBAFF h->mb_aff_frame
  62. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  63. #else
  64. #define MB_MBAFF 0
  65. #define MB_FIELD 0
  66. #define FRAME_MBAFF 0
  67. #define FIELD_PICTURE 0
  68. #undef IS_INTERLACED
  69. #define IS_INTERLACED(mb_type) 0
  70. #endif
  71. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  72. #ifdef ALLOW_NOCHROMA
  73. #define CHROMA h->sps.chroma_format_idc
  74. #else
  75. #define CHROMA 1
  76. #endif
  77. #ifndef CABAC
  78. #define CABAC h->pps.cabac
  79. #endif
  80. #define EXTENDED_SAR 255
  81. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  82. #define MB_TYPE_8x8DCT 0x01000000
  83. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  84. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  85. /**
  86. * Value of Picture.reference when Picture is not a reference picture, but
  87. * is held for delayed output.
  88. */
  89. #define DELAYED_PIC_REF 4
  90. /* NAL unit types */
  91. enum {
  92. NAL_SLICE=1,
  93. NAL_DPA,
  94. NAL_DPB,
  95. NAL_DPC,
  96. NAL_IDR_SLICE,
  97. NAL_SEI,
  98. NAL_SPS,
  99. NAL_PPS,
  100. NAL_AUD,
  101. NAL_END_SEQUENCE,
  102. NAL_END_STREAM,
  103. NAL_FILLER_DATA,
  104. NAL_SPS_EXT,
  105. NAL_AUXILIARY_SLICE=19
  106. };
  107. /**
  108. * SEI message types
  109. */
  110. typedef enum {
  111. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  112. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  113. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  114. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  115. } SEI_Type;
  116. /**
  117. * pic_struct in picture timing SEI message
  118. */
  119. typedef enum {
  120. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  121. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  122. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  123. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  124. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  125. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  126. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  127. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  128. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  129. } SEI_PicStructType;
  130. /**
  131. * Sequence parameter set
  132. */
  133. typedef struct SPS{
  134. int profile_idc;
  135. int level_idc;
  136. int chroma_format_idc;
  137. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  138. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  139. int poc_type; ///< pic_order_cnt_type
  140. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  141. int delta_pic_order_always_zero_flag;
  142. int offset_for_non_ref_pic;
  143. int offset_for_top_to_bottom_field;
  144. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  145. int ref_frame_count; ///< num_ref_frames
  146. int gaps_in_frame_num_allowed_flag;
  147. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  148. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  149. int frame_mbs_only_flag;
  150. int mb_aff; ///<mb_adaptive_frame_field_flag
  151. int direct_8x8_inference_flag;
  152. int crop; ///< frame_cropping_flag
  153. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  154. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  155. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  156. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  157. int vui_parameters_present_flag;
  158. AVRational sar;
  159. int video_signal_type_present_flag;
  160. int full_range;
  161. int colour_description_present_flag;
  162. enum AVColorPrimaries color_primaries;
  163. enum AVColorTransferCharacteristic color_trc;
  164. enum AVColorSpace colorspace;
  165. int timing_info_present_flag;
  166. uint32_t num_units_in_tick;
  167. uint32_t time_scale;
  168. int fixed_frame_rate_flag;
  169. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  170. int bitstream_restriction_flag;
  171. int num_reorder_frames;
  172. int scaling_matrix_present;
  173. uint8_t scaling_matrix4[6][16];
  174. uint8_t scaling_matrix8[2][64];
  175. int nal_hrd_parameters_present_flag;
  176. int vcl_hrd_parameters_present_flag;
  177. int pic_struct_present_flag;
  178. int time_offset_length;
  179. int cpb_cnt; ///< See H.264 E.1.2
  180. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  181. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  182. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  183. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  184. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  185. int residual_color_transform_flag; ///< residual_colour_transform_flag
  186. }SPS;
  187. /**
  188. * Picture parameter set
  189. */
  190. typedef struct PPS{
  191. unsigned int sps_id;
  192. int cabac; ///< entropy_coding_mode_flag
  193. int pic_order_present; ///< pic_order_present_flag
  194. int slice_group_count; ///< num_slice_groups_minus1 + 1
  195. int mb_slice_group_map_type;
  196. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  197. int weighted_pred; ///< weighted_pred_flag
  198. int weighted_bipred_idc;
  199. int init_qp; ///< pic_init_qp_minus26 + 26
  200. int init_qs; ///< pic_init_qs_minus26 + 26
  201. int chroma_qp_index_offset[2];
  202. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  203. int constrained_intra_pred; ///< constrained_intra_pred_flag
  204. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  205. int transform_8x8_mode; ///< transform_8x8_mode_flag
  206. uint8_t scaling_matrix4[6][16];
  207. uint8_t scaling_matrix8[2][64];
  208. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  209. int chroma_qp_diff;
  210. }PPS;
  211. /**
  212. * Memory management control operation opcode.
  213. */
  214. typedef enum MMCOOpcode{
  215. MMCO_END=0,
  216. MMCO_SHORT2UNUSED,
  217. MMCO_LONG2UNUSED,
  218. MMCO_SHORT2LONG,
  219. MMCO_SET_MAX_LONG,
  220. MMCO_RESET,
  221. MMCO_LONG,
  222. } MMCOOpcode;
  223. /**
  224. * Memory management control operation.
  225. */
  226. typedef struct MMCO{
  227. MMCOOpcode opcode;
  228. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  229. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  230. } MMCO;
  231. /**
  232. * H264Context
  233. */
  234. typedef struct H264Context{
  235. MpegEncContext s;
  236. int nal_ref_idc;
  237. int nal_unit_type;
  238. uint8_t *rbsp_buffer[2];
  239. unsigned int rbsp_buffer_size[2];
  240. /**
  241. * Used to parse AVC variant of h264
  242. */
  243. int is_avc; ///< this flag is != 0 if codec is avc1
  244. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  245. int chroma_qp[2]; //QPc
  246. int qp_thresh; ///< QP threshold to skip loopfilter
  247. int prev_mb_skipped;
  248. int next_mb_skipped;
  249. //prediction stuff
  250. int chroma_pred_mode;
  251. int intra16x16_pred_mode;
  252. int topleft_mb_xy;
  253. int top_mb_xy;
  254. int topright_mb_xy;
  255. int left_mb_xy[2];
  256. int topleft_type;
  257. int top_type;
  258. int topright_type;
  259. int left_type[2];
  260. const uint8_t * left_block;
  261. int topleft_partition;
  262. int8_t intra4x4_pred_mode_cache[5*8];
  263. int8_t (*intra4x4_pred_mode);
  264. H264PredContext hpc;
  265. unsigned int topleft_samples_available;
  266. unsigned int top_samples_available;
  267. unsigned int topright_samples_available;
  268. unsigned int left_samples_available;
  269. uint8_t (*top_borders[2])[16+2*8];
  270. uint8_t left_border[2*(17+2*9)];
  271. /**
  272. * non zero coeff count cache.
  273. * is 64 if not available.
  274. */
  275. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
  276. /*
  277. .UU.YYYY
  278. .UU.YYYY
  279. .vv.YYYY
  280. .VV.YYYY
  281. */
  282. uint8_t (*non_zero_count)[32];
  283. /**
  284. * Motion vector cache.
  285. */
  286. DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
  287. DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
  288. #define LIST_NOT_USED -1 //FIXME rename?
  289. #define PART_NOT_AVAILABLE -2
  290. /**
  291. * is 1 if the specific list MV&references are set to 0,0,-2.
  292. */
  293. int mv_cache_clean[2];
  294. /**
  295. * number of neighbors (top and/or left) that used 8x8 dct
  296. */
  297. int neighbor_transform_size;
  298. /**
  299. * block_offset[ 0..23] for frame macroblocks
  300. * block_offset[24..47] for field macroblocks
  301. */
  302. int block_offset[2*(16+8)];
  303. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  304. uint32_t *mb2br_xy;
  305. int b_stride; //FIXME use s->b4_stride
  306. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  307. int mb_uvlinesize;
  308. int emu_edge_width;
  309. int emu_edge_height;
  310. int halfpel_flag;
  311. int thirdpel_flag;
  312. int unknown_svq3_flag;
  313. int next_slice_index;
  314. SPS *sps_buffers[MAX_SPS_COUNT];
  315. SPS sps; ///< current sps
  316. PPS *pps_buffers[MAX_PPS_COUNT];
  317. /**
  318. * current pps
  319. */
  320. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  321. uint32_t dequant4_buffer[6][52][16];
  322. uint32_t dequant8_buffer[2][52][64];
  323. uint32_t (*dequant4_coeff[6])[16];
  324. uint32_t (*dequant8_coeff[2])[64];
  325. int dequant_coeff_pps; ///< reinit tables when pps changes
  326. int slice_num;
  327. uint16_t *slice_table_base;
  328. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  329. int slice_type;
  330. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  331. int slice_type_fixed;
  332. //interlacing specific flags
  333. int mb_aff_frame;
  334. int mb_field_decoding_flag;
  335. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  336. DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
  337. //POC stuff
  338. int poc_lsb;
  339. int poc_msb;
  340. int delta_poc_bottom;
  341. int delta_poc[2];
  342. int frame_num;
  343. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  344. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  345. int frame_num_offset; ///< for POC type 2
  346. int prev_frame_num_offset; ///< for POC type 2
  347. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  348. /**
  349. * frame_num for frames or 2*frame_num+1 for field pics.
  350. */
  351. int curr_pic_num;
  352. /**
  353. * max_frame_num or 2*max_frame_num for field pics.
  354. */
  355. int max_pic_num;
  356. //Weighted pred stuff
  357. int use_weight;
  358. int use_weight_chroma;
  359. int luma_log2_weight_denom;
  360. int chroma_log2_weight_denom;
  361. int luma_weight[2][48];
  362. int luma_offset[2][48];
  363. int chroma_weight[2][48][2];
  364. int chroma_offset[2][48][2];
  365. int implicit_weight[48][48];
  366. //deblock
  367. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  368. int slice_alpha_c0_offset;
  369. int slice_beta_offset;
  370. int redundant_pic_count;
  371. int direct_spatial_mv_pred;
  372. int col_parity;
  373. int col_fieldoff;
  374. int dist_scale_factor[16];
  375. int dist_scale_factor_field[2][32];
  376. int map_col_to_list0[2][16+32];
  377. int map_col_to_list0_field[2][2][16+32];
  378. /**
  379. * num_ref_idx_l0/1_active_minus1 + 1
  380. */
  381. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  382. unsigned int list_count;
  383. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  384. Picture *short_ref[32];
  385. Picture *long_ref[32];
  386. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  387. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  388. Reordered version of default_ref_list
  389. according to picture reordering in slice header */
  390. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  391. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  392. int outputed_poc;
  393. /**
  394. * memory management control operations buffer.
  395. */
  396. MMCO mmco[MAX_MMCO_COUNT];
  397. int mmco_index;
  398. int long_ref_count; ///< number of actual long term references
  399. int short_ref_count; ///< number of actual short term references
  400. //data partitioning
  401. GetBitContext intra_gb;
  402. GetBitContext inter_gb;
  403. GetBitContext *intra_gb_ptr;
  404. GetBitContext *inter_gb_ptr;
  405. DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
  406. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  407. /**
  408. * Cabac
  409. */
  410. CABACContext cabac;
  411. uint8_t cabac_state[460];
  412. int cabac_init_idc;
  413. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  414. uint16_t *cbp_table;
  415. int cbp;
  416. int top_cbp;
  417. int left_cbp;
  418. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  419. uint8_t *chroma_pred_mode_table;
  420. int last_qscale_diff;
  421. uint8_t (*mvd_table[2])[2];
  422. DECLARE_ALIGNED_16(uint8_t, mvd_cache)[2][5*8][2];
  423. uint8_t *direct_table;
  424. uint8_t direct_cache[5*8];
  425. uint8_t zigzag_scan[16];
  426. uint8_t zigzag_scan8x8[64];
  427. uint8_t zigzag_scan8x8_cavlc[64];
  428. uint8_t field_scan[16];
  429. uint8_t field_scan8x8[64];
  430. uint8_t field_scan8x8_cavlc[64];
  431. const uint8_t *zigzag_scan_q0;
  432. const uint8_t *zigzag_scan8x8_q0;
  433. const uint8_t *zigzag_scan8x8_cavlc_q0;
  434. const uint8_t *field_scan_q0;
  435. const uint8_t *field_scan8x8_q0;
  436. const uint8_t *field_scan8x8_cavlc_q0;
  437. int x264_build;
  438. /**
  439. * @defgroup multithreading Members for slice based multithreading
  440. * @{
  441. */
  442. struct H264Context *thread_context[MAX_THREADS];
  443. /**
  444. * current slice number, used to initalize slice_num of each thread/context
  445. */
  446. int current_slice;
  447. /**
  448. * Max number of threads / contexts.
  449. * This is equal to AVCodecContext.thread_count unless
  450. * multithreaded decoding is impossible, in which case it is
  451. * reduced to 1.
  452. */
  453. int max_contexts;
  454. /**
  455. * 1 if the single thread fallback warning has already been
  456. * displayed, 0 otherwise.
  457. */
  458. int single_decode_warning;
  459. int last_slice_type;
  460. /** @} */
  461. int mb_xy;
  462. uint32_t svq3_watermark_key;
  463. /**
  464. * pic_struct in picture timing SEI message
  465. */
  466. SEI_PicStructType sei_pic_struct;
  467. /**
  468. * Complement sei_pic_struct
  469. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  470. * However, soft telecined frames may have these values.
  471. * This is used in an attempt to flag soft telecine progressive.
  472. */
  473. int prev_interlaced_frame;
  474. /**
  475. * Bit set of clock types for fields/frames in picture timing SEI message.
  476. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  477. * interlaced).
  478. */
  479. int sei_ct_type;
  480. /**
  481. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  482. */
  483. int sei_dpb_output_delay;
  484. /**
  485. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  486. */
  487. int sei_cpb_removal_delay;
  488. /**
  489. * recovery_frame_cnt from SEI message
  490. *
  491. * Set to -1 if no recovery point SEI message found or to number of frames
  492. * before playback synchronizes. Frames having recovery point are key
  493. * frames.
  494. */
  495. int sei_recovery_frame_cnt;
  496. int is_complex;
  497. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  498. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  499. // Timestamp stuff
  500. int sei_buffering_period_present; ///< Buffering period SEI flag
  501. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  502. }H264Context;
  503. extern const uint8_t ff_h264_chroma_qp[52];
  504. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  505. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  506. /**
  507. * Decode SEI
  508. */
  509. int ff_h264_decode_sei(H264Context *h);
  510. /**
  511. * Decode SPS
  512. */
  513. int ff_h264_decode_seq_parameter_set(H264Context *h);
  514. /**
  515. * Decode PPS
  516. */
  517. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  518. /**
  519. * Decodes a network abstraction layer unit.
  520. * @param consumed is the number of bytes used as input
  521. * @param length is the length of the array
  522. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  523. * @returns decoded bytes, might be src+1 if no escapes
  524. */
  525. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  526. /**
  527. * identifies the exact end of the bitstream
  528. * @return the length of the trailing, or 0 if damaged
  529. */
  530. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  531. /**
  532. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  533. */
  534. av_cold void ff_h264_free_context(H264Context *h);
  535. /**
  536. * reconstructs bitstream slice_type.
  537. */
  538. int ff_h264_get_slice_type(const H264Context *h);
  539. /**
  540. * allocates tables.
  541. * needs width/height
  542. */
  543. int ff_h264_alloc_tables(H264Context *h);
  544. /**
  545. * fills the default_ref_list.
  546. */
  547. int ff_h264_fill_default_ref_list(H264Context *h);
  548. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  549. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  550. void ff_h264_remove_all_refs(H264Context *h);
  551. /**
  552. * Executes the reference picture marking (memory management control operations).
  553. */
  554. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  555. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  556. /**
  557. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  558. */
  559. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  560. /**
  561. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  562. */
  563. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  564. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  565. void ff_h264_hl_decode_mb(H264Context *h);
  566. int ff_h264_frame_start(H264Context *h);
  567. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  568. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  569. av_cold void ff_h264_decode_init_vlc(void);
  570. /**
  571. * decodes a macroblock
  572. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  573. */
  574. int ff_h264_decode_mb_cavlc(H264Context *h);
  575. /**
  576. * decodes a CABAC coded macroblock
  577. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  578. */
  579. int ff_h264_decode_mb_cabac(H264Context *h);
  580. void ff_h264_init_cabac_states(H264Context *h);
  581. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  582. void ff_h264_direct_ref_list_init(H264Context * const h);
  583. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  584. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  585. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  586. /**
  587. * Reset SEI values at the beginning of the frame.
  588. *
  589. * @param h H.264 context.
  590. */
  591. void ff_h264_reset_sei(H264Context *h);
  592. /*
  593. o-o o-o
  594. / / /
  595. o-o o-o
  596. ,---'
  597. o-o o-o
  598. / / /
  599. o-o o-o
  600. */
  601. //This table must be here because scan8[constant] must be known at compiletime
  602. static const uint8_t scan8[16 + 2*4]={
  603. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  604. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  605. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  606. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  607. 1+1*8, 2+1*8,
  608. 1+2*8, 2+2*8,
  609. 1+4*8, 2+4*8,
  610. 1+5*8, 2+5*8,
  611. };
  612. static av_always_inline uint32_t pack16to32(int a, int b){
  613. #if HAVE_BIGENDIAN
  614. return (b&0xFFFF) + (a<<16);
  615. #else
  616. return (a&0xFFFF) + (b<<16);
  617. #endif
  618. }
  619. static av_always_inline uint16_t pack8to16(int a, int b){
  620. #if HAVE_BIGENDIAN
  621. return (b&0xFF) + (a<<8);
  622. #else
  623. return (a&0xFF) + (b<<8);
  624. #endif
  625. }
  626. /**
  627. * gets the chroma qp.
  628. */
  629. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  630. return h->pps.chroma_qp_table[t][qscale];
  631. }
  632. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  633. static void fill_decode_neighbors(H264Context *h, int mb_type){
  634. MpegEncContext * const s = &h->s;
  635. const int mb_xy= h->mb_xy;
  636. int topleft_xy, top_xy, topright_xy, left_xy[2];
  637. static const uint8_t left_block_options[4][16]={
  638. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  639. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  640. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  641. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  642. };
  643. h->topleft_partition= -1;
  644. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  645. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  646. * stuff, I can't imagine that these complex rules are worth it. */
  647. topleft_xy = top_xy - 1;
  648. topright_xy= top_xy + 1;
  649. left_xy[1] = left_xy[0] = mb_xy-1;
  650. h->left_block = left_block_options[0];
  651. if(FRAME_MBAFF){
  652. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  653. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  654. if(s->mb_y&1){
  655. if (left_mb_field_flag != curr_mb_field_flag) {
  656. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  657. if (curr_mb_field_flag) {
  658. left_xy[1] += s->mb_stride;
  659. h->left_block = left_block_options[3];
  660. } else {
  661. topleft_xy += s->mb_stride;
  662. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  663. h->topleft_partition = 0;
  664. h->left_block = left_block_options[1];
  665. }
  666. }
  667. }else{
  668. if(curr_mb_field_flag){
  669. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  670. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  671. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  672. }
  673. if (left_mb_field_flag != curr_mb_field_flag) {
  674. if (curr_mb_field_flag) {
  675. left_xy[1] += s->mb_stride;
  676. h->left_block = left_block_options[3];
  677. } else {
  678. h->left_block = left_block_options[2];
  679. }
  680. }
  681. }
  682. }
  683. h->topleft_mb_xy = topleft_xy;
  684. h->top_mb_xy = top_xy;
  685. h->topright_mb_xy= topright_xy;
  686. h->left_mb_xy[0] = left_xy[0];
  687. h->left_mb_xy[1] = left_xy[1];
  688. //FIXME do we need all in the context?
  689. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  690. h->top_type = s->current_picture.mb_type[top_xy] ;
  691. h->topright_type= s->current_picture.mb_type[topright_xy];
  692. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  693. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  694. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  695. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  696. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  697. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  698. }
  699. static void fill_decode_caches(H264Context *h, int mb_type){
  700. MpegEncContext * const s = &h->s;
  701. int topleft_xy, top_xy, topright_xy, left_xy[2];
  702. int topleft_type, top_type, topright_type, left_type[2];
  703. const uint8_t * left_block= h->left_block;
  704. int i;
  705. topleft_xy = h->topleft_mb_xy ;
  706. top_xy = h->top_mb_xy ;
  707. topright_xy = h->topright_mb_xy;
  708. left_xy[0] = h->left_mb_xy[0] ;
  709. left_xy[1] = h->left_mb_xy[1] ;
  710. topleft_type = h->topleft_type ;
  711. top_type = h->top_type ;
  712. topright_type= h->topright_type ;
  713. left_type[0] = h->left_type[0] ;
  714. left_type[1] = h->left_type[1] ;
  715. if(!IS_SKIP(mb_type)){
  716. if(IS_INTRA(mb_type)){
  717. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  718. h->topleft_samples_available=
  719. h->top_samples_available=
  720. h->left_samples_available= 0xFFFF;
  721. h->topright_samples_available= 0xEEEA;
  722. if(!(top_type & type_mask)){
  723. h->topleft_samples_available= 0xB3FF;
  724. h->top_samples_available= 0x33FF;
  725. h->topright_samples_available= 0x26EA;
  726. }
  727. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  728. if(IS_INTERLACED(mb_type)){
  729. if(!(left_type[0] & type_mask)){
  730. h->topleft_samples_available&= 0xDFFF;
  731. h->left_samples_available&= 0x5FFF;
  732. }
  733. if(!(left_type[1] & type_mask)){
  734. h->topleft_samples_available&= 0xFF5F;
  735. h->left_samples_available&= 0xFF5F;
  736. }
  737. }else{
  738. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  739. assert(left_xy[0] == left_xy[1]);
  740. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  741. h->topleft_samples_available&= 0xDF5F;
  742. h->left_samples_available&= 0x5F5F;
  743. }
  744. }
  745. }else{
  746. if(!(left_type[0] & type_mask)){
  747. h->topleft_samples_available&= 0xDF5F;
  748. h->left_samples_available&= 0x5F5F;
  749. }
  750. }
  751. if(!(topleft_type & type_mask))
  752. h->topleft_samples_available&= 0x7FFF;
  753. if(!(topright_type & type_mask))
  754. h->topright_samples_available&= 0xFBFF;
  755. if(IS_INTRA4x4(mb_type)){
  756. if(IS_INTRA4x4(top_type)){
  757. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  758. }else{
  759. h->intra4x4_pred_mode_cache[4+8*0]=
  760. h->intra4x4_pred_mode_cache[5+8*0]=
  761. h->intra4x4_pred_mode_cache[6+8*0]=
  762. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  763. }
  764. for(i=0; i<2; i++){
  765. if(IS_INTRA4x4(left_type[i])){
  766. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  767. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  768. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  769. }else{
  770. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  771. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  772. }
  773. }
  774. }
  775. }
  776. /*
  777. 0 . T T. T T T T
  778. 1 L . .L . . . .
  779. 2 L . .L . . . .
  780. 3 . T TL . . . .
  781. 4 L . .L . . . .
  782. 5 L . .. . . . .
  783. */
  784. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  785. if(top_type){
  786. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  787. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  788. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  789. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  790. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  791. }else {
  792. h->non_zero_count_cache[1+8*0]=
  793. h->non_zero_count_cache[2+8*0]=
  794. h->non_zero_count_cache[1+8*3]=
  795. h->non_zero_count_cache[2+8*3]=
  796. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  797. }
  798. for (i=0; i<2; i++) {
  799. if(left_type[i]){
  800. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  801. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  802. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  803. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  804. }else{
  805. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  806. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  807. h->non_zero_count_cache[0+8*1 + 8*i]=
  808. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  809. }
  810. }
  811. if( CABAC ) {
  812. // top_cbp
  813. if(top_type) {
  814. h->top_cbp = h->cbp_table[top_xy];
  815. } else {
  816. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  817. }
  818. // left_cbp
  819. if (left_type[0]) {
  820. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  821. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  822. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  823. } else {
  824. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  825. }
  826. }
  827. }
  828. #if 1
  829. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  830. int list;
  831. for(list=0; list<h->list_count; list++){
  832. if(!USES_LIST(mb_type, list)){
  833. /*if(!h->mv_cache_clean[list]){
  834. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  835. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  836. h->mv_cache_clean[list]= 1;
  837. }*/
  838. continue;
  839. }
  840. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  841. h->mv_cache_clean[list]= 0;
  842. if(USES_LIST(top_type, list)){
  843. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  844. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  845. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  846. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  847. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  848. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  849. }else{
  850. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  851. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  852. }
  853. for(i=0; i<2; i++){
  854. int cache_idx = scan8[0] - 1 + i*2*8;
  855. if(USES_LIST(left_type[i], list)){
  856. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  857. const int b8_xy= 4*left_xy[i] + 1;
  858. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  859. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  860. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  861. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  862. }else{
  863. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  864. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  865. h->ref_cache[list][cache_idx ]=
  866. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  867. }
  868. }
  869. if(USES_LIST(topright_type, list)){
  870. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  871. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  872. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  873. }else{
  874. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  875. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  876. }
  877. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  878. if(USES_LIST(topleft_type, list)){
  879. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  880. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  881. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  882. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  883. }else{
  884. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  885. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  886. }
  887. }
  888. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  889. continue;
  890. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  891. h->ref_cache[list][scan8[4 ]] =
  892. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  893. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  894. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  895. if( CABAC ) {
  896. /* XXX beurk, Load mvd */
  897. if(USES_LIST(top_type, list)){
  898. const int b_xy= h->mb2br_xy[top_xy];
  899. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  900. }else{
  901. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  902. }
  903. if(USES_LIST(left_type[0], list)){
  904. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  905. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  906. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  907. }else{
  908. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  909. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  910. }
  911. if(USES_LIST(left_type[1], list)){
  912. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  913. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  914. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  915. }else{
  916. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  917. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  918. }
  919. AV_ZERO16(h->mvd_cache [list][scan8[5 ]+1]);
  920. AV_ZERO16(h->mvd_cache [list][scan8[7 ]+1]);
  921. AV_ZERO16(h->mvd_cache [list][scan8[13]+1]); //FIXME remove past 3 (init somewhere else)
  922. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  923. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  924. if(h->slice_type_nos == FF_B_TYPE){
  925. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  926. if(IS_DIRECT(top_type)){
  927. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_DIRECT2>>1));
  928. }else if(IS_8X8(top_type)){
  929. int b8_xy = 4*top_xy;
  930. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  931. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  932. }else{
  933. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  934. }
  935. if(IS_DIRECT(left_type[0]))
  936. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  937. else if(IS_8X8(left_type[0]))
  938. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  939. else
  940. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  941. if(IS_DIRECT(left_type[1]))
  942. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  943. else if(IS_8X8(left_type[1]))
  944. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  945. else
  946. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  947. }
  948. }
  949. }
  950. if(FRAME_MBAFF){
  951. #define MAP_MVS\
  952. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  953. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  954. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  955. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  956. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  957. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  958. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  959. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  960. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  961. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  962. if(MB_FIELD){
  963. #define MAP_F2F(idx, mb_type)\
  964. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  965. h->ref_cache[list][idx] <<= 1;\
  966. h->mv_cache[list][idx][1] /= 2;\
  967. h->mvd_cache[list][idx][1] >>=1;\
  968. }
  969. MAP_MVS
  970. #undef MAP_F2F
  971. }else{
  972. #define MAP_F2F(idx, mb_type)\
  973. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  974. h->ref_cache[list][idx] >>= 1;\
  975. h->mv_cache[list][idx][1] <<= 1;\
  976. h->mvd_cache[list][idx][1] <<= 1;\
  977. }
  978. MAP_MVS
  979. #undef MAP_F2F
  980. }
  981. }
  982. }
  983. }
  984. #endif
  985. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  986. }
  987. /**
  988. *
  989. * @returns non zero if the loop filter can be skiped
  990. */
  991. static int fill_filter_caches(H264Context *h, int mb_type){
  992. MpegEncContext * const s = &h->s;
  993. const int mb_xy= h->mb_xy;
  994. int top_xy, left_xy[2];
  995. int top_type, left_type[2];
  996. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  997. //FIXME deblocking could skip the intra and nnz parts.
  998. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  999. * stuff, I can't imagine that these complex rules are worth it. */
  1000. left_xy[1] = left_xy[0] = mb_xy-1;
  1001. if(FRAME_MBAFF){
  1002. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  1003. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1004. if(s->mb_y&1){
  1005. if (left_mb_field_flag != curr_mb_field_flag) {
  1006. left_xy[0] -= s->mb_stride;
  1007. }
  1008. }else{
  1009. if(curr_mb_field_flag){
  1010. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1011. }
  1012. if (left_mb_field_flag != curr_mb_field_flag) {
  1013. left_xy[1] += s->mb_stride;
  1014. }
  1015. }
  1016. }
  1017. h->top_mb_xy = top_xy;
  1018. h->left_mb_xy[0] = left_xy[0];
  1019. h->left_mb_xy[1] = left_xy[1];
  1020. {
  1021. //for sufficiently low qp, filtering wouldn't do anything
  1022. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1023. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1024. int qp = s->current_picture.qscale_table[mb_xy];
  1025. if(qp <= qp_thresh
  1026. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1027. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1028. if(!FRAME_MBAFF)
  1029. return 1;
  1030. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1031. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1032. return 1;
  1033. }
  1034. }
  1035. if(h->deblocking_filter == 2){
  1036. h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  1037. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  1038. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  1039. }else{
  1040. h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  1041. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  1042. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  1043. }
  1044. if(IS_INTRA(mb_type))
  1045. return 0;
  1046. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1047. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1048. AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
  1049. AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
  1050. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  1051. h->cbp= h->cbp_table[mb_xy];
  1052. {
  1053. int list;
  1054. for(list=0; list<h->list_count; list++){
  1055. int8_t *ref;
  1056. int y, b_stride;
  1057. int16_t (*mv_dst)[2];
  1058. int16_t (*mv_src)[2];
  1059. if(!USES_LIST(mb_type, list)){
  1060. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  1061. AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1062. AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1063. AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1064. AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1065. continue;
  1066. }
  1067. ref = &s->current_picture.ref_index[list][4*mb_xy];
  1068. {
  1069. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1070. AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1071. AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1072. ref += 2;
  1073. AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1074. AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1075. }
  1076. b_stride = h->b_stride;
  1077. mv_dst = &h->mv_cache[list][scan8[0]];
  1078. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  1079. for(y=0; y<4; y++){
  1080. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  1081. }
  1082. }
  1083. }
  1084. /*
  1085. 0 . T T. T T T T
  1086. 1 L . .L . . . .
  1087. 2 L . .L . . . .
  1088. 3 . T TL . . . .
  1089. 4 L . .L . . . .
  1090. 5 L . .. . . . .
  1091. */
  1092. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  1093. if(top_type){
  1094. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  1095. }
  1096. if(left_type[0]){
  1097. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  1098. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  1099. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  1100. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  1101. }
  1102. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  1103. if(!CABAC && h->pps.transform_8x8_mode){
  1104. if(IS_8x8DCT(top_type)){
  1105. h->non_zero_count_cache[4+8*0]=
  1106. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  1107. h->non_zero_count_cache[6+8*0]=
  1108. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  1109. }
  1110. if(IS_8x8DCT(left_type[0])){
  1111. h->non_zero_count_cache[3+8*1]=
  1112. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  1113. }
  1114. if(IS_8x8DCT(left_type[1])){
  1115. h->non_zero_count_cache[3+8*3]=
  1116. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  1117. }
  1118. if(IS_8x8DCT(mb_type)){
  1119. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  1120. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  1121. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  1122. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  1123. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  1124. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  1125. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  1126. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  1127. }
  1128. }
  1129. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  1130. int list;
  1131. for(list=0; list<h->list_count; list++){
  1132. if(USES_LIST(top_type, list)){
  1133. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1134. const int b8_xy= 4*top_xy + 2;
  1135. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1136. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  1137. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  1138. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  1139. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  1140. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  1141. }else{
  1142. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  1143. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1144. }
  1145. if(!IS_INTERLACED(mb_type^left_type[0])){
  1146. if(USES_LIST(left_type[0], list)){
  1147. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1148. const int b8_xy= 4*left_xy[0] + 1;
  1149. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1150. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
  1151. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
  1152. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
  1153. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
  1154. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1155. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
  1156. h->ref_cache[list][scan8[0] - 1 +16 ]=
  1157. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
  1158. }else{
  1159. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
  1160. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
  1161. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
  1162. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
  1163. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1164. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  1165. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  1166. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  1167. }
  1168. }
  1169. }
  1170. }
  1171. return 0;
  1172. }
  1173. /**
  1174. * gets the predicted intra4x4 prediction mode.
  1175. */
  1176. static inline int pred_intra_mode(H264Context *h, int n){
  1177. const int index8= scan8[n];
  1178. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1179. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1180. const int min= FFMIN(left, top);
  1181. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1182. if(min<0) return DC_PRED;
  1183. else return min;
  1184. }
  1185. static inline void write_back_non_zero_count(H264Context *h){
  1186. const int mb_xy= h->mb_xy;
  1187. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1188. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1189. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1190. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1191. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1192. }
  1193. static inline void write_back_motion(H264Context *h, int mb_type){
  1194. MpegEncContext * const s = &h->s;
  1195. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1196. const int b8_xy= 4*h->mb_xy;
  1197. int list;
  1198. if(!USES_LIST(mb_type, 0))
  1199. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1200. for(list=0; list<h->list_count; list++){
  1201. int y, b_stride;
  1202. int16_t (*mv_dst)[2];
  1203. int16_t (*mv_src)[2];
  1204. if(!USES_LIST(mb_type, list))
  1205. continue;
  1206. b_stride = h->b_stride;
  1207. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1208. mv_src = &h->mv_cache[list][scan8[0]];
  1209. for(y=0; y<4; y++){
  1210. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1211. }
  1212. if( CABAC ) {
  1213. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1214. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1215. if(IS_SKIP(mb_type))
  1216. AV_ZERO128(mvd_dst);
  1217. else{
  1218. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1219. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1220. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1221. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1222. }
  1223. }
  1224. {
  1225. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1226. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1227. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1228. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1229. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1230. }
  1231. }
  1232. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1233. if(IS_8X8(mb_type)){
  1234. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1235. direct_table[1] = h->sub_mb_type[1]>>1;
  1236. direct_table[2] = h->sub_mb_type[2]>>1;
  1237. direct_table[3] = h->sub_mb_type[3]>>1;
  1238. }
  1239. }
  1240. }
  1241. static inline int get_dct8x8_allowed(H264Context *h){
  1242. if(h->sps.direct_8x8_inference_flag)
  1243. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1244. else
  1245. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1246. }
  1247. /**
  1248. * decodes a P_SKIP or B_SKIP macroblock
  1249. */
  1250. static void decode_mb_skip(H264Context *h){
  1251. MpegEncContext * const s = &h->s;
  1252. const int mb_xy= h->mb_xy;
  1253. int mb_type=0;
  1254. memset(h->non_zero_count[mb_xy], 0, 32);
  1255. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1256. if(MB_FIELD)
  1257. mb_type|= MB_TYPE_INTERLACED;
  1258. if( h->slice_type_nos == FF_B_TYPE )
  1259. {
  1260. // just for fill_caches. pred_direct_motion will set the real mb_type
  1261. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1262. if(h->direct_spatial_mv_pred){
  1263. fill_decode_neighbors(h, mb_type);
  1264. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1265. }
  1266. ff_h264_pred_direct_motion(h, &mb_type);
  1267. mb_type|= MB_TYPE_SKIP;
  1268. }
  1269. else
  1270. {
  1271. int mx, my;
  1272. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1273. fill_decode_neighbors(h, mb_type);
  1274. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1275. pred_pskip_motion(h, &mx, &my);
  1276. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1277. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1278. }
  1279. write_back_motion(h, mb_type);
  1280. s->current_picture.mb_type[mb_xy]= mb_type;
  1281. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1282. h->slice_table[ mb_xy ]= h->slice_num;
  1283. h->prev_mb_skipped= 1;
  1284. }
  1285. #include "h264_mvpred.h" //For pred_pskip_motion()
  1286. #endif /* AVCODEC_H264_H */