You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1309 lines
41KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file wmadec.c
  21. * WMA compatible decoder.
  22. */
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. /* size of blocks */
  26. #define BLOCK_MIN_BITS 7
  27. #define BLOCK_MAX_BITS 11
  28. #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
  29. #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
  30. /* XXX: find exact max size */
  31. #define HIGH_BAND_MAX_SIZE 16
  32. #define NB_LSP_COEFS 10
  33. /* XXX: is it a suitable value ? */
  34. #define MAX_CODED_SUPERFRAME_SIZE 4096
  35. #define MAX_CHANNELS 2
  36. #define NOISE_TAB_SIZE 8192
  37. #define LSP_POW_BITS 7
  38. typedef struct WMADecodeContext {
  39. GetBitContext gb;
  40. int sample_rate;
  41. int nb_channels;
  42. int bit_rate;
  43. int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
  44. int block_align;
  45. int use_bit_reservoir;
  46. int use_variable_block_len;
  47. int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
  48. int use_noise_coding; /* true if perceptual noise is added */
  49. int byte_offset_bits;
  50. VLC exp_vlc;
  51. int exponent_sizes[BLOCK_NB_SIZES];
  52. uint16_t exponent_bands[BLOCK_NB_SIZES][25];
  53. int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
  54. int coefs_start; /* first coded coef */
  55. int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
  56. int exponent_high_sizes[BLOCK_NB_SIZES];
  57. int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
  58. VLC hgain_vlc;
  59. /* coded values in high bands */
  60. int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  61. int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  62. /* there are two possible tables for spectral coefficients */
  63. VLC coef_vlc[2];
  64. uint16_t *run_table[2];
  65. uint16_t *level_table[2];
  66. /* frame info */
  67. int frame_len; /* frame length in samples */
  68. int frame_len_bits; /* frame_len = 1 << frame_len_bits */
  69. int nb_block_sizes; /* number of block sizes */
  70. /* block info */
  71. int reset_block_lengths;
  72. int block_len_bits; /* log2 of current block length */
  73. int next_block_len_bits; /* log2 of next block length */
  74. int prev_block_len_bits; /* log2 of prev block length */
  75. int block_len; /* block length in samples */
  76. int block_num; /* block number in current frame */
  77. int block_pos; /* current position in frame */
  78. uint8_t ms_stereo; /* true if mid/side stereo mode */
  79. uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
  80. float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
  81. float max_exponent[MAX_CHANNELS];
  82. int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
  83. float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
  84. MDCTContext mdct_ctx[BLOCK_NB_SIZES];
  85. float *windows[BLOCK_NB_SIZES];
  86. FFTSample mdct_tmp[BLOCK_MAX_SIZE] __attribute__((aligned(16))); /* temporary storage for imdct */
  87. /* output buffer for one frame and the last for IMDCT windowing */
  88. float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
  89. /* last frame info */
  90. uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
  91. int last_bitoffset;
  92. int last_superframe_len;
  93. float noise_table[NOISE_TAB_SIZE];
  94. int noise_index;
  95. float noise_mult; /* XXX: suppress that and integrate it in the noise array */
  96. /* lsp_to_curve tables */
  97. float lsp_cos_table[BLOCK_MAX_SIZE];
  98. float lsp_pow_e_table[256];
  99. float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
  100. float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
  101. } WMADecodeContext;
  102. typedef struct CoefVLCTable {
  103. int n; /* total number of codes */
  104. const uint32_t *huffcodes; /* VLC bit values */
  105. const uint8_t *huffbits; /* VLC bit size */
  106. const uint16_t *levels; /* table to build run/level tables */
  107. } CoefVLCTable;
  108. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  109. #include "wmadata.h"
  110. #ifdef TRACE
  111. int frame_count = 0;
  112. static void dump_shorts(const char *name, const short *tab, int n)
  113. {
  114. int i;
  115. tprintf("%s[%d]:\n", name, n);
  116. for(i=0;i<n;i++) {
  117. if ((i & 7) == 0)
  118. tprintf("%4d: ", i);
  119. tprintf(" %5d.0", tab[i]);
  120. if ((i & 7) == 7)
  121. tprintf("\n");
  122. }
  123. }
  124. static void dump_floats(const char *name, int prec, const float *tab, int n)
  125. {
  126. int i;
  127. tprintf("%s[%d]:\n", name, n);
  128. for(i=0;i<n;i++) {
  129. if ((i & 7) == 0)
  130. tprintf("%4d: ", i);
  131. tprintf(" %8.*f", prec, tab[i]);
  132. if ((i & 7) == 7)
  133. tprintf("\n");
  134. }
  135. if ((i & 7) != 0)
  136. tprintf("\n");
  137. }
  138. #endif
  139. /* XXX: use same run/length optimization as mpeg decoders */
  140. static void init_coef_vlc(VLC *vlc,
  141. uint16_t **prun_table, uint16_t **plevel_table,
  142. const CoefVLCTable *vlc_table)
  143. {
  144. int n = vlc_table->n;
  145. const uint8_t *table_bits = vlc_table->huffbits;
  146. const uint32_t *table_codes = vlc_table->huffcodes;
  147. const uint16_t *levels_table = vlc_table->levels;
  148. uint16_t *run_table, *level_table;
  149. const uint16_t *p;
  150. int i, l, j, level;
  151. init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
  152. run_table = av_malloc(n * sizeof(uint16_t));
  153. level_table = av_malloc(n * sizeof(uint16_t));
  154. p = levels_table;
  155. i = 2;
  156. level = 1;
  157. while (i < n) {
  158. l = *p++;
  159. for(j=0;j<l;j++) {
  160. run_table[i] = j;
  161. level_table[i] = level;
  162. i++;
  163. }
  164. level++;
  165. }
  166. *prun_table = run_table;
  167. *plevel_table = level_table;
  168. }
  169. static int wma_decode_init(AVCodecContext * avctx)
  170. {
  171. WMADecodeContext *s = avctx->priv_data;
  172. int i, flags1, flags2;
  173. float *window;
  174. uint8_t *extradata;
  175. float bps1, high_freq, bps;
  176. int sample_rate1;
  177. int coef_vlc_table;
  178. s->sample_rate = avctx->sample_rate;
  179. s->nb_channels = avctx->channels;
  180. s->bit_rate = avctx->bit_rate;
  181. s->block_align = avctx->block_align;
  182. if (avctx->codec->id == CODEC_ID_WMAV1) {
  183. s->version = 1;
  184. } else {
  185. s->version = 2;
  186. }
  187. /* extract flag infos */
  188. flags1 = 0;
  189. flags2 = 0;
  190. extradata = avctx->extradata;
  191. if (s->version == 1 && avctx->extradata_size >= 4) {
  192. flags1 = extradata[0] | (extradata[1] << 8);
  193. flags2 = extradata[2] | (extradata[3] << 8);
  194. } else if (s->version == 2 && avctx->extradata_size >= 6) {
  195. flags1 = extradata[0] | (extradata[1] << 8) |
  196. (extradata[2] << 16) | (extradata[3] << 24);
  197. flags2 = extradata[4] | (extradata[5] << 8);
  198. }
  199. s->use_exp_vlc = flags2 & 0x0001;
  200. s->use_bit_reservoir = flags2 & 0x0002;
  201. s->use_variable_block_len = flags2 & 0x0004;
  202. /* compute MDCT block size */
  203. if (s->sample_rate <= 16000) {
  204. s->frame_len_bits = 9;
  205. } else if (s->sample_rate <= 22050 ||
  206. (s->sample_rate <= 32000 && s->version == 1)) {
  207. s->frame_len_bits = 10;
  208. } else {
  209. s->frame_len_bits = 11;
  210. }
  211. s->frame_len = 1 << s->frame_len_bits;
  212. if (s->use_variable_block_len) {
  213. int nb_max, nb;
  214. nb = ((flags2 >> 3) & 3) + 1;
  215. if ((s->bit_rate / s->nb_channels) >= 32000)
  216. nb += 2;
  217. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  218. if (nb > nb_max)
  219. nb = nb_max;
  220. s->nb_block_sizes = nb + 1;
  221. } else {
  222. s->nb_block_sizes = 1;
  223. }
  224. /* init rate dependant parameters */
  225. s->use_noise_coding = 1;
  226. high_freq = s->sample_rate * 0.5;
  227. /* if version 2, then the rates are normalized */
  228. sample_rate1 = s->sample_rate;
  229. if (s->version == 2) {
  230. if (sample_rate1 >= 44100)
  231. sample_rate1 = 44100;
  232. else if (sample_rate1 >= 22050)
  233. sample_rate1 = 22050;
  234. else if (sample_rate1 >= 16000)
  235. sample_rate1 = 16000;
  236. else if (sample_rate1 >= 11025)
  237. sample_rate1 = 11025;
  238. else if (sample_rate1 >= 8000)
  239. sample_rate1 = 8000;
  240. }
  241. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  242. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0)) + 2;
  243. /* compute high frequency value and choose if noise coding should
  244. be activated */
  245. bps1 = bps;
  246. if (s->nb_channels == 2)
  247. bps1 = bps * 1.6;
  248. if (sample_rate1 == 44100) {
  249. if (bps1 >= 0.61)
  250. s->use_noise_coding = 0;
  251. else
  252. high_freq = high_freq * 0.4;
  253. } else if (sample_rate1 == 22050) {
  254. if (bps1 >= 1.16)
  255. s->use_noise_coding = 0;
  256. else if (bps1 >= 0.72)
  257. high_freq = high_freq * 0.7;
  258. else
  259. high_freq = high_freq * 0.6;
  260. } else if (sample_rate1 == 16000) {
  261. if (bps > 0.5)
  262. high_freq = high_freq * 0.5;
  263. else
  264. high_freq = high_freq * 0.3;
  265. } else if (sample_rate1 == 11025) {
  266. high_freq = high_freq * 0.7;
  267. } else if (sample_rate1 == 8000) {
  268. if (bps <= 0.625) {
  269. high_freq = high_freq * 0.5;
  270. } else if (bps > 0.75) {
  271. s->use_noise_coding = 0;
  272. } else {
  273. high_freq = high_freq * 0.65;
  274. }
  275. } else {
  276. if (bps >= 0.8) {
  277. high_freq = high_freq * 0.75;
  278. } else if (bps >= 0.6) {
  279. high_freq = high_freq * 0.6;
  280. } else {
  281. high_freq = high_freq * 0.5;
  282. }
  283. }
  284. dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
  285. dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  286. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  287. s->block_align);
  288. dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  289. bps, bps1, high_freq, s->byte_offset_bits);
  290. dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  291. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  292. /* compute the scale factor band sizes for each MDCT block size */
  293. {
  294. int a, b, pos, lpos, k, block_len, i, j, n;
  295. const uint8_t *table;
  296. if (s->version == 1) {
  297. s->coefs_start = 3;
  298. } else {
  299. s->coefs_start = 0;
  300. }
  301. for(k = 0; k < s->nb_block_sizes; k++) {
  302. block_len = s->frame_len >> k;
  303. if (s->version == 1) {
  304. lpos = 0;
  305. for(i=0;i<25;i++) {
  306. a = wma_critical_freqs[i];
  307. b = s->sample_rate;
  308. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  309. if (pos > block_len)
  310. pos = block_len;
  311. s->exponent_bands[0][i] = pos - lpos;
  312. if (pos >= block_len) {
  313. i++;
  314. break;
  315. }
  316. lpos = pos;
  317. }
  318. s->exponent_sizes[0] = i;
  319. } else {
  320. /* hardcoded tables */
  321. table = NULL;
  322. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  323. if (a < 3) {
  324. if (s->sample_rate >= 44100)
  325. table = exponent_band_44100[a];
  326. else if (s->sample_rate >= 32000)
  327. table = exponent_band_32000[a];
  328. else if (s->sample_rate >= 22050)
  329. table = exponent_band_22050[a];
  330. }
  331. if (table) {
  332. n = *table++;
  333. for(i=0;i<n;i++)
  334. s->exponent_bands[k][i] = table[i];
  335. s->exponent_sizes[k] = n;
  336. } else {
  337. j = 0;
  338. lpos = 0;
  339. for(i=0;i<25;i++) {
  340. a = wma_critical_freqs[i];
  341. b = s->sample_rate;
  342. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  343. pos <<= 2;
  344. if (pos > block_len)
  345. pos = block_len;
  346. if (pos > lpos)
  347. s->exponent_bands[k][j++] = pos - lpos;
  348. if (pos >= block_len)
  349. break;
  350. lpos = pos;
  351. }
  352. s->exponent_sizes[k] = j;
  353. }
  354. }
  355. /* max number of coefs */
  356. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  357. /* high freq computation */
  358. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  359. s->sample_rate + 0.5);
  360. n = s->exponent_sizes[k];
  361. j = 0;
  362. pos = 0;
  363. for(i=0;i<n;i++) {
  364. int start, end;
  365. start = pos;
  366. pos += s->exponent_bands[k][i];
  367. end = pos;
  368. if (start < s->high_band_start[k])
  369. start = s->high_band_start[k];
  370. if (end > s->coefs_end[k])
  371. end = s->coefs_end[k];
  372. if (end > start)
  373. s->exponent_high_bands[k][j++] = end - start;
  374. }
  375. s->exponent_high_sizes[k] = j;
  376. #if 0
  377. tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  378. s->frame_len >> k,
  379. s->coefs_end[k],
  380. s->high_band_start[k],
  381. s->exponent_high_sizes[k]);
  382. for(j=0;j<s->exponent_high_sizes[k];j++)
  383. tprintf(" %d", s->exponent_high_bands[k][j]);
  384. tprintf("\n");
  385. #endif
  386. }
  387. }
  388. #ifdef TRACE
  389. {
  390. int i, j;
  391. for(i = 0; i < s->nb_block_sizes; i++) {
  392. tprintf("%5d: n=%2d:",
  393. s->frame_len >> i,
  394. s->exponent_sizes[i]);
  395. for(j=0;j<s->exponent_sizes[i];j++)
  396. tprintf(" %d", s->exponent_bands[i][j]);
  397. tprintf("\n");
  398. }
  399. }
  400. #endif
  401. /* init MDCT */
  402. for(i = 0; i < s->nb_block_sizes; i++)
  403. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  404. /* init MDCT windows : simple sinus window */
  405. for(i = 0; i < s->nb_block_sizes; i++) {
  406. int n, j;
  407. float alpha;
  408. n = 1 << (s->frame_len_bits - i);
  409. window = av_malloc(sizeof(float) * n);
  410. alpha = M_PI / (2.0 * n);
  411. for(j=0;j<n;j++) {
  412. window[n - j - 1] = sin((j + 0.5) * alpha);
  413. }
  414. s->windows[i] = window;
  415. }
  416. s->reset_block_lengths = 1;
  417. if (s->use_noise_coding) {
  418. /* init the noise generator */
  419. if (s->use_exp_vlc)
  420. s->noise_mult = 0.02;
  421. else
  422. s->noise_mult = 0.04;
  423. #ifdef TRACE
  424. for(i=0;i<NOISE_TAB_SIZE;i++)
  425. s->noise_table[i] = 1.0 * s->noise_mult;
  426. #else
  427. {
  428. unsigned int seed;
  429. float norm;
  430. seed = 1;
  431. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  432. for(i=0;i<NOISE_TAB_SIZE;i++) {
  433. seed = seed * 314159 + 1;
  434. s->noise_table[i] = (float)((int)seed) * norm;
  435. }
  436. }
  437. #endif
  438. init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
  439. hgain_huffbits, 1, 1,
  440. hgain_huffcodes, 2, 2);
  441. }
  442. if (s->use_exp_vlc) {
  443. init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
  444. scale_huffbits, 1, 1,
  445. scale_huffcodes, 4, 4);
  446. } else {
  447. wma_lsp_to_curve_init(s, s->frame_len);
  448. }
  449. /* choose the VLC tables for the coefficients */
  450. coef_vlc_table = 2;
  451. if (s->sample_rate >= 32000) {
  452. if (bps1 < 0.72)
  453. coef_vlc_table = 0;
  454. else if (bps1 < 1.16)
  455. coef_vlc_table = 1;
  456. }
  457. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  458. &coef_vlcs[coef_vlc_table * 2]);
  459. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  460. &coef_vlcs[coef_vlc_table * 2 + 1]);
  461. return 0;
  462. }
  463. /* interpolate values for a bigger or smaller block. The block must
  464. have multiple sizes */
  465. static void interpolate_array(float *scale, int old_size, int new_size)
  466. {
  467. int i, j, jincr, k;
  468. float v;
  469. if (new_size > old_size) {
  470. jincr = new_size / old_size;
  471. j = new_size;
  472. for(i = old_size - 1; i >=0; i--) {
  473. v = scale[i];
  474. k = jincr;
  475. do {
  476. scale[--j] = v;
  477. } while (--k);
  478. }
  479. } else if (new_size < old_size) {
  480. j = 0;
  481. jincr = old_size / new_size;
  482. for(i = 0; i < new_size; i++) {
  483. scale[i] = scale[j];
  484. j += jincr;
  485. }
  486. }
  487. }
  488. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  489. interpolation to reduce the mantissa table size at a small speed
  490. expense (linear interpolation approximately doubles the number of
  491. bits of precision). */
  492. static inline float pow_m1_4(WMADecodeContext *s, float x)
  493. {
  494. union {
  495. float f;
  496. unsigned int v;
  497. } u, t;
  498. unsigned int e, m;
  499. float a, b;
  500. u.f = x;
  501. e = u.v >> 23;
  502. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  503. /* build interpolation scale: 1 <= t < 2. */
  504. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  505. a = s->lsp_pow_m_table1[m];
  506. b = s->lsp_pow_m_table2[m];
  507. return s->lsp_pow_e_table[e] * (a + b * t.f);
  508. }
  509. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  510. {
  511. float wdel, a, b;
  512. int i, e, m;
  513. wdel = M_PI / frame_len;
  514. for(i=0;i<frame_len;i++)
  515. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  516. /* tables for x^-0.25 computation */
  517. for(i=0;i<256;i++) {
  518. e = i - 126;
  519. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  520. }
  521. /* NOTE: these two tables are needed to avoid two operations in
  522. pow_m1_4 */
  523. b = 1.0;
  524. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  525. m = (1 << LSP_POW_BITS) + i;
  526. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  527. a = pow(a, -0.25);
  528. s->lsp_pow_m_table1[i] = 2 * a - b;
  529. s->lsp_pow_m_table2[i] = b - a;
  530. b = a;
  531. }
  532. #if 0
  533. for(i=1;i<20;i++) {
  534. float v, r1, r2;
  535. v = 5.0 / i;
  536. r1 = pow_m1_4(s, v);
  537. r2 = pow(v,-0.25);
  538. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  539. }
  540. #endif
  541. }
  542. /* NOTE: We use the same code as Vorbis here */
  543. /* XXX: optimize it further with SSE/3Dnow */
  544. static void wma_lsp_to_curve(WMADecodeContext *s,
  545. float *out, float *val_max_ptr,
  546. int n, float *lsp)
  547. {
  548. int i, j;
  549. float p, q, w, v, val_max;
  550. val_max = 0;
  551. for(i=0;i<n;i++) {
  552. p = 0.5f;
  553. q = 0.5f;
  554. w = s->lsp_cos_table[i];
  555. for(j=1;j<NB_LSP_COEFS;j+=2){
  556. q *= w - lsp[j - 1];
  557. p *= w - lsp[j];
  558. }
  559. p *= p * (2.0f - w);
  560. q *= q * (2.0f + w);
  561. v = p + q;
  562. v = pow_m1_4(s, v);
  563. if (v > val_max)
  564. val_max = v;
  565. out[i] = v;
  566. }
  567. *val_max_ptr = val_max;
  568. }
  569. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  570. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  571. {
  572. float lsp_coefs[NB_LSP_COEFS];
  573. int val, i;
  574. for(i = 0; i < NB_LSP_COEFS; i++) {
  575. if (i == 0 || i >= 8)
  576. val = get_bits(&s->gb, 3);
  577. else
  578. val = get_bits(&s->gb, 4);
  579. lsp_coefs[i] = lsp_codebook[i][val];
  580. }
  581. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  582. s->block_len, lsp_coefs);
  583. }
  584. /* decode exponents coded with VLC codes */
  585. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  586. {
  587. int last_exp, n, code;
  588. const uint16_t *ptr, *band_ptr;
  589. float v, *q, max_scale, *q_end;
  590. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  591. ptr = band_ptr;
  592. q = s->exponents[ch];
  593. q_end = q + s->block_len;
  594. max_scale = 0;
  595. if (s->version == 1) {
  596. last_exp = get_bits(&s->gb, 5) + 10;
  597. /* XXX: use a table */
  598. v = pow(10, last_exp * (1.0 / 16.0));
  599. max_scale = v;
  600. n = *ptr++;
  601. do {
  602. *q++ = v;
  603. } while (--n);
  604. }
  605. last_exp = 36;
  606. while (q < q_end) {
  607. code = get_vlc(&s->gb, &s->exp_vlc);
  608. if (code < 0)
  609. return -1;
  610. /* NOTE: this offset is the same as MPEG4 AAC ! */
  611. last_exp += code - 60;
  612. /* XXX: use a table */
  613. v = pow(10, last_exp * (1.0 / 16.0));
  614. if (v > max_scale)
  615. max_scale = v;
  616. n = *ptr++;
  617. do {
  618. *q++ = v;
  619. } while (--n);
  620. }
  621. s->max_exponent[ch] = max_scale;
  622. return 0;
  623. }
  624. /* return 0 if OK. return 1 if last block of frame. return -1 if
  625. unrecorrable error. */
  626. static int wma_decode_block(WMADecodeContext *s)
  627. {
  628. int n, v, a, ch, code, bsize;
  629. int coef_nb_bits, total_gain, parse_exponents;
  630. float window[BLOCK_MAX_SIZE * 2];
  631. int nb_coefs[MAX_CHANNELS];
  632. float mdct_norm;
  633. tprintf("***decode_block: %d:%d\n", frame_count - 1, s->block_num);
  634. /* compute current block length */
  635. if (s->use_variable_block_len) {
  636. n = av_log2(s->nb_block_sizes - 1) + 1;
  637. if (s->reset_block_lengths) {
  638. s->reset_block_lengths = 0;
  639. v = get_bits(&s->gb, n);
  640. if (v >= s->nb_block_sizes)
  641. return -1;
  642. s->prev_block_len_bits = s->frame_len_bits - v;
  643. v = get_bits(&s->gb, n);
  644. if (v >= s->nb_block_sizes)
  645. return -1;
  646. s->block_len_bits = s->frame_len_bits - v;
  647. } else {
  648. /* update block lengths */
  649. s->prev_block_len_bits = s->block_len_bits;
  650. s->block_len_bits = s->next_block_len_bits;
  651. }
  652. v = get_bits(&s->gb, n);
  653. if (v >= s->nb_block_sizes)
  654. return -1;
  655. s->next_block_len_bits = s->frame_len_bits - v;
  656. } else {
  657. /* fixed block len */
  658. s->next_block_len_bits = s->frame_len_bits;
  659. s->prev_block_len_bits = s->frame_len_bits;
  660. s->block_len_bits = s->frame_len_bits;
  661. }
  662. /* now check if the block length is coherent with the frame length */
  663. s->block_len = 1 << s->block_len_bits;
  664. if ((s->block_pos + s->block_len) > s->frame_len)
  665. return -1;
  666. if (s->nb_channels == 2) {
  667. s->ms_stereo = get_bits(&s->gb, 1);
  668. }
  669. v = 0;
  670. for(ch = 0; ch < s->nb_channels; ch++) {
  671. a = get_bits(&s->gb, 1);
  672. s->channel_coded[ch] = a;
  673. v |= a;
  674. }
  675. /* if no channel coded, no need to go further */
  676. /* XXX: fix potential framing problems */
  677. if (!v)
  678. goto next;
  679. bsize = s->frame_len_bits - s->block_len_bits;
  680. /* read total gain and extract corresponding number of bits for
  681. coef escape coding */
  682. total_gain = 1;
  683. for(;;) {
  684. a = get_bits(&s->gb, 7);
  685. total_gain += a;
  686. if (a != 127)
  687. break;
  688. }
  689. if (total_gain < 15)
  690. coef_nb_bits = 13;
  691. else if (total_gain < 32)
  692. coef_nb_bits = 12;
  693. else if (total_gain < 40)
  694. coef_nb_bits = 11;
  695. else if (total_gain < 45)
  696. coef_nb_bits = 10;
  697. else
  698. coef_nb_bits = 9;
  699. /* compute number of coefficients */
  700. n = s->coefs_end[bsize] - s->coefs_start;
  701. for(ch = 0; ch < s->nb_channels; ch++)
  702. nb_coefs[ch] = n;
  703. /* complex coding */
  704. if (s->use_noise_coding) {
  705. for(ch = 0; ch < s->nb_channels; ch++) {
  706. if (s->channel_coded[ch]) {
  707. int i, n, a;
  708. n = s->exponent_high_sizes[bsize];
  709. for(i=0;i<n;i++) {
  710. a = get_bits(&s->gb, 1);
  711. s->high_band_coded[ch][i] = a;
  712. /* if noise coding, the coefficients are not transmitted */
  713. if (a)
  714. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  715. }
  716. }
  717. }
  718. for(ch = 0; ch < s->nb_channels; ch++) {
  719. if (s->channel_coded[ch]) {
  720. int i, n, val, code;
  721. n = s->exponent_high_sizes[bsize];
  722. val = (int)0x80000000;
  723. for(i=0;i<n;i++) {
  724. if (s->high_band_coded[ch][i]) {
  725. if (val == (int)0x80000000) {
  726. val = get_bits(&s->gb, 7) - 19;
  727. } else {
  728. code = get_vlc(&s->gb, &s->hgain_vlc);
  729. if (code < 0)
  730. return -1;
  731. val += code - 18;
  732. }
  733. s->high_band_values[ch][i] = val;
  734. }
  735. }
  736. }
  737. }
  738. }
  739. /* exposant can be interpolated in short blocks. */
  740. parse_exponents = 1;
  741. if (s->block_len_bits != s->frame_len_bits) {
  742. parse_exponents = get_bits(&s->gb, 1);
  743. }
  744. if (parse_exponents) {
  745. for(ch = 0; ch < s->nb_channels; ch++) {
  746. if (s->channel_coded[ch]) {
  747. if (s->use_exp_vlc) {
  748. if (decode_exp_vlc(s, ch) < 0)
  749. return -1;
  750. } else {
  751. decode_exp_lsp(s, ch);
  752. }
  753. }
  754. }
  755. } else {
  756. for(ch = 0; ch < s->nb_channels; ch++) {
  757. if (s->channel_coded[ch]) {
  758. interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
  759. s->block_len);
  760. }
  761. }
  762. }
  763. /* parse spectral coefficients : just RLE encoding */
  764. for(ch = 0; ch < s->nb_channels; ch++) {
  765. if (s->channel_coded[ch]) {
  766. VLC *coef_vlc;
  767. int level, run, sign, tindex;
  768. int16_t *ptr, *eptr;
  769. const int16_t *level_table, *run_table;
  770. /* special VLC tables are used for ms stereo because
  771. there is potentially less energy there */
  772. tindex = (ch == 1 && s->ms_stereo);
  773. coef_vlc = &s->coef_vlc[tindex];
  774. run_table = s->run_table[tindex];
  775. level_table = s->level_table[tindex];
  776. /* XXX: optimize */
  777. ptr = &s->coefs1[ch][0];
  778. eptr = ptr + nb_coefs[ch];
  779. memset(ptr, 0, s->block_len * sizeof(int16_t));
  780. for(;;) {
  781. code = get_vlc(&s->gb, coef_vlc);
  782. if (code < 0)
  783. return -1;
  784. if (code == 1) {
  785. /* EOB */
  786. break;
  787. } else if (code == 0) {
  788. /* escape */
  789. level = get_bits(&s->gb, coef_nb_bits);
  790. /* NOTE: this is rather suboptimal. reading
  791. block_len_bits would be better */
  792. run = get_bits(&s->gb, s->frame_len_bits);
  793. } else {
  794. /* normal code */
  795. run = run_table[code];
  796. level = level_table[code];
  797. }
  798. sign = get_bits(&s->gb, 1);
  799. if (!sign)
  800. level = -level;
  801. ptr += run;
  802. if (ptr >= eptr)
  803. return -1;
  804. *ptr++ = level;
  805. /* NOTE: EOB can be omitted */
  806. if (ptr >= eptr)
  807. break;
  808. }
  809. }
  810. if (s->version == 1 && s->nb_channels >= 2) {
  811. align_get_bits(&s->gb);
  812. }
  813. }
  814. /* normalize */
  815. {
  816. int n4 = s->block_len / 2;
  817. mdct_norm = 1.0 / (float)n4;
  818. if (s->version == 1) {
  819. mdct_norm *= sqrt(n4);
  820. }
  821. }
  822. /* finally compute the MDCT coefficients */
  823. for(ch = 0; ch < s->nb_channels; ch++) {
  824. if (s->channel_coded[ch]) {
  825. int16_t *coefs1;
  826. float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
  827. int i, j, n, n1, last_high_band;
  828. float exp_power[HIGH_BAND_MAX_SIZE];
  829. coefs1 = s->coefs1[ch];
  830. exponents = s->exponents[ch];
  831. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  832. mult *= mdct_norm;
  833. coefs = s->coefs[ch];
  834. if (s->use_noise_coding) {
  835. mult1 = mult;
  836. /* very low freqs : noise */
  837. for(i = 0;i < s->coefs_start; i++) {
  838. *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
  839. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  840. }
  841. n1 = s->exponent_high_sizes[bsize];
  842. /* compute power of high bands */
  843. exp_ptr = exponents +
  844. s->high_band_start[bsize] -
  845. s->coefs_start;
  846. last_high_band = 0; /* avoid warning */
  847. for(j=0;j<n1;j++) {
  848. n = s->exponent_high_bands[s->frame_len_bits -
  849. s->block_len_bits][j];
  850. if (s->high_band_coded[ch][j]) {
  851. float e2, v;
  852. e2 = 0;
  853. for(i = 0;i < n; i++) {
  854. v = exp_ptr[i];
  855. e2 += v * v;
  856. }
  857. exp_power[j] = e2 / n;
  858. last_high_band = j;
  859. tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
  860. }
  861. exp_ptr += n;
  862. }
  863. /* main freqs and high freqs */
  864. for(j=-1;j<n1;j++) {
  865. if (j < 0) {
  866. n = s->high_band_start[bsize] -
  867. s->coefs_start;
  868. } else {
  869. n = s->exponent_high_bands[s->frame_len_bits -
  870. s->block_len_bits][j];
  871. }
  872. if (j >= 0 && s->high_band_coded[ch][j]) {
  873. /* use noise with specified power */
  874. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  875. /* XXX: use a table */
  876. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  877. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  878. mult1 *= mdct_norm;
  879. for(i = 0;i < n; i++) {
  880. noise = s->noise_table[s->noise_index];
  881. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  882. *coefs++ = (*exponents++) * noise * mult1;
  883. }
  884. } else {
  885. /* coded values + small noise */
  886. for(i = 0;i < n; i++) {
  887. noise = s->noise_table[s->noise_index];
  888. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  889. *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
  890. }
  891. }
  892. }
  893. /* very high freqs : noise */
  894. n = s->block_len - s->coefs_end[bsize];
  895. mult1 = mult * exponents[-1];
  896. for(i = 0; i < n; i++) {
  897. *coefs++ = s->noise_table[s->noise_index] * mult1;
  898. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  899. }
  900. } else {
  901. /* XXX: optimize more */
  902. for(i = 0;i < s->coefs_start; i++)
  903. *coefs++ = 0.0;
  904. n = nb_coefs[ch];
  905. for(i = 0;i < n; i++) {
  906. *coefs++ = coefs1[i] * exponents[i] * mult;
  907. }
  908. n = s->block_len - s->coefs_end[bsize];
  909. for(i = 0;i < n; i++)
  910. *coefs++ = 0.0;
  911. }
  912. }
  913. }
  914. #ifdef TRACE
  915. for(ch = 0; ch < s->nb_channels; ch++) {
  916. if (s->channel_coded[ch]) {
  917. dump_floats("exponents", 3, s->exponents[ch], s->block_len);
  918. dump_floats("coefs", 1, s->coefs[ch], s->block_len);
  919. }
  920. }
  921. #endif
  922. if (s->ms_stereo && s->channel_coded[1]) {
  923. float a, b;
  924. int i;
  925. /* nominal case for ms stereo: we do it before mdct */
  926. /* no need to optimize this case because it should almost
  927. never happen */
  928. if (!s->channel_coded[0]) {
  929. tprintf("rare ms-stereo case happened\n");
  930. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  931. s->channel_coded[0] = 1;
  932. }
  933. for(i = 0; i < s->block_len; i++) {
  934. a = s->coefs[0][i];
  935. b = s->coefs[1][i];
  936. s->coefs[0][i] = a + b;
  937. s->coefs[1][i] = a - b;
  938. }
  939. }
  940. /* build the window : we ensure that when the windows overlap
  941. their squared sum is always 1 (MDCT reconstruction rule) */
  942. /* XXX: merge with output */
  943. {
  944. int i, next_block_len, block_len, prev_block_len, n;
  945. float *wptr;
  946. block_len = s->block_len;
  947. prev_block_len = 1 << s->prev_block_len_bits;
  948. next_block_len = 1 << s->next_block_len_bits;
  949. /* right part */
  950. wptr = window + block_len;
  951. if (block_len <= next_block_len) {
  952. for(i=0;i<block_len;i++)
  953. *wptr++ = s->windows[bsize][i];
  954. } else {
  955. /* overlap */
  956. n = (block_len / 2) - (next_block_len / 2);
  957. for(i=0;i<n;i++)
  958. *wptr++ = 1.0;
  959. for(i=0;i<next_block_len;i++)
  960. *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
  961. for(i=0;i<n;i++)
  962. *wptr++ = 0.0;
  963. }
  964. /* left part */
  965. wptr = window + block_len;
  966. if (block_len <= prev_block_len) {
  967. for(i=0;i<block_len;i++)
  968. *--wptr = s->windows[bsize][i];
  969. } else {
  970. /* overlap */
  971. n = (block_len / 2) - (prev_block_len / 2);
  972. for(i=0;i<n;i++)
  973. *--wptr = 1.0;
  974. for(i=0;i<prev_block_len;i++)
  975. *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
  976. for(i=0;i<n;i++)
  977. *--wptr = 0.0;
  978. }
  979. }
  980. for(ch = 0; ch < s->nb_channels; ch++) {
  981. if (s->channel_coded[ch]) {
  982. FFTSample output[BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
  983. float *ptr;
  984. int i, n4, index, n;
  985. n = s->block_len;
  986. n4 = s->block_len / 2;
  987. ff_imdct_calc(&s->mdct_ctx[bsize],
  988. output, s->coefs[ch], s->mdct_tmp);
  989. /* XXX: optimize all that by build the window and
  990. multipying/adding at the same time */
  991. /* multiply by the window */
  992. for(i=0;i<n * 2;i++) {
  993. output[i] *= window[i];
  994. }
  995. /* add in the frame */
  996. index = (s->frame_len / 2) + s->block_pos - n4;
  997. ptr = &s->frame_out[ch][index];
  998. for(i=0;i<n * 2;i++) {
  999. *ptr += output[i];
  1000. ptr++;
  1001. }
  1002. /* specific fast case for ms-stereo : add to second
  1003. channel if it is not coded */
  1004. if (s->ms_stereo && !s->channel_coded[1]) {
  1005. ptr = &s->frame_out[1][index];
  1006. for(i=0;i<n * 2;i++) {
  1007. *ptr += output[i];
  1008. ptr++;
  1009. }
  1010. }
  1011. }
  1012. }
  1013. next:
  1014. /* update block number */
  1015. s->block_num++;
  1016. s->block_pos += s->block_len;
  1017. if (s->block_pos >= s->frame_len)
  1018. return 1;
  1019. else
  1020. return 0;
  1021. }
  1022. /* decode a frame of frame_len samples */
  1023. static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
  1024. {
  1025. int ret, i, n, a, ch, incr;
  1026. int16_t *ptr;
  1027. float *iptr;
  1028. tprintf("***decode_frame: %d size=%d\n", frame_count++, s->frame_len);
  1029. /* read each block */
  1030. s->block_num = 0;
  1031. s->block_pos = 0;
  1032. for(;;) {
  1033. ret = wma_decode_block(s);
  1034. if (ret < 0)
  1035. return -1;
  1036. if (ret)
  1037. break;
  1038. }
  1039. /* convert frame to integer */
  1040. n = s->frame_len;
  1041. incr = s->nb_channels;
  1042. for(ch = 0; ch < s->nb_channels; ch++) {
  1043. ptr = samples + ch;
  1044. iptr = s->frame_out[ch];
  1045. for(i=0;i<n;i++) {
  1046. a = lrintf(*iptr++);
  1047. if (a > 32767)
  1048. a = 32767;
  1049. else if (a < -32768)
  1050. a = -32768;
  1051. *ptr = a;
  1052. ptr += incr;
  1053. }
  1054. /* prepare for next block */
  1055. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  1056. s->frame_len * sizeof(float));
  1057. /* XXX: suppress this */
  1058. memset(&s->frame_out[ch][s->frame_len], 0,
  1059. s->frame_len * sizeof(float));
  1060. }
  1061. #ifdef TRACE
  1062. dump_shorts("samples", samples, n * s->nb_channels);
  1063. #endif
  1064. return 0;
  1065. }
  1066. static int wma_decode_superframe(AVCodecContext *avctx,
  1067. void *data, int *data_size,
  1068. uint8_t *buf, int buf_size)
  1069. {
  1070. WMADecodeContext *s = avctx->priv_data;
  1071. int nb_frames, bit_offset, i, pos, len;
  1072. uint8_t *q;
  1073. int16_t *samples;
  1074. tprintf("***decode_superframe:\n");
  1075. samples = data;
  1076. init_get_bits(&s->gb, buf, buf_size*8);
  1077. if (s->use_bit_reservoir) {
  1078. /* read super frame header */
  1079. get_bits(&s->gb, 4); /* super frame index */
  1080. nb_frames = get_bits(&s->gb, 4) - 1;
  1081. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  1082. if (s->last_superframe_len > 0) {
  1083. // printf("skip=%d\n", s->last_bitoffset);
  1084. /* add bit_offset bits to last frame */
  1085. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  1086. MAX_CODED_SUPERFRAME_SIZE)
  1087. goto fail;
  1088. q = s->last_superframe + s->last_superframe_len;
  1089. len = bit_offset;
  1090. while (len > 0) {
  1091. *q++ = (get_bits)(&s->gb, 8);
  1092. len -= 8;
  1093. }
  1094. if (len > 0) {
  1095. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  1096. }
  1097. /* XXX: bit_offset bits into last frame */
  1098. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  1099. /* skip unused bits */
  1100. if (s->last_bitoffset > 0)
  1101. skip_bits(&s->gb, s->last_bitoffset);
  1102. /* this frame is stored in the last superframe and in the
  1103. current one */
  1104. if (wma_decode_frame(s, samples) < 0)
  1105. goto fail;
  1106. samples += s->nb_channels * s->frame_len;
  1107. }
  1108. /* read each frame starting from bit_offset */
  1109. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  1110. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  1111. len = pos & 7;
  1112. if (len > 0)
  1113. skip_bits(&s->gb, len);
  1114. s->reset_block_lengths = 1;
  1115. for(i=0;i<nb_frames;i++) {
  1116. if (wma_decode_frame(s, samples) < 0)
  1117. goto fail;
  1118. samples += s->nb_channels * s->frame_len;
  1119. }
  1120. /* we copy the end of the frame in the last frame buffer */
  1121. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  1122. s->last_bitoffset = pos & 7;
  1123. pos >>= 3;
  1124. len = buf_size - pos;
  1125. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  1126. goto fail;
  1127. }
  1128. s->last_superframe_len = len;
  1129. memcpy(s->last_superframe, buf + pos, len);
  1130. } else {
  1131. /* single frame decode */
  1132. if (wma_decode_frame(s, samples) < 0)
  1133. goto fail;
  1134. samples += s->nb_channels * s->frame_len;
  1135. }
  1136. *data_size = (int8_t *)samples - (int8_t *)data;
  1137. return s->block_align;
  1138. fail:
  1139. /* when error, we reset the bit reservoir */
  1140. s->last_superframe_len = 0;
  1141. return -1;
  1142. }
  1143. static int wma_decode_end(AVCodecContext *avctx)
  1144. {
  1145. WMADecodeContext *s = avctx->priv_data;
  1146. int i;
  1147. for(i = 0; i < s->nb_block_sizes; i++)
  1148. ff_mdct_end(&s->mdct_ctx[i]);
  1149. for(i = 0; i < s->nb_block_sizes; i++)
  1150. av_free(s->windows[i]);
  1151. if (s->use_exp_vlc) {
  1152. free_vlc(&s->exp_vlc);
  1153. }
  1154. if (s->use_noise_coding) {
  1155. free_vlc(&s->hgain_vlc);
  1156. }
  1157. for(i = 0;i < 2; i++) {
  1158. free_vlc(&s->coef_vlc[i]);
  1159. av_free(s->run_table[i]);
  1160. av_free(s->level_table[i]);
  1161. }
  1162. return 0;
  1163. }
  1164. AVCodec wmav1_decoder =
  1165. {
  1166. "wmav1",
  1167. CODEC_TYPE_AUDIO,
  1168. CODEC_ID_WMAV1,
  1169. sizeof(WMADecodeContext),
  1170. wma_decode_init,
  1171. NULL,
  1172. wma_decode_end,
  1173. wma_decode_superframe,
  1174. };
  1175. AVCodec wmav2_decoder =
  1176. {
  1177. "wmav2",
  1178. CODEC_TYPE_AUDIO,
  1179. CODEC_ID_WMAV2,
  1180. sizeof(WMADecodeContext),
  1181. wma_decode_init,
  1182. NULL,
  1183. wma_decode_end,
  1184. wma_decode_superframe,
  1185. };