You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4613 lines
129KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string.
  64. @c man end GRAPH2DOT
  65. @chapter Filtergraph description
  66. @c man begin FILTERGRAPH DESCRIPTION
  67. A filtergraph is a directed graph of connected filters. It can contain
  68. cycles, and there can be multiple links between a pair of
  69. filters. Each link has one input pad on one side connecting it to one
  70. filter from which it takes its input, and one output pad on the other
  71. side connecting it to the one filter accepting its output.
  72. Each filter in a filtergraph is an instance of a filter class
  73. registered in the application, which defines the features and the
  74. number of input and output pads of the filter.
  75. A filter with no input pads is called a "source", a filter with no
  76. output pads is called a "sink".
  77. @anchor{Filtergraph syntax}
  78. @section Filtergraph syntax
  79. A filtergraph can be represented using a textual representation, which is
  80. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  81. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  82. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  83. @file{libavfilter/avfiltergraph.h}.
  84. A filterchain consists of a sequence of connected filters, each one
  85. connected to the previous one in the sequence. A filterchain is
  86. represented by a list of ","-separated filter descriptions.
  87. A filtergraph consists of a sequence of filterchains. A sequence of
  88. filterchains is represented by a list of ";"-separated filterchain
  89. descriptions.
  90. A filter is represented by a string of the form:
  91. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  92. @var{filter_name} is the name of the filter class of which the
  93. described filter is an instance of, and has to be the name of one of
  94. the filter classes registered in the program.
  95. The name of the filter class is optionally followed by a string
  96. "=@var{arguments}".
  97. @var{arguments} is a string which contains the parameters used to
  98. initialize the filter instance, and are described in the filter
  99. descriptions below.
  100. The list of arguments can be quoted using the character "'" as initial
  101. and ending mark, and the character '\' for escaping the characters
  102. within the quoted text; otherwise the argument string is considered
  103. terminated when the next special character (belonging to the set
  104. "[]=;,") is encountered.
  105. The name and arguments of the filter are optionally preceded and
  106. followed by a list of link labels.
  107. A link label allows to name a link and associate it to a filter output
  108. or input pad. The preceding labels @var{in_link_1}
  109. ... @var{in_link_N}, are associated to the filter input pads,
  110. the following labels @var{out_link_1} ... @var{out_link_M}, are
  111. associated to the output pads.
  112. When two link labels with the same name are found in the
  113. filtergraph, a link between the corresponding input and output pad is
  114. created.
  115. If an output pad is not labelled, it is linked by default to the first
  116. unlabelled input pad of the next filter in the filterchain.
  117. For example in the filterchain:
  118. @example
  119. nullsrc, split[L1], [L2]overlay, nullsink
  120. @end example
  121. the split filter instance has two output pads, and the overlay filter
  122. instance two input pads. The first output pad of split is labelled
  123. "L1", the first input pad of overlay is labelled "L2", and the second
  124. output pad of split is linked to the second input pad of overlay,
  125. which are both unlabelled.
  126. In a complete filterchain all the unlabelled filter input and output
  127. pads must be connected. A filtergraph is considered valid if all the
  128. filter input and output pads of all the filterchains are connected.
  129. Libavfilter will automatically insert scale filters where format
  130. conversion is required. It is possible to specify swscale flags
  131. for those automatically inserted scalers by prepending
  132. @code{sws_flags=@var{flags};}
  133. to the filtergraph description.
  134. Follows a BNF description for the filtergraph syntax:
  135. @example
  136. @var{NAME} ::= sequence of alphanumeric characters and '_'
  137. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  138. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  139. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  140. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  141. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  142. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  143. @end example
  144. @c man end FILTERGRAPH DESCRIPTION
  145. @chapter Audio Filters
  146. @c man begin AUDIO FILTERS
  147. When you configure your FFmpeg build, you can disable any of the
  148. existing filters using @code{--disable-filters}.
  149. The configure output will show the audio filters included in your
  150. build.
  151. Below is a description of the currently available audio filters.
  152. @section aconvert
  153. Convert the input audio format to the specified formats.
  154. The filter accepts a string of the form:
  155. "@var{sample_format}:@var{channel_layout}".
  156. @var{sample_format} specifies the sample format, and can be a string or the
  157. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  158. suffix for a planar sample format.
  159. @var{channel_layout} specifies the channel layout, and can be a string
  160. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  161. The special parameter "auto", signifies that the filter will
  162. automatically select the output format depending on the output filter.
  163. Some examples follow.
  164. @itemize
  165. @item
  166. Convert input to float, planar, stereo:
  167. @example
  168. aconvert=fltp:stereo
  169. @end example
  170. @item
  171. Convert input to unsigned 8-bit, automatically select out channel layout:
  172. @example
  173. aconvert=u8:auto
  174. @end example
  175. @end itemize
  176. @section aformat
  177. Convert the input audio to one of the specified formats. The framework will
  178. negotiate the most appropriate format to minimize conversions.
  179. The filter accepts the following named parameters:
  180. @table @option
  181. @item sample_fmts
  182. A comma-separated list of requested sample formats.
  183. @item sample_rates
  184. A comma-separated list of requested sample rates.
  185. @item channel_layouts
  186. A comma-separated list of requested channel layouts.
  187. @end table
  188. If a parameter is omitted, all values are allowed.
  189. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  190. @example
  191. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  192. @end example
  193. @section amerge
  194. Merge two or more audio streams into a single multi-channel stream.
  195. The filter accepts the following named options:
  196. @table @option
  197. @item inputs
  198. Set the number of inputs. Default is 2.
  199. @end table
  200. If the channel layouts of the inputs are disjoint, and therefore compatible,
  201. the channel layout of the output will be set accordingly and the channels
  202. will be reordered as necessary. If the channel layouts of the inputs are not
  203. disjoint, the output will have all the channels of the first input then all
  204. the channels of the second input, in that order, and the channel layout of
  205. the output will be the default value corresponding to the total number of
  206. channels.
  207. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  208. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  209. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  210. first input, b1 is the first channel of the second input).
  211. On the other hand, if both input are in stereo, the output channels will be
  212. in the default order: a1, a2, b1, b2, and the channel layout will be
  213. arbitrarily set to 4.0, which may or may not be the expected value.
  214. All inputs must have the same sample rate, and format.
  215. If inputs do not have the same duration, the output will stop with the
  216. shortest.
  217. Example: merge two mono files into a stereo stream:
  218. @example
  219. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  220. @end example
  221. Example: multiple merges:
  222. @example
  223. ffmpeg -f lavfi -i "
  224. amovie=input.mkv:si=0 [a0];
  225. amovie=input.mkv:si=1 [a1];
  226. amovie=input.mkv:si=2 [a2];
  227. amovie=input.mkv:si=3 [a3];
  228. amovie=input.mkv:si=4 [a4];
  229. amovie=input.mkv:si=5 [a5];
  230. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  231. @end example
  232. @section amix
  233. Mixes multiple audio inputs into a single output.
  234. For example
  235. @example
  236. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  237. @end example
  238. will mix 3 input audio streams to a single output with the same duration as the
  239. first input and a dropout transition time of 3 seconds.
  240. The filter accepts the following named parameters:
  241. @table @option
  242. @item inputs
  243. Number of inputs. If unspecified, it defaults to 2.
  244. @item duration
  245. How to determine the end-of-stream.
  246. @table @option
  247. @item longest
  248. Duration of longest input. (default)
  249. @item shortest
  250. Duration of shortest input.
  251. @item first
  252. Duration of first input.
  253. @end table
  254. @item dropout_transition
  255. Transition time, in seconds, for volume renormalization when an input
  256. stream ends. The default value is 2 seconds.
  257. @end table
  258. @section anull
  259. Pass the audio source unchanged to the output.
  260. @section aresample
  261. Resample the input audio to the specified sample rate.
  262. The filter accepts exactly one parameter, the output sample rate. If not
  263. specified then the filter will automatically convert between its input
  264. and output sample rates.
  265. For example, to resample the input audio to 44100Hz:
  266. @example
  267. aresample=44100
  268. @end example
  269. @section asetnsamples
  270. Set the number of samples per each output audio frame.
  271. The last output packet may contain a different number of samples, as
  272. the filter will flush all the remaining samples when the input audio
  273. signal its end.
  274. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  275. separated by ":".
  276. @table @option
  277. @item nb_out_samples, n
  278. Set the number of frames per each output audio frame. The number is
  279. intended as the number of samples @emph{per each channel}.
  280. Default value is 1024.
  281. @item pad, p
  282. If set to 1, the filter will pad the last audio frame with zeroes, so
  283. that the last frame will contain the same number of samples as the
  284. previous ones. Default value is 1.
  285. @end table
  286. For example, to set the number of per-frame samples to 1234 and
  287. disable padding for the last frame, use:
  288. @example
  289. asetnsamples=n=1234:p=0
  290. @end example
  291. @section ashowinfo
  292. Show a line containing various information for each input audio frame.
  293. The input audio is not modified.
  294. The shown line contains a sequence of key/value pairs of the form
  295. @var{key}:@var{value}.
  296. A description of each shown parameter follows:
  297. @table @option
  298. @item n
  299. sequential number of the input frame, starting from 0
  300. @item pts
  301. presentation TimeStamp of the input frame, expressed as a number of
  302. time base units. The time base unit depends on the filter input pad, and
  303. is usually 1/@var{sample_rate}.
  304. @item pts_time
  305. presentation TimeStamp of the input frame, expressed as a number of
  306. seconds
  307. @item pos
  308. position of the frame in the input stream, -1 if this information in
  309. unavailable and/or meaningless (for example in case of synthetic audio)
  310. @item fmt
  311. sample format name
  312. @item chlayout
  313. channel layout description
  314. @item nb_samples
  315. number of samples (per each channel) contained in the filtered frame
  316. @item rate
  317. sample rate for the audio frame
  318. @item checksum
  319. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  320. @item plane_checksum
  321. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  322. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  323. @var{c6} @var{c7}]"
  324. @end table
  325. @section asplit
  326. Split input audio into several identical outputs.
  327. The filter accepts a single parameter which specifies the number of outputs. If
  328. unspecified, it defaults to 2.
  329. For example:
  330. @example
  331. [in] asplit [out0][out1]
  332. @end example
  333. will create two separate outputs from the same input.
  334. To create 3 or more outputs, you need to specify the number of
  335. outputs, like in:
  336. @example
  337. [in] asplit=3 [out0][out1][out2]
  338. @end example
  339. @example
  340. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  341. @end example
  342. will create 5 copies of the input audio.
  343. @section astreamsync
  344. Forward two audio streams and control the order the buffers are forwarded.
  345. The argument to the filter is an expression deciding which stream should be
  346. forwarded next: if the result is negative, the first stream is forwarded; if
  347. the result is positive or zero, the second stream is forwarded. It can use
  348. the following variables:
  349. @table @var
  350. @item b1 b2
  351. number of buffers forwarded so far on each stream
  352. @item s1 s2
  353. number of samples forwarded so far on each stream
  354. @item t1 t2
  355. current timestamp of each stream
  356. @end table
  357. The default value is @code{t1-t2}, which means to always forward the stream
  358. that has a smaller timestamp.
  359. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  360. input, while avoiding too much of a desynchronization:
  361. @example
  362. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  363. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  364. [a2] [b2] amerge
  365. @end example
  366. @section atempo
  367. Adjust audio tempo.
  368. The filter accepts exactly one parameter, the audio tempo. If not
  369. specified then the filter will assume nominal 1.0 tempo. Tempo must
  370. be in the [0.5, 2.0] range.
  371. For example, to slow down audio to 80% tempo:
  372. @example
  373. atempo=0.8
  374. @end example
  375. For example, to speed up audio to 125% tempo:
  376. @example
  377. atempo=1.25
  378. @end example
  379. @section earwax
  380. Make audio easier to listen to on headphones.
  381. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  382. so that when listened to on headphones the stereo image is moved from
  383. inside your head (standard for headphones) to outside and in front of
  384. the listener (standard for speakers).
  385. Ported from SoX.
  386. @section pan
  387. Mix channels with specific gain levels. The filter accepts the output
  388. channel layout followed by a set of channels definitions.
  389. This filter is also designed to remap efficiently the channels of an audio
  390. stream.
  391. The filter accepts parameters of the form:
  392. "@var{l}:@var{outdef}:@var{outdef}:..."
  393. @table @option
  394. @item l
  395. output channel layout or number of channels
  396. @item outdef
  397. output channel specification, of the form:
  398. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  399. @item out_name
  400. output channel to define, either a channel name (FL, FR, etc.) or a channel
  401. number (c0, c1, etc.)
  402. @item gain
  403. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  404. @item in_name
  405. input channel to use, see out_name for details; it is not possible to mix
  406. named and numbered input channels
  407. @end table
  408. If the `=' in a channel specification is replaced by `<', then the gains for
  409. that specification will be renormalized so that the total is 1, thus
  410. avoiding clipping noise.
  411. @subsection Mixing examples
  412. For example, if you want to down-mix from stereo to mono, but with a bigger
  413. factor for the left channel:
  414. @example
  415. pan=1:c0=0.9*c0+0.1*c1
  416. @end example
  417. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  418. 7-channels surround:
  419. @example
  420. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  421. @end example
  422. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  423. that should be preferred (see "-ac" option) unless you have very specific
  424. needs.
  425. @subsection Remapping examples
  426. The channel remapping will be effective if, and only if:
  427. @itemize
  428. @item gain coefficients are zeroes or ones,
  429. @item only one input per channel output,
  430. @end itemize
  431. If all these conditions are satisfied, the filter will notify the user ("Pure
  432. channel mapping detected"), and use an optimized and lossless method to do the
  433. remapping.
  434. For example, if you have a 5.1 source and want a stereo audio stream by
  435. dropping the extra channels:
  436. @example
  437. pan="stereo: c0=FL : c1=FR"
  438. @end example
  439. Given the same source, you can also switch front left and front right channels
  440. and keep the input channel layout:
  441. @example
  442. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  443. @end example
  444. If the input is a stereo audio stream, you can mute the front left channel (and
  445. still keep the stereo channel layout) with:
  446. @example
  447. pan="stereo:c1=c1"
  448. @end example
  449. Still with a stereo audio stream input, you can copy the right channel in both
  450. front left and right:
  451. @example
  452. pan="stereo: c0=FR : c1=FR"
  453. @end example
  454. @section silencedetect
  455. Detect silence in an audio stream.
  456. This filter logs a message when it detects that the input audio volume is less
  457. or equal to a noise tolerance value for a duration greater or equal to the
  458. minimum detected noise duration.
  459. The printed times and duration are expressed in seconds.
  460. @table @option
  461. @item duration, d
  462. Set silence duration until notification (default is 2 seconds).
  463. @item noise, n
  464. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  465. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  466. @end table
  467. Detect 5 seconds of silence with -50dB noise tolerance:
  468. @example
  469. silencedetect=n=-50dB:d=5
  470. @end example
  471. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  472. tolerance in @file{silence.mp3}:
  473. @example
  474. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  475. @end example
  476. @section volume
  477. Adjust the input audio volume.
  478. The filter accepts exactly one parameter @var{vol}, which expresses
  479. how the audio volume will be increased or decreased.
  480. Output values are clipped to the maximum value.
  481. If @var{vol} is expressed as a decimal number, the output audio
  482. volume is given by the relation:
  483. @example
  484. @var{output_volume} = @var{vol} * @var{input_volume}
  485. @end example
  486. If @var{vol} is expressed as a decimal number followed by the string
  487. "dB", the value represents the requested change in decibels of the
  488. input audio power, and the output audio volume is given by the
  489. relation:
  490. @example
  491. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  492. @end example
  493. Otherwise @var{vol} is considered an expression and its evaluated
  494. value is used for computing the output audio volume according to the
  495. first relation.
  496. Default value for @var{vol} is 1.0.
  497. @subsection Examples
  498. @itemize
  499. @item
  500. Half the input audio volume:
  501. @example
  502. volume=0.5
  503. @end example
  504. The above example is equivalent to:
  505. @example
  506. volume=1/2
  507. @end example
  508. @item
  509. Decrease input audio power by 12 decibels:
  510. @example
  511. volume=-12dB
  512. @end example
  513. @end itemize
  514. @section volumedetect
  515. Detect the volume of the input video.
  516. The filter has no parameters. The input is not modified. Statistics about
  517. the volume will be printed in the log when the input stream end is reached.
  518. In particular it will show the mean volume (root mean square), maximum
  519. volume (on a per-sample basis), and the beginning of an histogram of the
  520. registered volume values (from the maximum value to a cumulated 1/1000 of
  521. the samples).
  522. All volumes are in decibels relative to the maximum PCM value.
  523. Here is an excerpt of the output:
  524. @example
  525. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  526. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  527. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  528. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  529. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  530. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  531. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  532. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  533. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  534. @end example
  535. It means that:
  536. @itemize
  537. @item
  538. The mean square energy is approximately -27 dB, or 10^-2.7.
  539. @item
  540. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  541. @item
  542. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  543. @end itemize
  544. In other words, raising the volume by +4 dB does not cause any clipping,
  545. raising it by +5 dB causes clipping for 6 samples, etc.
  546. @section asyncts
  547. Synchronize audio data with timestamps by squeezing/stretching it and/or
  548. dropping samples/adding silence when needed.
  549. The filter accepts the following named parameters:
  550. @table @option
  551. @item compensate
  552. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  553. by default. When disabled, time gaps are covered with silence.
  554. @item min_delta
  555. Minimum difference between timestamps and audio data (in seconds) to trigger
  556. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  557. this filter, try setting this parameter to 0.
  558. @item max_comp
  559. Maximum compensation in samples per second. Relevant only with compensate=1.
  560. Default value 500.
  561. @item first_pts
  562. Assume the first pts should be this value.
  563. This allows for padding/trimming at the start of stream. By default, no
  564. assumption is made about the first frame's expected pts, so no padding or
  565. trimming is done. For example, this could be set to 0 to pad the beginning with
  566. silence if an audio stream starts after the video stream.
  567. @end table
  568. @section channelsplit
  569. Split each channel in input audio stream into a separate output stream.
  570. This filter accepts the following named parameters:
  571. @table @option
  572. @item channel_layout
  573. Channel layout of the input stream. Default is "stereo".
  574. @end table
  575. For example, assuming a stereo input MP3 file
  576. @example
  577. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  578. @end example
  579. will create an output Matroska file with two audio streams, one containing only
  580. the left channel and the other the right channel.
  581. To split a 5.1 WAV file into per-channel files
  582. @example
  583. ffmpeg -i in.wav -filter_complex
  584. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  585. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  586. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  587. side_right.wav
  588. @end example
  589. @section channelmap
  590. Remap input channels to new locations.
  591. This filter accepts the following named parameters:
  592. @table @option
  593. @item channel_layout
  594. Channel layout of the output stream.
  595. @item map
  596. Map channels from input to output. The argument is a comma-separated list of
  597. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  598. @var{in_channel} form. @var{in_channel} can be either the name of the input
  599. channel (e.g. FL for front left) or its index in the input channel layout.
  600. @var{out_channel} is the name of the output channel or its index in the output
  601. channel layout. If @var{out_channel} is not given then it is implicitly an
  602. index, starting with zero and increasing by one for each mapping.
  603. @end table
  604. If no mapping is present, the filter will implicitly map input channels to
  605. output channels preserving index.
  606. For example, assuming a 5.1+downmix input MOV file
  607. @example
  608. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  609. @end example
  610. will create an output WAV file tagged as stereo from the downmix channels of
  611. the input.
  612. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  613. @example
  614. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  615. @end example
  616. @section join
  617. Join multiple input streams into one multi-channel stream.
  618. The filter accepts the following named parameters:
  619. @table @option
  620. @item inputs
  621. Number of input streams. Defaults to 2.
  622. @item channel_layout
  623. Desired output channel layout. Defaults to stereo.
  624. @item map
  625. Map channels from inputs to output. The argument is a comma-separated list of
  626. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  627. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  628. can be either the name of the input channel (e.g. FL for front left) or its
  629. index in the specified input stream. @var{out_channel} is the name of the output
  630. channel.
  631. @end table
  632. The filter will attempt to guess the mappings when those are not specified
  633. explicitly. It does so by first trying to find an unused matching input channel
  634. and if that fails it picks the first unused input channel.
  635. E.g. to join 3 inputs (with properly set channel layouts)
  636. @example
  637. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  638. @end example
  639. To build a 5.1 output from 6 single-channel streams:
  640. @example
  641. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  642. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  643. out
  644. @end example
  645. @section resample
  646. Convert the audio sample format, sample rate and channel layout. This filter is
  647. not meant to be used directly.
  648. @c man end AUDIO FILTERS
  649. @chapter Audio Sources
  650. @c man begin AUDIO SOURCES
  651. Below is a description of the currently available audio sources.
  652. @section abuffer
  653. Buffer audio frames, and make them available to the filter chain.
  654. This source is mainly intended for a programmatic use, in particular
  655. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  656. It accepts the following mandatory parameters:
  657. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  658. @table @option
  659. @item sample_rate
  660. The sample rate of the incoming audio buffers.
  661. @item sample_fmt
  662. The sample format of the incoming audio buffers.
  663. Either a sample format name or its corresponging integer representation from
  664. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  665. @item channel_layout
  666. The channel layout of the incoming audio buffers.
  667. Either a channel layout name from channel_layout_map in
  668. @file{libavutil/audioconvert.c} or its corresponding integer representation
  669. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  670. @end table
  671. For example:
  672. @example
  673. abuffer=44100:s16p:stereo
  674. @end example
  675. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  676. Since the sample format with name "s16p" corresponds to the number
  677. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  678. equivalent to:
  679. @example
  680. abuffer=44100:6:0x3
  681. @end example
  682. @section aevalsrc
  683. Generate an audio signal specified by an expression.
  684. This source accepts in input one or more expressions (one for each
  685. channel), which are evaluated and used to generate a corresponding
  686. audio signal.
  687. It accepts the syntax: @var{exprs}[::@var{options}].
  688. @var{exprs} is a list of expressions separated by ":", one for each
  689. separate channel. In case the @var{channel_layout} is not
  690. specified, the selected channel layout depends on the number of
  691. provided expressions.
  692. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  693. separated by ":".
  694. The description of the accepted options follows.
  695. @table @option
  696. @item channel_layout, c
  697. Set the channel layout. The number of channels in the specified layout
  698. must be equal to the number of specified expressions.
  699. @item duration, d
  700. Set the minimum duration of the sourced audio. See the function
  701. @code{av_parse_time()} for the accepted format.
  702. Note that the resulting duration may be greater than the specified
  703. duration, as the generated audio is always cut at the end of a
  704. complete frame.
  705. If not specified, or the expressed duration is negative, the audio is
  706. supposed to be generated forever.
  707. @item nb_samples, n
  708. Set the number of samples per channel per each output frame,
  709. default to 1024.
  710. @item sample_rate, s
  711. Specify the sample rate, default to 44100.
  712. @end table
  713. Each expression in @var{exprs} can contain the following constants:
  714. @table @option
  715. @item n
  716. number of the evaluated sample, starting from 0
  717. @item t
  718. time of the evaluated sample expressed in seconds, starting from 0
  719. @item s
  720. sample rate
  721. @end table
  722. @subsection Examples
  723. @itemize
  724. @item
  725. Generate silence:
  726. @example
  727. aevalsrc=0
  728. @end example
  729. @item
  730. Generate a sin signal with frequency of 440 Hz, set sample rate to
  731. 8000 Hz:
  732. @example
  733. aevalsrc="sin(440*2*PI*t)::s=8000"
  734. @end example
  735. @item
  736. Generate a two channels signal, specify the channel layout (Front
  737. Center + Back Center) explicitly:
  738. @example
  739. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  740. @end example
  741. @item
  742. Generate white noise:
  743. @example
  744. aevalsrc="-2+random(0)"
  745. @end example
  746. @item
  747. Generate an amplitude modulated signal:
  748. @example
  749. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  750. @end example
  751. @item
  752. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  753. @example
  754. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  755. @end example
  756. @end itemize
  757. @section anullsrc
  758. Null audio source, return unprocessed audio frames. It is mainly useful
  759. as a template and to be employed in analysis / debugging tools, or as
  760. the source for filters which ignore the input data (for example the sox
  761. synth filter).
  762. It accepts an optional sequence of @var{key}=@var{value} pairs,
  763. separated by ":".
  764. The description of the accepted options follows.
  765. @table @option
  766. @item sample_rate, s
  767. Specify the sample rate, and defaults to 44100.
  768. @item channel_layout, cl
  769. Specify the channel layout, and can be either an integer or a string
  770. representing a channel layout. The default value of @var{channel_layout}
  771. is "stereo".
  772. Check the channel_layout_map definition in
  773. @file{libavcodec/audioconvert.c} for the mapping between strings and
  774. channel layout values.
  775. @item nb_samples, n
  776. Set the number of samples per requested frames.
  777. @end table
  778. Follow some examples:
  779. @example
  780. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  781. anullsrc=r=48000:cl=4
  782. # same as
  783. anullsrc=r=48000:cl=mono
  784. @end example
  785. @section abuffer
  786. Buffer audio frames, and make them available to the filter chain.
  787. This source is not intended to be part of user-supplied graph descriptions but
  788. for insertion by calling programs through the interface defined in
  789. @file{libavfilter/buffersrc.h}.
  790. It accepts the following named parameters:
  791. @table @option
  792. @item time_base
  793. Timebase which will be used for timestamps of submitted frames. It must be
  794. either a floating-point number or in @var{numerator}/@var{denominator} form.
  795. @item sample_rate
  796. Audio sample rate.
  797. @item sample_fmt
  798. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  799. @item channel_layout
  800. Channel layout of the audio data, in the form that can be accepted by
  801. @code{av_get_channel_layout()}.
  802. @end table
  803. All the parameters need to be explicitly defined.
  804. @section flite
  805. Synthesize a voice utterance using the libflite library.
  806. To enable compilation of this filter you need to configure FFmpeg with
  807. @code{--enable-libflite}.
  808. Note that the flite library is not thread-safe.
  809. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  810. separated by ":".
  811. The description of the accepted parameters follows.
  812. @table @option
  813. @item list_voices
  814. If set to 1, list the names of the available voices and exit
  815. immediately. Default value is 0.
  816. @item nb_samples, n
  817. Set the maximum number of samples per frame. Default value is 512.
  818. @item textfile
  819. Set the filename containing the text to speak.
  820. @item text
  821. Set the text to speak.
  822. @item voice, v
  823. Set the voice to use for the speech synthesis. Default value is
  824. @code{kal}. See also the @var{list_voices} option.
  825. @end table
  826. @subsection Examples
  827. @itemize
  828. @item
  829. Read from file @file{speech.txt}, and synthetize the text using the
  830. standard flite voice:
  831. @example
  832. flite=textfile=speech.txt
  833. @end example
  834. @item
  835. Read the specified text selecting the @code{slt} voice:
  836. @example
  837. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  838. @end example
  839. @item
  840. Make @file{ffplay} speech the specified text, using @code{flite} and
  841. the @code{lavfi} device:
  842. @example
  843. ffplay -f lavfi flite='No more be grieved for which that thou hast done.'
  844. @end example
  845. @end itemize
  846. For more information about libflite, check:
  847. @url{http://www.speech.cs.cmu.edu/flite/}
  848. @c man end AUDIO SOURCES
  849. @chapter Audio Sinks
  850. @c man begin AUDIO SINKS
  851. Below is a description of the currently available audio sinks.
  852. @section abuffersink
  853. Buffer audio frames, and make them available to the end of filter chain.
  854. This sink is mainly intended for programmatic use, in particular
  855. through the interface defined in @file{libavfilter/buffersink.h}.
  856. It requires a pointer to an AVABufferSinkContext structure, which
  857. defines the incoming buffers' formats, to be passed as the opaque
  858. parameter to @code{avfilter_init_filter} for initialization.
  859. @section anullsink
  860. Null audio sink, do absolutely nothing with the input audio. It is
  861. mainly useful as a template and to be employed in analysis / debugging
  862. tools.
  863. @section abuffersink
  864. This sink is intended for programmatic use. Frames that arrive on this sink can
  865. be retrieved by the calling program using the interface defined in
  866. @file{libavfilter/buffersink.h}.
  867. This filter accepts no parameters.
  868. @c man end AUDIO SINKS
  869. @chapter Video Filters
  870. @c man begin VIDEO FILTERS
  871. When you configure your FFmpeg build, you can disable any of the
  872. existing filters using @code{--disable-filters}.
  873. The configure output will show the video filters included in your
  874. build.
  875. Below is a description of the currently available video filters.
  876. @section alphaextract
  877. Extract the alpha component from the input as a grayscale video. This
  878. is especially useful with the @var{alphamerge} filter.
  879. @section alphamerge
  880. Add or replace the alpha component of the primary input with the
  881. grayscale value of a second input. This is intended for use with
  882. @var{alphaextract} to allow the transmission or storage of frame
  883. sequences that have alpha in a format that doesn't support an alpha
  884. channel.
  885. For example, to reconstruct full frames from a normal YUV-encoded video
  886. and a separate video created with @var{alphaextract}, you might use:
  887. @example
  888. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  889. @end example
  890. Since this filter is designed for reconstruction, it operates on frame
  891. sequences without considering timestamps, and terminates when either
  892. input reaches end of stream. This will cause problems if your encoding
  893. pipeline drops frames. If you're trying to apply an image as an
  894. overlay to a video stream, consider the @var{overlay} filter instead.
  895. @section ass
  896. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  897. using the libass library.
  898. To enable compilation of this filter you need to configure FFmpeg with
  899. @code{--enable-libass}.
  900. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  901. where @var{ass_filename} is the filename of the ASS file to read, and
  902. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  903. separated by ":".
  904. A description of the accepted options follows.
  905. @table @option
  906. @item original_size
  907. Specifies the size of the original video, the video for which the ASS file
  908. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  909. necessary to correctly scale the fonts if the aspect ratio has been changed.
  910. @end table
  911. For example, to render the file @file{sub.ass} on top of the input
  912. video, use the command:
  913. @example
  914. ass=sub.ass
  915. @end example
  916. @section bbox
  917. Compute the bounding box for the non-black pixels in the input frame
  918. luminance plane.
  919. This filter computes the bounding box containing all the pixels with a
  920. luminance value greater than the minimum allowed value.
  921. The parameters describing the bounding box are printed on the filter
  922. log.
  923. @section blackdetect
  924. Detect video intervals that are (almost) completely black. Can be
  925. useful to detect chapter transitions, commercials, or invalid
  926. recordings. Output lines contains the time for the start, end and
  927. duration of the detected black interval expressed in seconds.
  928. In order to display the output lines, you need to set the loglevel at
  929. least to the AV_LOG_INFO value.
  930. This filter accepts a list of options in the form of
  931. @var{key}=@var{value} pairs separated by ":". A description of the
  932. accepted options follows.
  933. @table @option
  934. @item black_min_duration, d
  935. Set the minimum detected black duration expressed in seconds. It must
  936. be a non-negative floating point number.
  937. Default value is 2.0.
  938. @item picture_black_ratio_th, pic_th
  939. Set the threshold for considering a picture "black".
  940. Express the minimum value for the ratio:
  941. @example
  942. @var{nb_black_pixels} / @var{nb_pixels}
  943. @end example
  944. for which a picture is considered black.
  945. Default value is 0.98.
  946. @item pixel_black_th, pix_th
  947. Set the threshold for considering a pixel "black".
  948. The threshold expresses the maximum pixel luminance value for which a
  949. pixel is considered "black". The provided value is scaled according to
  950. the following equation:
  951. @example
  952. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  953. @end example
  954. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  955. the input video format, the range is [0-255] for YUV full-range
  956. formats and [16-235] for YUV non full-range formats.
  957. Default value is 0.10.
  958. @end table
  959. The following example sets the maximum pixel threshold to the minimum
  960. value, and detects only black intervals of 2 or more seconds:
  961. @example
  962. blackdetect=d=2:pix_th=0.00
  963. @end example
  964. @section blackframe
  965. Detect frames that are (almost) completely black. Can be useful to
  966. detect chapter transitions or commercials. Output lines consist of
  967. the frame number of the detected frame, the percentage of blackness,
  968. the position in the file if known or -1 and the timestamp in seconds.
  969. In order to display the output lines, you need to set the loglevel at
  970. least to the AV_LOG_INFO value.
  971. The filter accepts the syntax:
  972. @example
  973. blackframe[=@var{amount}:[@var{threshold}]]
  974. @end example
  975. @var{amount} is the percentage of the pixels that have to be below the
  976. threshold, and defaults to 98.
  977. @var{threshold} is the threshold below which a pixel value is
  978. considered black, and defaults to 32.
  979. @section boxblur
  980. Apply boxblur algorithm to the input video.
  981. This filter accepts the parameters:
  982. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  983. Chroma and alpha parameters are optional, if not specified they default
  984. to the corresponding values set for @var{luma_radius} and
  985. @var{luma_power}.
  986. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  987. the radius in pixels of the box used for blurring the corresponding
  988. input plane. They are expressions, and can contain the following
  989. constants:
  990. @table @option
  991. @item w, h
  992. the input width and height in pixels
  993. @item cw, ch
  994. the input chroma image width and height in pixels
  995. @item hsub, vsub
  996. horizontal and vertical chroma subsample values. For example for the
  997. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  998. @end table
  999. The radius must be a non-negative number, and must not be greater than
  1000. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1001. and of @code{min(cw,ch)/2} for the chroma planes.
  1002. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1003. how many times the boxblur filter is applied to the corresponding
  1004. plane.
  1005. Some examples follow:
  1006. @itemize
  1007. @item
  1008. Apply a boxblur filter with luma, chroma, and alpha radius
  1009. set to 2:
  1010. @example
  1011. boxblur=2:1
  1012. @end example
  1013. @item
  1014. Set luma radius to 2, alpha and chroma radius to 0
  1015. @example
  1016. boxblur=2:1:0:0:0:0
  1017. @end example
  1018. @item
  1019. Set luma and chroma radius to a fraction of the video dimension
  1020. @example
  1021. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1022. @end example
  1023. @end itemize
  1024. @section colormatrix
  1025. The colormatrix filter allows conversion between any of the following color
  1026. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1027. and FCC (@var{fcc}).
  1028. The syntax of the parameters is @var{source}:@var{destination}:
  1029. @example
  1030. colormatrix=bt601:smpte240m
  1031. @end example
  1032. @section copy
  1033. Copy the input source unchanged to the output. Mainly useful for
  1034. testing purposes.
  1035. @section crop
  1036. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1037. The @var{keep_aspect} parameter is optional, if specified and set to a
  1038. non-zero value will force the output display aspect ratio to be the
  1039. same of the input, by changing the output sample aspect ratio.
  1040. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1041. expressions containing the following constants:
  1042. @table @option
  1043. @item x, y
  1044. the computed values for @var{x} and @var{y}. They are evaluated for
  1045. each new frame.
  1046. @item in_w, in_h
  1047. the input width and height
  1048. @item iw, ih
  1049. same as @var{in_w} and @var{in_h}
  1050. @item out_w, out_h
  1051. the output (cropped) width and height
  1052. @item ow, oh
  1053. same as @var{out_w} and @var{out_h}
  1054. @item a
  1055. same as @var{iw} / @var{ih}
  1056. @item sar
  1057. input sample aspect ratio
  1058. @item dar
  1059. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1060. @item hsub, vsub
  1061. horizontal and vertical chroma subsample values. For example for the
  1062. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1063. @item n
  1064. the number of input frame, starting from 0
  1065. @item pos
  1066. the position in the file of the input frame, NAN if unknown
  1067. @item t
  1068. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1069. @end table
  1070. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1071. the width and height of the output (cropped) video. They are
  1072. evaluated just at the configuration of the filter.
  1073. The default value of @var{out_w} is "in_w", and the default value of
  1074. @var{out_h} is "in_h".
  1075. The expression for @var{out_w} may depend on the value of @var{out_h},
  1076. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1077. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1078. evaluated after @var{out_w} and @var{out_h}.
  1079. The @var{x} and @var{y} parameters specify the expressions for the
  1080. position of the top-left corner of the output (non-cropped) area. They
  1081. are evaluated for each frame. If the evaluated value is not valid, it
  1082. is approximated to the nearest valid value.
  1083. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1084. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1085. the center of the input image.
  1086. The expression for @var{x} may depend on @var{y}, and the expression
  1087. for @var{y} may depend on @var{x}.
  1088. Follow some examples:
  1089. @example
  1090. # crop the central input area with size 100x100
  1091. crop=100:100
  1092. # crop the central input area with size 2/3 of the input video
  1093. "crop=2/3*in_w:2/3*in_h"
  1094. # crop the input video central square
  1095. crop=in_h
  1096. # delimit the rectangle with the top-left corner placed at position
  1097. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1098. # corner of the input image.
  1099. crop=in_w-100:in_h-100:100:100
  1100. # crop 10 pixels from the left and right borders, and 20 pixels from
  1101. # the top and bottom borders
  1102. "crop=in_w-2*10:in_h-2*20"
  1103. # keep only the bottom right quarter of the input image
  1104. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1105. # crop height for getting Greek harmony
  1106. "crop=in_w:1/PHI*in_w"
  1107. # trembling effect
  1108. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1109. # erratic camera effect depending on timestamp
  1110. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1111. # set x depending on the value of y
  1112. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1113. @end example
  1114. @section cropdetect
  1115. Auto-detect crop size.
  1116. Calculate necessary cropping parameters and prints the recommended
  1117. parameters through the logging system. The detected dimensions
  1118. correspond to the non-black area of the input video.
  1119. It accepts the syntax:
  1120. @example
  1121. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1122. @end example
  1123. @table @option
  1124. @item limit
  1125. Threshold, which can be optionally specified from nothing (0) to
  1126. everything (255), defaults to 24.
  1127. @item round
  1128. Value which the width/height should be divisible by, defaults to
  1129. 16. The offset is automatically adjusted to center the video. Use 2 to
  1130. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1131. encoding to most video codecs.
  1132. @item reset
  1133. Counter that determines after how many frames cropdetect will reset
  1134. the previously detected largest video area and start over to detect
  1135. the current optimal crop area. Defaults to 0.
  1136. This can be useful when channel logos distort the video area. 0
  1137. indicates never reset and return the largest area encountered during
  1138. playback.
  1139. @end table
  1140. @section decimate
  1141. This filter drops frames that do not differ greatly from the previous
  1142. frame in order to reduce framerate. The main use of this filter is
  1143. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1144. it could in theory be used for fixing movies that were
  1145. inverse-telecined incorrectly.
  1146. It accepts the following parameters:
  1147. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1148. @table @option
  1149. @item max
  1150. Set the maximum number of consecutive frames which can be dropped (if
  1151. positive), or the minimum interval between dropped frames (if
  1152. negative). If the value is 0, the frame is dropped unregarding the
  1153. number of previous sequentially dropped frames.
  1154. Default value is 0.
  1155. @item hi, lo, frac
  1156. Set the dropping threshold values.
  1157. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1158. represent actual pixel value differences, so a threshold of 64
  1159. corresponds to 1 unit of difference for each pixel, or the same spread
  1160. out differently over the block.
  1161. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1162. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1163. meaning the whole image) differ by more than a threshold of @var{lo}.
  1164. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1165. 64*5, and default value for @var{frac} is 0.33.
  1166. @end table
  1167. @section delogo
  1168. Suppress a TV station logo by a simple interpolation of the surrounding
  1169. pixels. Just set a rectangle covering the logo and watch it disappear
  1170. (and sometimes something even uglier appear - your mileage may vary).
  1171. The filter accepts parameters as a string of the form
  1172. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1173. @var{key}=@var{value} pairs, separated by ":".
  1174. The description of the accepted parameters follows.
  1175. @table @option
  1176. @item x, y
  1177. Specify the top left corner coordinates of the logo. They must be
  1178. specified.
  1179. @item w, h
  1180. Specify the width and height of the logo to clear. They must be
  1181. specified.
  1182. @item band, t
  1183. Specify the thickness of the fuzzy edge of the rectangle (added to
  1184. @var{w} and @var{h}). The default value is 4.
  1185. @item show
  1186. When set to 1, a green rectangle is drawn on the screen to simplify
  1187. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1188. @var{band} is set to 4. The default value is 0.
  1189. @end table
  1190. Some examples follow.
  1191. @itemize
  1192. @item
  1193. Set a rectangle covering the area with top left corner coordinates 0,0
  1194. and size 100x77, setting a band of size 10:
  1195. @example
  1196. delogo=0:0:100:77:10
  1197. @end example
  1198. @item
  1199. As the previous example, but use named options:
  1200. @example
  1201. delogo=x=0:y=0:w=100:h=77:band=10
  1202. @end example
  1203. @end itemize
  1204. @section deshake
  1205. Attempt to fix small changes in horizontal and/or vertical shift. This
  1206. filter helps remove camera shake from hand-holding a camera, bumping a
  1207. tripod, moving on a vehicle, etc.
  1208. The filter accepts parameters as a string of the form
  1209. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1210. A description of the accepted parameters follows.
  1211. @table @option
  1212. @item x, y, w, h
  1213. Specify a rectangular area where to limit the search for motion
  1214. vectors.
  1215. If desired the search for motion vectors can be limited to a
  1216. rectangular area of the frame defined by its top left corner, width
  1217. and height. These parameters have the same meaning as the drawbox
  1218. filter which can be used to visualise the position of the bounding
  1219. box.
  1220. This is useful when simultaneous movement of subjects within the frame
  1221. might be confused for camera motion by the motion vector search.
  1222. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1223. then the full frame is used. This allows later options to be set
  1224. without specifying the bounding box for the motion vector search.
  1225. Default - search the whole frame.
  1226. @item rx, ry
  1227. Specify the maximum extent of movement in x and y directions in the
  1228. range 0-64 pixels. Default 16.
  1229. @item edge
  1230. Specify how to generate pixels to fill blanks at the edge of the
  1231. frame. An integer from 0 to 3 as follows:
  1232. @table @option
  1233. @item 0
  1234. Fill zeroes at blank locations
  1235. @item 1
  1236. Original image at blank locations
  1237. @item 2
  1238. Extruded edge value at blank locations
  1239. @item 3
  1240. Mirrored edge at blank locations
  1241. @end table
  1242. The default setting is mirror edge at blank locations.
  1243. @item blocksize
  1244. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1245. default 8.
  1246. @item contrast
  1247. Specify the contrast threshold for blocks. Only blocks with more than
  1248. the specified contrast (difference between darkest and lightest
  1249. pixels) will be considered. Range 1-255, default 125.
  1250. @item search
  1251. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1252. search. Default - exhaustive search.
  1253. @item filename
  1254. If set then a detailed log of the motion search is written to the
  1255. specified file.
  1256. @end table
  1257. @section drawbox
  1258. Draw a colored box on the input image.
  1259. It accepts the syntax:
  1260. @example
  1261. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1262. @end example
  1263. @table @option
  1264. @item x, y
  1265. Specify the top left corner coordinates of the box. Default to 0.
  1266. @item width, height
  1267. Specify the width and height of the box, if 0 they are interpreted as
  1268. the input width and height. Default to 0.
  1269. @item color
  1270. Specify the color of the box to write, it can be the name of a color
  1271. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1272. @end table
  1273. Follow some examples:
  1274. @example
  1275. # draw a black box around the edge of the input image
  1276. drawbox
  1277. # draw a box with color red and an opacity of 50%
  1278. drawbox=10:20:200:60:red@@0.5"
  1279. @end example
  1280. @section drawtext
  1281. Draw text string or text from specified file on top of video using the
  1282. libfreetype library.
  1283. To enable compilation of this filter you need to configure FFmpeg with
  1284. @code{--enable-libfreetype}.
  1285. The filter also recognizes strftime() sequences in the provided text
  1286. and expands them accordingly. Check the documentation of strftime().
  1287. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1288. separated by ":".
  1289. The description of the accepted parameters follows.
  1290. @table @option
  1291. @item box
  1292. Used to draw a box around text using background color.
  1293. Value should be either 1 (enable) or 0 (disable).
  1294. The default value of @var{box} is 0.
  1295. @item boxcolor
  1296. The color to be used for drawing box around text.
  1297. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1298. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1299. The default value of @var{boxcolor} is "white".
  1300. @item draw
  1301. Set an expression which specifies if the text should be drawn. If the
  1302. expression evaluates to 0, the text is not drawn. This is useful for
  1303. specifying that the text should be drawn only when specific conditions
  1304. are met.
  1305. Default value is "1".
  1306. See below for the list of accepted constants and functions.
  1307. @item fix_bounds
  1308. If true, check and fix text coords to avoid clipping.
  1309. @item fontcolor
  1310. The color to be used for drawing fonts.
  1311. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1312. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1313. The default value of @var{fontcolor} is "black".
  1314. @item fontfile
  1315. The font file to be used for drawing text. Path must be included.
  1316. This parameter is mandatory.
  1317. @item fontsize
  1318. The font size to be used for drawing text.
  1319. The default value of @var{fontsize} is 16.
  1320. @item ft_load_flags
  1321. Flags to be used for loading the fonts.
  1322. The flags map the corresponding flags supported by libfreetype, and are
  1323. a combination of the following values:
  1324. @table @var
  1325. @item default
  1326. @item no_scale
  1327. @item no_hinting
  1328. @item render
  1329. @item no_bitmap
  1330. @item vertical_layout
  1331. @item force_autohint
  1332. @item crop_bitmap
  1333. @item pedantic
  1334. @item ignore_global_advance_width
  1335. @item no_recurse
  1336. @item ignore_transform
  1337. @item monochrome
  1338. @item linear_design
  1339. @item no_autohint
  1340. @item end table
  1341. @end table
  1342. Default value is "render".
  1343. For more information consult the documentation for the FT_LOAD_*
  1344. libfreetype flags.
  1345. @item shadowcolor
  1346. The color to be used for drawing a shadow behind the drawn text. It
  1347. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1348. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1349. The default value of @var{shadowcolor} is "black".
  1350. @item shadowx, shadowy
  1351. The x and y offsets for the text shadow position with respect to the
  1352. position of the text. They can be either positive or negative
  1353. values. Default value for both is "0".
  1354. @item tabsize
  1355. The size in number of spaces to use for rendering the tab.
  1356. Default value is 4.
  1357. @item timecode
  1358. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1359. format. It can be used with or without text parameter. @var{timecode_rate}
  1360. option must be specified.
  1361. @item timecode_rate, rate, r
  1362. Set the timecode frame rate (timecode only).
  1363. @item text
  1364. The text string to be drawn. The text must be a sequence of UTF-8
  1365. encoded characters.
  1366. This parameter is mandatory if no file is specified with the parameter
  1367. @var{textfile}.
  1368. @item textfile
  1369. A text file containing text to be drawn. The text must be a sequence
  1370. of UTF-8 encoded characters.
  1371. This parameter is mandatory if no text string is specified with the
  1372. parameter @var{text}.
  1373. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1374. @item x, y
  1375. The expressions which specify the offsets where text will be drawn
  1376. within the video frame. They are relative to the top/left border of the
  1377. output image.
  1378. The default value of @var{x} and @var{y} is "0".
  1379. See below for the list of accepted constants and functions.
  1380. @end table
  1381. The parameters for @var{x} and @var{y} are expressions containing the
  1382. following constants and functions:
  1383. @table @option
  1384. @item dar
  1385. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1386. @item hsub, vsub
  1387. horizontal and vertical chroma subsample values. For example for the
  1388. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1389. @item line_h, lh
  1390. the height of each text line
  1391. @item main_h, h, H
  1392. the input height
  1393. @item main_w, w, W
  1394. the input width
  1395. @item max_glyph_a, ascent
  1396. the maximum distance from the baseline to the highest/upper grid
  1397. coordinate used to place a glyph outline point, for all the rendered
  1398. glyphs.
  1399. It is a positive value, due to the grid's orientation with the Y axis
  1400. upwards.
  1401. @item max_glyph_d, descent
  1402. the maximum distance from the baseline to the lowest grid coordinate
  1403. used to place a glyph outline point, for all the rendered glyphs.
  1404. This is a negative value, due to the grid's orientation, with the Y axis
  1405. upwards.
  1406. @item max_glyph_h
  1407. maximum glyph height, that is the maximum height for all the glyphs
  1408. contained in the rendered text, it is equivalent to @var{ascent} -
  1409. @var{descent}.
  1410. @item max_glyph_w
  1411. maximum glyph width, that is the maximum width for all the glyphs
  1412. contained in the rendered text
  1413. @item n
  1414. the number of input frame, starting from 0
  1415. @item rand(min, max)
  1416. return a random number included between @var{min} and @var{max}
  1417. @item sar
  1418. input sample aspect ratio
  1419. @item t
  1420. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1421. @item text_h, th
  1422. the height of the rendered text
  1423. @item text_w, tw
  1424. the width of the rendered text
  1425. @item x, y
  1426. the x and y offset coordinates where the text is drawn.
  1427. These parameters allow the @var{x} and @var{y} expressions to refer
  1428. each other, so you can for example specify @code{y=x/dar}.
  1429. @end table
  1430. If libavfilter was built with @code{--enable-fontconfig}, then
  1431. @option{fontfile} can be a fontconfig pattern or omitted.
  1432. Some examples follow.
  1433. @itemize
  1434. @item
  1435. Draw "Test Text" with font FreeSerif, using the default values for the
  1436. optional parameters.
  1437. @example
  1438. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1439. @end example
  1440. @item
  1441. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1442. and y=50 (counting from the top-left corner of the screen), text is
  1443. yellow with a red box around it. Both the text and the box have an
  1444. opacity of 20%.
  1445. @example
  1446. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1447. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1448. @end example
  1449. Note that the double quotes are not necessary if spaces are not used
  1450. within the parameter list.
  1451. @item
  1452. Show the text at the center of the video frame:
  1453. @example
  1454. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1455. @end example
  1456. @item
  1457. Show a text line sliding from right to left in the last row of the video
  1458. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1459. with no newlines.
  1460. @example
  1461. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1462. @end example
  1463. @item
  1464. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1465. @example
  1466. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1467. @end example
  1468. @item
  1469. Draw a single green letter "g", at the center of the input video.
  1470. The glyph baseline is placed at half screen height.
  1471. @example
  1472. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1473. @end example
  1474. @item
  1475. Show text for 1 second every 3 seconds:
  1476. @example
  1477. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1478. @end example
  1479. @item
  1480. Use fontconfig to set the font. Note that the colons need to be escaped.
  1481. @example
  1482. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1483. @end example
  1484. @end itemize
  1485. For more information about libfreetype, check:
  1486. @url{http://www.freetype.org/}.
  1487. For more information about fontconfig, check:
  1488. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1489. @section edgedetect
  1490. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1491. This filter accepts the following optional named parameters:
  1492. @table @option
  1493. @item low, high
  1494. Set low and high threshold values used by the Canny thresholding
  1495. algorithm.
  1496. The high threshold selects the "strong" edge pixels, which are then
  1497. connected through 8-connectivity with the "weak" edge pixels selected
  1498. by the low threshold.
  1499. @var{low} and @var{high} threshold values must be choosen in the range
  1500. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1501. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1502. is @code{50/255}.
  1503. @end table
  1504. Example:
  1505. @example
  1506. edgedetect=low=0.1:high=0.4
  1507. @end example
  1508. @section fade
  1509. Apply fade-in/out effect to input video.
  1510. It accepts the parameters:
  1511. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1512. @var{type} specifies if the effect type, can be either "in" for
  1513. fade-in, or "out" for a fade-out effect.
  1514. @var{start_frame} specifies the number of the start frame for starting
  1515. to apply the fade effect.
  1516. @var{nb_frames} specifies the number of frames for which the fade
  1517. effect has to last. At the end of the fade-in effect the output video
  1518. will have the same intensity as the input video, at the end of the
  1519. fade-out transition the output video will be completely black.
  1520. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1521. separated by ":". The description of the accepted options follows.
  1522. @table @option
  1523. @item type, t
  1524. See @var{type}.
  1525. @item start_frame, s
  1526. See @var{start_frame}.
  1527. @item nb_frames, n
  1528. See @var{nb_frames}.
  1529. @item alpha
  1530. If set to 1, fade only alpha channel, if one exists on the input.
  1531. Default value is 0.
  1532. @end table
  1533. A few usage examples follow, usable too as test scenarios.
  1534. @example
  1535. # fade in first 30 frames of video
  1536. fade=in:0:30
  1537. # fade out last 45 frames of a 200-frame video
  1538. fade=out:155:45
  1539. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1540. fade=in:0:25, fade=out:975:25
  1541. # make first 5 frames black, then fade in from frame 5-24
  1542. fade=in:5:20
  1543. # fade in alpha over first 25 frames of video
  1544. fade=in:0:25:alpha=1
  1545. @end example
  1546. @section fieldorder
  1547. Transform the field order of the input video.
  1548. It accepts one parameter which specifies the required field order that
  1549. the input interlaced video will be transformed to. The parameter can
  1550. assume one of the following values:
  1551. @table @option
  1552. @item 0 or bff
  1553. output bottom field first
  1554. @item 1 or tff
  1555. output top field first
  1556. @end table
  1557. Default value is "tff".
  1558. Transformation is achieved by shifting the picture content up or down
  1559. by one line, and filling the remaining line with appropriate picture content.
  1560. This method is consistent with most broadcast field order converters.
  1561. If the input video is not flagged as being interlaced, or it is already
  1562. flagged as being of the required output field order then this filter does
  1563. not alter the incoming video.
  1564. This filter is very useful when converting to or from PAL DV material,
  1565. which is bottom field first.
  1566. For example:
  1567. @example
  1568. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1569. @end example
  1570. @section fifo
  1571. Buffer input images and send them when they are requested.
  1572. This filter is mainly useful when auto-inserted by the libavfilter
  1573. framework.
  1574. The filter does not take parameters.
  1575. @section format
  1576. Convert the input video to one of the specified pixel formats.
  1577. Libavfilter will try to pick one that is supported for the input to
  1578. the next filter.
  1579. The filter accepts a list of pixel format names, separated by ":",
  1580. for example "yuv420p:monow:rgb24".
  1581. Some examples follow:
  1582. @example
  1583. # convert the input video to the format "yuv420p"
  1584. format=yuv420p
  1585. # convert the input video to any of the formats in the list
  1586. format=yuv420p:yuv444p:yuv410p
  1587. @end example
  1588. @section fps
  1589. Convert the video to specified constant framerate by duplicating or dropping
  1590. frames as necessary.
  1591. This filter accepts the following named parameters:
  1592. @table @option
  1593. @item fps
  1594. Desired output framerate.
  1595. @end table
  1596. @section framestep
  1597. Select one frame every N.
  1598. This filter accepts in input a string representing a positive
  1599. integer. Default argument is @code{1}.
  1600. @anchor{frei0r}
  1601. @section frei0r
  1602. Apply a frei0r effect to the input video.
  1603. To enable compilation of this filter you need to install the frei0r
  1604. header and configure FFmpeg with @code{--enable-frei0r}.
  1605. The filter supports the syntax:
  1606. @example
  1607. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1608. @end example
  1609. @var{filter_name} is the name to the frei0r effect to load. If the
  1610. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1611. is searched in each one of the directories specified by the colon
  1612. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1613. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1614. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1615. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1616. for the frei0r effect.
  1617. A frei0r effect parameter can be a boolean (whose values are specified
  1618. with "y" and "n"), a double, a color (specified by the syntax
  1619. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1620. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1621. description), a position (specified by the syntax @var{X}/@var{Y},
  1622. @var{X} and @var{Y} being float numbers) and a string.
  1623. The number and kind of parameters depend on the loaded effect. If an
  1624. effect parameter is not specified the default value is set.
  1625. Some examples follow:
  1626. @itemize
  1627. @item
  1628. Apply the distort0r effect, set the first two double parameters:
  1629. @example
  1630. frei0r=distort0r:0.5:0.01
  1631. @end example
  1632. @item
  1633. Apply the colordistance effect, takes a color as first parameter:
  1634. @example
  1635. frei0r=colordistance:0.2/0.3/0.4
  1636. frei0r=colordistance:violet
  1637. frei0r=colordistance:0x112233
  1638. @end example
  1639. @item
  1640. Apply the perspective effect, specify the top left and top right image
  1641. positions:
  1642. @example
  1643. frei0r=perspective:0.2/0.2:0.8/0.2
  1644. @end example
  1645. @end itemize
  1646. For more information see:
  1647. @url{http://frei0r.dyne.org}
  1648. @section gradfun
  1649. Fix the banding artifacts that are sometimes introduced into nearly flat
  1650. regions by truncation to 8bit color depth.
  1651. Interpolate the gradients that should go where the bands are, and
  1652. dither them.
  1653. This filter is designed for playback only. Do not use it prior to
  1654. lossy compression, because compression tends to lose the dither and
  1655. bring back the bands.
  1656. The filter takes two optional parameters, separated by ':':
  1657. @var{strength}:@var{radius}
  1658. @var{strength} is the maximum amount by which the filter will change
  1659. any one pixel. Also the threshold for detecting nearly flat
  1660. regions. Acceptable values range from .51 to 255, default value is
  1661. 1.2, out-of-range values will be clipped to the valid range.
  1662. @var{radius} is the neighborhood to fit the gradient to. A larger
  1663. radius makes for smoother gradients, but also prevents the filter from
  1664. modifying the pixels near detailed regions. Acceptable values are
  1665. 8-32, default value is 16, out-of-range values will be clipped to the
  1666. valid range.
  1667. @example
  1668. # default parameters
  1669. gradfun=1.2:16
  1670. # omitting radius
  1671. gradfun=1.2
  1672. @end example
  1673. @section hflip
  1674. Flip the input video horizontally.
  1675. For example to horizontally flip the input video with @command{ffmpeg}:
  1676. @example
  1677. ffmpeg -i in.avi -vf "hflip" out.avi
  1678. @end example
  1679. @section hqdn3d
  1680. High precision/quality 3d denoise filter. This filter aims to reduce
  1681. image noise producing smooth images and making still images really
  1682. still. It should enhance compressibility.
  1683. It accepts the following optional parameters:
  1684. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1685. @table @option
  1686. @item luma_spatial
  1687. a non-negative float number which specifies spatial luma strength,
  1688. defaults to 4.0
  1689. @item chroma_spatial
  1690. a non-negative float number which specifies spatial chroma strength,
  1691. defaults to 3.0*@var{luma_spatial}/4.0
  1692. @item luma_tmp
  1693. a float number which specifies luma temporal strength, defaults to
  1694. 6.0*@var{luma_spatial}/4.0
  1695. @item chroma_tmp
  1696. a float number which specifies chroma temporal strength, defaults to
  1697. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1698. @end table
  1699. @section hue
  1700. Modify the hue and/or the saturation of the input.
  1701. This filter accepts the following optional named options:
  1702. @table @option
  1703. @item h
  1704. Specify the hue angle as a number of degrees. It accepts a float
  1705. number or an expression, and defaults to 0.0.
  1706. @item H
  1707. Specify the hue angle as a number of degrees. It accepts a float
  1708. number or an expression, and defaults to 0.0.
  1709. @item s
  1710. Specify the saturation in the [-10,10] range. It accepts a float number and
  1711. defaults to 1.0.
  1712. @end table
  1713. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1714. following constants:
  1715. @table @option
  1716. @item n
  1717. frame count of the input frame starting from 0
  1718. @item pts
  1719. presentation timestamp of the input frame expressed in time base units
  1720. @item r
  1721. frame rate of the input video, NAN if the input frame rate is unknown
  1722. @item t
  1723. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1724. @item tb
  1725. time base of the input video
  1726. @end table
  1727. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1728. In this case @var{hue} is expressed in degrees.
  1729. Some examples follow:
  1730. @itemize
  1731. @item
  1732. Set the hue to 90 degrees and the saturation to 1.0:
  1733. @example
  1734. hue=h=90:s=1
  1735. @end example
  1736. @item
  1737. Same command but expressing the hue in radians:
  1738. @example
  1739. hue=H=PI/2:s=1
  1740. @end example
  1741. @item
  1742. Same command without named options, hue must be expressed in degrees:
  1743. @example
  1744. hue=90:1
  1745. @end example
  1746. @item
  1747. Note that "h:s" syntax does not support expressions for the values of
  1748. h and s, so the following example will issue an error:
  1749. @example
  1750. hue=PI/2:1
  1751. @end example
  1752. @item
  1753. Rotate hue and make the saturation swing between 0
  1754. and 2 over a period of 1 second:
  1755. @example
  1756. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1757. @end example
  1758. @item
  1759. Apply a 3 seconds saturation fade-in effect starting at 0:
  1760. @example
  1761. hue="s=min(t/3\,1)"
  1762. @end example
  1763. The general fade-in expression can be written as:
  1764. @example
  1765. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1766. @end example
  1767. @item
  1768. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1769. @example
  1770. hue="s=max(0\, min(1\, (8-t)/3))"
  1771. @end example
  1772. The general fade-out expression can be written as:
  1773. @example
  1774. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1775. @end example
  1776. @end itemize
  1777. @subsection Commands
  1778. This filter supports the following command:
  1779. @table @option
  1780. @item reinit
  1781. Modify the hue and/or the saturation of the input video.
  1782. The command accepts the same named options and syntax than when calling the
  1783. filter from the command-line.
  1784. If a parameter is omitted, it is kept at its current value.
  1785. @end table
  1786. @section idet
  1787. Interlaceing detect filter. This filter tries to detect if the input is
  1788. interlaced or progressive. Top or bottom field first.
  1789. @section lut, lutrgb, lutyuv
  1790. Compute a look-up table for binding each pixel component input value
  1791. to an output value, and apply it to input video.
  1792. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1793. to an RGB input video.
  1794. These filters accept in input a ":"-separated list of options, which
  1795. specify the expressions used for computing the lookup table for the
  1796. corresponding pixel component values.
  1797. The @var{lut} filter requires either YUV or RGB pixel formats in
  1798. input, and accepts the options:
  1799. @table @option
  1800. @item c0
  1801. first pixel component
  1802. @item c1
  1803. second pixel component
  1804. @item c2
  1805. third pixel component
  1806. @item c3
  1807. fourth pixel component, corresponds to the alpha component
  1808. @end table
  1809. The exact component associated to each option depends on the format in
  1810. input.
  1811. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1812. accepts the options:
  1813. @table @option
  1814. @item r
  1815. red component
  1816. @item g
  1817. green component
  1818. @item b
  1819. blue component
  1820. @item a
  1821. alpha component
  1822. @end table
  1823. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1824. accepts the options:
  1825. @table @option
  1826. @item y
  1827. Y/luminance component
  1828. @item u
  1829. U/Cb component
  1830. @item v
  1831. V/Cr component
  1832. @item a
  1833. alpha component
  1834. @end table
  1835. The expressions can contain the following constants and functions:
  1836. @table @option
  1837. @item w, h
  1838. the input width and height
  1839. @item val
  1840. input value for the pixel component
  1841. @item clipval
  1842. the input value clipped in the @var{minval}-@var{maxval} range
  1843. @item maxval
  1844. maximum value for the pixel component
  1845. @item minval
  1846. minimum value for the pixel component
  1847. @item negval
  1848. the negated value for the pixel component value clipped in the
  1849. @var{minval}-@var{maxval} range , it corresponds to the expression
  1850. "maxval-clipval+minval"
  1851. @item clip(val)
  1852. the computed value in @var{val} clipped in the
  1853. @var{minval}-@var{maxval} range
  1854. @item gammaval(gamma)
  1855. the computed gamma correction value of the pixel component value
  1856. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1857. expression
  1858. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1859. @end table
  1860. All expressions default to "val".
  1861. Some examples follow:
  1862. @example
  1863. # negate input video
  1864. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1865. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1866. # the above is the same as
  1867. lutrgb="r=negval:g=negval:b=negval"
  1868. lutyuv="y=negval:u=negval:v=negval"
  1869. # negate luminance
  1870. lutyuv=y=negval
  1871. # remove chroma components, turns the video into a graytone image
  1872. lutyuv="u=128:v=128"
  1873. # apply a luma burning effect
  1874. lutyuv="y=2*val"
  1875. # remove green and blue components
  1876. lutrgb="g=0:b=0"
  1877. # set a constant alpha channel value on input
  1878. format=rgba,lutrgb=a="maxval-minval/2"
  1879. # correct luminance gamma by a 0.5 factor
  1880. lutyuv=y=gammaval(0.5)
  1881. @end example
  1882. @section mp
  1883. Apply an MPlayer filter to the input video.
  1884. This filter provides a wrapper around most of the filters of
  1885. MPlayer/MEncoder.
  1886. This wrapper is considered experimental. Some of the wrapped filters
  1887. may not work properly and we may drop support for them, as they will
  1888. be implemented natively into FFmpeg. Thus you should avoid
  1889. depending on them when writing portable scripts.
  1890. The filters accepts the parameters:
  1891. @var{filter_name}[:=]@var{filter_params}
  1892. @var{filter_name} is the name of a supported MPlayer filter,
  1893. @var{filter_params} is a string containing the parameters accepted by
  1894. the named filter.
  1895. The list of the currently supported filters follows:
  1896. @table @var
  1897. @item denoise3d
  1898. @item detc
  1899. @item dint
  1900. @item divtc
  1901. @item down3dright
  1902. @item dsize
  1903. @item eq2
  1904. @item eq
  1905. @item field
  1906. @item fil
  1907. @item fixpts
  1908. @item fspp
  1909. @item geq
  1910. @item harddup
  1911. @item hqdn3d
  1912. @item il
  1913. @item ilpack
  1914. @item ivtc
  1915. @item kerndeint
  1916. @item mcdeint
  1917. @item noise
  1918. @item ow
  1919. @item palette
  1920. @item perspective
  1921. @item phase
  1922. @item pp7
  1923. @item pullup
  1924. @item qp
  1925. @item rectangle
  1926. @item sab
  1927. @item softpulldown
  1928. @item softskip
  1929. @item spp
  1930. @item telecine
  1931. @item tile
  1932. @item tinterlace
  1933. @item unsharp
  1934. @item uspp
  1935. @item yuvcsp
  1936. @item yvu9
  1937. @end table
  1938. The parameter syntax and behavior for the listed filters are the same
  1939. of the corresponding MPlayer filters. For detailed instructions check
  1940. the "VIDEO FILTERS" section in the MPlayer manual.
  1941. Some examples follow:
  1942. @itemize
  1943. @item
  1944. Adjust gamma, brightness, contrast:
  1945. @example
  1946. mp=eq2=1.0:2:0.5
  1947. @end example
  1948. @item
  1949. Add temporal noise to input video:
  1950. @example
  1951. mp=noise=20t
  1952. @end example
  1953. @end itemize
  1954. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1955. @section negate
  1956. Negate input video.
  1957. This filter accepts an integer in input, if non-zero it negates the
  1958. alpha component (if available). The default value in input is 0.
  1959. @section noformat
  1960. Force libavfilter not to use any of the specified pixel formats for the
  1961. input to the next filter.
  1962. The filter accepts a list of pixel format names, separated by ":",
  1963. for example "yuv420p:monow:rgb24".
  1964. Some examples follow:
  1965. @example
  1966. # force libavfilter to use a format different from "yuv420p" for the
  1967. # input to the vflip filter
  1968. noformat=yuv420p,vflip
  1969. # convert the input video to any of the formats not contained in the list
  1970. noformat=yuv420p:yuv444p:yuv410p
  1971. @end example
  1972. @section null
  1973. Pass the video source unchanged to the output.
  1974. @section ocv
  1975. Apply video transform using libopencv.
  1976. To enable this filter install libopencv library and headers and
  1977. configure FFmpeg with @code{--enable-libopencv}.
  1978. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1979. @var{filter_name} is the name of the libopencv filter to apply.
  1980. @var{filter_params} specifies the parameters to pass to the libopencv
  1981. filter. If not specified the default values are assumed.
  1982. Refer to the official libopencv documentation for more precise
  1983. information:
  1984. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1985. Follows the list of supported libopencv filters.
  1986. @anchor{dilate}
  1987. @subsection dilate
  1988. Dilate an image by using a specific structuring element.
  1989. This filter corresponds to the libopencv function @code{cvDilate}.
  1990. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1991. @var{struct_el} represents a structuring element, and has the syntax:
  1992. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1993. @var{cols} and @var{rows} represent the number of columns and rows of
  1994. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1995. point, and @var{shape} the shape for the structuring element, and
  1996. can be one of the values "rect", "cross", "ellipse", "custom".
  1997. If the value for @var{shape} is "custom", it must be followed by a
  1998. string of the form "=@var{filename}". The file with name
  1999. @var{filename} is assumed to represent a binary image, with each
  2000. printable character corresponding to a bright pixel. When a custom
  2001. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2002. or columns and rows of the read file are assumed instead.
  2003. The default value for @var{struct_el} is "3x3+0x0/rect".
  2004. @var{nb_iterations} specifies the number of times the transform is
  2005. applied to the image, and defaults to 1.
  2006. Follow some example:
  2007. @example
  2008. # use the default values
  2009. ocv=dilate
  2010. # dilate using a structuring element with a 5x5 cross, iterate two times
  2011. ocv=dilate=5x5+2x2/cross:2
  2012. # read the shape from the file diamond.shape, iterate two times
  2013. # the file diamond.shape may contain a pattern of characters like this:
  2014. # *
  2015. # ***
  2016. # *****
  2017. # ***
  2018. # *
  2019. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2020. ocv=0x0+2x2/custom=diamond.shape:2
  2021. @end example
  2022. @subsection erode
  2023. Erode an image by using a specific structuring element.
  2024. This filter corresponds to the libopencv function @code{cvErode}.
  2025. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2026. with the same syntax and semantics as the @ref{dilate} filter.
  2027. @subsection smooth
  2028. Smooth the input video.
  2029. The filter takes the following parameters:
  2030. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2031. @var{type} is the type of smooth filter to apply, and can be one of
  2032. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2033. "bilateral". The default value is "gaussian".
  2034. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2035. parameters whose meanings depend on smooth type. @var{param1} and
  2036. @var{param2} accept integer positive values or 0, @var{param3} and
  2037. @var{param4} accept float values.
  2038. The default value for @var{param1} is 3, the default value for the
  2039. other parameters is 0.
  2040. These parameters correspond to the parameters assigned to the
  2041. libopencv function @code{cvSmooth}.
  2042. @anchor{overlay}
  2043. @section overlay
  2044. Overlay one video on top of another.
  2045. It takes two inputs and one output, the first input is the "main"
  2046. video on which the second input is overlayed.
  2047. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2048. @var{x} is the x coordinate of the overlayed video on the main video,
  2049. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2050. the following parameters:
  2051. @table @option
  2052. @item main_w, main_h
  2053. main input width and height
  2054. @item W, H
  2055. same as @var{main_w} and @var{main_h}
  2056. @item overlay_w, overlay_h
  2057. overlay input width and height
  2058. @item w, h
  2059. same as @var{overlay_w} and @var{overlay_h}
  2060. @end table
  2061. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2062. separated by ":".
  2063. The description of the accepted options follows.
  2064. @table @option
  2065. @item rgb
  2066. If set to 1, force the filter to accept inputs in the RGB
  2067. color space. Default value is 0.
  2068. @end table
  2069. Be aware that frames are taken from each input video in timestamp
  2070. order, hence, if their initial timestamps differ, it is a a good idea
  2071. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2072. have them begin in the same zero timestamp, as it does the example for
  2073. the @var{movie} filter.
  2074. Follow some examples:
  2075. @example
  2076. # draw the overlay at 10 pixels from the bottom right
  2077. # corner of the main video.
  2078. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2079. # insert a transparent PNG logo in the bottom left corner of the input
  2080. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2081. # insert 2 different transparent PNG logos (second logo on bottom
  2082. # right corner):
  2083. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2084. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2085. # add a transparent color layer on top of the main video,
  2086. # WxH specifies the size of the main input to the overlay filter
  2087. color=red@.3:WxH [over]; [in][over] overlay [out]
  2088. # play an original video and a filtered version (here with the deshake filter)
  2089. # side by side
  2090. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2091. # the previous example is the same as:
  2092. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2093. @end example
  2094. You can chain together more overlays but the efficiency of such
  2095. approach is yet to be tested.
  2096. @section pad
  2097. Add paddings to the input image, and places the original input at the
  2098. given coordinates @var{x}, @var{y}.
  2099. It accepts the following parameters:
  2100. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2101. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2102. expressions containing the following constants:
  2103. @table @option
  2104. @item in_w, in_h
  2105. the input video width and height
  2106. @item iw, ih
  2107. same as @var{in_w} and @var{in_h}
  2108. @item out_w, out_h
  2109. the output width and height, that is the size of the padded area as
  2110. specified by the @var{width} and @var{height} expressions
  2111. @item ow, oh
  2112. same as @var{out_w} and @var{out_h}
  2113. @item x, y
  2114. x and y offsets as specified by the @var{x} and @var{y}
  2115. expressions, or NAN if not yet specified
  2116. @item a
  2117. same as @var{iw} / @var{ih}
  2118. @item sar
  2119. input sample aspect ratio
  2120. @item dar
  2121. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2122. @item hsub, vsub
  2123. horizontal and vertical chroma subsample values. For example for the
  2124. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2125. @end table
  2126. Follows the description of the accepted parameters.
  2127. @table @option
  2128. @item width, height
  2129. Specify the size of the output image with the paddings added. If the
  2130. value for @var{width} or @var{height} is 0, the corresponding input size
  2131. is used for the output.
  2132. The @var{width} expression can reference the value set by the
  2133. @var{height} expression, and vice versa.
  2134. The default value of @var{width} and @var{height} is 0.
  2135. @item x, y
  2136. Specify the offsets where to place the input image in the padded area
  2137. with respect to the top/left border of the output image.
  2138. The @var{x} expression can reference the value set by the @var{y}
  2139. expression, and vice versa.
  2140. The default value of @var{x} and @var{y} is 0.
  2141. @item color
  2142. Specify the color of the padded area, it can be the name of a color
  2143. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2144. The default value of @var{color} is "black".
  2145. @end table
  2146. @section Examples
  2147. @itemize
  2148. @item
  2149. Add paddings with color "violet" to the input video. Output video
  2150. size is 640x480, the top-left corner of the input video is placed at
  2151. column 0, row 40:
  2152. @example
  2153. pad=640:480:0:40:violet
  2154. @end example
  2155. @item
  2156. Pad the input to get an output with dimensions increased by 3/2,
  2157. and put the input video at the center of the padded area:
  2158. @example
  2159. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2160. @end example
  2161. @item
  2162. Pad the input to get a squared output with size equal to the maximum
  2163. value between the input width and height, and put the input video at
  2164. the center of the padded area:
  2165. @example
  2166. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2167. @end example
  2168. @item
  2169. Pad the input to get a final w/h ratio of 16:9:
  2170. @example
  2171. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2172. @end example
  2173. @item
  2174. In case of anamorphic video, in order to set the output display aspect
  2175. correctly, it is necessary to use @var{sar} in the expression,
  2176. according to the relation:
  2177. @example
  2178. (ih * X / ih) * sar = output_dar
  2179. X = output_dar / sar
  2180. @end example
  2181. Thus the previous example needs to be modified to:
  2182. @example
  2183. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2184. @end example
  2185. @item
  2186. Double output size and put the input video in the bottom-right
  2187. corner of the output padded area:
  2188. @example
  2189. pad="2*iw:2*ih:ow-iw:oh-ih"
  2190. @end example
  2191. @end itemize
  2192. @section pixdesctest
  2193. Pixel format descriptor test filter, mainly useful for internal
  2194. testing. The output video should be equal to the input video.
  2195. For example:
  2196. @example
  2197. format=monow, pixdesctest
  2198. @end example
  2199. can be used to test the monowhite pixel format descriptor definition.
  2200. @section removelogo
  2201. Suppress a TV station logo, using an image file to determine which
  2202. pixels comprise the logo. It works by filling in the pixels that
  2203. comprise the logo with neighboring pixels.
  2204. This filter requires one argument which specifies the filter bitmap
  2205. file, which can be any image format supported by libavformat. The
  2206. width and height of the image file must match those of the video
  2207. stream being processed.
  2208. Pixels in the provided bitmap image with a value of zero are not
  2209. considered part of the logo, non-zero pixels are considered part of
  2210. the logo. If you use white (255) for the logo and black (0) for the
  2211. rest, you will be safe. For making the filter bitmap, it is
  2212. recommended to take a screen capture of a black frame with the logo
  2213. visible, and then using a threshold filter followed by the erode
  2214. filter once or twice.
  2215. If needed, little splotches can be fixed manually. Remember that if
  2216. logo pixels are not covered, the filter quality will be much
  2217. reduced. Marking too many pixels as part of the logo does not hurt as
  2218. much, but it will increase the amount of blurring needed to cover over
  2219. the image and will destroy more information than necessary, and extra
  2220. pixels will slow things down on a large logo.
  2221. @section scale
  2222. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2223. The scale filter forces the output display aspect ratio to be the same
  2224. of the input, by changing the output sample aspect ratio.
  2225. The parameters @var{width} and @var{height} are expressions containing
  2226. the following constants:
  2227. @table @option
  2228. @item in_w, in_h
  2229. the input width and height
  2230. @item iw, ih
  2231. same as @var{in_w} and @var{in_h}
  2232. @item out_w, out_h
  2233. the output (cropped) width and height
  2234. @item ow, oh
  2235. same as @var{out_w} and @var{out_h}
  2236. @item a
  2237. same as @var{iw} / @var{ih}
  2238. @item sar
  2239. input sample aspect ratio
  2240. @item dar
  2241. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2242. @item hsub, vsub
  2243. horizontal and vertical chroma subsample values. For example for the
  2244. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2245. @end table
  2246. If the input image format is different from the format requested by
  2247. the next filter, the scale filter will convert the input to the
  2248. requested format.
  2249. If the value for @var{width} or @var{height} is 0, the respective input
  2250. size is used for the output.
  2251. If the value for @var{width} or @var{height} is -1, the scale filter will
  2252. use, for the respective output size, a value that maintains the aspect
  2253. ratio of the input image.
  2254. The default value of @var{width} and @var{height} is 0.
  2255. Valid values for the optional parameter @var{interl} are:
  2256. @table @option
  2257. @item 1
  2258. force interlaced aware scaling
  2259. @item -1
  2260. select interlaced aware scaling depending on whether the source frames
  2261. are flagged as interlaced or not
  2262. @end table
  2263. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2264. Some examples follow:
  2265. @example
  2266. # scale the input video to a size of 200x100.
  2267. scale=200:100
  2268. # scale the input to 2x
  2269. scale=2*iw:2*ih
  2270. # the above is the same as
  2271. scale=2*in_w:2*in_h
  2272. # scale the input to 2x with forced interlaced scaling
  2273. scale=2*iw:2*ih:interl=1
  2274. # scale the input to half size
  2275. scale=iw/2:ih/2
  2276. # increase the width, and set the height to the same size
  2277. scale=3/2*iw:ow
  2278. # seek for Greek harmony
  2279. scale=iw:1/PHI*iw
  2280. scale=ih*PHI:ih
  2281. # increase the height, and set the width to 3/2 of the height
  2282. scale=3/2*oh:3/5*ih
  2283. # increase the size, but make the size a multiple of the chroma
  2284. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2285. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2286. scale='min(500\, iw*3/2):-1'
  2287. @end example
  2288. @section select
  2289. Select frames to pass in output.
  2290. It accepts in input an expression, which is evaluated for each input
  2291. frame. If the expression is evaluated to a non-zero value, the frame
  2292. is selected and passed to the output, otherwise it is discarded.
  2293. The expression can contain the following constants:
  2294. @table @option
  2295. @item n
  2296. the sequential number of the filtered frame, starting from 0
  2297. @item selected_n
  2298. the sequential number of the selected frame, starting from 0
  2299. @item prev_selected_n
  2300. the sequential number of the last selected frame, NAN if undefined
  2301. @item TB
  2302. timebase of the input timestamps
  2303. @item pts
  2304. the PTS (Presentation TimeStamp) of the filtered video frame,
  2305. expressed in @var{TB} units, NAN if undefined
  2306. @item t
  2307. the PTS (Presentation TimeStamp) of the filtered video frame,
  2308. expressed in seconds, NAN if undefined
  2309. @item prev_pts
  2310. the PTS of the previously filtered video frame, NAN if undefined
  2311. @item prev_selected_pts
  2312. the PTS of the last previously filtered video frame, NAN if undefined
  2313. @item prev_selected_t
  2314. the PTS of the last previously selected video frame, NAN if undefined
  2315. @item start_pts
  2316. the PTS of the first video frame in the video, NAN if undefined
  2317. @item start_t
  2318. the time of the first video frame in the video, NAN if undefined
  2319. @item pict_type
  2320. the type of the filtered frame, can assume one of the following
  2321. values:
  2322. @table @option
  2323. @item I
  2324. @item P
  2325. @item B
  2326. @item S
  2327. @item SI
  2328. @item SP
  2329. @item BI
  2330. @end table
  2331. @item interlace_type
  2332. the frame interlace type, can assume one of the following values:
  2333. @table @option
  2334. @item PROGRESSIVE
  2335. the frame is progressive (not interlaced)
  2336. @item TOPFIRST
  2337. the frame is top-field-first
  2338. @item BOTTOMFIRST
  2339. the frame is bottom-field-first
  2340. @end table
  2341. @item key
  2342. 1 if the filtered frame is a key-frame, 0 otherwise
  2343. @item pos
  2344. the position in the file of the filtered frame, -1 if the information
  2345. is not available (e.g. for synthetic video)
  2346. @item scene
  2347. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2348. probability for the current frame to introduce a new scene, while a higher
  2349. value means the current frame is more likely to be one (see the example below)
  2350. @end table
  2351. The default value of the select expression is "1".
  2352. Some examples follow:
  2353. @example
  2354. # select all frames in input
  2355. select
  2356. # the above is the same as:
  2357. select=1
  2358. # skip all frames:
  2359. select=0
  2360. # select only I-frames
  2361. select='eq(pict_type\,I)'
  2362. # select one frame every 100
  2363. select='not(mod(n\,100))'
  2364. # select only frames contained in the 10-20 time interval
  2365. select='gte(t\,10)*lte(t\,20)'
  2366. # select only I frames contained in the 10-20 time interval
  2367. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2368. # select frames with a minimum distance of 10 seconds
  2369. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2370. @end example
  2371. Complete example to create a mosaic of the first scenes:
  2372. @example
  2373. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2374. @end example
  2375. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2376. choice.
  2377. @section setdar, setsar
  2378. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2379. output video.
  2380. This is done by changing the specified Sample (aka Pixel) Aspect
  2381. Ratio, according to the following equation:
  2382. @example
  2383. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2384. @end example
  2385. Keep in mind that the @code{setdar} filter does not modify the pixel
  2386. dimensions of the video frame. Also the display aspect ratio set by
  2387. this filter may be changed by later filters in the filterchain,
  2388. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2389. applied.
  2390. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2391. the filter output video.
  2392. Note that as a consequence of the application of this filter, the
  2393. output display aspect ratio will change according to the equation
  2394. above.
  2395. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2396. filter may be changed by later filters in the filterchain, e.g. if
  2397. another "setsar" or a "setdar" filter is applied.
  2398. The @code{setdar} and @code{setsar} filters accept a parameter string
  2399. which represents the wanted aspect ratio. The parameter can
  2400. be a floating point number string, an expression, or a string of the form
  2401. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2402. and denominator of the aspect ratio. If the parameter is not
  2403. specified, it is assumed the value "0:1".
  2404. For example to change the display aspect ratio to 16:9, specify:
  2405. @example
  2406. setdar=16:9
  2407. @end example
  2408. The example above is equivalent to:
  2409. @example
  2410. setdar=1.77777
  2411. @end example
  2412. To change the sample aspect ratio to 10:11, specify:
  2413. @example
  2414. setsar=10:11
  2415. @end example
  2416. @section setfield
  2417. Force field for the output video frame.
  2418. The @code{setfield} filter marks the interlace type field for the
  2419. output frames. It does not change the input frame, but only sets the
  2420. corresponding property, which affects how the frame is treated by
  2421. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2422. It accepts a string parameter, which can assume the following values:
  2423. @table @samp
  2424. @item auto
  2425. Keep the same field property.
  2426. @item bff
  2427. Mark the frame as bottom-field-first.
  2428. @item tff
  2429. Mark the frame as top-field-first.
  2430. @item prog
  2431. Mark the frame as progressive.
  2432. @end table
  2433. @section showinfo
  2434. Show a line containing various information for each input video frame.
  2435. The input video is not modified.
  2436. The shown line contains a sequence of key/value pairs of the form
  2437. @var{key}:@var{value}.
  2438. A description of each shown parameter follows:
  2439. @table @option
  2440. @item n
  2441. sequential number of the input frame, starting from 0
  2442. @item pts
  2443. Presentation TimeStamp of the input frame, expressed as a number of
  2444. time base units. The time base unit depends on the filter input pad.
  2445. @item pts_time
  2446. Presentation TimeStamp of the input frame, expressed as a number of
  2447. seconds
  2448. @item pos
  2449. position of the frame in the input stream, -1 if this information in
  2450. unavailable and/or meaningless (for example in case of synthetic video)
  2451. @item fmt
  2452. pixel format name
  2453. @item sar
  2454. sample aspect ratio of the input frame, expressed in the form
  2455. @var{num}/@var{den}
  2456. @item s
  2457. size of the input frame, expressed in the form
  2458. @var{width}x@var{height}
  2459. @item i
  2460. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2461. for bottom field first)
  2462. @item iskey
  2463. 1 if the frame is a key frame, 0 otherwise
  2464. @item type
  2465. picture type of the input frame ("I" for an I-frame, "P" for a
  2466. P-frame, "B" for a B-frame, "?" for unknown type).
  2467. Check also the documentation of the @code{AVPictureType} enum and of
  2468. the @code{av_get_picture_type_char} function defined in
  2469. @file{libavutil/avutil.h}.
  2470. @item checksum
  2471. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2472. @item plane_checksum
  2473. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2474. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2475. @end table
  2476. @section slicify
  2477. Pass the images of input video on to next video filter as multiple
  2478. slices.
  2479. @example
  2480. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2481. @end example
  2482. The filter accepts the slice height as parameter. If the parameter is
  2483. not specified it will use the default value of 16.
  2484. Adding this in the beginning of filter chains should make filtering
  2485. faster due to better use of the memory cache.
  2486. @section smartblur
  2487. Blur the input video without impacting the outlines.
  2488. The filter accepts the following parameters:
  2489. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2490. Parameters prefixed by @var{luma} indicate that they work on the
  2491. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2492. refer to the chrominance of the pixels.
  2493. If the chroma parameters are not set, the luma parameters are used for
  2494. either the luminance and the chrominance of the pixels.
  2495. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2496. range [0.1,5.0] that specifies the variance of the gaussian filter
  2497. used to blur the image (slower if larger).
  2498. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2499. the range [-1.0,1.0] that configures the blurring. A value included in
  2500. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2501. will sharpen the image.
  2502. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2503. the range [-30,30] that is used as a coefficient to determine whether
  2504. a pixel should be blurred or not. A value of 0 will filter all the
  2505. image, a value included in [0,30] will filter flat areas and a value
  2506. included in [-30,0] will filter edges.
  2507. @section split
  2508. Split input video into several identical outputs.
  2509. The filter accepts a single parameter which specifies the number of outputs. If
  2510. unspecified, it defaults to 2.
  2511. For example
  2512. @example
  2513. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2514. @end example
  2515. will create 5 copies of the input video.
  2516. For example:
  2517. @example
  2518. [in] split [splitout1][splitout2];
  2519. [splitout1] crop=100:100:0:0 [cropout];
  2520. [splitout2] pad=200:200:100:100 [padout];
  2521. @end example
  2522. will create two separate outputs from the same input, one cropped and
  2523. one padded.
  2524. @section super2xsai
  2525. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2526. Interpolate) pixel art scaling algorithm.
  2527. Useful for enlarging pixel art images without reducing sharpness.
  2528. @section swapuv
  2529. Swap U & V plane.
  2530. @section thumbnail
  2531. Select the most representative frame in a given sequence of consecutive frames.
  2532. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2533. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2534. the next batch of @var{N} frames until the end.
  2535. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2536. value will result in a higher memory usage, so a high value is not recommended.
  2537. The following example extract one picture each 50 frames:
  2538. @example
  2539. thumbnail=50
  2540. @end example
  2541. Complete example of a thumbnail creation with @command{ffmpeg}:
  2542. @example
  2543. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2544. @end example
  2545. @section tile
  2546. Tile several successive frames together.
  2547. It accepts as argument the tile size (i.e. the number of lines and columns)
  2548. in the form "@var{w}x@var{h}".
  2549. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2550. nokey}) in a movie:
  2551. @example
  2552. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2553. @end example
  2554. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2555. duplicating each output frame to accomodate the originally detected frame
  2556. rate.
  2557. @section tinterlace
  2558. Perform various types of temporal field interlacing.
  2559. Frames are counted starting from 1, so the first input frame is
  2560. considered odd.
  2561. This filter accepts a single parameter specifying the mode. Available
  2562. modes are:
  2563. @table @samp
  2564. @item merge, 0
  2565. Move odd frames into the upper field, even into the lower field,
  2566. generating a double height frame at half framerate.
  2567. @item drop_odd, 1
  2568. Only output even frames, odd frames are dropped, generating a frame with
  2569. unchanged height at half framerate.
  2570. @item drop_even, 2
  2571. Only output odd frames, even frames are dropped, generating a frame with
  2572. unchanged height at half framerate.
  2573. @item pad, 3
  2574. Expand each frame to full height, but pad alternate lines with black,
  2575. generating a frame with double height at the same input framerate.
  2576. @item interleave_top, 4
  2577. Interleave the upper field from odd frames with the lower field from
  2578. even frames, generating a frame with unchanged height at half framerate.
  2579. @item interleave_bottom, 5
  2580. Interleave the lower field from odd frames with the upper field from
  2581. even frames, generating a frame with unchanged height at half framerate.
  2582. @item interlacex2, 6
  2583. Double frame rate with unchanged height. Frames are inserted each
  2584. containing the second temporal field from the previous input frame and
  2585. the first temporal field from the next input frame. This mode relies on
  2586. the top_field_first flag. Useful for interlaced video displays with no
  2587. field synchronisation.
  2588. @end table
  2589. Numeric values are deprecated but are accepted for backward
  2590. compatibility reasons.
  2591. Default mode is @code{merge}.
  2592. @section transpose
  2593. Transpose rows with columns in the input video and optionally flip it.
  2594. It accepts a parameter representing an integer, which can assume the
  2595. values:
  2596. @table @samp
  2597. @item 0, 4
  2598. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2599. @example
  2600. L.R L.l
  2601. . . -> . .
  2602. l.r R.r
  2603. @end example
  2604. @item 1, 5
  2605. Rotate by 90 degrees clockwise, that is:
  2606. @example
  2607. L.R l.L
  2608. . . -> . .
  2609. l.r r.R
  2610. @end example
  2611. @item 2, 6
  2612. Rotate by 90 degrees counterclockwise, that is:
  2613. @example
  2614. L.R R.r
  2615. . . -> . .
  2616. l.r L.l
  2617. @end example
  2618. @item 3, 7
  2619. Rotate by 90 degrees clockwise and vertically flip, that is:
  2620. @example
  2621. L.R r.R
  2622. . . -> . .
  2623. l.r l.L
  2624. @end example
  2625. @end table
  2626. For values between 4-7 transposition is only done if the input video
  2627. geometry is portrait and not landscape.
  2628. @section unsharp
  2629. Sharpen or blur the input video.
  2630. It accepts the following parameters:
  2631. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2632. Negative values for the amount will blur the input video, while positive
  2633. values will sharpen. All parameters are optional and default to the
  2634. equivalent of the string '5:5:1.0:5:5:0.0'.
  2635. @table @option
  2636. @item luma_msize_x
  2637. Set the luma matrix horizontal size. It can be an integer between 3
  2638. and 13, default value is 5.
  2639. @item luma_msize_y
  2640. Set the luma matrix vertical size. It can be an integer between 3
  2641. and 13, default value is 5.
  2642. @item luma_amount
  2643. Set the luma effect strength. It can be a float number between -2.0
  2644. and 5.0, default value is 1.0.
  2645. @item chroma_msize_x
  2646. Set the chroma matrix horizontal size. It can be an integer between 3
  2647. and 13, default value is 5.
  2648. @item chroma_msize_y
  2649. Set the chroma matrix vertical size. It can be an integer between 3
  2650. and 13, default value is 5.
  2651. @item chroma_amount
  2652. Set the chroma effect strength. It can be a float number between -2.0
  2653. and 5.0, default value is 0.0.
  2654. @end table
  2655. @example
  2656. # Strong luma sharpen effect parameters
  2657. unsharp=7:7:2.5
  2658. # Strong blur of both luma and chroma parameters
  2659. unsharp=7:7:-2:7:7:-2
  2660. # Use the default values with @command{ffmpeg}
  2661. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2662. @end example
  2663. @section vflip
  2664. Flip the input video vertically.
  2665. @example
  2666. ffmpeg -i in.avi -vf "vflip" out.avi
  2667. @end example
  2668. @section yadif
  2669. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2670. filter").
  2671. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2672. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2673. following values:
  2674. @table @option
  2675. @item 0
  2676. output 1 frame for each frame
  2677. @item 1
  2678. output 1 frame for each field
  2679. @item 2
  2680. like 0 but skips spatial interlacing check
  2681. @item 3
  2682. like 1 but skips spatial interlacing check
  2683. @end table
  2684. Default value is 0.
  2685. @var{parity} specifies the picture field parity assumed for the input
  2686. interlaced video, accepts one of the following values:
  2687. @table @option
  2688. @item 0
  2689. assume top field first
  2690. @item 1
  2691. assume bottom field first
  2692. @item -1
  2693. enable automatic detection
  2694. @end table
  2695. Default value is -1.
  2696. If interlacing is unknown or decoder does not export this information,
  2697. top field first will be assumed.
  2698. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2699. and only deinterlace frames marked as interlaced
  2700. @table @option
  2701. @item 0
  2702. deinterlace all frames
  2703. @item 1
  2704. only deinterlace frames marked as interlaced
  2705. @end table
  2706. Default value is 0.
  2707. @c man end VIDEO FILTERS
  2708. @chapter Video Sources
  2709. @c man begin VIDEO SOURCES
  2710. Below is a description of the currently available video sources.
  2711. @section buffer
  2712. Buffer video frames, and make them available to the filter chain.
  2713. This source is mainly intended for a programmatic use, in particular
  2714. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2715. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2716. separated by ":". A descroption of the accepted options follows.
  2717. @table @option
  2718. @item video_size
  2719. Specify the size (width and height) of the buffered video frames.
  2720. @item pix_fmt
  2721. A string representing the pixel format of the buffered video frames.
  2722. It may be a number corresponding to a pixel format, or a pixel format
  2723. name.
  2724. @item time_base
  2725. Specify the timebase assumed by the timestamps of the buffered frames.
  2726. @item time_base
  2727. Specify the frame rate expected for the video stream.
  2728. @item pixel_aspect
  2729. Specify the sample aspect ratio assumed by the video frames.
  2730. @item sws_param
  2731. Specify the optional parameters to be used for the scale filter which
  2732. is automatically inserted when an input change is detected in the
  2733. input size or format.
  2734. @end table
  2735. For example:
  2736. @example
  2737. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2738. @end example
  2739. will instruct the source to accept video frames with size 320x240 and
  2740. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2741. square pixels (1:1 sample aspect ratio).
  2742. Since the pixel format with name "yuv410p" corresponds to the number 6
  2743. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2744. this example corresponds to:
  2745. @example
  2746. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2747. @end example
  2748. Alternatively, the options can be specified as a flat string, but this
  2749. syntax is deprecated:
  2750. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2751. @section cellauto
  2752. Create a pattern generated by an elementary cellular automaton.
  2753. The initial state of the cellular automaton can be defined through the
  2754. @option{filename}, and @option{pattern} options. If such options are
  2755. not specified an initial state is created randomly.
  2756. At each new frame a new row in the video is filled with the result of
  2757. the cellular automaton next generation. The behavior when the whole
  2758. frame is filled is defined by the @option{scroll} option.
  2759. This source accepts a list of options in the form of
  2760. @var{key}=@var{value} pairs separated by ":". A description of the
  2761. accepted options follows.
  2762. @table @option
  2763. @item filename, f
  2764. Read the initial cellular automaton state, i.e. the starting row, from
  2765. the specified file.
  2766. In the file, each non-whitespace character is considered an alive
  2767. cell, a newline will terminate the row, and further characters in the
  2768. file will be ignored.
  2769. @item pattern, p
  2770. Read the initial cellular automaton state, i.e. the starting row, from
  2771. the specified string.
  2772. Each non-whitespace character in the string is considered an alive
  2773. cell, a newline will terminate the row, and further characters in the
  2774. string will be ignored.
  2775. @item rate, r
  2776. Set the video rate, that is the number of frames generated per second.
  2777. Default is 25.
  2778. @item random_fill_ratio, ratio
  2779. Set the random fill ratio for the initial cellular automaton row. It
  2780. is a floating point number value ranging from 0 to 1, defaults to
  2781. 1/PHI.
  2782. This option is ignored when a file or a pattern is specified.
  2783. @item random_seed, seed
  2784. Set the seed for filling randomly the initial row, must be an integer
  2785. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2786. set to -1, the filter will try to use a good random seed on a best
  2787. effort basis.
  2788. @item rule
  2789. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2790. Default value is 110.
  2791. @item size, s
  2792. Set the size of the output video.
  2793. If @option{filename} or @option{pattern} is specified, the size is set
  2794. by default to the width of the specified initial state row, and the
  2795. height is set to @var{width} * PHI.
  2796. If @option{size} is set, it must contain the width of the specified
  2797. pattern string, and the specified pattern will be centered in the
  2798. larger row.
  2799. If a filename or a pattern string is not specified, the size value
  2800. defaults to "320x518" (used for a randomly generated initial state).
  2801. @item scroll
  2802. If set to 1, scroll the output upward when all the rows in the output
  2803. have been already filled. If set to 0, the new generated row will be
  2804. written over the top row just after the bottom row is filled.
  2805. Defaults to 1.
  2806. @item start_full, full
  2807. If set to 1, completely fill the output with generated rows before
  2808. outputting the first frame.
  2809. This is the default behavior, for disabling set the value to 0.
  2810. @item stitch
  2811. If set to 1, stitch the left and right row edges together.
  2812. This is the default behavior, for disabling set the value to 0.
  2813. @end table
  2814. @subsection Examples
  2815. @itemize
  2816. @item
  2817. Read the initial state from @file{pattern}, and specify an output of
  2818. size 200x400.
  2819. @example
  2820. cellauto=f=pattern:s=200x400
  2821. @end example
  2822. @item
  2823. Generate a random initial row with a width of 200 cells, with a fill
  2824. ratio of 2/3:
  2825. @example
  2826. cellauto=ratio=2/3:s=200x200
  2827. @end example
  2828. @item
  2829. Create a pattern generated by rule 18 starting by a single alive cell
  2830. centered on an initial row with width 100:
  2831. @example
  2832. cellauto=p=@@:s=100x400:full=0:rule=18
  2833. @end example
  2834. @item
  2835. Specify a more elaborated initial pattern:
  2836. @example
  2837. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2838. @end example
  2839. @end itemize
  2840. @section mandelbrot
  2841. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2842. point specified with @var{start_x} and @var{start_y}.
  2843. This source accepts a list of options in the form of
  2844. @var{key}=@var{value} pairs separated by ":". A description of the
  2845. accepted options follows.
  2846. @table @option
  2847. @item end_pts
  2848. Set the terminal pts value. Default value is 400.
  2849. @item end_scale
  2850. Set the terminal scale value.
  2851. Must be a floating point value. Default value is 0.3.
  2852. @item inner
  2853. Set the inner coloring mode, that is the algorithm used to draw the
  2854. Mandelbrot fractal internal region.
  2855. It shall assume one of the following values:
  2856. @table @option
  2857. @item black
  2858. Set black mode.
  2859. @item convergence
  2860. Show time until convergence.
  2861. @item mincol
  2862. Set color based on point closest to the origin of the iterations.
  2863. @item period
  2864. Set period mode.
  2865. @end table
  2866. Default value is @var{mincol}.
  2867. @item bailout
  2868. Set the bailout value. Default value is 10.0.
  2869. @item maxiter
  2870. Set the maximum of iterations performed by the rendering
  2871. algorithm. Default value is 7189.
  2872. @item outer
  2873. Set outer coloring mode.
  2874. It shall assume one of following values:
  2875. @table @option
  2876. @item iteration_count
  2877. Set iteration cound mode.
  2878. @item normalized_iteration_count
  2879. set normalized iteration count mode.
  2880. @end table
  2881. Default value is @var{normalized_iteration_count}.
  2882. @item rate, r
  2883. Set frame rate, expressed as number of frames per second. Default
  2884. value is "25".
  2885. @item size, s
  2886. Set frame size. Default value is "640x480".
  2887. @item start_scale
  2888. Set the initial scale value. Default value is 3.0.
  2889. @item start_x
  2890. Set the initial x position. Must be a floating point value between
  2891. -100 and 100. Default value is -0.743643887037158704752191506114774.
  2892. @item start_y
  2893. Set the initial y position. Must be a floating point value between
  2894. -100 and 100. Default value is -0.131825904205311970493132056385139.
  2895. @end table
  2896. @section mptestsrc
  2897. Generate various test patterns, as generated by the MPlayer test filter.
  2898. The size of the generated video is fixed, and is 256x256.
  2899. This source is useful in particular for testing encoding features.
  2900. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2901. separated by ":". The description of the accepted options follows.
  2902. @table @option
  2903. @item rate, r
  2904. Specify the frame rate of the sourced video, as the number of frames
  2905. generated per second. It has to be a string in the format
  2906. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2907. number or a valid video frame rate abbreviation. The default value is
  2908. "25".
  2909. @item duration, d
  2910. Set the video duration of the sourced video. The accepted syntax is:
  2911. @example
  2912. [-]HH:MM:SS[.m...]
  2913. [-]S+[.m...]
  2914. @end example
  2915. See also the function @code{av_parse_time()}.
  2916. If not specified, or the expressed duration is negative, the video is
  2917. supposed to be generated forever.
  2918. @item test, t
  2919. Set the number or the name of the test to perform. Supported tests are:
  2920. @table @option
  2921. @item dc_luma
  2922. @item dc_chroma
  2923. @item freq_luma
  2924. @item freq_chroma
  2925. @item amp_luma
  2926. @item amp_chroma
  2927. @item cbp
  2928. @item mv
  2929. @item ring1
  2930. @item ring2
  2931. @item all
  2932. @end table
  2933. Default value is "all", which will cycle through the list of all tests.
  2934. @end table
  2935. For example the following:
  2936. @example
  2937. testsrc=t=dc_luma
  2938. @end example
  2939. will generate a "dc_luma" test pattern.
  2940. @section frei0r_src
  2941. Provide a frei0r source.
  2942. To enable compilation of this filter you need to install the frei0r
  2943. header and configure FFmpeg with @code{--enable-frei0r}.
  2944. The source supports the syntax:
  2945. @example
  2946. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2947. @end example
  2948. @var{size} is the size of the video to generate, may be a string of the
  2949. form @var{width}x@var{height} or a frame size abbreviation.
  2950. @var{rate} is the rate of the video to generate, may be a string of
  2951. the form @var{num}/@var{den} or a frame rate abbreviation.
  2952. @var{src_name} is the name to the frei0r source to load. For more
  2953. information regarding frei0r and how to set the parameters read the
  2954. section @ref{frei0r} in the description of the video filters.
  2955. For example, to generate a frei0r partik0l source with size 200x200
  2956. and frame rate 10 which is overlayed on the overlay filter main input:
  2957. @example
  2958. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2959. @end example
  2960. @section life
  2961. Generate a life pattern.
  2962. This source is based on a generalization of John Conway's life game.
  2963. The sourced input represents a life grid, each pixel represents a cell
  2964. which can be in one of two possible states, alive or dead. Every cell
  2965. interacts with its eight neighbours, which are the cells that are
  2966. horizontally, vertically, or diagonally adjacent.
  2967. At each interaction the grid evolves according to the adopted rule,
  2968. which specifies the number of neighbor alive cells which will make a
  2969. cell stay alive or born. The @option{rule} option allows to specify
  2970. the rule to adopt.
  2971. This source accepts a list of options in the form of
  2972. @var{key}=@var{value} pairs separated by ":". A description of the
  2973. accepted options follows.
  2974. @table @option
  2975. @item filename, f
  2976. Set the file from which to read the initial grid state. In the file,
  2977. each non-whitespace character is considered an alive cell, and newline
  2978. is used to delimit the end of each row.
  2979. If this option is not specified, the initial grid is generated
  2980. randomly.
  2981. @item rate, r
  2982. Set the video rate, that is the number of frames generated per second.
  2983. Default is 25.
  2984. @item random_fill_ratio, ratio
  2985. Set the random fill ratio for the initial random grid. It is a
  2986. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2987. It is ignored when a file is specified.
  2988. @item random_seed, seed
  2989. Set the seed for filling the initial random grid, must be an integer
  2990. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2991. set to -1, the filter will try to use a good random seed on a best
  2992. effort basis.
  2993. @item rule
  2994. Set the life rule.
  2995. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2996. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2997. @var{NS} specifies the number of alive neighbor cells which make a
  2998. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2999. which make a dead cell to become alive (i.e. to "born").
  3000. "s" and "b" can be used in place of "S" and "B", respectively.
  3001. Alternatively a rule can be specified by an 18-bits integer. The 9
  3002. high order bits are used to encode the next cell state if it is alive
  3003. for each number of neighbor alive cells, the low order bits specify
  3004. the rule for "borning" new cells. Higher order bits encode for an
  3005. higher number of neighbor cells.
  3006. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3007. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3008. Default value is "S23/B3", which is the original Conway's game of life
  3009. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3010. cells, and will born a new cell if there are three alive cells around
  3011. a dead cell.
  3012. @item size, s
  3013. Set the size of the output video.
  3014. If @option{filename} is specified, the size is set by default to the
  3015. same size of the input file. If @option{size} is set, it must contain
  3016. the size specified in the input file, and the initial grid defined in
  3017. that file is centered in the larger resulting area.
  3018. If a filename is not specified, the size value defaults to "320x240"
  3019. (used for a randomly generated initial grid).
  3020. @item stitch
  3021. If set to 1, stitch the left and right grid edges together, and the
  3022. top and bottom edges also. Defaults to 1.
  3023. @item mold
  3024. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3025. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3026. value from 0 to 255.
  3027. @item life_color
  3028. Set the color of living (or new born) cells.
  3029. @item death_color
  3030. Set the color of dead cells. If @option{mold} is set, this is the first color
  3031. used to represent a dead cell.
  3032. @item mold_color
  3033. Set mold color, for definitely dead and moldy cells.
  3034. @end table
  3035. @subsection Examples
  3036. @itemize
  3037. @item
  3038. Read a grid from @file{pattern}, and center it on a grid of size
  3039. 300x300 pixels:
  3040. @example
  3041. life=f=pattern:s=300x300
  3042. @end example
  3043. @item
  3044. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3045. @example
  3046. life=ratio=2/3:s=200x200
  3047. @end example
  3048. @item
  3049. Specify a custom rule for evolving a randomly generated grid:
  3050. @example
  3051. life=rule=S14/B34
  3052. @end example
  3053. @item
  3054. Full example with slow death effect (mold) using @command{ffplay}:
  3055. @example
  3056. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3057. @end example
  3058. @end itemize
  3059. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3060. The @code{color} source provides an uniformly colored input.
  3061. The @code{nullsrc} source returns unprocessed video frames. It is
  3062. mainly useful to be employed in analysis / debugging tools, or as the
  3063. source for filters which ignore the input data.
  3064. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3065. detecting RGB vs BGR issues. You should see a red, green and blue
  3066. stripe from top to bottom.
  3067. The @code{smptebars} source generates a color bars pattern, based on
  3068. the SMPTE Engineering Guideline EG 1-1990.
  3069. The @code{testsrc} source generates a test video pattern, showing a
  3070. color pattern, a scrolling gradient and a timestamp. This is mainly
  3071. intended for testing purposes.
  3072. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3073. separated by ":". The description of the accepted options follows.
  3074. @table @option
  3075. @item color, c
  3076. Specify the color of the source, only used in the @code{color}
  3077. source. It can be the name of a color (case insensitive match) or a
  3078. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3079. default value is "black".
  3080. @item size, s
  3081. Specify the size of the sourced video, it may be a string of the form
  3082. @var{width}x@var{height}, or the name of a size abbreviation. The
  3083. default value is "320x240".
  3084. @item rate, r
  3085. Specify the frame rate of the sourced video, as the number of frames
  3086. generated per second. It has to be a string in the format
  3087. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3088. number or a valid video frame rate abbreviation. The default value is
  3089. "25".
  3090. @item sar
  3091. Set the sample aspect ratio of the sourced video.
  3092. @item duration, d
  3093. Set the video duration of the sourced video. The accepted syntax is:
  3094. @example
  3095. [-]HH[:MM[:SS[.m...]]]
  3096. [-]S+[.m...]
  3097. @end example
  3098. See also the function @code{av_parse_time()}.
  3099. If not specified, or the expressed duration is negative, the video is
  3100. supposed to be generated forever.
  3101. @item decimals, n
  3102. Set the number of decimals to show in the timestamp, only used in the
  3103. @code{testsrc} source.
  3104. The displayed timestamp value will correspond to the original
  3105. timestamp value multiplied by the power of 10 of the specified
  3106. value. Default value is 0.
  3107. @end table
  3108. For example the following:
  3109. @example
  3110. testsrc=duration=5.3:size=qcif:rate=10
  3111. @end example
  3112. will generate a video with a duration of 5.3 seconds, with size
  3113. 176x144 and a frame rate of 10 frames per second.
  3114. The following graph description will generate a red source
  3115. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3116. frames per second.
  3117. @example
  3118. color=c=red@@0.2:s=qcif:r=10
  3119. @end example
  3120. If the input content is to be ignored, @code{nullsrc} can be used. The
  3121. following command generates noise in the luminance plane by employing
  3122. the @code{mp=geq} filter:
  3123. @example
  3124. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3125. @end example
  3126. @c man end VIDEO SOURCES
  3127. @chapter Video Sinks
  3128. @c man begin VIDEO SINKS
  3129. Below is a description of the currently available video sinks.
  3130. @section buffersink
  3131. Buffer video frames, and make them available to the end of the filter
  3132. graph.
  3133. This sink is mainly intended for a programmatic use, in particular
  3134. through the interface defined in @file{libavfilter/buffersink.h}.
  3135. It does not require a string parameter in input, but you need to
  3136. specify a pointer to a list of supported pixel formats terminated by
  3137. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3138. when initializing this sink.
  3139. @section nullsink
  3140. Null video sink, do absolutely nothing with the input video. It is
  3141. mainly useful as a template and to be employed in analysis / debugging
  3142. tools.
  3143. @c man end VIDEO SINKS
  3144. @chapter Multimedia Filters
  3145. @c man begin MULTIMEDIA FILTERS
  3146. Below is a description of the currently available multimedia filters.
  3147. @section asetpts, setpts
  3148. Change the PTS (presentation timestamp) of the input frames.
  3149. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3150. Accept in input an expression evaluated through the eval API, which
  3151. can contain the following constants:
  3152. @table @option
  3153. @item FRAME_RATE
  3154. frame rate, only defined for constant frame-rate video
  3155. @item PTS
  3156. the presentation timestamp in input
  3157. @item N
  3158. the count of the input frame, starting from 0.
  3159. @item NB_CONSUMED_SAMPLES
  3160. the number of consumed samples, not including the current frame (only
  3161. audio)
  3162. @item NB_SAMPLES
  3163. the number of samples in the current frame (only audio)
  3164. @item SAMPLE_RATE
  3165. audio sample rate
  3166. @item STARTPTS
  3167. the PTS of the first frame
  3168. @item STARTT
  3169. the time in seconds of the first frame
  3170. @item INTERLACED
  3171. tell if the current frame is interlaced
  3172. @item T
  3173. the time in seconds of the current frame
  3174. @item TB
  3175. the time base
  3176. @item POS
  3177. original position in the file of the frame, or undefined if undefined
  3178. for the current frame
  3179. @item PREV_INPTS
  3180. previous input PTS
  3181. @item PREV_INT
  3182. previous input time in seconds
  3183. @item PREV_OUTPTS
  3184. previous output PTS
  3185. @item PREV_OUTT
  3186. previous output time in seconds
  3187. @end table
  3188. @subsection Examples
  3189. @itemize
  3190. @item
  3191. Start counting PTS from zero
  3192. @example
  3193. setpts=PTS-STARTPTS
  3194. @end example
  3195. @item
  3196. Apply fast motion effect:
  3197. @example
  3198. setpts=0.5*PTS
  3199. @end example
  3200. @item
  3201. Apply slow motion effect:
  3202. @example
  3203. setpts=2.0*PTS
  3204. @end example
  3205. @item
  3206. Set fixed rate of 25 frames per second:
  3207. @example
  3208. setpts=N/(25*TB)
  3209. @end example
  3210. @item
  3211. Set fixed rate 25 fps with some jitter:
  3212. @example
  3213. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3214. @end example
  3215. @item
  3216. Apply an offset of 10 seconds to the input PTS:
  3217. @example
  3218. setpts=PTS+10/TB
  3219. @end example
  3220. @end itemize
  3221. @section settb, asettb
  3222. Set the timebase to use for the output frames timestamps.
  3223. It is mainly useful for testing timebase configuration.
  3224. It accepts in input an arithmetic expression representing a rational.
  3225. The expression can contain the constants "AVTB" (the
  3226. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3227. audio only).
  3228. The default value for the input is "intb".
  3229. @subsection Examples
  3230. @itemize
  3231. @item
  3232. Set the timebase to 1/25:
  3233. @example
  3234. settb=1/25
  3235. @end example
  3236. @item
  3237. Set the timebase to 1/10:
  3238. @example
  3239. settb=0.1
  3240. @end example
  3241. @item
  3242. Set the timebase to 1001/1000:
  3243. @example
  3244. settb=1+0.001
  3245. @end example
  3246. @item
  3247. Set the timebase to 2*intb:
  3248. @example
  3249. settb=2*intb
  3250. @end example
  3251. @item
  3252. Set the default timebase value:
  3253. @example
  3254. settb=AVTB
  3255. @end example
  3256. @end itemize
  3257. @section concat
  3258. Concatenate audio and video streams, joining them together one after the
  3259. other.
  3260. The filter works on segments of synchronized video and audio streams. All
  3261. segments must have the same number of streams of each type, and that will
  3262. also be the number of streams at output.
  3263. The filter accepts the following named parameters:
  3264. @table @option
  3265. @item n
  3266. Set the number of segments. Default is 2.
  3267. @item v
  3268. Set the number of output video streams, that is also the number of video
  3269. streams in each segment. Default is 1.
  3270. @item a
  3271. Set the number of output audio streams, that is also the number of video
  3272. streams in each segment. Default is 0.
  3273. @end table
  3274. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3275. @var{a} audio outputs.
  3276. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3277. segment, in the same order as the outputs, then the inputs for the second
  3278. segment, etc.
  3279. Related streams do not always have exactly the same duration, for various
  3280. reasons including codec frame size or sloppy authoring. For that reason,
  3281. related synchronized streams (e.g. a video and its audio track) should be
  3282. concatenated at once. The concat filter will use the duration of the longest
  3283. stream in each segment (except the last one), and if necessary pad shorter
  3284. audio streams with silence.
  3285. For this filter to work correctly, all segments must start at timestamp 0.
  3286. All corresponding streams must have the same parameters in all segments; the
  3287. filtering system will automatically select a common pixel format for video
  3288. streams, and a common sample format, sample rate and channel layout for
  3289. audio streams, but other settings, such as resolution, must be converted
  3290. explicitly by the user.
  3291. Different frame rates are acceptable but will result in variable frame rate
  3292. at output; be sure to configure the output file to handle it.
  3293. Examples:
  3294. @itemize
  3295. @item
  3296. Concatenate an opening, an episode and an ending, all in bilingual version
  3297. (video in stream 0, audio in streams 1 and 2):
  3298. @example
  3299. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3300. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3301. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3302. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3303. @end example
  3304. @item
  3305. Concatenate two parts, handling audio and video separately, using the
  3306. (a)movie sources, and adjusting the resolution:
  3307. @example
  3308. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3309. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3310. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3311. @end example
  3312. Note that a desync will happen at the stitch if the audio and video streams
  3313. do not have exactly the same duration in the first file.
  3314. @end itemize
  3315. @section showspectrum
  3316. Convert input audio to a video output, representing the audio frequency
  3317. spectrum.
  3318. The filter accepts the following named parameters:
  3319. @table @option
  3320. @item size, s
  3321. Specify the video size for the output. Default value is @code{640x480}.
  3322. @end table
  3323. The usage is very similar to the showwaves filter; see the examples in that
  3324. section.
  3325. @section showwaves
  3326. Convert input audio to a video output, representing the samples waves.
  3327. The filter accepts the following named parameters:
  3328. @table @option
  3329. @item n
  3330. Set the number of samples which are printed on the same column. A
  3331. larger value will decrease the frame rate. Must be a positive
  3332. integer. This option can be set only if the value for @var{rate}
  3333. is not explicitly specified.
  3334. @item rate, r
  3335. Set the (approximate) output frame rate. This is done by setting the
  3336. option @var{n}. Default value is "25".
  3337. @item size, s
  3338. Specify the video size for the output. Default value is "600x240".
  3339. @end table
  3340. Some examples follow.
  3341. @itemize
  3342. @item
  3343. Output the input file audio and the corresponding video representation
  3344. at the same time:
  3345. @example
  3346. amovie=a.mp3,asplit[out0],showwaves[out1]
  3347. @end example
  3348. @item
  3349. Create a synthetic signal and show it with showwaves, forcing a
  3350. framerate of 30 frames per second:
  3351. @example
  3352. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3353. @end example
  3354. @end itemize
  3355. @c man end MULTIMEDIA FILTERS
  3356. @chapter Multimedia Sources
  3357. @c man begin MULTIMEDIA SOURCES
  3358. Below is a description of the currently available multimedia sources.
  3359. @section amovie
  3360. This is the same as @ref{src_movie} source, except it selects an audio
  3361. stream by default.
  3362. @anchor{src_movie}
  3363. @section movie
  3364. Read audio and/or video stream(s) from a movie container.
  3365. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3366. @var{movie_name} is the name of the resource to read (not necessarily
  3367. a file but also a device or a stream accessed through some protocol),
  3368. and @var{options} is an optional sequence of @var{key}=@var{value}
  3369. pairs, separated by ":".
  3370. The description of the accepted options follows.
  3371. @table @option
  3372. @item format_name, f
  3373. Specifies the format assumed for the movie to read, and can be either
  3374. the name of a container or an input device. If not specified the
  3375. format is guessed from @var{movie_name} or by probing.
  3376. @item seek_point, sp
  3377. Specifies the seek point in seconds, the frames will be output
  3378. starting from this seek point, the parameter is evaluated with
  3379. @code{av_strtod} so the numerical value may be suffixed by an IS
  3380. postfix. Default value is "0".
  3381. @item streams, s
  3382. Specifies the streams to read. Several streams can be specified, separated
  3383. by "+". The source will then have as many outputs, in the same order. The
  3384. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3385. names, "dv" and "da" specify respectively the default (best suited) video
  3386. and audio stream. Default is "dv", or "da" if the filter is called as
  3387. "amovie".
  3388. @item stream_index, si
  3389. Specifies the index of the video stream to read. If the value is -1,
  3390. the best suited video stream will be automatically selected. Default
  3391. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3392. audio instead of video.
  3393. @item loop
  3394. Specifies how many times to read the stream in sequence.
  3395. If the value is less than 1, the stream will be read again and again.
  3396. Default value is "1".
  3397. Note that when the movie is looped the source timestamps are not
  3398. changed, so it will generate non monotonically increasing timestamps.
  3399. @end table
  3400. This filter allows to overlay a second video on top of main input of
  3401. a filtergraph as shown in this graph:
  3402. @example
  3403. input -----------> deltapts0 --> overlay --> output
  3404. ^
  3405. |
  3406. movie --> scale--> deltapts1 -------+
  3407. @end example
  3408. Some examples follow.
  3409. @itemize
  3410. @item
  3411. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3412. on top of the input labelled as "in":
  3413. @example
  3414. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3415. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3416. @end example
  3417. @item
  3418. Read from a video4linux2 device, and overlay it on top of the input
  3419. labelled as "in":
  3420. @example
  3421. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3422. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3423. @end example
  3424. @item
  3425. Read the first video stream and the audio stream with id 0x81 from
  3426. dvd.vob; the video is connected to the pad named "video" and the audio is
  3427. connected to the pad named "audio":
  3428. @example
  3429. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3430. @end example
  3431. @end itemize
  3432. @c man end MULTIMEDIA SOURCES