You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3892 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  149. {
  150. MpegEncContext *s = &v->s;
  151. /* The put pixels loop is always one MB row behind the decoding loop,
  152. * because we can only put pixels when overlap filtering is done, and
  153. * for filtering of the bottom edge of a MB, we need the next MB row
  154. * present as well.
  155. * Within the row, the put pixels loop is also one MB col behind the
  156. * decoding loop. The reason for this is again, because for filtering
  157. * of the right MB edge, we need the next MB present. */
  158. if (!s->first_slice_line) {
  159. if (s->mb_x) {
  160. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  161. s->dest[0] - 16 * s->linesize - 16,
  162. s->linesize);
  163. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  164. s->dest[0] - 16 * s->linesize - 8,
  165. s->linesize);
  166. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  167. s->dest[0] - 8 * s->linesize - 16,
  168. s->linesize);
  169. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  170. s->dest[0] - 8 * s->linesize - 8,
  171. s->linesize);
  172. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  173. s->dest[1] - 8 * s->uvlinesize - 8,
  174. s->uvlinesize);
  175. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  176. s->dest[2] - 8 * s->uvlinesize - 8,
  177. s->uvlinesize);
  178. }
  179. if (s->mb_x == s->mb_width - 1) {
  180. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  181. s->dest[0] - 16 * s->linesize,
  182. s->linesize);
  183. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  184. s->dest[0] - 16 * s->linesize + 8,
  185. s->linesize);
  186. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  187. s->dest[0] - 8 * s->linesize,
  188. s->linesize);
  189. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  190. s->dest[0] - 8 * s->linesize + 8,
  191. s->linesize);
  192. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  193. s->dest[1] - 8 * s->uvlinesize,
  194. s->uvlinesize);
  195. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  196. s->dest[2] - 8 * s->uvlinesize,
  197. s->uvlinesize);
  198. }
  199. }
  200. #define inc_blk_idx(idx) do { \
  201. idx++; \
  202. if (idx >= v->n_allocated_blks) \
  203. idx = 0; \
  204. } while (0)
  205. inc_blk_idx(v->topleft_blk_idx);
  206. inc_blk_idx(v->top_blk_idx);
  207. inc_blk_idx(v->left_blk_idx);
  208. inc_blk_idx(v->cur_blk_idx);
  209. }
  210. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  211. {
  212. MpegEncContext *s = &v->s;
  213. int j;
  214. if (!s->first_slice_line) {
  215. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  216. if (s->mb_x)
  217. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  218. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  219. for(j = 0; j < 2; j++){
  220. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  221. if (s->mb_x)
  222. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  223. }
  224. }
  225. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  226. if (s->mb_y == s->mb_height-1) {
  227. if (s->mb_x) {
  228. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  229. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  230. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  231. }
  232. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  233. }
  234. }
  235. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  236. {
  237. MpegEncContext *s = &v->s;
  238. int j;
  239. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  240. * means it runs two rows/cols behind the decoding loop. */
  241. if (!s->first_slice_line) {
  242. if (s->mb_x) {
  243. if (s->mb_y >= s->start_mb_y + 2) {
  244. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  245. if (s->mb_x >= 2)
  246. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  247. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  248. for(j = 0; j < 2; j++) {
  249. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  250. if (s->mb_x >= 2) {
  251. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  252. }
  253. }
  254. }
  255. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  256. }
  257. if (s->mb_x == s->mb_width - 1) {
  258. if (s->mb_y >= s->start_mb_y + 2) {
  259. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  260. if (s->mb_x)
  261. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  262. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  263. for(j = 0; j < 2; j++) {
  264. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  265. if (s->mb_x >= 2) {
  266. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  267. }
  268. }
  269. }
  270. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  271. }
  272. if (s->mb_y == s->mb_height) {
  273. if (s->mb_x) {
  274. if (s->mb_x >= 2)
  275. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  276. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  277. if (s->mb_x >= 2) {
  278. for(j = 0; j < 2; j++) {
  279. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  280. }
  281. }
  282. }
  283. if (s->mb_x == s->mb_width - 1) {
  284. if (s->mb_x)
  285. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  286. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  287. if (s->mb_x) {
  288. for(j = 0; j < 2; j++) {
  289. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  290. }
  291. }
  292. }
  293. }
  294. }
  295. }
  296. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  297. {
  298. MpegEncContext *s = &v->s;
  299. int mb_pos;
  300. if (v->condover == CONDOVER_NONE)
  301. return;
  302. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  303. /* Within a MB, the horizontal overlap always runs before the vertical.
  304. * To accomplish that, we run the H on left and internal borders of the
  305. * currently decoded MB. Then, we wait for the next overlap iteration
  306. * to do H overlap on the right edge of this MB, before moving over and
  307. * running the V overlap. Therefore, the V overlap makes us trail by one
  308. * MB col and the H overlap filter makes us trail by one MB row. This
  309. * is reflected in the time at which we run the put_pixels loop. */
  310. if(v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  311. if(s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  312. v->over_flags_plane[mb_pos - 1])) {
  313. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  314. v->block[v->cur_blk_idx][0]);
  315. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  316. v->block[v->cur_blk_idx][2]);
  317. if(!(s->flags & CODEC_FLAG_GRAY)) {
  318. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  319. v->block[v->cur_blk_idx][4]);
  320. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  321. v->block[v->cur_blk_idx][5]);
  322. }
  323. }
  324. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  325. v->block[v->cur_blk_idx][1]);
  326. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  327. v->block[v->cur_blk_idx][3]);
  328. if (s->mb_x == s->mb_width - 1) {
  329. if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  330. v->over_flags_plane[mb_pos - s->mb_stride])) {
  331. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  332. v->block[v->cur_blk_idx][0]);
  333. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  334. v->block[v->cur_blk_idx][1]);
  335. if(!(s->flags & CODEC_FLAG_GRAY)) {
  336. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  337. v->block[v->cur_blk_idx][4]);
  338. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  339. v->block[v->cur_blk_idx][5]);
  340. }
  341. }
  342. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  343. v->block[v->cur_blk_idx][2]);
  344. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  345. v->block[v->cur_blk_idx][3]);
  346. }
  347. }
  348. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  349. if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  350. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  351. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  352. v->block[v->left_blk_idx][0]);
  353. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  354. v->block[v->left_blk_idx][1]);
  355. if(!(s->flags & CODEC_FLAG_GRAY)) {
  356. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  357. v->block[v->left_blk_idx][4]);
  358. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  359. v->block[v->left_blk_idx][5]);
  360. }
  361. }
  362. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  363. v->block[v->left_blk_idx][2]);
  364. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  365. v->block[v->left_blk_idx][3]);
  366. }
  367. }
  368. /** Do motion compensation over 1 macroblock
  369. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  370. */
  371. static void vc1_mc_1mv(VC1Context *v, int dir)
  372. {
  373. MpegEncContext *s = &v->s;
  374. DSPContext *dsp = &v->s.dsp;
  375. uint8_t *srcY, *srcU, *srcV;
  376. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  377. if(!v->s.last_picture.data[0])return;
  378. mx = s->mv[dir][0][0];
  379. my = s->mv[dir][0][1];
  380. // store motion vectors for further use in B frames
  381. if(s->pict_type == AV_PICTURE_TYPE_P) {
  382. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  383. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  384. }
  385. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  386. uvmy = (my + ((my & 3) == 3)) >> 1;
  387. v->luma_mv[s->mb_x][0] = uvmx;
  388. v->luma_mv[s->mb_x][1] = uvmy;
  389. if(v->fastuvmc) {
  390. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  391. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  392. }
  393. if(!dir) {
  394. srcY = s->last_picture.data[0];
  395. srcU = s->last_picture.data[1];
  396. srcV = s->last_picture.data[2];
  397. } else {
  398. srcY = s->next_picture.data[0];
  399. srcU = s->next_picture.data[1];
  400. srcV = s->next_picture.data[2];
  401. }
  402. src_x = s->mb_x * 16 + (mx >> 2);
  403. src_y = s->mb_y * 16 + (my >> 2);
  404. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  405. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  406. if(v->profile != PROFILE_ADVANCED){
  407. src_x = av_clip( src_x, -16, s->mb_width * 16);
  408. src_y = av_clip( src_y, -16, s->mb_height * 16);
  409. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  410. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  411. }else{
  412. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  413. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  414. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  415. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  416. }
  417. srcY += src_y * s->linesize + src_x;
  418. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  419. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  420. /* for grayscale we should not try to read from unknown area */
  421. if(s->flags & CODEC_FLAG_GRAY) {
  422. srcU = s->edge_emu_buffer + 18 * s->linesize;
  423. srcV = s->edge_emu_buffer + 18 * s->linesize;
  424. }
  425. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  426. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  427. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  428. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  429. srcY -= s->mspel * (1 + s->linesize);
  430. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  431. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  432. srcY = s->edge_emu_buffer;
  433. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  434. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  435. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  436. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  437. srcU = uvbuf;
  438. srcV = uvbuf + 16;
  439. /* if we deal with range reduction we need to scale source blocks */
  440. if(v->rangeredfrm) {
  441. int i, j;
  442. uint8_t *src, *src2;
  443. src = srcY;
  444. for(j = 0; j < 17 + s->mspel*2; j++) {
  445. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  446. src += s->linesize;
  447. }
  448. src = srcU; src2 = srcV;
  449. for(j = 0; j < 9; j++) {
  450. for(i = 0; i < 9; i++) {
  451. src[i] = ((src[i] - 128) >> 1) + 128;
  452. src2[i] = ((src2[i] - 128) >> 1) + 128;
  453. }
  454. src += s->uvlinesize;
  455. src2 += s->uvlinesize;
  456. }
  457. }
  458. /* if we deal with intensity compensation we need to scale source blocks */
  459. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  460. int i, j;
  461. uint8_t *src, *src2;
  462. src = srcY;
  463. for(j = 0; j < 17 + s->mspel*2; j++) {
  464. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  465. src += s->linesize;
  466. }
  467. src = srcU; src2 = srcV;
  468. for(j = 0; j < 9; j++) {
  469. for(i = 0; i < 9; i++) {
  470. src[i] = v->lutuv[src[i]];
  471. src2[i] = v->lutuv[src2[i]];
  472. }
  473. src += s->uvlinesize;
  474. src2 += s->uvlinesize;
  475. }
  476. }
  477. srcY += s->mspel * (1 + s->linesize);
  478. }
  479. if(s->mspel) {
  480. dxy = ((my & 3) << 2) | (mx & 3);
  481. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  482. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  483. srcY += s->linesize * 8;
  484. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  485. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  486. } else { // hpel mc - always used for luma
  487. dxy = (my & 2) | ((mx & 2) >> 1);
  488. if(!v->rnd)
  489. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  490. else
  491. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  492. }
  493. if(s->flags & CODEC_FLAG_GRAY) return;
  494. /* Chroma MC always uses qpel bilinear */
  495. uvmx = (uvmx&3)<<1;
  496. uvmy = (uvmy&3)<<1;
  497. if(!v->rnd){
  498. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  499. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  500. }else{
  501. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  502. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  503. }
  504. }
  505. /** Do motion compensation for 4-MV macroblock - luminance block
  506. */
  507. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  508. {
  509. MpegEncContext *s = &v->s;
  510. DSPContext *dsp = &v->s.dsp;
  511. uint8_t *srcY;
  512. int dxy, mx, my, src_x, src_y;
  513. int off;
  514. if(!v->s.last_picture.data[0])return;
  515. mx = s->mv[0][n][0];
  516. my = s->mv[0][n][1];
  517. srcY = s->last_picture.data[0];
  518. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  519. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  520. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  521. if(v->profile != PROFILE_ADVANCED){
  522. src_x = av_clip( src_x, -16, s->mb_width * 16);
  523. src_y = av_clip( src_y, -16, s->mb_height * 16);
  524. }else{
  525. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  526. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  527. }
  528. srcY += src_y * s->linesize + src_x;
  529. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  530. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  531. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  532. srcY -= s->mspel * (1 + s->linesize);
  533. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  534. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  535. srcY = s->edge_emu_buffer;
  536. /* if we deal with range reduction we need to scale source blocks */
  537. if(v->rangeredfrm) {
  538. int i, j;
  539. uint8_t *src;
  540. src = srcY;
  541. for(j = 0; j < 9 + s->mspel*2; j++) {
  542. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  543. src += s->linesize;
  544. }
  545. }
  546. /* if we deal with intensity compensation we need to scale source blocks */
  547. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  548. int i, j;
  549. uint8_t *src;
  550. src = srcY;
  551. for(j = 0; j < 9 + s->mspel*2; j++) {
  552. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  553. src += s->linesize;
  554. }
  555. }
  556. srcY += s->mspel * (1 + s->linesize);
  557. }
  558. if(s->mspel) {
  559. dxy = ((my & 3) << 2) | (mx & 3);
  560. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  561. } else { // hpel mc - always used for luma
  562. dxy = (my & 2) | ((mx & 2) >> 1);
  563. if(!v->rnd)
  564. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  565. else
  566. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  567. }
  568. }
  569. static inline int median4(int a, int b, int c, int d)
  570. {
  571. if(a < b) {
  572. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  573. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  574. } else {
  575. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  576. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  577. }
  578. }
  579. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  580. */
  581. static void vc1_mc_4mv_chroma(VC1Context *v)
  582. {
  583. MpegEncContext *s = &v->s;
  584. DSPContext *dsp = &v->s.dsp;
  585. uint8_t *srcU, *srcV;
  586. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  587. int i, idx, tx = 0, ty = 0;
  588. int mvx[4], mvy[4], intra[4];
  589. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  590. if(!v->s.last_picture.data[0])return;
  591. if(s->flags & CODEC_FLAG_GRAY) return;
  592. for(i = 0; i < 4; i++) {
  593. mvx[i] = s->mv[0][i][0];
  594. mvy[i] = s->mv[0][i][1];
  595. intra[i] = v->mb_type[0][s->block_index[i]];
  596. }
  597. /* calculate chroma MV vector from four luma MVs */
  598. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  599. if(!idx) { // all blocks are inter
  600. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  601. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  602. } else if(count[idx] == 1) { // 3 inter blocks
  603. switch(idx) {
  604. case 0x1:
  605. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  606. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  607. break;
  608. case 0x2:
  609. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  610. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  611. break;
  612. case 0x4:
  613. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  614. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  615. break;
  616. case 0x8:
  617. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  618. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  619. break;
  620. }
  621. } else if(count[idx] == 2) {
  622. int t1 = 0, t2 = 0;
  623. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  624. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  625. tx = (mvx[t1] + mvx[t2]) / 2;
  626. ty = (mvy[t1] + mvy[t2]) / 2;
  627. } else {
  628. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  629. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  630. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  631. return; //no need to do MC for inter blocks
  632. }
  633. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  634. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  635. uvmx = (tx + ((tx&3) == 3)) >> 1;
  636. uvmy = (ty + ((ty&3) == 3)) >> 1;
  637. v->luma_mv[s->mb_x][0] = uvmx;
  638. v->luma_mv[s->mb_x][1] = uvmy;
  639. if(v->fastuvmc) {
  640. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  641. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  642. }
  643. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  644. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  645. if(v->profile != PROFILE_ADVANCED){
  646. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  647. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  648. }else{
  649. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  650. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  651. }
  652. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  653. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  654. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  655. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  656. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  657. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  658. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  659. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  660. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  661. srcU = s->edge_emu_buffer;
  662. srcV = s->edge_emu_buffer + 16;
  663. /* if we deal with range reduction we need to scale source blocks */
  664. if(v->rangeredfrm) {
  665. int i, j;
  666. uint8_t *src, *src2;
  667. src = srcU; src2 = srcV;
  668. for(j = 0; j < 9; j++) {
  669. for(i = 0; i < 9; i++) {
  670. src[i] = ((src[i] - 128) >> 1) + 128;
  671. src2[i] = ((src2[i] - 128) >> 1) + 128;
  672. }
  673. src += s->uvlinesize;
  674. src2 += s->uvlinesize;
  675. }
  676. }
  677. /* if we deal with intensity compensation we need to scale source blocks */
  678. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  679. int i, j;
  680. uint8_t *src, *src2;
  681. src = srcU; src2 = srcV;
  682. for(j = 0; j < 9; j++) {
  683. for(i = 0; i < 9; i++) {
  684. src[i] = v->lutuv[src[i]];
  685. src2[i] = v->lutuv[src2[i]];
  686. }
  687. src += s->uvlinesize;
  688. src2 += s->uvlinesize;
  689. }
  690. }
  691. }
  692. /* Chroma MC always uses qpel bilinear */
  693. uvmx = (uvmx&3)<<1;
  694. uvmy = (uvmy&3)<<1;
  695. if(!v->rnd){
  696. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  697. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  698. }else{
  699. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  700. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  701. }
  702. }
  703. /***********************************************************************/
  704. /**
  705. * @defgroup vc1block VC-1 Block-level functions
  706. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  707. * @{
  708. */
  709. /**
  710. * @def GET_MQUANT
  711. * @brief Get macroblock-level quantizer scale
  712. */
  713. #define GET_MQUANT() \
  714. if (v->dquantfrm) \
  715. { \
  716. int edges = 0; \
  717. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  718. { \
  719. if (v->dqbilevel) \
  720. { \
  721. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  722. } \
  723. else \
  724. { \
  725. mqdiff = get_bits(gb, 3); \
  726. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  727. else mquant = get_bits(gb, 5); \
  728. } \
  729. } \
  730. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  731. edges = 1 << v->dqsbedge; \
  732. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  733. edges = (3 << v->dqsbedge) % 15; \
  734. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  735. edges = 15; \
  736. if((edges&1) && !s->mb_x) \
  737. mquant = v->altpq; \
  738. if((edges&2) && s->first_slice_line) \
  739. mquant = v->altpq; \
  740. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  741. mquant = v->altpq; \
  742. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  743. mquant = v->altpq; \
  744. }
  745. /**
  746. * @def GET_MVDATA(_dmv_x, _dmv_y)
  747. * @brief Get MV differentials
  748. * @see MVDATA decoding from 8.3.5.2, p(1)20
  749. * @param _dmv_x Horizontal differential for decoded MV
  750. * @param _dmv_y Vertical differential for decoded MV
  751. */
  752. #define GET_MVDATA(_dmv_x, _dmv_y) \
  753. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  754. VC1_MV_DIFF_VLC_BITS, 2); \
  755. if (index > 36) \
  756. { \
  757. mb_has_coeffs = 1; \
  758. index -= 37; \
  759. } \
  760. else mb_has_coeffs = 0; \
  761. s->mb_intra = 0; \
  762. if (!index) { _dmv_x = _dmv_y = 0; } \
  763. else if (index == 35) \
  764. { \
  765. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  766. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  767. } \
  768. else if (index == 36) \
  769. { \
  770. _dmv_x = 0; \
  771. _dmv_y = 0; \
  772. s->mb_intra = 1; \
  773. } \
  774. else \
  775. { \
  776. index1 = index%6; \
  777. if (!s->quarter_sample && index1 == 5) val = 1; \
  778. else val = 0; \
  779. if(size_table[index1] - val > 0) \
  780. val = get_bits(gb, size_table[index1] - val); \
  781. else val = 0; \
  782. sign = 0 - (val&1); \
  783. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  784. \
  785. index1 = index/6; \
  786. if (!s->quarter_sample && index1 == 5) val = 1; \
  787. else val = 0; \
  788. if(size_table[index1] - val > 0) \
  789. val = get_bits(gb, size_table[index1] - val); \
  790. else val = 0; \
  791. sign = 0 - (val&1); \
  792. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  793. }
  794. /** Predict and set motion vector
  795. */
  796. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  797. {
  798. MpegEncContext *s = &v->s;
  799. int xy, wrap, off = 0;
  800. int16_t *A, *B, *C;
  801. int px, py;
  802. int sum;
  803. /* scale MV difference to be quad-pel */
  804. dmv_x <<= 1 - s->quarter_sample;
  805. dmv_y <<= 1 - s->quarter_sample;
  806. wrap = s->b8_stride;
  807. xy = s->block_index[n];
  808. if(s->mb_intra){
  809. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  810. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  811. s->current_picture.motion_val[1][xy][0] = 0;
  812. s->current_picture.motion_val[1][xy][1] = 0;
  813. if(mv1) { /* duplicate motion data for 1-MV block */
  814. s->current_picture.motion_val[0][xy + 1][0] = 0;
  815. s->current_picture.motion_val[0][xy + 1][1] = 0;
  816. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  817. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  818. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  819. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  820. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  821. s->current_picture.motion_val[1][xy + 1][0] = 0;
  822. s->current_picture.motion_val[1][xy + 1][1] = 0;
  823. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  824. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  825. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  826. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  827. }
  828. return;
  829. }
  830. C = s->current_picture.motion_val[0][xy - 1];
  831. A = s->current_picture.motion_val[0][xy - wrap];
  832. if(mv1)
  833. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  834. else {
  835. //in 4-MV mode different blocks have different B predictor position
  836. switch(n){
  837. case 0:
  838. off = (s->mb_x > 0) ? -1 : 1;
  839. break;
  840. case 1:
  841. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  842. break;
  843. case 2:
  844. off = 1;
  845. break;
  846. case 3:
  847. off = -1;
  848. }
  849. }
  850. B = s->current_picture.motion_val[0][xy - wrap + off];
  851. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  852. if(s->mb_width == 1) {
  853. px = A[0];
  854. py = A[1];
  855. } else {
  856. px = mid_pred(A[0], B[0], C[0]);
  857. py = mid_pred(A[1], B[1], C[1]);
  858. }
  859. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  860. px = C[0];
  861. py = C[1];
  862. } else {
  863. px = py = 0;
  864. }
  865. /* Pullback MV as specified in 8.3.5.3.4 */
  866. {
  867. int qx, qy, X, Y;
  868. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  869. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  870. X = (s->mb_width << 6) - 4;
  871. Y = (s->mb_height << 6) - 4;
  872. if(mv1) {
  873. if(qx + px < -60) px = -60 - qx;
  874. if(qy + py < -60) py = -60 - qy;
  875. } else {
  876. if(qx + px < -28) px = -28 - qx;
  877. if(qy + py < -28) py = -28 - qy;
  878. }
  879. if(qx + px > X) px = X - qx;
  880. if(qy + py > Y) py = Y - qy;
  881. }
  882. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  883. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  884. if(is_intra[xy - wrap])
  885. sum = FFABS(px) + FFABS(py);
  886. else
  887. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  888. if(sum > 32) {
  889. if(get_bits1(&s->gb)) {
  890. px = A[0];
  891. py = A[1];
  892. } else {
  893. px = C[0];
  894. py = C[1];
  895. }
  896. } else {
  897. if(is_intra[xy - 1])
  898. sum = FFABS(px) + FFABS(py);
  899. else
  900. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  901. if(sum > 32) {
  902. if(get_bits1(&s->gb)) {
  903. px = A[0];
  904. py = A[1];
  905. } else {
  906. px = C[0];
  907. py = C[1];
  908. }
  909. }
  910. }
  911. }
  912. /* store MV using signed modulus of MV range defined in 4.11 */
  913. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  914. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  915. if(mv1) { /* duplicate motion data for 1-MV block */
  916. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  917. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  918. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  919. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  920. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  921. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  922. }
  923. }
  924. /** Motion compensation for direct or interpolated blocks in B-frames
  925. */
  926. static void vc1_interp_mc(VC1Context *v)
  927. {
  928. MpegEncContext *s = &v->s;
  929. DSPContext *dsp = &v->s.dsp;
  930. uint8_t *srcY, *srcU, *srcV;
  931. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  932. if(!v->s.next_picture.data[0])return;
  933. mx = s->mv[1][0][0];
  934. my = s->mv[1][0][1];
  935. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  936. uvmy = (my + ((my & 3) == 3)) >> 1;
  937. if(v->fastuvmc) {
  938. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  939. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  940. }
  941. srcY = s->next_picture.data[0];
  942. srcU = s->next_picture.data[1];
  943. srcV = s->next_picture.data[2];
  944. src_x = s->mb_x * 16 + (mx >> 2);
  945. src_y = s->mb_y * 16 + (my >> 2);
  946. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  947. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  948. if(v->profile != PROFILE_ADVANCED){
  949. src_x = av_clip( src_x, -16, s->mb_width * 16);
  950. src_y = av_clip( src_y, -16, s->mb_height * 16);
  951. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  952. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  953. }else{
  954. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  955. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  956. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  957. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  958. }
  959. srcY += src_y * s->linesize + src_x;
  960. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  961. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  962. /* for grayscale we should not try to read from unknown area */
  963. if(s->flags & CODEC_FLAG_GRAY) {
  964. srcU = s->edge_emu_buffer + 18 * s->linesize;
  965. srcV = s->edge_emu_buffer + 18 * s->linesize;
  966. }
  967. if(v->rangeredfrm
  968. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  969. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  970. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  971. srcY -= s->mspel * (1 + s->linesize);
  972. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  973. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  974. srcY = s->edge_emu_buffer;
  975. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  976. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  977. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  978. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  979. srcU = uvbuf;
  980. srcV = uvbuf + 16;
  981. /* if we deal with range reduction we need to scale source blocks */
  982. if(v->rangeredfrm) {
  983. int i, j;
  984. uint8_t *src, *src2;
  985. src = srcY;
  986. for(j = 0; j < 17 + s->mspel*2; j++) {
  987. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  988. src += s->linesize;
  989. }
  990. src = srcU; src2 = srcV;
  991. for(j = 0; j < 9; j++) {
  992. for(i = 0; i < 9; i++) {
  993. src[i] = ((src[i] - 128) >> 1) + 128;
  994. src2[i] = ((src2[i] - 128) >> 1) + 128;
  995. }
  996. src += s->uvlinesize;
  997. src2 += s->uvlinesize;
  998. }
  999. }
  1000. srcY += s->mspel * (1 + s->linesize);
  1001. }
  1002. if(s->mspel) {
  1003. dxy = ((my & 3) << 2) | (mx & 3);
  1004. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1005. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1006. srcY += s->linesize * 8;
  1007. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1008. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1009. } else { // hpel mc
  1010. dxy = (my & 2) | ((mx & 2) >> 1);
  1011. if(!v->rnd)
  1012. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1013. else
  1014. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1015. }
  1016. if(s->flags & CODEC_FLAG_GRAY) return;
  1017. /* Chroma MC always uses qpel blilinear */
  1018. uvmx = (uvmx&3)<<1;
  1019. uvmy = (uvmy&3)<<1;
  1020. if(!v->rnd){
  1021. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1022. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1023. }else{
  1024. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1025. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1026. }
  1027. }
  1028. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1029. {
  1030. int n = bfrac;
  1031. #if B_FRACTION_DEN==256
  1032. if(inv)
  1033. n -= 256;
  1034. if(!qs)
  1035. return 2 * ((value * n + 255) >> 9);
  1036. return (value * n + 128) >> 8;
  1037. #else
  1038. if(inv)
  1039. n -= B_FRACTION_DEN;
  1040. if(!qs)
  1041. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1042. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1043. #endif
  1044. }
  1045. /** Reconstruct motion vector for B-frame and do motion compensation
  1046. */
  1047. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1048. {
  1049. if(v->use_ic) {
  1050. v->mv_mode2 = v->mv_mode;
  1051. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1052. }
  1053. if(direct) {
  1054. vc1_mc_1mv(v, 0);
  1055. vc1_interp_mc(v);
  1056. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1057. return;
  1058. }
  1059. if(mode == BMV_TYPE_INTERPOLATED) {
  1060. vc1_mc_1mv(v, 0);
  1061. vc1_interp_mc(v);
  1062. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1063. return;
  1064. }
  1065. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1066. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1067. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1068. }
  1069. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1070. {
  1071. MpegEncContext *s = &v->s;
  1072. int xy, wrap, off = 0;
  1073. int16_t *A, *B, *C;
  1074. int px, py;
  1075. int sum;
  1076. int r_x, r_y;
  1077. const uint8_t *is_intra = v->mb_type[0];
  1078. r_x = v->range_x;
  1079. r_y = v->range_y;
  1080. /* scale MV difference to be quad-pel */
  1081. dmv_x[0] <<= 1 - s->quarter_sample;
  1082. dmv_y[0] <<= 1 - s->quarter_sample;
  1083. dmv_x[1] <<= 1 - s->quarter_sample;
  1084. dmv_y[1] <<= 1 - s->quarter_sample;
  1085. wrap = s->b8_stride;
  1086. xy = s->block_index[0];
  1087. if(s->mb_intra) {
  1088. s->current_picture.motion_val[0][xy][0] =
  1089. s->current_picture.motion_val[0][xy][1] =
  1090. s->current_picture.motion_val[1][xy][0] =
  1091. s->current_picture.motion_val[1][xy][1] = 0;
  1092. return;
  1093. }
  1094. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1095. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1096. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1097. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1098. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1099. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1100. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1101. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1102. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1103. if(direct) {
  1104. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1105. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1106. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1107. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1108. return;
  1109. }
  1110. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1111. C = s->current_picture.motion_val[0][xy - 2];
  1112. A = s->current_picture.motion_val[0][xy - wrap*2];
  1113. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1114. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1115. if(!s->mb_x) C[0] = C[1] = 0;
  1116. if(!s->first_slice_line) { // predictor A is not out of bounds
  1117. if(s->mb_width == 1) {
  1118. px = A[0];
  1119. py = A[1];
  1120. } else {
  1121. px = mid_pred(A[0], B[0], C[0]);
  1122. py = mid_pred(A[1], B[1], C[1]);
  1123. }
  1124. } else if(s->mb_x) { // predictor C is not out of bounds
  1125. px = C[0];
  1126. py = C[1];
  1127. } else {
  1128. px = py = 0;
  1129. }
  1130. /* Pullback MV as specified in 8.3.5.3.4 */
  1131. {
  1132. int qx, qy, X, Y;
  1133. if(v->profile < PROFILE_ADVANCED) {
  1134. qx = (s->mb_x << 5);
  1135. qy = (s->mb_y << 5);
  1136. X = (s->mb_width << 5) - 4;
  1137. Y = (s->mb_height << 5) - 4;
  1138. if(qx + px < -28) px = -28 - qx;
  1139. if(qy + py < -28) py = -28 - qy;
  1140. if(qx + px > X) px = X - qx;
  1141. if(qy + py > Y) py = Y - qy;
  1142. } else {
  1143. qx = (s->mb_x << 6);
  1144. qy = (s->mb_y << 6);
  1145. X = (s->mb_width << 6) - 4;
  1146. Y = (s->mb_height << 6) - 4;
  1147. if(qx + px < -60) px = -60 - qx;
  1148. if(qy + py < -60) py = -60 - qy;
  1149. if(qx + px > X) px = X - qx;
  1150. if(qy + py > Y) py = Y - qy;
  1151. }
  1152. }
  1153. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1154. if(0 && !s->first_slice_line && s->mb_x) {
  1155. if(is_intra[xy - wrap])
  1156. sum = FFABS(px) + FFABS(py);
  1157. else
  1158. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1159. if(sum > 32) {
  1160. if(get_bits1(&s->gb)) {
  1161. px = A[0];
  1162. py = A[1];
  1163. } else {
  1164. px = C[0];
  1165. py = C[1];
  1166. }
  1167. } else {
  1168. if(is_intra[xy - 2])
  1169. sum = FFABS(px) + FFABS(py);
  1170. else
  1171. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1172. if(sum > 32) {
  1173. if(get_bits1(&s->gb)) {
  1174. px = A[0];
  1175. py = A[1];
  1176. } else {
  1177. px = C[0];
  1178. py = C[1];
  1179. }
  1180. }
  1181. }
  1182. }
  1183. /* store MV using signed modulus of MV range defined in 4.11 */
  1184. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1185. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1186. }
  1187. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1188. C = s->current_picture.motion_val[1][xy - 2];
  1189. A = s->current_picture.motion_val[1][xy - wrap*2];
  1190. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1191. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1192. if(!s->mb_x) C[0] = C[1] = 0;
  1193. if(!s->first_slice_line) { // predictor A is not out of bounds
  1194. if(s->mb_width == 1) {
  1195. px = A[0];
  1196. py = A[1];
  1197. } else {
  1198. px = mid_pred(A[0], B[0], C[0]);
  1199. py = mid_pred(A[1], B[1], C[1]);
  1200. }
  1201. } else if(s->mb_x) { // predictor C is not out of bounds
  1202. px = C[0];
  1203. py = C[1];
  1204. } else {
  1205. px = py = 0;
  1206. }
  1207. /* Pullback MV as specified in 8.3.5.3.4 */
  1208. {
  1209. int qx, qy, X, Y;
  1210. if(v->profile < PROFILE_ADVANCED) {
  1211. qx = (s->mb_x << 5);
  1212. qy = (s->mb_y << 5);
  1213. X = (s->mb_width << 5) - 4;
  1214. Y = (s->mb_height << 5) - 4;
  1215. if(qx + px < -28) px = -28 - qx;
  1216. if(qy + py < -28) py = -28 - qy;
  1217. if(qx + px > X) px = X - qx;
  1218. if(qy + py > Y) py = Y - qy;
  1219. } else {
  1220. qx = (s->mb_x << 6);
  1221. qy = (s->mb_y << 6);
  1222. X = (s->mb_width << 6) - 4;
  1223. Y = (s->mb_height << 6) - 4;
  1224. if(qx + px < -60) px = -60 - qx;
  1225. if(qy + py < -60) py = -60 - qy;
  1226. if(qx + px > X) px = X - qx;
  1227. if(qy + py > Y) py = Y - qy;
  1228. }
  1229. }
  1230. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1231. if(0 && !s->first_slice_line && s->mb_x) {
  1232. if(is_intra[xy - wrap])
  1233. sum = FFABS(px) + FFABS(py);
  1234. else
  1235. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1236. if(sum > 32) {
  1237. if(get_bits1(&s->gb)) {
  1238. px = A[0];
  1239. py = A[1];
  1240. } else {
  1241. px = C[0];
  1242. py = C[1];
  1243. }
  1244. } else {
  1245. if(is_intra[xy - 2])
  1246. sum = FFABS(px) + FFABS(py);
  1247. else
  1248. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1249. if(sum > 32) {
  1250. if(get_bits1(&s->gb)) {
  1251. px = A[0];
  1252. py = A[1];
  1253. } else {
  1254. px = C[0];
  1255. py = C[1];
  1256. }
  1257. }
  1258. }
  1259. }
  1260. /* store MV using signed modulus of MV range defined in 4.11 */
  1261. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1262. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1263. }
  1264. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1265. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1266. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1267. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1268. }
  1269. /** Get predicted DC value for I-frames only
  1270. * prediction dir: left=0, top=1
  1271. * @param s MpegEncContext
  1272. * @param overlap flag indicating that overlap filtering is used
  1273. * @param pq integer part of picture quantizer
  1274. * @param[in] n block index in the current MB
  1275. * @param dc_val_ptr Pointer to DC predictor
  1276. * @param dir_ptr Prediction direction for use in AC prediction
  1277. */
  1278. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1279. int16_t **dc_val_ptr, int *dir_ptr)
  1280. {
  1281. int a, b, c, wrap, pred, scale;
  1282. int16_t *dc_val;
  1283. static const uint16_t dcpred[32] = {
  1284. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1285. 114, 102, 93, 85, 79, 73, 68, 64,
  1286. 60, 57, 54, 51, 49, 47, 45, 43,
  1287. 41, 39, 38, 37, 35, 34, 33
  1288. };
  1289. /* find prediction - wmv3_dc_scale always used here in fact */
  1290. if (n < 4) scale = s->y_dc_scale;
  1291. else scale = s->c_dc_scale;
  1292. wrap = s->block_wrap[n];
  1293. dc_val= s->dc_val[0] + s->block_index[n];
  1294. /* B A
  1295. * C X
  1296. */
  1297. c = dc_val[ - 1];
  1298. b = dc_val[ - 1 - wrap];
  1299. a = dc_val[ - wrap];
  1300. if (pq < 9 || !overlap)
  1301. {
  1302. /* Set outer values */
  1303. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1304. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1305. }
  1306. else
  1307. {
  1308. /* Set outer values */
  1309. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1310. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1311. }
  1312. if (abs(a - b) <= abs(b - c)) {
  1313. pred = c;
  1314. *dir_ptr = 1;//left
  1315. } else {
  1316. pred = a;
  1317. *dir_ptr = 0;//top
  1318. }
  1319. /* update predictor */
  1320. *dc_val_ptr = &dc_val[0];
  1321. return pred;
  1322. }
  1323. /** Get predicted DC value
  1324. * prediction dir: left=0, top=1
  1325. * @param s MpegEncContext
  1326. * @param overlap flag indicating that overlap filtering is used
  1327. * @param pq integer part of picture quantizer
  1328. * @param[in] n block index in the current MB
  1329. * @param a_avail flag indicating top block availability
  1330. * @param c_avail flag indicating left block availability
  1331. * @param dc_val_ptr Pointer to DC predictor
  1332. * @param dir_ptr Prediction direction for use in AC prediction
  1333. */
  1334. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1335. int a_avail, int c_avail,
  1336. int16_t **dc_val_ptr, int *dir_ptr)
  1337. {
  1338. int a, b, c, wrap, pred;
  1339. int16_t *dc_val;
  1340. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1341. int q1, q2 = 0;
  1342. wrap = s->block_wrap[n];
  1343. dc_val= s->dc_val[0] + s->block_index[n];
  1344. /* B A
  1345. * C X
  1346. */
  1347. c = dc_val[ - 1];
  1348. b = dc_val[ - 1 - wrap];
  1349. a = dc_val[ - wrap];
  1350. /* scale predictors if needed */
  1351. q1 = s->current_picture.qscale_table[mb_pos];
  1352. if(c_avail && (n!= 1 && n!=3)) {
  1353. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1354. if(q2 && q2 != q1)
  1355. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1356. }
  1357. if(a_avail && (n!= 2 && n!=3)) {
  1358. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1359. if(q2 && q2 != q1)
  1360. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1361. }
  1362. if(a_avail && c_avail && (n!=3)) {
  1363. int off = mb_pos;
  1364. if(n != 1) off--;
  1365. if(n != 2) off -= s->mb_stride;
  1366. q2 = s->current_picture.qscale_table[off];
  1367. if(q2 && q2 != q1)
  1368. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1369. }
  1370. if(a_avail && c_avail) {
  1371. if(abs(a - b) <= abs(b - c)) {
  1372. pred = c;
  1373. *dir_ptr = 1;//left
  1374. } else {
  1375. pred = a;
  1376. *dir_ptr = 0;//top
  1377. }
  1378. } else if(a_avail) {
  1379. pred = a;
  1380. *dir_ptr = 0;//top
  1381. } else if(c_avail) {
  1382. pred = c;
  1383. *dir_ptr = 1;//left
  1384. } else {
  1385. pred = 0;
  1386. *dir_ptr = 1;//left
  1387. }
  1388. /* update predictor */
  1389. *dc_val_ptr = &dc_val[0];
  1390. return pred;
  1391. }
  1392. /** @} */ // Block group
  1393. /**
  1394. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1395. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1396. * @{
  1397. */
  1398. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1399. {
  1400. int xy, wrap, pred, a, b, c;
  1401. xy = s->block_index[n];
  1402. wrap = s->b8_stride;
  1403. /* B C
  1404. * A X
  1405. */
  1406. a = s->coded_block[xy - 1 ];
  1407. b = s->coded_block[xy - 1 - wrap];
  1408. c = s->coded_block[xy - wrap];
  1409. if (b == c) {
  1410. pred = a;
  1411. } else {
  1412. pred = c;
  1413. }
  1414. /* store value */
  1415. *coded_block_ptr = &s->coded_block[xy];
  1416. return pred;
  1417. }
  1418. /**
  1419. * Decode one AC coefficient
  1420. * @param v The VC1 context
  1421. * @param last Last coefficient
  1422. * @param skip How much zero coefficients to skip
  1423. * @param value Decoded AC coefficient value
  1424. * @param codingset set of VLC to decode data
  1425. * @see 8.1.3.4
  1426. */
  1427. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1428. {
  1429. GetBitContext *gb = &v->s.gb;
  1430. int index, escape, run = 0, level = 0, lst = 0;
  1431. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1432. if (index != vc1_ac_sizes[codingset] - 1) {
  1433. run = vc1_index_decode_table[codingset][index][0];
  1434. level = vc1_index_decode_table[codingset][index][1];
  1435. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  1436. if(get_bits1(gb))
  1437. level = -level;
  1438. } else {
  1439. escape = decode210(gb);
  1440. if (escape != 2) {
  1441. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1442. run = vc1_index_decode_table[codingset][index][0];
  1443. level = vc1_index_decode_table[codingset][index][1];
  1444. lst = index >= vc1_last_decode_table[codingset];
  1445. if(escape == 0) {
  1446. if(lst)
  1447. level += vc1_last_delta_level_table[codingset][run];
  1448. else
  1449. level += vc1_delta_level_table[codingset][run];
  1450. } else {
  1451. if(lst)
  1452. run += vc1_last_delta_run_table[codingset][level] + 1;
  1453. else
  1454. run += vc1_delta_run_table[codingset][level] + 1;
  1455. }
  1456. if(get_bits1(gb))
  1457. level = -level;
  1458. } else {
  1459. int sign;
  1460. lst = get_bits1(gb);
  1461. if(v->s.esc3_level_length == 0) {
  1462. if(v->pq < 8 || v->dquantfrm) { // table 59
  1463. v->s.esc3_level_length = get_bits(gb, 3);
  1464. if(!v->s.esc3_level_length)
  1465. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1466. } else { //table 60
  1467. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1468. }
  1469. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1470. }
  1471. run = get_bits(gb, v->s.esc3_run_length);
  1472. sign = get_bits1(gb);
  1473. level = get_bits(gb, v->s.esc3_level_length);
  1474. if(sign)
  1475. level = -level;
  1476. }
  1477. }
  1478. *last = lst;
  1479. *skip = run;
  1480. *value = level;
  1481. }
  1482. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1483. * @param v VC1Context
  1484. * @param block block to decode
  1485. * @param[in] n subblock index
  1486. * @param coded are AC coeffs present or not
  1487. * @param codingset set of VLC to decode data
  1488. */
  1489. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1490. {
  1491. GetBitContext *gb = &v->s.gb;
  1492. MpegEncContext *s = &v->s;
  1493. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1494. int i;
  1495. int16_t *dc_val;
  1496. int16_t *ac_val, *ac_val2;
  1497. int dcdiff;
  1498. /* Get DC differential */
  1499. if (n < 4) {
  1500. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1501. } else {
  1502. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1503. }
  1504. if (dcdiff < 0){
  1505. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1506. return -1;
  1507. }
  1508. if (dcdiff)
  1509. {
  1510. if (dcdiff == 119 /* ESC index value */)
  1511. {
  1512. /* TODO: Optimize */
  1513. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1514. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1515. else dcdiff = get_bits(gb, 8);
  1516. }
  1517. else
  1518. {
  1519. if (v->pq == 1)
  1520. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1521. else if (v->pq == 2)
  1522. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1523. }
  1524. if (get_bits1(gb))
  1525. dcdiff = -dcdiff;
  1526. }
  1527. /* Prediction */
  1528. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1529. *dc_val = dcdiff;
  1530. /* Store the quantized DC coeff, used for prediction */
  1531. if (n < 4) {
  1532. block[0] = dcdiff * s->y_dc_scale;
  1533. } else {
  1534. block[0] = dcdiff * s->c_dc_scale;
  1535. }
  1536. /* Skip ? */
  1537. if (!coded) {
  1538. goto not_coded;
  1539. }
  1540. //AC Decoding
  1541. i = 1;
  1542. {
  1543. int last = 0, skip, value;
  1544. const uint8_t *zz_table;
  1545. int scale;
  1546. int k;
  1547. scale = v->pq * 2 + v->halfpq;
  1548. if(v->s.ac_pred) {
  1549. if(!dc_pred_dir)
  1550. zz_table = v->zz_8x8[2];
  1551. else
  1552. zz_table = v->zz_8x8[3];
  1553. } else
  1554. zz_table = v->zz_8x8[1];
  1555. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1556. ac_val2 = ac_val;
  1557. if(dc_pred_dir) //left
  1558. ac_val -= 16;
  1559. else //top
  1560. ac_val -= 16 * s->block_wrap[n];
  1561. while (!last) {
  1562. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1563. i += skip;
  1564. if(i > 63)
  1565. break;
  1566. block[zz_table[i++]] = value;
  1567. }
  1568. /* apply AC prediction if needed */
  1569. if(s->ac_pred) {
  1570. if(dc_pred_dir) { //left
  1571. for(k = 1; k < 8; k++)
  1572. block[k << v->left_blk_sh] += ac_val[k];
  1573. } else { //top
  1574. for(k = 1; k < 8; k++)
  1575. block[k << v->top_blk_sh] += ac_val[k + 8];
  1576. }
  1577. }
  1578. /* save AC coeffs for further prediction */
  1579. for(k = 1; k < 8; k++) {
  1580. ac_val2[k] = block[k << v->left_blk_sh];
  1581. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1582. }
  1583. /* scale AC coeffs */
  1584. for(k = 1; k < 64; k++)
  1585. if(block[k]) {
  1586. block[k] *= scale;
  1587. if(!v->pquantizer)
  1588. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1589. }
  1590. if(s->ac_pred) i = 63;
  1591. }
  1592. not_coded:
  1593. if(!coded) {
  1594. int k, scale;
  1595. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1596. ac_val2 = ac_val;
  1597. i = 0;
  1598. scale = v->pq * 2 + v->halfpq;
  1599. memset(ac_val2, 0, 16 * 2);
  1600. if(dc_pred_dir) {//left
  1601. ac_val -= 16;
  1602. if(s->ac_pred)
  1603. memcpy(ac_val2, ac_val, 8 * 2);
  1604. } else {//top
  1605. ac_val -= 16 * s->block_wrap[n];
  1606. if(s->ac_pred)
  1607. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1608. }
  1609. /* apply AC prediction if needed */
  1610. if(s->ac_pred) {
  1611. if(dc_pred_dir) { //left
  1612. for(k = 1; k < 8; k++) {
  1613. block[k << v->left_blk_sh] = ac_val[k] * scale;
  1614. if(!v->pquantizer && block[k << v->left_blk_sh])
  1615. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  1616. }
  1617. } else { //top
  1618. for(k = 1; k < 8; k++) {
  1619. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  1620. if(!v->pquantizer && block[k << v->top_blk_sh])
  1621. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  1622. }
  1623. }
  1624. i = 63;
  1625. }
  1626. }
  1627. s->block_last_index[n] = i;
  1628. return 0;
  1629. }
  1630. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1631. * @param v VC1Context
  1632. * @param block block to decode
  1633. * @param[in] n subblock number
  1634. * @param coded are AC coeffs present or not
  1635. * @param codingset set of VLC to decode data
  1636. * @param mquant quantizer value for this macroblock
  1637. */
  1638. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1639. {
  1640. GetBitContext *gb = &v->s.gb;
  1641. MpegEncContext *s = &v->s;
  1642. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1643. int i;
  1644. int16_t *dc_val;
  1645. int16_t *ac_val, *ac_val2;
  1646. int dcdiff;
  1647. int a_avail = v->a_avail, c_avail = v->c_avail;
  1648. int use_pred = s->ac_pred;
  1649. int scale;
  1650. int q1, q2 = 0;
  1651. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1652. /* Get DC differential */
  1653. if (n < 4) {
  1654. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1655. } else {
  1656. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1657. }
  1658. if (dcdiff < 0){
  1659. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1660. return -1;
  1661. }
  1662. if (dcdiff)
  1663. {
  1664. if (dcdiff == 119 /* ESC index value */)
  1665. {
  1666. /* TODO: Optimize */
  1667. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1668. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1669. else dcdiff = get_bits(gb, 8);
  1670. }
  1671. else
  1672. {
  1673. if (mquant == 1)
  1674. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1675. else if (mquant == 2)
  1676. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1677. }
  1678. if (get_bits1(gb))
  1679. dcdiff = -dcdiff;
  1680. }
  1681. /* Prediction */
  1682. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1683. *dc_val = dcdiff;
  1684. /* Store the quantized DC coeff, used for prediction */
  1685. if (n < 4) {
  1686. block[0] = dcdiff * s->y_dc_scale;
  1687. } else {
  1688. block[0] = dcdiff * s->c_dc_scale;
  1689. }
  1690. //AC Decoding
  1691. i = 1;
  1692. /* check if AC is needed at all */
  1693. if(!a_avail && !c_avail) use_pred = 0;
  1694. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1695. ac_val2 = ac_val;
  1696. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1697. if(dc_pred_dir) //left
  1698. ac_val -= 16;
  1699. else //top
  1700. ac_val -= 16 * s->block_wrap[n];
  1701. q1 = s->current_picture.qscale_table[mb_pos];
  1702. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1703. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1704. if(dc_pred_dir && n==1) q2 = q1;
  1705. if(!dc_pred_dir && n==2) q2 = q1;
  1706. if(n==3) q2 = q1;
  1707. if(coded) {
  1708. int last = 0, skip, value;
  1709. const uint8_t *zz_table;
  1710. int k;
  1711. if(v->s.ac_pred) {
  1712. if(!dc_pred_dir)
  1713. zz_table = v->zz_8x8[2];
  1714. else
  1715. zz_table = v->zz_8x8[3];
  1716. } else
  1717. zz_table = v->zz_8x8[1];
  1718. while (!last) {
  1719. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1720. i += skip;
  1721. if(i > 63)
  1722. break;
  1723. block[zz_table[i++]] = value;
  1724. }
  1725. /* apply AC prediction if needed */
  1726. if(use_pred) {
  1727. /* scale predictors if needed*/
  1728. if(q2 && q1!=q2) {
  1729. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1730. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1731. if(dc_pred_dir) { //left
  1732. for(k = 1; k < 8; k++)
  1733. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1734. } else { //top
  1735. for(k = 1; k < 8; k++)
  1736. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1737. }
  1738. } else {
  1739. if(dc_pred_dir) { //left
  1740. for(k = 1; k < 8; k++)
  1741. block[k << v->left_blk_sh] += ac_val[k];
  1742. } else { //top
  1743. for(k = 1; k < 8; k++)
  1744. block[k << v->top_blk_sh] += ac_val[k + 8];
  1745. }
  1746. }
  1747. }
  1748. /* save AC coeffs for further prediction */
  1749. for(k = 1; k < 8; k++) {
  1750. ac_val2[k ] = block[k << v->left_blk_sh];
  1751. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1752. }
  1753. /* scale AC coeffs */
  1754. for(k = 1; k < 64; k++)
  1755. if(block[k]) {
  1756. block[k] *= scale;
  1757. if(!v->pquantizer)
  1758. block[k] += (block[k] < 0) ? -mquant : mquant;
  1759. }
  1760. if(use_pred) i = 63;
  1761. } else { // no AC coeffs
  1762. int k;
  1763. memset(ac_val2, 0, 16 * 2);
  1764. if(dc_pred_dir) {//left
  1765. if(use_pred) {
  1766. memcpy(ac_val2, ac_val, 8 * 2);
  1767. if(q2 && q1!=q2) {
  1768. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1769. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1770. for(k = 1; k < 8; k++)
  1771. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1772. }
  1773. }
  1774. } else {//top
  1775. if(use_pred) {
  1776. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1777. if(q2 && q1!=q2) {
  1778. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1779. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1780. for(k = 1; k < 8; k++)
  1781. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1782. }
  1783. }
  1784. }
  1785. /* apply AC prediction if needed */
  1786. if(use_pred) {
  1787. if(dc_pred_dir) { //left
  1788. for(k = 1; k < 8; k++) {
  1789. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1790. if(!v->pquantizer && block[k << v->left_blk_sh])
  1791. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  1792. }
  1793. } else { //top
  1794. for(k = 1; k < 8; k++) {
  1795. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1796. if(!v->pquantizer && block[k << v->top_blk_sh])
  1797. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  1798. }
  1799. }
  1800. i = 63;
  1801. }
  1802. }
  1803. s->block_last_index[n] = i;
  1804. return 0;
  1805. }
  1806. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1807. * @param v VC1Context
  1808. * @param block block to decode
  1809. * @param[in] n subblock index
  1810. * @param coded are AC coeffs present or not
  1811. * @param mquant block quantizer
  1812. * @param codingset set of VLC to decode data
  1813. */
  1814. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1815. {
  1816. GetBitContext *gb = &v->s.gb;
  1817. MpegEncContext *s = &v->s;
  1818. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1819. int i;
  1820. int16_t *dc_val;
  1821. int16_t *ac_val, *ac_val2;
  1822. int dcdiff;
  1823. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1824. int a_avail = v->a_avail, c_avail = v->c_avail;
  1825. int use_pred = s->ac_pred;
  1826. int scale;
  1827. int q1, q2 = 0;
  1828. s->dsp.clear_block(block);
  1829. /* XXX: Guard against dumb values of mquant */
  1830. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1831. /* Set DC scale - y and c use the same */
  1832. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1833. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1834. /* Get DC differential */
  1835. if (n < 4) {
  1836. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1837. } else {
  1838. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1839. }
  1840. if (dcdiff < 0){
  1841. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1842. return -1;
  1843. }
  1844. if (dcdiff)
  1845. {
  1846. if (dcdiff == 119 /* ESC index value */)
  1847. {
  1848. /* TODO: Optimize */
  1849. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1850. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1851. else dcdiff = get_bits(gb, 8);
  1852. }
  1853. else
  1854. {
  1855. if (mquant == 1)
  1856. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1857. else if (mquant == 2)
  1858. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1859. }
  1860. if (get_bits1(gb))
  1861. dcdiff = -dcdiff;
  1862. }
  1863. /* Prediction */
  1864. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1865. *dc_val = dcdiff;
  1866. /* Store the quantized DC coeff, used for prediction */
  1867. if (n < 4) {
  1868. block[0] = dcdiff * s->y_dc_scale;
  1869. } else {
  1870. block[0] = dcdiff * s->c_dc_scale;
  1871. }
  1872. //AC Decoding
  1873. i = 1;
  1874. /* check if AC is needed at all and adjust direction if needed */
  1875. if(!a_avail) dc_pred_dir = 1;
  1876. if(!c_avail) dc_pred_dir = 0;
  1877. if(!a_avail && !c_avail) use_pred = 0;
  1878. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1879. ac_val2 = ac_val;
  1880. scale = mquant * 2 + v->halfpq;
  1881. if(dc_pred_dir) //left
  1882. ac_val -= 16;
  1883. else //top
  1884. ac_val -= 16 * s->block_wrap[n];
  1885. q1 = s->current_picture.qscale_table[mb_pos];
  1886. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1887. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1888. if(dc_pred_dir && n==1) q2 = q1;
  1889. if(!dc_pred_dir && n==2) q2 = q1;
  1890. if(n==3) q2 = q1;
  1891. if(coded) {
  1892. int last = 0, skip, value;
  1893. int k;
  1894. while (!last) {
  1895. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1896. i += skip;
  1897. if(i > 63)
  1898. break;
  1899. block[v->zz_8x8[0][i++]] = value;
  1900. }
  1901. /* apply AC prediction if needed */
  1902. if(use_pred) {
  1903. /* scale predictors if needed*/
  1904. if(q2 && q1!=q2) {
  1905. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1906. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1907. if(dc_pred_dir) { //left
  1908. for(k = 1; k < 8; k++)
  1909. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1910. } else { //top
  1911. for(k = 1; k < 8; k++)
  1912. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1913. }
  1914. } else {
  1915. if(dc_pred_dir) { //left
  1916. for(k = 1; k < 8; k++)
  1917. block[k << v->left_blk_sh] += ac_val[k];
  1918. } else { //top
  1919. for(k = 1; k < 8; k++)
  1920. block[k << v->top_blk_sh] += ac_val[k + 8];
  1921. }
  1922. }
  1923. }
  1924. /* save AC coeffs for further prediction */
  1925. for(k = 1; k < 8; k++) {
  1926. ac_val2[k ] = block[k << v->left_blk_sh];
  1927. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1928. }
  1929. /* scale AC coeffs */
  1930. for(k = 1; k < 64; k++)
  1931. if(block[k]) {
  1932. block[k] *= scale;
  1933. if(!v->pquantizer)
  1934. block[k] += (block[k] < 0) ? -mquant : mquant;
  1935. }
  1936. if(use_pred) i = 63;
  1937. } else { // no AC coeffs
  1938. int k;
  1939. memset(ac_val2, 0, 16 * 2);
  1940. if(dc_pred_dir) {//left
  1941. if(use_pred) {
  1942. memcpy(ac_val2, ac_val, 8 * 2);
  1943. if(q2 && q1!=q2) {
  1944. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1945. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1946. for(k = 1; k < 8; k++)
  1947. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1948. }
  1949. }
  1950. } else {//top
  1951. if(use_pred) {
  1952. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1953. if(q2 && q1!=q2) {
  1954. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1955. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1956. for(k = 1; k < 8; k++)
  1957. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1958. }
  1959. }
  1960. }
  1961. /* apply AC prediction if needed */
  1962. if(use_pred) {
  1963. if(dc_pred_dir) { //left
  1964. for(k = 1; k < 8; k++) {
  1965. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1966. if(!v->pquantizer && block[k << v->left_blk_sh])
  1967. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  1968. }
  1969. } else { //top
  1970. for(k = 1; k < 8; k++) {
  1971. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1972. if(!v->pquantizer && block[k << v->top_blk_sh])
  1973. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  1974. }
  1975. }
  1976. i = 63;
  1977. }
  1978. }
  1979. s->block_last_index[n] = i;
  1980. return 0;
  1981. }
  1982. /** Decode P block
  1983. */
  1984. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1985. uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
  1986. {
  1987. MpegEncContext *s = &v->s;
  1988. GetBitContext *gb = &s->gb;
  1989. int i, j;
  1990. int subblkpat = 0;
  1991. int scale, off, idx, last, skip, value;
  1992. int ttblk = ttmb & 7;
  1993. int pat = 0;
  1994. s->dsp.clear_block(block);
  1995. if(ttmb == -1) {
  1996. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1997. }
  1998. if(ttblk == TT_4X4) {
  1999. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2000. }
  2001. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  2002. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2003. || (!v->res_rtm_flag && !first_block))) {
  2004. subblkpat = decode012(gb);
  2005. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2006. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2007. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2008. }
  2009. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2010. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2011. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2012. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2013. ttblk = TT_8X4;
  2014. }
  2015. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2016. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2017. ttblk = TT_4X8;
  2018. }
  2019. switch(ttblk) {
  2020. case TT_8X8:
  2021. pat = 0xF;
  2022. i = 0;
  2023. last = 0;
  2024. while (!last) {
  2025. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2026. i += skip;
  2027. if(i > 63)
  2028. break;
  2029. idx = v->zz_8x8[0][i++];
  2030. block[idx] = value * scale;
  2031. if(!v->pquantizer)
  2032. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2033. }
  2034. if(!skip_block){
  2035. if(i==1)
  2036. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  2037. else{
  2038. v->vc1dsp.vc1_inv_trans_8x8(block);
  2039. s->dsp.add_pixels_clamped(block, dst, linesize);
  2040. }
  2041. }
  2042. break;
  2043. case TT_4X4:
  2044. pat = ~subblkpat & 0xF;
  2045. for(j = 0; j < 4; j++) {
  2046. last = subblkpat & (1 << (3 - j));
  2047. i = 0;
  2048. off = (j & 1) * 4 + (j & 2) * 16;
  2049. while (!last) {
  2050. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2051. i += skip;
  2052. if(i > 15)
  2053. break;
  2054. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2055. block[idx + off] = value * scale;
  2056. if(!v->pquantizer)
  2057. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2058. }
  2059. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2060. if(i==1)
  2061. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2062. else
  2063. v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2064. }
  2065. }
  2066. break;
  2067. case TT_8X4:
  2068. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2069. for(j = 0; j < 2; j++) {
  2070. last = subblkpat & (1 << (1 - j));
  2071. i = 0;
  2072. off = j * 32;
  2073. while (!last) {
  2074. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2075. i += skip;
  2076. if(i > 31)
  2077. break;
  2078. idx = v->zz_8x4[i++]+off;
  2079. block[idx] = value * scale;
  2080. if(!v->pquantizer)
  2081. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2082. }
  2083. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2084. if(i==1)
  2085. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  2086. else
  2087. v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2088. }
  2089. }
  2090. break;
  2091. case TT_4X8:
  2092. pat = ~(subblkpat*5) & 0xF;
  2093. for(j = 0; j < 2; j++) {
  2094. last = subblkpat & (1 << (1 - j));
  2095. i = 0;
  2096. off = j * 4;
  2097. while (!last) {
  2098. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2099. i += skip;
  2100. if(i > 31)
  2101. break;
  2102. idx = v->zz_4x8[i++]+off;
  2103. block[idx] = value * scale;
  2104. if(!v->pquantizer)
  2105. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2106. }
  2107. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2108. if(i==1)
  2109. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  2110. else
  2111. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2112. }
  2113. }
  2114. break;
  2115. }
  2116. if (ttmb_out)
  2117. *ttmb_out |= ttblk << (n * 4);
  2118. return pat;
  2119. }
  2120. /** @} */ // Macroblock group
  2121. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2122. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2123. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  2124. {
  2125. MpegEncContext *s = &v->s;
  2126. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  2127. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  2128. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  2129. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  2130. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  2131. uint8_t *dst;
  2132. if(block_num > 3) {
  2133. dst = s->dest[block_num - 3];
  2134. } else {
  2135. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  2136. }
  2137. if (s->mb_y != s->mb_height || block_num < 2) {
  2138. int16_t (*mv)[2];
  2139. int mv_stride;
  2140. if(block_num > 3) {
  2141. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  2142. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  2143. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  2144. mv_stride = s->mb_stride;
  2145. } else {
  2146. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4)) :
  2147. (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  2148. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4)) :
  2149. (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  2150. mv_stride = s->b8_stride;
  2151. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  2152. }
  2153. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  2154. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  2155. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2156. } else {
  2157. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  2158. if(idx == 3) {
  2159. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2160. } else if (idx) {
  2161. if (idx == 1)
  2162. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  2163. else
  2164. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  2165. }
  2166. }
  2167. }
  2168. dst -= 4 * linesize;
  2169. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xf;
  2170. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  2171. idx = (block_cbp | (block_cbp >> 2)) & 3;
  2172. if (idx == 3) {
  2173. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2174. } else if (idx) {
  2175. if (idx == 1)
  2176. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  2177. else
  2178. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  2179. }
  2180. }
  2181. }
  2182. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  2183. {
  2184. MpegEncContext *s = &v->s;
  2185. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  2186. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  2187. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  2188. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  2189. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  2190. uint8_t *dst;
  2191. if (block_num > 3) {
  2192. dst = s->dest[block_num - 3] - 8 * linesize;
  2193. } else {
  2194. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  2195. }
  2196. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  2197. int16_t (*mv)[2];
  2198. if(block_num > 3) {
  2199. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  2200. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  2201. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  2202. }else{
  2203. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2204. (mb_cbp >> ((block_num + 1) * 4));
  2205. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2206. (mb_is_intra >> ((block_num + 1) * 4));
  2207. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  2208. }
  2209. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  2210. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2211. } else {
  2212. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  2213. if (idx == 5) {
  2214. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2215. } else if (idx) {
  2216. if (idx == 1)
  2217. v->vc1dsp.vc1_h_loop_filter4(dst+4*linesize, linesize, v->pq);
  2218. else
  2219. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2220. }
  2221. }
  2222. }
  2223. dst -= 4;
  2224. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  2225. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  2226. idx = (block_cbp | (block_cbp >> 1)) & 5;
  2227. if (idx == 5) {
  2228. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2229. } else if (idx) {
  2230. if (idx == 1)
  2231. v->vc1dsp.vc1_h_loop_filter4(dst + linesize*4, linesize, v->pq);
  2232. else
  2233. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2234. }
  2235. }
  2236. }
  2237. static void vc1_apply_p_loop_filter(VC1Context *v)
  2238. {
  2239. MpegEncContext *s = &v->s;
  2240. int i;
  2241. for (i = 0; i < 6; i++) {
  2242. vc1_apply_p_v_loop_filter(v, i);
  2243. }
  2244. /* V always preceedes H, therefore we run H one MB before V;
  2245. * at the end of a row, we catch up to complete the row */
  2246. if (s->mb_x) {
  2247. for (i = 0; i < 6; i++) {
  2248. vc1_apply_p_h_loop_filter(v, i);
  2249. }
  2250. if (s->mb_x == s->mb_width - 1) {
  2251. s->mb_x++;
  2252. ff_update_block_index(s);
  2253. for (i = 0; i < 6; i++) {
  2254. vc1_apply_p_h_loop_filter(v, i);
  2255. }
  2256. }
  2257. }
  2258. }
  2259. /** Decode one P-frame MB (in Simple/Main profile)
  2260. */
  2261. static int vc1_decode_p_mb(VC1Context *v)
  2262. {
  2263. MpegEncContext *s = &v->s;
  2264. GetBitContext *gb = &s->gb;
  2265. int i, j;
  2266. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2267. int cbp; /* cbp decoding stuff */
  2268. int mqdiff, mquant; /* MB quantization */
  2269. int ttmb = v->ttfrm; /* MB Transform type */
  2270. int mb_has_coeffs = 1; /* last_flag */
  2271. int dmv_x, dmv_y; /* Differential MV components */
  2272. int index, index1; /* LUT indexes */
  2273. int val, sign; /* temp values */
  2274. int first_block = 1;
  2275. int dst_idx, off;
  2276. int skipped, fourmv;
  2277. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  2278. mquant = v->pq; /* Loosy initialization */
  2279. if (v->mv_type_is_raw)
  2280. fourmv = get_bits1(gb);
  2281. else
  2282. fourmv = v->mv_type_mb_plane[mb_pos];
  2283. if (v->skip_is_raw)
  2284. skipped = get_bits1(gb);
  2285. else
  2286. skipped = v->s.mbskip_table[mb_pos];
  2287. if (!fourmv) /* 1MV mode */
  2288. {
  2289. if (!skipped)
  2290. {
  2291. GET_MVDATA(dmv_x, dmv_y);
  2292. if (s->mb_intra) {
  2293. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2294. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2295. }
  2296. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2297. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2298. /* FIXME Set DC val for inter block ? */
  2299. if (s->mb_intra && !mb_has_coeffs)
  2300. {
  2301. GET_MQUANT();
  2302. s->ac_pred = get_bits1(gb);
  2303. cbp = 0;
  2304. }
  2305. else if (mb_has_coeffs)
  2306. {
  2307. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2308. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2309. GET_MQUANT();
  2310. }
  2311. else
  2312. {
  2313. mquant = v->pq;
  2314. cbp = 0;
  2315. }
  2316. s->current_picture.qscale_table[mb_pos] = mquant;
  2317. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2318. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2319. VC1_TTMB_VLC_BITS, 2);
  2320. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2321. dst_idx = 0;
  2322. for (i=0; i<6; i++)
  2323. {
  2324. s->dc_val[0][s->block_index[i]] = 0;
  2325. dst_idx += i >> 2;
  2326. val = ((cbp >> (5 - i)) & 1);
  2327. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2328. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2329. if(s->mb_intra) {
  2330. /* check if prediction blocks A and C are available */
  2331. v->a_avail = v->c_avail = 0;
  2332. if(i == 2 || i == 3 || !s->first_slice_line)
  2333. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2334. if(i == 1 || i == 3 || s->mb_x)
  2335. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2336. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2337. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2338. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2339. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2340. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2341. if(v->pq >= 9 && v->overlap) {
  2342. if(v->c_avail)
  2343. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2344. if(v->a_avail)
  2345. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2346. }
  2347. block_cbp |= 0xF << (i << 2);
  2348. block_intra |= 1 << i;
  2349. } else if(val) {
  2350. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2351. block_cbp |= pat << (i << 2);
  2352. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2353. first_block = 0;
  2354. }
  2355. }
  2356. }
  2357. else //Skipped
  2358. {
  2359. s->mb_intra = 0;
  2360. for(i = 0; i < 6; i++) {
  2361. v->mb_type[0][s->block_index[i]] = 0;
  2362. s->dc_val[0][s->block_index[i]] = 0;
  2363. }
  2364. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2365. s->current_picture.qscale_table[mb_pos] = 0;
  2366. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2367. vc1_mc_1mv(v, 0);
  2368. }
  2369. } //1MV mode
  2370. else //4MV mode
  2371. {
  2372. if (!skipped /* unskipped MB */)
  2373. {
  2374. int intra_count = 0, coded_inter = 0;
  2375. int is_intra[6], is_coded[6];
  2376. /* Get CBPCY */
  2377. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2378. for (i=0; i<6; i++)
  2379. {
  2380. val = ((cbp >> (5 - i)) & 1);
  2381. s->dc_val[0][s->block_index[i]] = 0;
  2382. s->mb_intra = 0;
  2383. if(i < 4) {
  2384. dmv_x = dmv_y = 0;
  2385. s->mb_intra = 0;
  2386. mb_has_coeffs = 0;
  2387. if(val) {
  2388. GET_MVDATA(dmv_x, dmv_y);
  2389. }
  2390. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2391. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2392. intra_count += s->mb_intra;
  2393. is_intra[i] = s->mb_intra;
  2394. is_coded[i] = mb_has_coeffs;
  2395. }
  2396. if(i&4){
  2397. is_intra[i] = (intra_count >= 3);
  2398. is_coded[i] = val;
  2399. }
  2400. if(i == 4) vc1_mc_4mv_chroma(v);
  2401. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2402. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2403. }
  2404. // if there are no coded blocks then don't do anything more
  2405. dst_idx = 0;
  2406. if(!intra_count && !coded_inter)
  2407. goto end;
  2408. GET_MQUANT();
  2409. s->current_picture.qscale_table[mb_pos] = mquant;
  2410. /* test if block is intra and has pred */
  2411. {
  2412. int intrapred = 0;
  2413. for(i=0; i<6; i++)
  2414. if(is_intra[i]) {
  2415. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2416. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2417. intrapred = 1;
  2418. break;
  2419. }
  2420. }
  2421. if(intrapred)s->ac_pred = get_bits1(gb);
  2422. else s->ac_pred = 0;
  2423. }
  2424. if (!v->ttmbf && coded_inter)
  2425. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2426. for (i=0; i<6; i++)
  2427. {
  2428. dst_idx += i >> 2;
  2429. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2430. s->mb_intra = is_intra[i];
  2431. if (is_intra[i]) {
  2432. /* check if prediction blocks A and C are available */
  2433. v->a_avail = v->c_avail = 0;
  2434. if(i == 2 || i == 3 || !s->first_slice_line)
  2435. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2436. if(i == 1 || i == 3 || s->mb_x)
  2437. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2438. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2439. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2440. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2441. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2442. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2443. if(v->pq >= 9 && v->overlap) {
  2444. if(v->c_avail)
  2445. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2446. if(v->a_avail)
  2447. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2448. }
  2449. block_cbp |= 0xF << (i << 2);
  2450. block_intra |= 1 << i;
  2451. } else if(is_coded[i]) {
  2452. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2453. block_cbp |= pat << (i << 2);
  2454. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2455. first_block = 0;
  2456. }
  2457. }
  2458. }
  2459. else //Skipped MB
  2460. {
  2461. s->mb_intra = 0;
  2462. s->current_picture.qscale_table[mb_pos] = 0;
  2463. for (i=0; i<6; i++) {
  2464. v->mb_type[0][s->block_index[i]] = 0;
  2465. s->dc_val[0][s->block_index[i]] = 0;
  2466. }
  2467. for (i=0; i<4; i++)
  2468. {
  2469. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2470. vc1_mc_4mv_luma(v, i);
  2471. }
  2472. vc1_mc_4mv_chroma(v);
  2473. s->current_picture.qscale_table[mb_pos] = 0;
  2474. }
  2475. }
  2476. end:
  2477. v->cbp[s->mb_x] = block_cbp;
  2478. v->ttblk[s->mb_x] = block_tt;
  2479. v->is_intra[s->mb_x] = block_intra;
  2480. return 0;
  2481. }
  2482. /** Decode one B-frame MB (in Main profile)
  2483. */
  2484. static void vc1_decode_b_mb(VC1Context *v)
  2485. {
  2486. MpegEncContext *s = &v->s;
  2487. GetBitContext *gb = &s->gb;
  2488. int i, j;
  2489. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2490. int cbp = 0; /* cbp decoding stuff */
  2491. int mqdiff, mquant; /* MB quantization */
  2492. int ttmb = v->ttfrm; /* MB Transform type */
  2493. int mb_has_coeffs = 0; /* last_flag */
  2494. int index, index1; /* LUT indexes */
  2495. int val, sign; /* temp values */
  2496. int first_block = 1;
  2497. int dst_idx, off;
  2498. int skipped, direct;
  2499. int dmv_x[2], dmv_y[2];
  2500. int bmvtype = BMV_TYPE_BACKWARD;
  2501. mquant = v->pq; /* Loosy initialization */
  2502. s->mb_intra = 0;
  2503. if (v->dmb_is_raw)
  2504. direct = get_bits1(gb);
  2505. else
  2506. direct = v->direct_mb_plane[mb_pos];
  2507. if (v->skip_is_raw)
  2508. skipped = get_bits1(gb);
  2509. else
  2510. skipped = v->s.mbskip_table[mb_pos];
  2511. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2512. for(i = 0; i < 6; i++) {
  2513. v->mb_type[0][s->block_index[i]] = 0;
  2514. s->dc_val[0][s->block_index[i]] = 0;
  2515. }
  2516. s->current_picture.qscale_table[mb_pos] = 0;
  2517. if (!direct) {
  2518. if (!skipped) {
  2519. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2520. dmv_x[1] = dmv_x[0];
  2521. dmv_y[1] = dmv_y[0];
  2522. }
  2523. if(skipped || !s->mb_intra) {
  2524. bmvtype = decode012(gb);
  2525. switch(bmvtype) {
  2526. case 0:
  2527. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2528. break;
  2529. case 1:
  2530. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2531. break;
  2532. case 2:
  2533. bmvtype = BMV_TYPE_INTERPOLATED;
  2534. dmv_x[0] = dmv_y[0] = 0;
  2535. }
  2536. }
  2537. }
  2538. for(i = 0; i < 6; i++)
  2539. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2540. if (skipped) {
  2541. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2542. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2543. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2544. return;
  2545. }
  2546. if (direct) {
  2547. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2548. GET_MQUANT();
  2549. s->mb_intra = 0;
  2550. s->current_picture.qscale_table[mb_pos] = mquant;
  2551. if(!v->ttmbf)
  2552. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2553. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2554. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2555. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2556. } else {
  2557. if(!mb_has_coeffs && !s->mb_intra) {
  2558. /* no coded blocks - effectively skipped */
  2559. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2560. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2561. return;
  2562. }
  2563. if(s->mb_intra && !mb_has_coeffs) {
  2564. GET_MQUANT();
  2565. s->current_picture.qscale_table[mb_pos] = mquant;
  2566. s->ac_pred = get_bits1(gb);
  2567. cbp = 0;
  2568. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2569. } else {
  2570. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2571. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2572. if(!mb_has_coeffs) {
  2573. /* interpolated skipped block */
  2574. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2575. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2576. return;
  2577. }
  2578. }
  2579. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2580. if(!s->mb_intra) {
  2581. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2582. }
  2583. if(s->mb_intra)
  2584. s->ac_pred = get_bits1(gb);
  2585. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2586. GET_MQUANT();
  2587. s->current_picture.qscale_table[mb_pos] = mquant;
  2588. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2589. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2590. }
  2591. }
  2592. dst_idx = 0;
  2593. for (i=0; i<6; i++)
  2594. {
  2595. s->dc_val[0][s->block_index[i]] = 0;
  2596. dst_idx += i >> 2;
  2597. val = ((cbp >> (5 - i)) & 1);
  2598. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2599. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2600. if(s->mb_intra) {
  2601. /* check if prediction blocks A and C are available */
  2602. v->a_avail = v->c_avail = 0;
  2603. if(i == 2 || i == 3 || !s->first_slice_line)
  2604. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2605. if(i == 1 || i == 3 || s->mb_x)
  2606. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2607. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2608. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2609. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2610. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2611. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2612. } else if(val) {
  2613. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  2614. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2615. first_block = 0;
  2616. }
  2617. }
  2618. }
  2619. /** Decode blocks of I-frame
  2620. */
  2621. static void vc1_decode_i_blocks(VC1Context *v)
  2622. {
  2623. int k, j;
  2624. MpegEncContext *s = &v->s;
  2625. int cbp, val;
  2626. uint8_t *coded_val;
  2627. int mb_pos;
  2628. /* select codingmode used for VLC tables selection */
  2629. switch(v->y_ac_table_index){
  2630. case 0:
  2631. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2632. break;
  2633. case 1:
  2634. v->codingset = CS_HIGH_MOT_INTRA;
  2635. break;
  2636. case 2:
  2637. v->codingset = CS_MID_RATE_INTRA;
  2638. break;
  2639. }
  2640. switch(v->c_ac_table_index){
  2641. case 0:
  2642. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2643. break;
  2644. case 1:
  2645. v->codingset2 = CS_HIGH_MOT_INTER;
  2646. break;
  2647. case 2:
  2648. v->codingset2 = CS_MID_RATE_INTER;
  2649. break;
  2650. }
  2651. /* Set DC scale - y and c use the same */
  2652. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2653. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2654. //do frame decode
  2655. s->mb_x = s->mb_y = 0;
  2656. s->mb_intra = 1;
  2657. s->first_slice_line = 1;
  2658. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2659. s->mb_x = 0;
  2660. ff_init_block_index(s);
  2661. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2662. uint8_t *dst[6];
  2663. ff_update_block_index(s);
  2664. dst[0] = s->dest[0];
  2665. dst[1] = dst[0] + 8;
  2666. dst[2] = s->dest[0] + s->linesize * 8;
  2667. dst[3] = dst[2] + 8;
  2668. dst[4] = s->dest[1];
  2669. dst[5] = s->dest[2];
  2670. s->dsp.clear_blocks(s->block[0]);
  2671. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2672. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2673. s->current_picture.qscale_table[mb_pos] = v->pq;
  2674. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2675. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2676. // do actual MB decoding and displaying
  2677. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2678. v->s.ac_pred = get_bits1(&v->s.gb);
  2679. for(k = 0; k < 6; k++) {
  2680. val = ((cbp >> (5 - k)) & 1);
  2681. if (k < 4) {
  2682. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2683. val = val ^ pred;
  2684. *coded_val = val;
  2685. }
  2686. cbp |= val << (5 - k);
  2687. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2688. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2689. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2690. if(v->pq >= 9 && v->overlap) {
  2691. if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] <<= 1;
  2692. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  2693. } else {
  2694. if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] = (s->block[k][j] - 64) << 1;
  2695. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  2696. }
  2697. }
  2698. if(v->pq >= 9 && v->overlap) {
  2699. if(s->mb_x) {
  2700. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2701. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2702. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2703. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2704. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2705. }
  2706. }
  2707. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2708. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2709. if(!s->first_slice_line) {
  2710. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2711. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2712. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2713. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2714. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2715. }
  2716. }
  2717. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2718. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2719. }
  2720. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2721. if(get_bits_count(&s->gb) > v->bits) {
  2722. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2723. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2724. return;
  2725. }
  2726. }
  2727. if (!v->s.loop_filter)
  2728. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2729. else if (s->mb_y)
  2730. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2731. s->first_slice_line = 0;
  2732. }
  2733. if (v->s.loop_filter)
  2734. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2735. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2736. }
  2737. /** Decode blocks of I-frame for advanced profile
  2738. */
  2739. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2740. {
  2741. int k;
  2742. MpegEncContext *s = &v->s;
  2743. int cbp, val;
  2744. uint8_t *coded_val;
  2745. int mb_pos;
  2746. int mquant = v->pq;
  2747. int mqdiff;
  2748. GetBitContext *gb = &s->gb;
  2749. /* select codingmode used for VLC tables selection */
  2750. switch(v->y_ac_table_index){
  2751. case 0:
  2752. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2753. break;
  2754. case 1:
  2755. v->codingset = CS_HIGH_MOT_INTRA;
  2756. break;
  2757. case 2:
  2758. v->codingset = CS_MID_RATE_INTRA;
  2759. break;
  2760. }
  2761. switch(v->c_ac_table_index){
  2762. case 0:
  2763. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2764. break;
  2765. case 1:
  2766. v->codingset2 = CS_HIGH_MOT_INTER;
  2767. break;
  2768. case 2:
  2769. v->codingset2 = CS_MID_RATE_INTER;
  2770. break;
  2771. }
  2772. //do frame decode
  2773. s->mb_x = s->mb_y = 0;
  2774. s->mb_intra = 1;
  2775. s->first_slice_line = 1;
  2776. s->mb_y = s->start_mb_y;
  2777. if (s->start_mb_y) {
  2778. s->mb_x = 0;
  2779. ff_init_block_index(s);
  2780. memset(&s->coded_block[s->block_index[0]-s->b8_stride], 0,
  2781. s->b8_stride * sizeof(*s->coded_block));
  2782. }
  2783. for(; s->mb_y < s->end_mb_y; s->mb_y++) {
  2784. s->mb_x = 0;
  2785. ff_init_block_index(s);
  2786. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2787. DCTELEM (*block)[64] = v->block[v->cur_blk_idx];
  2788. ff_update_block_index(s);
  2789. s->dsp.clear_blocks(block[0]);
  2790. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2791. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2792. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2793. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2794. // do actual MB decoding and displaying
  2795. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2796. if(v->acpred_is_raw)
  2797. v->s.ac_pred = get_bits1(&v->s.gb);
  2798. else
  2799. v->s.ac_pred = v->acpred_plane[mb_pos];
  2800. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2801. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2802. GET_MQUANT();
  2803. s->current_picture.qscale_table[mb_pos] = mquant;
  2804. /* Set DC scale - y and c use the same */
  2805. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2806. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2807. for(k = 0; k < 6; k++) {
  2808. val = ((cbp >> (5 - k)) & 1);
  2809. if (k < 4) {
  2810. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2811. val = val ^ pred;
  2812. *coded_val = val;
  2813. }
  2814. cbp |= val << (5 - k);
  2815. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2816. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2817. vc1_decode_i_block_adv(v, block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2818. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2819. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2820. }
  2821. vc1_smooth_overlap_filter_iblk(v);
  2822. vc1_put_signed_blocks_clamped(v);
  2823. if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  2824. if(get_bits_count(&s->gb) > v->bits) {
  2825. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2826. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2827. return;
  2828. }
  2829. }
  2830. if (!v->s.loop_filter)
  2831. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2832. else if (s->mb_y)
  2833. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2834. s->first_slice_line = 0;
  2835. }
  2836. /* raw bottom MB row */
  2837. s->mb_x = 0;
  2838. ff_init_block_index(s);
  2839. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2840. ff_update_block_index(s);
  2841. vc1_put_signed_blocks_clamped(v);
  2842. if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  2843. }
  2844. if (v->s.loop_filter)
  2845. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2846. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2847. }
  2848. static void vc1_decode_p_blocks(VC1Context *v)
  2849. {
  2850. MpegEncContext *s = &v->s;
  2851. int apply_loop_filter;
  2852. /* select codingmode used for VLC tables selection */
  2853. switch(v->c_ac_table_index){
  2854. case 0:
  2855. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2856. break;
  2857. case 1:
  2858. v->codingset = CS_HIGH_MOT_INTRA;
  2859. break;
  2860. case 2:
  2861. v->codingset = CS_MID_RATE_INTRA;
  2862. break;
  2863. }
  2864. switch(v->c_ac_table_index){
  2865. case 0:
  2866. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2867. break;
  2868. case 1:
  2869. v->codingset2 = CS_HIGH_MOT_INTER;
  2870. break;
  2871. case 2:
  2872. v->codingset2 = CS_MID_RATE_INTER;
  2873. break;
  2874. }
  2875. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2876. s->first_slice_line = 1;
  2877. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2878. for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2879. s->mb_x = 0;
  2880. ff_init_block_index(s);
  2881. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2882. ff_update_block_index(s);
  2883. vc1_decode_p_mb(v);
  2884. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  2885. vc1_apply_p_loop_filter(v);
  2886. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2887. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2888. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2889. return;
  2890. }
  2891. }
  2892. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2893. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0])*s->mb_stride);
  2894. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  2895. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0])*s->mb_stride);
  2896. if (s->mb_y != s->start_mb_y) ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2897. s->first_slice_line = 0;
  2898. }
  2899. if (apply_loop_filter) {
  2900. s->mb_x = 0;
  2901. ff_init_block_index(s);
  2902. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2903. ff_update_block_index(s);
  2904. vc1_apply_p_loop_filter(v);
  2905. }
  2906. }
  2907. if (s->end_mb_y >= s->start_mb_y)
  2908. ff_draw_horiz_band(s, (s->end_mb_y-1) * 16, 16);
  2909. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2910. }
  2911. static void vc1_decode_b_blocks(VC1Context *v)
  2912. {
  2913. MpegEncContext *s = &v->s;
  2914. /* select codingmode used for VLC tables selection */
  2915. switch(v->c_ac_table_index){
  2916. case 0:
  2917. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2918. break;
  2919. case 1:
  2920. v->codingset = CS_HIGH_MOT_INTRA;
  2921. break;
  2922. case 2:
  2923. v->codingset = CS_MID_RATE_INTRA;
  2924. break;
  2925. }
  2926. switch(v->c_ac_table_index){
  2927. case 0:
  2928. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2929. break;
  2930. case 1:
  2931. v->codingset2 = CS_HIGH_MOT_INTER;
  2932. break;
  2933. case 2:
  2934. v->codingset2 = CS_MID_RATE_INTER;
  2935. break;
  2936. }
  2937. s->first_slice_line = 1;
  2938. for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2939. s->mb_x = 0;
  2940. ff_init_block_index(s);
  2941. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2942. ff_update_block_index(s);
  2943. vc1_decode_b_mb(v);
  2944. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2945. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2946. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2947. return;
  2948. }
  2949. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2950. }
  2951. if (!v->s.loop_filter)
  2952. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2953. else if (s->mb_y)
  2954. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2955. s->first_slice_line = 0;
  2956. }
  2957. if (v->s.loop_filter)
  2958. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2959. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2960. }
  2961. static void vc1_decode_skip_blocks(VC1Context *v)
  2962. {
  2963. MpegEncContext *s = &v->s;
  2964. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2965. s->first_slice_line = 1;
  2966. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2967. s->mb_x = 0;
  2968. ff_init_block_index(s);
  2969. ff_update_block_index(s);
  2970. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2971. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2972. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2973. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2974. s->first_slice_line = 0;
  2975. }
  2976. s->pict_type = AV_PICTURE_TYPE_P;
  2977. }
  2978. static void vc1_decode_blocks(VC1Context *v)
  2979. {
  2980. v->s.esc3_level_length = 0;
  2981. if(v->x8_type){
  2982. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2983. }else{
  2984. v->cur_blk_idx = 0;
  2985. v->left_blk_idx = -1;
  2986. v->topleft_blk_idx = 1;
  2987. v->top_blk_idx = 2;
  2988. switch(v->s.pict_type) {
  2989. case AV_PICTURE_TYPE_I:
  2990. if(v->profile == PROFILE_ADVANCED)
  2991. vc1_decode_i_blocks_adv(v);
  2992. else
  2993. vc1_decode_i_blocks(v);
  2994. break;
  2995. case AV_PICTURE_TYPE_P:
  2996. if(v->p_frame_skipped)
  2997. vc1_decode_skip_blocks(v);
  2998. else
  2999. vc1_decode_p_blocks(v);
  3000. break;
  3001. case AV_PICTURE_TYPE_B:
  3002. if(v->bi_type){
  3003. if(v->profile == PROFILE_ADVANCED)
  3004. vc1_decode_i_blocks_adv(v);
  3005. else
  3006. vc1_decode_i_blocks(v);
  3007. }else
  3008. vc1_decode_b_blocks(v);
  3009. break;
  3010. }
  3011. }
  3012. }
  3013. static inline float get_float_val(GetBitContext* gb)
  3014. {
  3015. return (float)get_bits_long(gb, 30) / (1<<15) - (1<<14);
  3016. }
  3017. static void vc1_sprite_parse_transform(VC1Context *v, GetBitContext* gb, float c[7])
  3018. {
  3019. c[1] = c[3] = 0.0f;
  3020. switch (get_bits(gb, 2)) {
  3021. case 0:
  3022. c[0] = 1.0f;
  3023. c[2] = get_float_val(gb);
  3024. c[4] = 1.0f;
  3025. break;
  3026. case 1:
  3027. c[0] = c[4] = get_float_val(gb);
  3028. c[2] = get_float_val(gb);
  3029. break;
  3030. case 2:
  3031. c[0] = get_float_val(gb);
  3032. c[2] = get_float_val(gb);
  3033. c[4] = get_float_val(gb);
  3034. break;
  3035. case 3:
  3036. av_log_ask_for_sample(v->s.avctx, NULL);
  3037. c[0] = get_float_val(gb);
  3038. c[1] = get_float_val(gb);
  3039. c[2] = get_float_val(gb);
  3040. c[3] = get_float_val(gb);
  3041. c[4] = get_float_val(gb);
  3042. break;
  3043. }
  3044. c[5] = get_float_val(gb);
  3045. if (get_bits1(gb))
  3046. c[6] = get_float_val(gb);
  3047. else
  3048. c[6] = 1.0f;
  3049. }
  3050. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb)
  3051. {
  3052. int effect_type, effect_flag, effect_pcount1, effect_pcount2, i;
  3053. float effect_params1[14], effect_params2[10];
  3054. float coefs[2][7];
  3055. vc1_sprite_parse_transform(v, gb, coefs[0]);
  3056. av_log(v->s.avctx, AV_LOG_DEBUG, "S1:");
  3057. for (i = 0; i < 7; i++)
  3058. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[0][i]);
  3059. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3060. if (v->two_sprites) {
  3061. vc1_sprite_parse_transform(v, gb, coefs[1]);
  3062. av_log(v->s.avctx, AV_LOG_DEBUG, "S2:");
  3063. for (i = 0; i < 7; i++)
  3064. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[1][i]);
  3065. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3066. }
  3067. skip_bits(gb, 2);
  3068. if (effect_type = get_bits_long(gb, 30)){
  3069. switch (effect_pcount1 = get_bits(gb, 4)) {
  3070. case 2:
  3071. effect_params1[0] = get_float_val(gb);
  3072. effect_params1[1] = get_float_val(gb);
  3073. break;
  3074. case 7:
  3075. vc1_sprite_parse_transform(v, gb, effect_params1);
  3076. break;
  3077. case 14:
  3078. vc1_sprite_parse_transform(v, gb, effect_params1);
  3079. vc1_sprite_parse_transform(v, gb, &effect_params1[7]);
  3080. break;
  3081. default:
  3082. av_log_ask_for_sample(v->s.avctx, NULL);
  3083. return;
  3084. }
  3085. if (effect_type != 13 || effect_params1[0] != coefs[0][6]) {
  3086. // effect 13 is simple alpha blending and matches the opacity above
  3087. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect: %d; params: ", effect_type);
  3088. for (i = 0; i < effect_pcount1; i++)
  3089. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params1[i]);
  3090. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3091. }
  3092. effect_pcount2 = get_bits(gb, 16);
  3093. if (effect_pcount2 > 10) {
  3094. av_log(v->s.avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  3095. return;
  3096. } else if (effect_pcount2) {
  3097. i = 0;
  3098. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect params 2: ");
  3099. while (i < effect_pcount2){
  3100. effect_params2[i] = get_float_val(gb);
  3101. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params2[i]);
  3102. i++;
  3103. }
  3104. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3105. }
  3106. }
  3107. if (effect_flag = get_bits1(gb))
  3108. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect flag set\n");
  3109. if (get_bits_count(gb) >= gb->size_in_bits +
  3110. (v->s.avctx->codec_id == CODEC_ID_WMV3 ? 64 : 0))
  3111. av_log(v->s.avctx, AV_LOG_ERROR, "Buffer overrun\n");
  3112. if (get_bits_count(gb) < gb->size_in_bits - 8)
  3113. av_log(v->s.avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  3114. }
  3115. /** Initialize a VC1/WMV3 decoder
  3116. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3117. * @todo TODO: Decypher remaining bits in extra_data
  3118. */
  3119. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3120. {
  3121. VC1Context *v = avctx->priv_data;
  3122. MpegEncContext *s = &v->s;
  3123. GetBitContext gb;
  3124. int i, cur_width, cur_height;
  3125. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3126. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3127. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3128. else
  3129. avctx->pix_fmt = PIX_FMT_GRAY8;
  3130. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3131. v->s.avctx = avctx;
  3132. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3133. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3134. if(avctx->idct_algo==FF_IDCT_AUTO){
  3135. avctx->idct_algo=FF_IDCT_WMV2;
  3136. }
  3137. if(ff_msmpeg4_decode_init(avctx) < 0)
  3138. return -1;
  3139. if (vc1_init_common(v) < 0) return -1;
  3140. ff_vc1dsp_init(&v->vc1dsp);
  3141. cur_width = avctx->coded_width = avctx->width;
  3142. cur_height = avctx->coded_height = avctx->height;
  3143. if (avctx->codec_id == CODEC_ID_WMV3)
  3144. {
  3145. int count = 0;
  3146. // looks like WMV3 has a sequence header stored in the extradata
  3147. // advanced sequence header may be before the first frame
  3148. // the last byte of the extradata is a version number, 1 for the
  3149. // samples we can decode
  3150. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3151. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  3152. return -1;
  3153. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3154. if (count>0)
  3155. {
  3156. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3157. count, get_bits(&gb, count));
  3158. }
  3159. else if (count < 0)
  3160. {
  3161. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3162. }
  3163. } else { // VC1/WVC1/WVP2
  3164. const uint8_t *start = avctx->extradata;
  3165. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3166. const uint8_t *next;
  3167. int size, buf2_size;
  3168. uint8_t *buf2 = NULL;
  3169. int seq_initialized = 0, ep_initialized = 0;
  3170. if(avctx->extradata_size < 16) {
  3171. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3172. return -1;
  3173. }
  3174. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3175. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  3176. next = start;
  3177. for(; next < end; start = next){
  3178. next = find_next_marker(start + 4, end);
  3179. size = next - start - 4;
  3180. if(size <= 0) continue;
  3181. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3182. init_get_bits(&gb, buf2, buf2_size * 8);
  3183. switch(AV_RB32(start)){
  3184. case VC1_CODE_SEQHDR:
  3185. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  3186. av_free(buf2);
  3187. return -1;
  3188. }
  3189. seq_initialized = 1;
  3190. break;
  3191. case VC1_CODE_ENTRYPOINT:
  3192. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  3193. av_free(buf2);
  3194. return -1;
  3195. }
  3196. ep_initialized = 1;
  3197. break;
  3198. }
  3199. }
  3200. av_free(buf2);
  3201. if(!seq_initialized || !ep_initialized){
  3202. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3203. return -1;
  3204. }
  3205. v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
  3206. }
  3207. // Sequence header information may not have been parsed
  3208. // yet when ff_msmpeg4_decode_init was called the fist time
  3209. // above. If sequence information changes, we need to call
  3210. // it again.
  3211. if (cur_width != avctx->width ||
  3212. cur_height != avctx->height) {
  3213. MPV_common_end(s);
  3214. if(ff_msmpeg4_decode_init(avctx) < 0)
  3215. return -1;
  3216. avctx->coded_width = avctx->width;
  3217. avctx->coded_height = avctx->height;
  3218. }
  3219. avctx->profile = v->profile;
  3220. if (v->profile == PROFILE_ADVANCED)
  3221. avctx->level = v->level;
  3222. avctx->has_b_frames= !!(avctx->max_b_frames);
  3223. s->low_delay = !avctx->has_b_frames;
  3224. s->mb_width = (avctx->coded_width+15)>>4;
  3225. s->mb_height = (avctx->coded_height+15)>>4;
  3226. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  3227. for (i = 0; i < 64; i++) {
  3228. #define transpose(x) ((x>>3) | ((x&7)<<3))
  3229. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  3230. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  3231. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  3232. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  3233. }
  3234. v->left_blk_sh = 0;
  3235. v->top_blk_sh = 3;
  3236. } else {
  3237. memcpy(v->zz_8x8, wmv1_scantable, 4*64);
  3238. v->left_blk_sh = 3;
  3239. v->top_blk_sh = 0;
  3240. }
  3241. /* Allocate mb bitplanes */
  3242. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3243. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3244. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3245. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3246. v->n_allocated_blks = s->mb_width + 2;
  3247. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  3248. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3249. v->cbp = v->cbp_base + s->mb_stride;
  3250. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  3251. v->ttblk = v->ttblk_base + s->mb_stride;
  3252. v->is_intra_base = av_malloc(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  3253. v->is_intra = v->is_intra_base + s->mb_stride;
  3254. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  3255. v->luma_mv = v->luma_mv_base + s->mb_stride;
  3256. /* allocate block type info in that way so it could be used with s->block_index[] */
  3257. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3258. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3259. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3260. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3261. /* Init coded blocks info */
  3262. if (v->profile == PROFILE_ADVANCED)
  3263. {
  3264. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3265. // return -1;
  3266. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3267. // return -1;
  3268. }
  3269. ff_intrax8_common_init(&v->x8,s);
  3270. return 0;
  3271. }
  3272. /** Decode a VC1/WMV3 frame
  3273. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3274. */
  3275. static int vc1_decode_frame(AVCodecContext *avctx,
  3276. void *data, int *data_size,
  3277. AVPacket *avpkt)
  3278. {
  3279. const uint8_t *buf = avpkt->data;
  3280. int buf_size = avpkt->size, n_slices = 0, i;
  3281. VC1Context *v = avctx->priv_data;
  3282. MpegEncContext *s = &v->s;
  3283. AVFrame *pict = data;
  3284. uint8_t *buf2 = NULL;
  3285. const uint8_t *buf_start = buf;
  3286. struct {
  3287. uint8_t *buf;
  3288. GetBitContext gb;
  3289. int mby_start;
  3290. } *slices = NULL;
  3291. /* no supplementary picture */
  3292. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  3293. /* special case for last picture */
  3294. if (s->low_delay==0 && s->next_picture_ptr) {
  3295. *pict= *(AVFrame*)s->next_picture_ptr;
  3296. s->next_picture_ptr= NULL;
  3297. *data_size = sizeof(AVFrame);
  3298. }
  3299. return 0;
  3300. }
  3301. /* We need to set current_picture_ptr before reading the header,
  3302. * otherwise we cannot store anything in there. */
  3303. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3304. int i= ff_find_unused_picture(s, 0);
  3305. s->current_picture_ptr= &s->picture[i];
  3306. }
  3307. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3308. if (v->profile < PROFILE_ADVANCED)
  3309. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3310. else
  3311. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3312. }
  3313. //for advanced profile we may need to parse and unescape data
  3314. if (avctx->codec_id == CODEC_ID_VC1) {
  3315. int buf_size2 = 0;
  3316. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3317. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3318. const uint8_t *start, *end, *next;
  3319. int size;
  3320. next = buf;
  3321. for(start = buf, end = buf + buf_size; next < end; start = next){
  3322. next = find_next_marker(start + 4, end);
  3323. size = next - start - 4;
  3324. if(size <= 0) continue;
  3325. switch(AV_RB32(start)){
  3326. case VC1_CODE_FRAME:
  3327. if (avctx->hwaccel ||
  3328. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3329. buf_start = start;
  3330. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3331. break;
  3332. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3333. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3334. init_get_bits(&s->gb, buf2, buf_size2*8);
  3335. vc1_decode_entry_point(avctx, v, &s->gb);
  3336. break;
  3337. case VC1_CODE_SLICE: {
  3338. int buf_size3;
  3339. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  3340. if (!slices) goto err;
  3341. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3342. if (!slices[n_slices].buf) goto err;
  3343. buf_size3 = vc1_unescape_buffer(start + 4, size,
  3344. slices[n_slices].buf);
  3345. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  3346. buf_size3 << 3);
  3347. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  3348. n_slices++;
  3349. break;
  3350. }
  3351. }
  3352. }
  3353. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3354. const uint8_t *divider;
  3355. divider = find_next_marker(buf, buf + buf_size);
  3356. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3357. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3358. goto err;
  3359. }
  3360. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3361. // TODO
  3362. if(!v->warn_interlaced++)
  3363. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  3364. goto err;
  3365. }else{
  3366. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3367. }
  3368. init_get_bits(&s->gb, buf2, buf_size2*8);
  3369. } else
  3370. init_get_bits(&s->gb, buf, buf_size*8);
  3371. if (v->res_sprite) {
  3372. v->new_sprite = !get_bits1(&s->gb);
  3373. v->two_sprites = get_bits1(&s->gb);
  3374. if (!v->new_sprite)
  3375. goto end;
  3376. }
  3377. // do parse frame header
  3378. if(v->profile < PROFILE_ADVANCED) {
  3379. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3380. goto err;
  3381. }
  3382. } else {
  3383. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3384. goto err;
  3385. }
  3386. }
  3387. if (v->res_sprite && s->pict_type!=AV_PICTURE_TYPE_I) {
  3388. av_log(v->s.avctx, AV_LOG_WARNING, "Sprite decoder: expected I-frame\n");
  3389. }
  3390. // for skipping the frame
  3391. s->current_picture.pict_type= s->pict_type;
  3392. s->current_picture.key_frame= s->pict_type == AV_PICTURE_TYPE_I;
  3393. /* skip B-frames if we don't have reference frames */
  3394. if(s->last_picture_ptr==NULL && (s->pict_type==AV_PICTURE_TYPE_B || s->dropable)){
  3395. goto err;
  3396. }
  3397. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==AV_PICTURE_TYPE_B)
  3398. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=AV_PICTURE_TYPE_I)
  3399. || avctx->skip_frame >= AVDISCARD_ALL) {
  3400. goto end;
  3401. }
  3402. if(s->next_p_frame_damaged){
  3403. if(s->pict_type==AV_PICTURE_TYPE_B)
  3404. goto end;
  3405. else
  3406. s->next_p_frame_damaged=0;
  3407. }
  3408. if(MPV_frame_start(s, avctx) < 0) {
  3409. goto err;
  3410. }
  3411. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3412. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3413. if ((CONFIG_VC1_VDPAU_DECODER)
  3414. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3415. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3416. else if (avctx->hwaccel) {
  3417. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3418. goto err;
  3419. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3420. goto err;
  3421. if (avctx->hwaccel->end_frame(avctx) < 0)
  3422. goto err;
  3423. } else {
  3424. ff_er_frame_start(s);
  3425. v->bits = buf_size * 8;
  3426. for (i = 0; i <= n_slices; i++) {
  3427. if (i && get_bits1(&s->gb))
  3428. vc1_parse_frame_header_adv(v, &s->gb);
  3429. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start);
  3430. s->end_mb_y = (i == n_slices) ? s->mb_height : FFMIN(s->mb_height, slices[i].mby_start);
  3431. vc1_decode_blocks(v);
  3432. if (i != n_slices) s->gb = slices[i].gb;
  3433. }
  3434. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3435. // if(get_bits_count(&s->gb) > buf_size * 8)
  3436. // return -1;
  3437. ff_er_frame_end(s);
  3438. }
  3439. MPV_frame_end(s);
  3440. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3441. assert(s->current_picture.pict_type == s->pict_type);
  3442. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  3443. *pict= *(AVFrame*)s->current_picture_ptr;
  3444. } else if (s->last_picture_ptr != NULL) {
  3445. *pict= *(AVFrame*)s->last_picture_ptr;
  3446. }
  3447. if(s->last_picture_ptr || s->low_delay){
  3448. *data_size = sizeof(AVFrame);
  3449. ff_print_debug_info(s, pict);
  3450. }
  3451. end:
  3452. if (v->res_sprite)
  3453. vc1_parse_sprites(v, &s->gb);
  3454. av_free(buf2);
  3455. for (i = 0; i < n_slices; i++)
  3456. av_free(slices[i].buf);
  3457. av_free(slices);
  3458. return buf_size;
  3459. err:
  3460. av_free(buf2);
  3461. for (i = 0; i < n_slices; i++)
  3462. av_free(slices[i].buf);
  3463. av_free(slices);
  3464. return -1;
  3465. }
  3466. /** Close a VC1/WMV3 decoder
  3467. * @warning Initial try at using MpegEncContext stuff
  3468. */
  3469. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3470. {
  3471. VC1Context *v = avctx->priv_data;
  3472. av_freep(&v->hrd_rate);
  3473. av_freep(&v->hrd_buffer);
  3474. MPV_common_end(&v->s);
  3475. av_freep(&v->mv_type_mb_plane);
  3476. av_freep(&v->direct_mb_plane);
  3477. av_freep(&v->acpred_plane);
  3478. av_freep(&v->over_flags_plane);
  3479. av_freep(&v->mb_type_base);
  3480. av_freep(&v->block);
  3481. av_freep(&v->cbp_base);
  3482. av_freep(&v->ttblk_base);
  3483. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  3484. av_freep(&v->luma_mv_base);
  3485. ff_intrax8_common_end(&v->x8);
  3486. return 0;
  3487. }
  3488. static const AVProfile profiles[] = {
  3489. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  3490. { FF_PROFILE_VC1_MAIN, "Main" },
  3491. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  3492. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  3493. { FF_PROFILE_UNKNOWN },
  3494. };
  3495. AVCodec ff_vc1_decoder = {
  3496. "vc1",
  3497. AVMEDIA_TYPE_VIDEO,
  3498. CODEC_ID_VC1,
  3499. sizeof(VC1Context),
  3500. vc1_decode_init,
  3501. NULL,
  3502. vc1_decode_end,
  3503. vc1_decode_frame,
  3504. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3505. NULL,
  3506. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3507. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3508. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3509. };
  3510. #if CONFIG_WMV3_DECODER
  3511. AVCodec ff_wmv3_decoder = {
  3512. "wmv3",
  3513. AVMEDIA_TYPE_VIDEO,
  3514. CODEC_ID_WMV3,
  3515. sizeof(VC1Context),
  3516. vc1_decode_init,
  3517. NULL,
  3518. vc1_decode_end,
  3519. vc1_decode_frame,
  3520. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3521. NULL,
  3522. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3523. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3524. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3525. };
  3526. #endif
  3527. #if CONFIG_WMV3_VDPAU_DECODER
  3528. AVCodec ff_wmv3_vdpau_decoder = {
  3529. "wmv3_vdpau",
  3530. AVMEDIA_TYPE_VIDEO,
  3531. CODEC_ID_WMV3,
  3532. sizeof(VC1Context),
  3533. vc1_decode_init,
  3534. NULL,
  3535. vc1_decode_end,
  3536. vc1_decode_frame,
  3537. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3538. NULL,
  3539. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3540. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
  3541. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3542. };
  3543. #endif
  3544. #if CONFIG_VC1_VDPAU_DECODER
  3545. AVCodec ff_vc1_vdpau_decoder = {
  3546. "vc1_vdpau",
  3547. AVMEDIA_TYPE_VIDEO,
  3548. CODEC_ID_VC1,
  3549. sizeof(VC1Context),
  3550. vc1_decode_init,
  3551. NULL,
  3552. vc1_decode_end,
  3553. vc1_decode_frame,
  3554. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3555. NULL,
  3556. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3557. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
  3558. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3559. };
  3560. #endif