You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1328 lines
48KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  38. #define COEFF_TOKEN_VLC_BITS 8
  39. #define TOTAL_ZEROS_VLC_BITS 9
  40. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  41. #define RUN_VLC_BITS 3
  42. #define RUN7_VLC_BITS 6
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define FMO 0
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 16
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF h->mb_mbaff
  58. #define MB_FIELD h->mb_field_decoding_flag
  59. #define FRAME_MBAFF h->mb_aff_frame
  60. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  61. #else
  62. #define MB_MBAFF 0
  63. #define MB_FIELD 0
  64. #define FRAME_MBAFF 0
  65. #define FIELD_PICTURE 0
  66. #undef IS_INTERLACED
  67. #define IS_INTERLACED(mb_type) 0
  68. #endif
  69. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  70. #ifndef CABAC
  71. #define CABAC h->pps.cabac
  72. #endif
  73. #define CHROMA444 (h->sps.chroma_format_idc == 3)
  74. #define EXTENDED_SAR 255
  75. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  76. #define MB_TYPE_8x8DCT 0x01000000
  77. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  78. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  79. /**
  80. * Value of Picture.reference when Picture is not a reference picture, but
  81. * is held for delayed output.
  82. */
  83. #define DELAYED_PIC_REF 4
  84. #define QP_MAX_NUM (51 + 2*6) // The maximum supported qp
  85. /* NAL unit types */
  86. enum {
  87. NAL_SLICE=1,
  88. NAL_DPA,
  89. NAL_DPB,
  90. NAL_DPC,
  91. NAL_IDR_SLICE,
  92. NAL_SEI,
  93. NAL_SPS,
  94. NAL_PPS,
  95. NAL_AUD,
  96. NAL_END_SEQUENCE,
  97. NAL_END_STREAM,
  98. NAL_FILLER_DATA,
  99. NAL_SPS_EXT,
  100. NAL_AUXILIARY_SLICE=19
  101. };
  102. /**
  103. * SEI message types
  104. */
  105. typedef enum {
  106. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  107. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  108. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  109. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  110. } SEI_Type;
  111. /**
  112. * pic_struct in picture timing SEI message
  113. */
  114. typedef enum {
  115. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  116. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  117. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  118. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  119. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  120. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  121. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  122. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  123. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  124. } SEI_PicStructType;
  125. /**
  126. * Sequence parameter set
  127. */
  128. typedef struct SPS{
  129. int profile_idc;
  130. int level_idc;
  131. int chroma_format_idc;
  132. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  133. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  134. int poc_type; ///< pic_order_cnt_type
  135. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  136. int delta_pic_order_always_zero_flag;
  137. int offset_for_non_ref_pic;
  138. int offset_for_top_to_bottom_field;
  139. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  140. int ref_frame_count; ///< num_ref_frames
  141. int gaps_in_frame_num_allowed_flag;
  142. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  143. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  144. int frame_mbs_only_flag;
  145. int mb_aff; ///<mb_adaptive_frame_field_flag
  146. int direct_8x8_inference_flag;
  147. int crop; ///< frame_cropping_flag
  148. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  149. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  150. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  151. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  152. int vui_parameters_present_flag;
  153. AVRational sar;
  154. int video_signal_type_present_flag;
  155. int full_range;
  156. int colour_description_present_flag;
  157. enum AVColorPrimaries color_primaries;
  158. enum AVColorTransferCharacteristic color_trc;
  159. enum AVColorSpace colorspace;
  160. int timing_info_present_flag;
  161. uint32_t num_units_in_tick;
  162. uint32_t time_scale;
  163. int fixed_frame_rate_flag;
  164. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  165. int bitstream_restriction_flag;
  166. int num_reorder_frames;
  167. int scaling_matrix_present;
  168. uint8_t scaling_matrix4[6][16];
  169. uint8_t scaling_matrix8[6][64];
  170. int nal_hrd_parameters_present_flag;
  171. int vcl_hrd_parameters_present_flag;
  172. int pic_struct_present_flag;
  173. int time_offset_length;
  174. int cpb_cnt; ///< See H.264 E.1.2
  175. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  176. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  177. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  178. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  179. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  180. int residual_color_transform_flag; ///< residual_colour_transform_flag
  181. int constraint_set_flags; ///< constraint_set[0-3]_flag
  182. }SPS;
  183. /**
  184. * Picture parameter set
  185. */
  186. typedef struct PPS{
  187. unsigned int sps_id;
  188. int cabac; ///< entropy_coding_mode_flag
  189. int pic_order_present; ///< pic_order_present_flag
  190. int slice_group_count; ///< num_slice_groups_minus1 + 1
  191. int mb_slice_group_map_type;
  192. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  193. int weighted_pred; ///< weighted_pred_flag
  194. int weighted_bipred_idc;
  195. int init_qp; ///< pic_init_qp_minus26 + 26
  196. int init_qs; ///< pic_init_qs_minus26 + 26
  197. int chroma_qp_index_offset[2];
  198. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  199. int constrained_intra_pred; ///< constrained_intra_pred_flag
  200. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  201. int transform_8x8_mode; ///< transform_8x8_mode_flag
  202. uint8_t scaling_matrix4[6][16];
  203. uint8_t scaling_matrix8[6][64];
  204. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  205. int chroma_qp_diff;
  206. }PPS;
  207. /**
  208. * Memory management control operation opcode.
  209. */
  210. typedef enum MMCOOpcode{
  211. MMCO_END=0,
  212. MMCO_SHORT2UNUSED,
  213. MMCO_LONG2UNUSED,
  214. MMCO_SHORT2LONG,
  215. MMCO_SET_MAX_LONG,
  216. MMCO_RESET,
  217. MMCO_LONG,
  218. } MMCOOpcode;
  219. /**
  220. * Memory management control operation.
  221. */
  222. typedef struct MMCO{
  223. MMCOOpcode opcode;
  224. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  225. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  226. } MMCO;
  227. /**
  228. * H264Context
  229. */
  230. typedef struct H264Context{
  231. MpegEncContext s;
  232. H264DSPContext h264dsp;
  233. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  234. int chroma_qp[2]; //QPc
  235. int qp_thresh; ///< QP threshold to skip loopfilter
  236. int prev_mb_skipped;
  237. int next_mb_skipped;
  238. //prediction stuff
  239. int chroma_pred_mode;
  240. int intra16x16_pred_mode;
  241. int topleft_mb_xy;
  242. int top_mb_xy;
  243. int topright_mb_xy;
  244. int left_mb_xy[2];
  245. int topleft_type;
  246. int top_type;
  247. int topright_type;
  248. int left_type[2];
  249. const uint8_t * left_block;
  250. int topleft_partition;
  251. int8_t intra4x4_pred_mode_cache[5*8];
  252. int8_t (*intra4x4_pred_mode);
  253. H264PredContext hpc;
  254. unsigned int topleft_samples_available;
  255. unsigned int top_samples_available;
  256. unsigned int topright_samples_available;
  257. unsigned int left_samples_available;
  258. uint8_t (*top_borders[2])[(16*3)*2];
  259. /**
  260. * non zero coeff count cache.
  261. * is 64 if not available.
  262. */
  263. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15*8];
  264. uint8_t (*non_zero_count)[48];
  265. /**
  266. * Motion vector cache.
  267. */
  268. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  269. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  270. #define LIST_NOT_USED -1 //FIXME rename?
  271. #define PART_NOT_AVAILABLE -2
  272. /**
  273. * is 1 if the specific list MV&references are set to 0,0,-2.
  274. */
  275. int mv_cache_clean[2];
  276. /**
  277. * number of neighbors (top and/or left) that used 8x8 dct
  278. */
  279. int neighbor_transform_size;
  280. /**
  281. * block_offset[ 0..23] for frame macroblocks
  282. * block_offset[24..47] for field macroblocks
  283. */
  284. int block_offset[2*(16*3)];
  285. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  286. uint32_t *mb2br_xy;
  287. int b_stride; //FIXME use s->b4_stride
  288. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  289. int mb_uvlinesize;
  290. int emu_edge_width;
  291. int emu_edge_height;
  292. SPS sps; ///< current sps
  293. /**
  294. * current pps
  295. */
  296. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  297. uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]; //FIXME should these be moved down?
  298. uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64];
  299. uint32_t (*dequant4_coeff[6])[16];
  300. uint32_t (*dequant8_coeff[6])[64];
  301. int slice_num;
  302. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  303. int slice_type;
  304. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  305. int slice_type_fixed;
  306. //interlacing specific flags
  307. int mb_aff_frame;
  308. int mb_field_decoding_flag;
  309. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  310. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  311. //Weighted pred stuff
  312. int use_weight;
  313. int use_weight_chroma;
  314. int luma_log2_weight_denom;
  315. int chroma_log2_weight_denom;
  316. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  317. int luma_weight[48][2][2];
  318. int chroma_weight[48][2][2][2];
  319. int implicit_weight[48][48][2];
  320. int direct_spatial_mv_pred;
  321. int col_parity;
  322. int col_fieldoff;
  323. int dist_scale_factor[16];
  324. int dist_scale_factor_field[2][32];
  325. int map_col_to_list0[2][16+32];
  326. int map_col_to_list0_field[2][2][16+32];
  327. /**
  328. * num_ref_idx_l0/1_active_minus1 + 1
  329. */
  330. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  331. unsigned int list_count;
  332. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  333. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  334. Reordered version of default_ref_list
  335. according to picture reordering in slice header */
  336. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  337. //data partitioning
  338. GetBitContext intra_gb;
  339. GetBitContext inter_gb;
  340. GetBitContext *intra_gb_ptr;
  341. GetBitContext *inter_gb_ptr;
  342. DECLARE_ALIGNED(16, DCTELEM, mb)[16*48*2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  343. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[3][16*2];
  344. DCTELEM mb_padding[256*2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  345. /**
  346. * Cabac
  347. */
  348. CABACContext cabac;
  349. uint8_t cabac_state[1024];
  350. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  351. uint16_t *cbp_table;
  352. int cbp;
  353. int top_cbp;
  354. int left_cbp;
  355. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  356. uint8_t *chroma_pred_mode_table;
  357. int last_qscale_diff;
  358. uint8_t (*mvd_table[2])[2];
  359. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  360. uint8_t *direct_table;
  361. uint8_t direct_cache[5*8];
  362. uint8_t zigzag_scan[16];
  363. uint8_t zigzag_scan8x8[64];
  364. uint8_t zigzag_scan8x8_cavlc[64];
  365. uint8_t field_scan[16];
  366. uint8_t field_scan8x8[64];
  367. uint8_t field_scan8x8_cavlc[64];
  368. const uint8_t *zigzag_scan_q0;
  369. const uint8_t *zigzag_scan8x8_q0;
  370. const uint8_t *zigzag_scan8x8_cavlc_q0;
  371. const uint8_t *field_scan_q0;
  372. const uint8_t *field_scan8x8_q0;
  373. const uint8_t *field_scan8x8_cavlc_q0;
  374. int x264_build;
  375. int mb_xy;
  376. int is_complex;
  377. //deblock
  378. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  379. int slice_alpha_c0_offset;
  380. int slice_beta_offset;
  381. //=============================================================
  382. //Things below are not used in the MB or more inner code
  383. int nal_ref_idc;
  384. int nal_unit_type;
  385. uint8_t *rbsp_buffer[2];
  386. unsigned int rbsp_buffer_size[2];
  387. /**
  388. * Used to parse AVC variant of h264
  389. */
  390. int is_avc; ///< this flag is != 0 if codec is avc1
  391. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  392. int got_first; ///< this flag is != 0 if we've parsed a frame
  393. SPS *sps_buffers[MAX_SPS_COUNT];
  394. PPS *pps_buffers[MAX_PPS_COUNT];
  395. int dequant_coeff_pps; ///< reinit tables when pps changes
  396. uint16_t *slice_table_base;
  397. //POC stuff
  398. int poc_lsb;
  399. int poc_msb;
  400. int delta_poc_bottom;
  401. int delta_poc[2];
  402. int frame_num;
  403. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  404. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  405. int frame_num_offset; ///< for POC type 2
  406. int prev_frame_num_offset; ///< for POC type 2
  407. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  408. /**
  409. * frame_num for frames or 2*frame_num+1 for field pics.
  410. */
  411. int curr_pic_num;
  412. /**
  413. * max_frame_num or 2*max_frame_num for field pics.
  414. */
  415. int max_pic_num;
  416. int redundant_pic_count;
  417. Picture *short_ref[32];
  418. Picture *long_ref[32];
  419. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  420. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  421. Picture *next_output_pic;
  422. int outputed_poc;
  423. int next_outputed_poc;
  424. /**
  425. * memory management control operations buffer.
  426. */
  427. MMCO mmco[MAX_MMCO_COUNT];
  428. int mmco_index;
  429. int long_ref_count; ///< number of actual long term references
  430. int short_ref_count; ///< number of actual short term references
  431. int cabac_init_idc;
  432. /**
  433. * @defgroup multithreading Members for slice based multithreading
  434. * @{
  435. */
  436. struct H264Context *thread_context[MAX_THREADS];
  437. /**
  438. * current slice number, used to initalize slice_num of each thread/context
  439. */
  440. int current_slice;
  441. /**
  442. * Max number of threads / contexts.
  443. * This is equal to AVCodecContext.thread_count unless
  444. * multithreaded decoding is impossible, in which case it is
  445. * reduced to 1.
  446. */
  447. int max_contexts;
  448. /**
  449. * 1 if the single thread fallback warning has already been
  450. * displayed, 0 otherwise.
  451. */
  452. int single_decode_warning;
  453. int last_slice_type;
  454. /** @} */
  455. /**
  456. * pic_struct in picture timing SEI message
  457. */
  458. SEI_PicStructType sei_pic_struct;
  459. /**
  460. * Complement sei_pic_struct
  461. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  462. * However, soft telecined frames may have these values.
  463. * This is used in an attempt to flag soft telecine progressive.
  464. */
  465. int prev_interlaced_frame;
  466. /**
  467. * Bit set of clock types for fields/frames in picture timing SEI message.
  468. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  469. * interlaced).
  470. */
  471. int sei_ct_type;
  472. /**
  473. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  474. */
  475. int sei_dpb_output_delay;
  476. /**
  477. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  478. */
  479. int sei_cpb_removal_delay;
  480. /**
  481. * recovery_frame_cnt from SEI message
  482. *
  483. * Set to -1 if no recovery point SEI message found or to number of frames
  484. * before playback synchronizes. Frames having recovery point are key
  485. * frames.
  486. */
  487. int sei_recovery_frame_cnt;
  488. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  489. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  490. // Timestamp stuff
  491. int sei_buffering_period_present; ///< Buffering period SEI flag
  492. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  493. }H264Context;
  494. extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM+1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
  495. /**
  496. * Decode SEI
  497. */
  498. int ff_h264_decode_sei(H264Context *h);
  499. /**
  500. * Decode SPS
  501. */
  502. int ff_h264_decode_seq_parameter_set(H264Context *h);
  503. /**
  504. * compute profile from sps
  505. */
  506. int ff_h264_get_profile(SPS *sps);
  507. /**
  508. * Decode PPS
  509. */
  510. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  511. /**
  512. * Decode a network abstraction layer unit.
  513. * @param consumed is the number of bytes used as input
  514. * @param length is the length of the array
  515. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  516. * @return decoded bytes, might be src+1 if no escapes
  517. */
  518. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  519. /**
  520. * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
  521. */
  522. av_cold void ff_h264_free_context(H264Context *h);
  523. /**
  524. * Reconstruct bitstream slice_type.
  525. */
  526. int ff_h264_get_slice_type(const H264Context *h);
  527. /**
  528. * Allocate tables.
  529. * needs width/height
  530. */
  531. int ff_h264_alloc_tables(H264Context *h);
  532. /**
  533. * Fill the default_ref_list.
  534. */
  535. int ff_h264_fill_default_ref_list(H264Context *h);
  536. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  537. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  538. void ff_h264_remove_all_refs(H264Context *h);
  539. /**
  540. * Execute the reference picture marking (memory management control operations).
  541. */
  542. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  543. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  544. void ff_generate_sliding_window_mmcos(H264Context *h);
  545. /**
  546. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  547. */
  548. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  549. /**
  550. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  551. */
  552. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  553. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  554. void ff_h264_hl_decode_mb(H264Context *h);
  555. int ff_h264_frame_start(H264Context *h);
  556. int ff_h264_decode_extradata(H264Context *h);
  557. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  558. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  559. av_cold void ff_h264_decode_init_vlc(void);
  560. /**
  561. * Decode a macroblock
  562. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  563. */
  564. int ff_h264_decode_mb_cavlc(H264Context *h);
  565. /**
  566. * Decode a CABAC coded macroblock
  567. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  568. */
  569. int ff_h264_decode_mb_cabac(H264Context *h);
  570. void ff_h264_init_cabac_states(H264Context *h);
  571. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  572. void ff_h264_direct_ref_list_init(H264Context * const h);
  573. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  574. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  575. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  576. /**
  577. * Reset SEI values at the beginning of the frame.
  578. *
  579. * @param h H.264 context.
  580. */
  581. void ff_h264_reset_sei(H264Context *h);
  582. /*
  583. o-o o-o
  584. / / /
  585. o-o o-o
  586. ,---'
  587. o-o o-o
  588. / / /
  589. o-o o-o
  590. */
  591. /* Scan8 organization:
  592. * 0 1 2 3 4 5 6 7
  593. * 0 DY y y y y y
  594. * 1 y Y Y Y Y
  595. * 2 y Y Y Y Y
  596. * 3 y Y Y Y Y
  597. * 4 y Y Y Y Y
  598. * 5 DU u u u u u
  599. * 6 u U U U U
  600. * 7 u U U U U
  601. * 8 u U U U U
  602. * 9 u U U U U
  603. * 10 DV v v v v v
  604. * 11 v V V V V
  605. * 12 v V V V V
  606. * 13 v V V V V
  607. * 14 v V V V V
  608. * DY/DU/DV are for luma/chroma DC.
  609. */
  610. #define LUMA_DC_BLOCK_INDEX 48
  611. #define CHROMA_DC_BLOCK_INDEX 49
  612. //This table must be here because scan8[constant] must be known at compiletime
  613. static const uint8_t scan8[16*3 + 3]={
  614. 4+ 1*8, 5+ 1*8, 4+ 2*8, 5+ 2*8,
  615. 6+ 1*8, 7+ 1*8, 6+ 2*8, 7+ 2*8,
  616. 4+ 3*8, 5+ 3*8, 4+ 4*8, 5+ 4*8,
  617. 6+ 3*8, 7+ 3*8, 6+ 4*8, 7+ 4*8,
  618. 4+ 6*8, 5+ 6*8, 4+ 7*8, 5+ 7*8,
  619. 6+ 6*8, 7+ 6*8, 6+ 7*8, 7+ 7*8,
  620. 4+ 8*8, 5+ 8*8, 4+ 9*8, 5+ 9*8,
  621. 6+ 8*8, 7+ 8*8, 6+ 9*8, 7+ 9*8,
  622. 4+11*8, 5+11*8, 4+12*8, 5+12*8,
  623. 6+11*8, 7+11*8, 6+12*8, 7+12*8,
  624. 4+13*8, 5+13*8, 4+14*8, 5+14*8,
  625. 6+13*8, 7+13*8, 6+14*8, 7+14*8,
  626. 0+ 0*8, 0+ 5*8, 0+10*8
  627. };
  628. static av_always_inline uint32_t pack16to32(int a, int b){
  629. #if HAVE_BIGENDIAN
  630. return (b&0xFFFF) + (a<<16);
  631. #else
  632. return (a&0xFFFF) + (b<<16);
  633. #endif
  634. }
  635. static av_always_inline uint16_t pack8to16(int a, int b){
  636. #if HAVE_BIGENDIAN
  637. return (b&0xFF) + (a<<8);
  638. #else
  639. return (a&0xFF) + (b<<8);
  640. #endif
  641. }
  642. /**
  643. * gets the chroma qp.
  644. */
  645. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  646. return h->pps.chroma_qp_table[t][qscale];
  647. }
  648. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  649. static void fill_decode_neighbors(H264Context *h, int mb_type){
  650. MpegEncContext * const s = &h->s;
  651. const int mb_xy= h->mb_xy;
  652. int topleft_xy, top_xy, topright_xy, left_xy[2];
  653. static const uint8_t left_block_options[4][32]={
  654. {0,1,2,3,7,10,8,11,3+0*4, 3+1*4, 3+2*4, 3+3*4, 1+4*4, 1+8*4, 1+5*4, 1+9*4},
  655. {2,2,3,3,8,11,8,11,3+2*4, 3+2*4, 3+3*4, 3+3*4, 1+5*4, 1+9*4, 1+5*4, 1+9*4},
  656. {0,0,1,1,7,10,7,10,3+0*4, 3+0*4, 3+1*4, 3+1*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4},
  657. {0,2,0,2,7,10,7,10,3+0*4, 3+2*4, 3+0*4, 3+2*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4}
  658. };
  659. h->topleft_partition= -1;
  660. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  661. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  662. * stuff, I can't imagine that these complex rules are worth it. */
  663. topleft_xy = top_xy - 1;
  664. topright_xy= top_xy + 1;
  665. left_xy[1] = left_xy[0] = mb_xy-1;
  666. h->left_block = left_block_options[0];
  667. if(FRAME_MBAFF){
  668. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  669. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  670. if(s->mb_y&1){
  671. if (left_mb_field_flag != curr_mb_field_flag) {
  672. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  673. if (curr_mb_field_flag) {
  674. left_xy[1] += s->mb_stride;
  675. h->left_block = left_block_options[3];
  676. } else {
  677. topleft_xy += s->mb_stride;
  678. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  679. h->topleft_partition = 0;
  680. h->left_block = left_block_options[1];
  681. }
  682. }
  683. }else{
  684. if(curr_mb_field_flag){
  685. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  686. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  687. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  688. }
  689. if (left_mb_field_flag != curr_mb_field_flag) {
  690. if (curr_mb_field_flag) {
  691. left_xy[1] += s->mb_stride;
  692. h->left_block = left_block_options[3];
  693. } else {
  694. h->left_block = left_block_options[2];
  695. }
  696. }
  697. }
  698. }
  699. h->topleft_mb_xy = topleft_xy;
  700. h->top_mb_xy = top_xy;
  701. h->topright_mb_xy= topright_xy;
  702. h->left_mb_xy[0] = left_xy[0];
  703. h->left_mb_xy[1] = left_xy[1];
  704. //FIXME do we need all in the context?
  705. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  706. h->top_type = s->current_picture.mb_type[top_xy] ;
  707. h->topright_type= s->current_picture.mb_type[topright_xy];
  708. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  709. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  710. if(FMO){
  711. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  712. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  713. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  714. }else{
  715. if(h->slice_table[topleft_xy ] != h->slice_num){
  716. h->topleft_type = 0;
  717. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  718. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  719. }
  720. }
  721. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  722. }
  723. static void fill_decode_caches(H264Context *h, int mb_type){
  724. MpegEncContext * const s = &h->s;
  725. int topleft_xy, top_xy, topright_xy, left_xy[2];
  726. int topleft_type, top_type, topright_type, left_type[2];
  727. const uint8_t * left_block= h->left_block;
  728. int i;
  729. topleft_xy = h->topleft_mb_xy ;
  730. top_xy = h->top_mb_xy ;
  731. topright_xy = h->topright_mb_xy;
  732. left_xy[0] = h->left_mb_xy[0] ;
  733. left_xy[1] = h->left_mb_xy[1] ;
  734. topleft_type = h->topleft_type ;
  735. top_type = h->top_type ;
  736. topright_type= h->topright_type ;
  737. left_type[0] = h->left_type[0] ;
  738. left_type[1] = h->left_type[1] ;
  739. if(!IS_SKIP(mb_type)){
  740. if(IS_INTRA(mb_type)){
  741. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  742. h->topleft_samples_available=
  743. h->top_samples_available=
  744. h->left_samples_available= 0xFFFF;
  745. h->topright_samples_available= 0xEEEA;
  746. if(!(top_type & type_mask)){
  747. h->topleft_samples_available= 0xB3FF;
  748. h->top_samples_available= 0x33FF;
  749. h->topright_samples_available= 0x26EA;
  750. }
  751. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  752. if(IS_INTERLACED(mb_type)){
  753. if(!(left_type[0] & type_mask)){
  754. h->topleft_samples_available&= 0xDFFF;
  755. h->left_samples_available&= 0x5FFF;
  756. }
  757. if(!(left_type[1] & type_mask)){
  758. h->topleft_samples_available&= 0xFF5F;
  759. h->left_samples_available&= 0xFF5F;
  760. }
  761. }else{
  762. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  763. assert(left_xy[0] == left_xy[1]);
  764. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  765. h->topleft_samples_available&= 0xDF5F;
  766. h->left_samples_available&= 0x5F5F;
  767. }
  768. }
  769. }else{
  770. if(!(left_type[0] & type_mask)){
  771. h->topleft_samples_available&= 0xDF5F;
  772. h->left_samples_available&= 0x5F5F;
  773. }
  774. }
  775. if(!(topleft_type & type_mask))
  776. h->topleft_samples_available&= 0x7FFF;
  777. if(!(topright_type & type_mask))
  778. h->topright_samples_available&= 0xFBFF;
  779. if(IS_INTRA4x4(mb_type)){
  780. if(IS_INTRA4x4(top_type)){
  781. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  782. }else{
  783. h->intra4x4_pred_mode_cache[4+8*0]=
  784. h->intra4x4_pred_mode_cache[5+8*0]=
  785. h->intra4x4_pred_mode_cache[6+8*0]=
  786. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  787. }
  788. for(i=0; i<2; i++){
  789. if(IS_INTRA4x4(left_type[i])){
  790. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  791. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  792. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  793. }else{
  794. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  795. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  796. }
  797. }
  798. }
  799. }
  800. /*
  801. 0 . T T. T T T T
  802. 1 L . .L . . . .
  803. 2 L . .L . . . .
  804. 3 . T TL . . . .
  805. 4 L . .L . . . .
  806. 5 L . .. . . . .
  807. */
  808. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  809. if(top_type){
  810. AV_COPY32(&h->non_zero_count_cache[4+8* 0], &h->non_zero_count[top_xy][4*3]);
  811. if(CHROMA444){
  812. AV_COPY32(&h->non_zero_count_cache[4+8* 5], &h->non_zero_count[top_xy][4* 7]);
  813. AV_COPY32(&h->non_zero_count_cache[4+8*10], &h->non_zero_count[top_xy][4*11]);
  814. }else{
  815. AV_COPY32(&h->non_zero_count_cache[4+8* 5], &h->non_zero_count[top_xy][4* 5]);
  816. AV_COPY32(&h->non_zero_count_cache[4+8*10], &h->non_zero_count[top_xy][4* 9]);
  817. }
  818. }else{
  819. uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
  820. AV_WN32A(&h->non_zero_count_cache[4+8* 0], top_empty);
  821. AV_WN32A(&h->non_zero_count_cache[4+8* 5], top_empty);
  822. AV_WN32A(&h->non_zero_count_cache[4+8*10], top_empty);
  823. }
  824. for (i=0; i<2; i++) {
  825. if(left_type[i]){
  826. h->non_zero_count_cache[3+8* 1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  827. h->non_zero_count_cache[3+8* 2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  828. if(CHROMA444){
  829. h->non_zero_count_cache[3+8* 6 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]+4*4];
  830. h->non_zero_count_cache[3+8* 7 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]+4*4];
  831. h->non_zero_count_cache[3+8*11 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]+8*4];
  832. h->non_zero_count_cache[3+8*12 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]+8*4];
  833. }else{
  834. h->non_zero_count_cache[3+8* 6 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  835. h->non_zero_count_cache[3+8*11 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  836. }
  837. }else{
  838. h->non_zero_count_cache[3+8* 1 + 2*8*i]=
  839. h->non_zero_count_cache[3+8* 2 + 2*8*i]=
  840. h->non_zero_count_cache[3+8* 6 + 2*8*i]=
  841. h->non_zero_count_cache[3+8* 7 + 2*8*i]=
  842. h->non_zero_count_cache[3+8*11 + 2*8*i]=
  843. h->non_zero_count_cache[3+8*12 + 2*8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  844. }
  845. }
  846. if( CABAC ) {
  847. // top_cbp
  848. if(top_type) {
  849. h->top_cbp = h->cbp_table[top_xy];
  850. } else {
  851. h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
  852. }
  853. // left_cbp
  854. if (left_type[0]) {
  855. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x7F0)
  856. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  857. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  858. } else {
  859. h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
  860. }
  861. }
  862. }
  863. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  864. int list;
  865. for(list=0; list<h->list_count; list++){
  866. if(!USES_LIST(mb_type, list)){
  867. /*if(!h->mv_cache_clean[list]){
  868. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  869. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  870. h->mv_cache_clean[list]= 1;
  871. }*/
  872. continue;
  873. }
  874. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  875. h->mv_cache_clean[list]= 0;
  876. if(USES_LIST(top_type, list)){
  877. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  878. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  879. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  880. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  881. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  882. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  883. }else{
  884. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  885. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  886. }
  887. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  888. for(i=0; i<2; i++){
  889. int cache_idx = scan8[0] - 1 + i*2*8;
  890. if(USES_LIST(left_type[i], list)){
  891. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  892. const int b8_xy= 4*left_xy[i] + 1;
  893. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  894. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  895. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  896. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  897. }else{
  898. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  899. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  900. h->ref_cache[list][cache_idx ]=
  901. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  902. }
  903. }
  904. }else{
  905. if(USES_LIST(left_type[0], list)){
  906. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  907. const int b8_xy= 4*left_xy[0] + 1;
  908. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  909. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  910. }else{
  911. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  912. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  913. }
  914. }
  915. if(USES_LIST(topright_type, list)){
  916. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  917. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  918. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  919. }else{
  920. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  921. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  922. }
  923. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  924. if(USES_LIST(topleft_type, list)){
  925. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  926. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  927. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  928. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  929. }else{
  930. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  931. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  932. }
  933. }
  934. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  935. continue;
  936. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  937. h->ref_cache[list][scan8[4 ]] =
  938. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  939. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  940. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  941. if( CABAC ) {
  942. /* XXX beurk, Load mvd */
  943. if(USES_LIST(top_type, list)){
  944. const int b_xy= h->mb2br_xy[top_xy];
  945. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  946. }else{
  947. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  948. }
  949. if(USES_LIST(left_type[0], list)){
  950. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  951. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  952. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  953. }else{
  954. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  955. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  956. }
  957. if(USES_LIST(left_type[1], list)){
  958. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  959. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  960. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  961. }else{
  962. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  963. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  964. }
  965. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  966. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  967. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  968. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  969. if(IS_DIRECT(top_type)){
  970. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  971. }else if(IS_8X8(top_type)){
  972. int b8_xy = 4*top_xy;
  973. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  974. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  975. }else{
  976. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  977. }
  978. if(IS_DIRECT(left_type[0]))
  979. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  980. else if(IS_8X8(left_type[0]))
  981. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  982. else
  983. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  984. if(IS_DIRECT(left_type[1]))
  985. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  986. else if(IS_8X8(left_type[1]))
  987. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  988. else
  989. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  990. }
  991. }
  992. }
  993. if(FRAME_MBAFF){
  994. #define MAP_MVS\
  995. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  996. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  997. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  998. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  999. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  1000. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  1001. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  1002. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  1003. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  1004. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  1005. if(MB_FIELD){
  1006. #define MAP_F2F(idx, mb_type)\
  1007. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1008. h->ref_cache[list][idx] <<= 1;\
  1009. h->mv_cache[list][idx][1] /= 2;\
  1010. h->mvd_cache[list][idx][1] >>=1;\
  1011. }
  1012. MAP_MVS
  1013. #undef MAP_F2F
  1014. }else{
  1015. #define MAP_F2F(idx, mb_type)\
  1016. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1017. h->ref_cache[list][idx] >>= 1;\
  1018. h->mv_cache[list][idx][1] <<= 1;\
  1019. h->mvd_cache[list][idx][1] <<= 1;\
  1020. }
  1021. MAP_MVS
  1022. #undef MAP_F2F
  1023. }
  1024. }
  1025. }
  1026. }
  1027. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1028. }
  1029. /**
  1030. * gets the predicted intra4x4 prediction mode.
  1031. */
  1032. static inline int pred_intra_mode(H264Context *h, int n){
  1033. const int index8= scan8[n];
  1034. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1035. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1036. const int min= FFMIN(left, top);
  1037. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1038. if(min<0) return DC_PRED;
  1039. else return min;
  1040. }
  1041. static inline void write_back_non_zero_count(H264Context *h){
  1042. const int mb_xy= h->mb_xy;
  1043. AV_COPY32(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[4+8* 1]);
  1044. AV_COPY32(&h->non_zero_count[mb_xy][ 4], &h->non_zero_count_cache[4+8* 2]);
  1045. AV_COPY32(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[4+8* 3]);
  1046. AV_COPY32(&h->non_zero_count[mb_xy][12], &h->non_zero_count_cache[4+8* 4]);
  1047. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[4+8* 6]);
  1048. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8* 7]);
  1049. AV_COPY32(&h->non_zero_count[mb_xy][32], &h->non_zero_count_cache[4+8*11]);
  1050. AV_COPY32(&h->non_zero_count[mb_xy][36], &h->non_zero_count_cache[4+8*12]);
  1051. if(CHROMA444){
  1052. AV_COPY32(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[4+8* 8]);
  1053. AV_COPY32(&h->non_zero_count[mb_xy][28], &h->non_zero_count_cache[4+8* 9]);
  1054. AV_COPY32(&h->non_zero_count[mb_xy][40], &h->non_zero_count_cache[4+8*13]);
  1055. AV_COPY32(&h->non_zero_count[mb_xy][44], &h->non_zero_count_cache[4+8*14]);
  1056. }
  1057. }
  1058. static inline void write_back_motion(H264Context *h, int mb_type){
  1059. MpegEncContext * const s = &h->s;
  1060. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1061. const int b8_xy= 4*h->mb_xy;
  1062. int list;
  1063. if(!USES_LIST(mb_type, 0))
  1064. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1065. for(list=0; list<h->list_count; list++){
  1066. int y, b_stride;
  1067. int16_t (*mv_dst)[2];
  1068. int16_t (*mv_src)[2];
  1069. if(!USES_LIST(mb_type, list))
  1070. continue;
  1071. b_stride = h->b_stride;
  1072. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1073. mv_src = &h->mv_cache[list][scan8[0]];
  1074. for(y=0; y<4; y++){
  1075. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1076. }
  1077. if( CABAC ) {
  1078. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1079. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1080. if(IS_SKIP(mb_type))
  1081. AV_ZERO128(mvd_dst);
  1082. else{
  1083. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1084. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1085. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1086. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1087. }
  1088. }
  1089. {
  1090. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1091. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1092. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1093. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1094. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1095. }
  1096. }
  1097. if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){
  1098. if(IS_8X8(mb_type)){
  1099. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1100. direct_table[1] = h->sub_mb_type[1]>>1;
  1101. direct_table[2] = h->sub_mb_type[2]>>1;
  1102. direct_table[3] = h->sub_mb_type[3]>>1;
  1103. }
  1104. }
  1105. }
  1106. static inline int get_dct8x8_allowed(H264Context *h){
  1107. if(h->sps.direct_8x8_inference_flag)
  1108. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1109. else
  1110. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1111. }
  1112. /**
  1113. * decodes a P_SKIP or B_SKIP macroblock
  1114. */
  1115. static void av_unused decode_mb_skip(H264Context *h){
  1116. MpegEncContext * const s = &h->s;
  1117. const int mb_xy= h->mb_xy;
  1118. int mb_type=0;
  1119. memset(h->non_zero_count[mb_xy], 0, 48);
  1120. if(MB_FIELD)
  1121. mb_type|= MB_TYPE_INTERLACED;
  1122. if( h->slice_type_nos == AV_PICTURE_TYPE_B )
  1123. {
  1124. // just for fill_caches. pred_direct_motion will set the real mb_type
  1125. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1126. if(h->direct_spatial_mv_pred){
  1127. fill_decode_neighbors(h, mb_type);
  1128. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1129. }
  1130. ff_h264_pred_direct_motion(h, &mb_type);
  1131. mb_type|= MB_TYPE_SKIP;
  1132. }
  1133. else
  1134. {
  1135. int mx, my;
  1136. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1137. fill_decode_neighbors(h, mb_type);
  1138. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1139. pred_pskip_motion(h, &mx, &my);
  1140. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1141. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1142. }
  1143. write_back_motion(h, mb_type);
  1144. s->current_picture.mb_type[mb_xy]= mb_type;
  1145. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1146. h->slice_table[ mb_xy ]= h->slice_num;
  1147. h->prev_mb_skipped= 1;
  1148. }
  1149. #include "h264_mvpred.h" //For pred_pskip_motion()
  1150. #endif /* AVCODEC_H264_H */