You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1826 lines
58KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[41];
  39. static const int8_t quant3[256]={
  40. 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  47. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  48. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  49. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  50. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  51. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  52. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
  56. };
  57. static const int8_t quant5_10bit[256]={
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  59. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  60. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  61. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  71. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  72. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  73. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  74. };
  75. static const int8_t quant5[256]={
  76. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  80. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  81. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  82. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  83. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  84. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  85. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  86. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  87. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  88. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  89. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  90. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  92. };
  93. static const int8_t quant7[256]={
  94. 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  95. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  96. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  97. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  98. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  99. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  100. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  101. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  102. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  103. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  104. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  105. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  106. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  107. -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
  108. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  109. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
  110. };
  111. static const int8_t quant9[256]={
  112. 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  113. 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  114. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  115. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  116. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  117. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  118. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  119. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  120. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  121. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  122. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  123. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  124. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  125. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  126. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
  127. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
  128. };
  129. static const int8_t quant9_10bit[256]={
  130. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  131. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  132. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  133. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  135. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  136. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  138. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  139. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  140. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  141. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  142. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  143. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  144. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  145. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  146. };
  147. static const int8_t quant11[256]={
  148. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  149. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  150. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  151. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  152. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  153. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  154. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  155. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  156. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  157. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  158. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  159. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  160. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  161. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  162. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  163. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  164. };
  165. static const int8_t quant13[256]={
  166. 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  167. 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  168. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  169. 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  170. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  171. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  172. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  173. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  174. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  175. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  176. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  177. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  178. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
  179. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  180. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  181. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
  182. };
  183. static const uint8_t ver2_state[256]= {
  184. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  185. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  186. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  187. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  188. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  189. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  190. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  191. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  192. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  193. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  194. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  195. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  196. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  197. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  198. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  199. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  200. };
  201. typedef struct VlcState{
  202. int16_t drift;
  203. uint16_t error_sum;
  204. int8_t bias;
  205. uint8_t count;
  206. } VlcState;
  207. typedef struct PlaneContext{
  208. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  209. int quant_table_index;
  210. int context_count;
  211. uint8_t (*state)[CONTEXT_SIZE];
  212. VlcState *vlc_state;
  213. uint8_t interlace_bit_state[2];
  214. } PlaneContext;
  215. #define MAX_SLICES 256
  216. typedef struct FFV1Context{
  217. AVCodecContext *avctx;
  218. RangeCoder c;
  219. GetBitContext gb;
  220. PutBitContext pb;
  221. uint64_t rc_stat[256][2];
  222. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  223. int version;
  224. int width, height;
  225. int chroma_h_shift, chroma_v_shift;
  226. int flags;
  227. int picture_number;
  228. AVFrame picture;
  229. int plane_count;
  230. int ac; ///< 1=range coder <-> 0=golomb rice
  231. PlaneContext plane[MAX_PLANES];
  232. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  233. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  234. int context_count[MAX_QUANT_TABLES];
  235. uint8_t state_transition[256];
  236. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  237. int run_index;
  238. int colorspace;
  239. int16_t *sample_buffer;
  240. int gob_count;
  241. int quant_table_count;
  242. DSPContext dsp;
  243. struct FFV1Context *slice_context[MAX_SLICES];
  244. int slice_count;
  245. int num_v_slices;
  246. int num_h_slices;
  247. int slice_width;
  248. int slice_height;
  249. int slice_x;
  250. int slice_y;
  251. }FFV1Context;
  252. static av_always_inline int fold(int diff, int bits){
  253. if(bits==8)
  254. diff= (int8_t)diff;
  255. else{
  256. diff+= 1<<(bits-1);
  257. diff&=(1<<bits)-1;
  258. diff-= 1<<(bits-1);
  259. }
  260. return diff;
  261. }
  262. static inline int predict(int16_t *src, int16_t *last)
  263. {
  264. const int LT= last[-1];
  265. const int T= last[ 0];
  266. const int L = src[-1];
  267. return mid_pred(L, L + T - LT, T);
  268. }
  269. static inline int get_context(PlaneContext *p, int16_t *src,
  270. int16_t *last, int16_t *last2)
  271. {
  272. const int LT= last[-1];
  273. const int T= last[ 0];
  274. const int RT= last[ 1];
  275. const int L = src[-1];
  276. if(p->quant_table[3][127]){
  277. const int TT= last2[0];
  278. const int LL= src[-2];
  279. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  280. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  281. }else
  282. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  283. }
  284. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  285. int i,j,k,m;
  286. double l2tab[256];
  287. for(i=1; i<256; i++)
  288. l2tab[i]= log2(i/256.0);
  289. for(i=0; i<256; i++){
  290. double best_len[256];
  291. double p= i/256.0;
  292. for(j=0; j<256; j++)
  293. best_len[j]= 1<<30;
  294. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  295. double occ[256]={0};
  296. double len=0;
  297. occ[j]=1.0;
  298. for(k=0; k<256; k++){
  299. double newocc[256]={0};
  300. for(m=0; m<256; m++){
  301. if(occ[m]){
  302. len -=occ[m]*( p *l2tab[ m]
  303. + (1-p)*l2tab[256-m]);
  304. }
  305. }
  306. if(len < best_len[k]){
  307. best_len[k]= len;
  308. best_state[i][k]= j;
  309. }
  310. for(m=0; m<256; m++){
  311. if(occ[m]){
  312. newocc[ one_state[ m]] += occ[m]* p ;
  313. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  314. }
  315. }
  316. memcpy(occ, newocc, sizeof(occ));
  317. }
  318. }
  319. }
  320. }
  321. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  322. int i;
  323. #define put_rac(C,S,B) \
  324. do{\
  325. if(rc_stat){\
  326. rc_stat[*(S)][B]++;\
  327. rc_stat2[(S)-state][B]++;\
  328. }\
  329. put_rac(C,S,B);\
  330. }while(0)
  331. if(v){
  332. const int a= FFABS(v);
  333. const int e= av_log2(a);
  334. put_rac(c, state+0, 0);
  335. if(e<=9){
  336. for(i=0; i<e; i++){
  337. put_rac(c, state+1+i, 1); //1..10
  338. }
  339. put_rac(c, state+1+i, 0);
  340. for(i=e-1; i>=0; i--){
  341. put_rac(c, state+22+i, (a>>i)&1); //22..31
  342. }
  343. if(is_signed)
  344. put_rac(c, state+11 + e, v < 0); //11..21
  345. }else{
  346. for(i=0; i<e; i++){
  347. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  348. }
  349. put_rac(c, state+1+9, 0);
  350. for(i=e-1; i>=0; i--){
  351. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  352. }
  353. if(is_signed)
  354. put_rac(c, state+11 + 10, v < 0); //11..21
  355. }
  356. }else{
  357. put_rac(c, state+0, 1);
  358. }
  359. #undef put_rac
  360. }
  361. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  362. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  363. }
  364. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  365. if(get_rac(c, state+0))
  366. return 0;
  367. else{
  368. int i, e, a;
  369. e= 0;
  370. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  371. e++;
  372. }
  373. a= 1;
  374. for(i=e-1; i>=0; i--){
  375. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  376. }
  377. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  378. return (a^e)-e;
  379. }
  380. }
  381. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  382. return get_symbol_inline(c, state, is_signed);
  383. }
  384. static inline void update_vlc_state(VlcState * const state, const int v){
  385. int drift= state->drift;
  386. int count= state->count;
  387. state->error_sum += FFABS(v);
  388. drift += v;
  389. if(count == 128){ //FIXME variable
  390. count >>= 1;
  391. drift >>= 1;
  392. state->error_sum >>= 1;
  393. }
  394. count++;
  395. if(drift <= -count){
  396. if(state->bias > -128) state->bias--;
  397. drift += count;
  398. if(drift <= -count)
  399. drift= -count + 1;
  400. }else if(drift > 0){
  401. if(state->bias < 127) state->bias++;
  402. drift -= count;
  403. if(drift > 0)
  404. drift= 0;
  405. }
  406. state->drift= drift;
  407. state->count= count;
  408. }
  409. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  410. int i, k, code;
  411. //printf("final: %d ", v);
  412. v = fold(v - state->bias, bits);
  413. i= state->count;
  414. k=0;
  415. while(i < state->error_sum){ //FIXME optimize
  416. k++;
  417. i += i;
  418. }
  419. assert(k<=8);
  420. #if 0 // JPEG LS
  421. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  422. else code= v;
  423. #else
  424. code= v ^ ((2*state->drift + state->count)>>31);
  425. #endif
  426. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  427. set_sr_golomb(pb, code, k, 12, bits);
  428. update_vlc_state(state, v);
  429. }
  430. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  431. int k, i, v, ret;
  432. i= state->count;
  433. k=0;
  434. while(i < state->error_sum){ //FIXME optimize
  435. k++;
  436. i += i;
  437. }
  438. assert(k<=8);
  439. v= get_sr_golomb(gb, k, 12, bits);
  440. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  441. #if 0 // JPEG LS
  442. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  443. #else
  444. v ^= ((2*state->drift + state->count)>>31);
  445. #endif
  446. ret= fold(v + state->bias, bits);
  447. update_vlc_state(state, v);
  448. //printf("final: %d\n", ret);
  449. return ret;
  450. }
  451. #if CONFIG_FFV1_ENCODER
  452. static av_always_inline int encode_line(FFV1Context *s, int w,
  453. int16_t *sample[2],
  454. int plane_index, int bits)
  455. {
  456. PlaneContext * const p= &s->plane[plane_index];
  457. RangeCoder * const c= &s->c;
  458. int x;
  459. int run_index= s->run_index;
  460. int run_count=0;
  461. int run_mode=0;
  462. if(s->ac){
  463. if(c->bytestream_end - c->bytestream < w*20){
  464. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  465. return -1;
  466. }
  467. }else{
  468. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  469. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  470. return -1;
  471. }
  472. }
  473. for(x=0; x<w; x++){
  474. int diff, context;
  475. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  476. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  477. if(context < 0){
  478. context = -context;
  479. diff= -diff;
  480. }
  481. diff= fold(diff, bits);
  482. if(s->ac){
  483. if(s->flags & CODEC_FLAG_PASS1){
  484. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  485. }else{
  486. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  487. }
  488. }else{
  489. if(context == 0) run_mode=1;
  490. if(run_mode){
  491. if(diff){
  492. while(run_count >= 1<<ff_log2_run[run_index]){
  493. run_count -= 1<<ff_log2_run[run_index];
  494. run_index++;
  495. put_bits(&s->pb, 1, 1);
  496. }
  497. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  498. if(run_index) run_index--;
  499. run_count=0;
  500. run_mode=0;
  501. if(diff>0) diff--;
  502. }else{
  503. run_count++;
  504. }
  505. }
  506. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  507. if(run_mode == 0)
  508. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  509. }
  510. }
  511. if(run_mode){
  512. while(run_count >= 1<<ff_log2_run[run_index]){
  513. run_count -= 1<<ff_log2_run[run_index];
  514. run_index++;
  515. put_bits(&s->pb, 1, 1);
  516. }
  517. if(run_count)
  518. put_bits(&s->pb, 1, 1);
  519. }
  520. s->run_index= run_index;
  521. return 0;
  522. }
  523. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  524. int x,y,i;
  525. const int ring_size= s->avctx->context_model ? 3 : 2;
  526. int16_t *sample[3];
  527. s->run_index=0;
  528. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  529. for(y=0; y<h; y++){
  530. for(i=0; i<ring_size; i++)
  531. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  532. sample[0][-1]= sample[1][0 ];
  533. sample[1][ w]= sample[1][w-1];
  534. //{START_TIMER
  535. if(s->avctx->bits_per_raw_sample<=8){
  536. for(x=0; x<w; x++){
  537. sample[0][x]= src[x + stride*y];
  538. }
  539. encode_line(s, w, sample, plane_index, 8);
  540. }else{
  541. for(x=0; x<w; x++){
  542. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  543. }
  544. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  545. }
  546. //STOP_TIMER("encode line")}
  547. }
  548. }
  549. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  550. int x, y, p, i;
  551. const int ring_size= s->avctx->context_model ? 3 : 2;
  552. int16_t *sample[3][3];
  553. s->run_index=0;
  554. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  555. for(y=0; y<h; y++){
  556. for(i=0; i<ring_size; i++)
  557. for(p=0; p<3; p++)
  558. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  559. for(x=0; x<w; x++){
  560. int v= src[x + stride*y];
  561. int b= v&0xFF;
  562. int g= (v>>8)&0xFF;
  563. int r= (v>>16)&0xFF;
  564. b -= g;
  565. r -= g;
  566. g += (b + r)>>2;
  567. b += 0x100;
  568. r += 0x100;
  569. // assert(g>=0 && b>=0 && r>=0);
  570. // assert(g<256 && b<512 && r<512);
  571. sample[0][0][x]= g;
  572. sample[1][0][x]= b;
  573. sample[2][0][x]= r;
  574. }
  575. for(p=0; p<3; p++){
  576. sample[p][0][-1]= sample[p][1][0 ];
  577. sample[p][1][ w]= sample[p][1][w-1];
  578. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  579. }
  580. }
  581. }
  582. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  583. int last=0;
  584. int i;
  585. uint8_t state[CONTEXT_SIZE];
  586. memset(state, 128, sizeof(state));
  587. for(i=1; i<128 ; i++){
  588. if(quant_table[i] != quant_table[i-1]){
  589. put_symbol(c, state, i-last-1, 0);
  590. last= i;
  591. }
  592. }
  593. put_symbol(c, state, i-last-1, 0);
  594. }
  595. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  596. int i;
  597. for(i=0; i<5; i++)
  598. write_quant_table(c, quant_table[i]);
  599. }
  600. static void write_header(FFV1Context *f){
  601. uint8_t state[CONTEXT_SIZE];
  602. int i, j;
  603. RangeCoder * const c= &f->slice_context[0]->c;
  604. memset(state, 128, sizeof(state));
  605. if(f->version < 2){
  606. put_symbol(c, state, f->version, 0);
  607. put_symbol(c, state, f->ac, 0);
  608. if(f->ac>1){
  609. for(i=1; i<256; i++){
  610. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  611. }
  612. }
  613. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  614. if(f->version>0)
  615. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  616. put_rac(c, state, 1); //chroma planes
  617. put_symbol(c, state, f->chroma_h_shift, 0);
  618. put_symbol(c, state, f->chroma_v_shift, 0);
  619. put_rac(c, state, 0); //no transparency plane
  620. write_quant_tables(c, f->quant_table);
  621. }else{
  622. put_symbol(c, state, f->slice_count, 0);
  623. for(i=0; i<f->slice_count; i++){
  624. FFV1Context *fs= f->slice_context[i];
  625. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  626. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  627. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  628. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  629. for(j=0; j<f->plane_count; j++){
  630. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  631. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  632. }
  633. }
  634. }
  635. }
  636. #endif /* CONFIG_FFV1_ENCODER */
  637. static av_cold int common_init(AVCodecContext *avctx){
  638. FFV1Context *s = avctx->priv_data;
  639. s->avctx= avctx;
  640. s->flags= avctx->flags;
  641. dsputil_init(&s->dsp, avctx);
  642. s->width = avctx->width;
  643. s->height= avctx->height;
  644. assert(s->width && s->height);
  645. //defaults
  646. s->num_h_slices=1;
  647. s->num_v_slices=1;
  648. return 0;
  649. }
  650. static int init_slice_state(FFV1Context *f){
  651. int i, j;
  652. for(i=0; i<f->slice_count; i++){
  653. FFV1Context *fs= f->slice_context[i];
  654. for(j=0; j<f->plane_count; j++){
  655. PlaneContext * const p= &fs->plane[j];
  656. if(fs->ac){
  657. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  658. if(!p-> state)
  659. return AVERROR(ENOMEM);
  660. }else{
  661. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  662. if(!p->vlc_state)
  663. return AVERROR(ENOMEM);
  664. }
  665. }
  666. if (fs->ac>1){
  667. //FIXME only redo if state_transition changed
  668. for(j=1; j<256; j++){
  669. fs->c.one_state [ j]= fs->state_transition[j];
  670. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  671. }
  672. }
  673. }
  674. return 0;
  675. }
  676. static av_cold int init_slice_contexts(FFV1Context *f){
  677. int i;
  678. f->slice_count= f->num_h_slices * f->num_v_slices;
  679. for(i=0; i<f->slice_count; i++){
  680. FFV1Context *fs= av_mallocz(sizeof(*fs));
  681. int sx= i % f->num_h_slices;
  682. int sy= i / f->num_h_slices;
  683. int sxs= f->avctx->width * sx / f->num_h_slices;
  684. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  685. int sys= f->avctx->height* sy / f->num_v_slices;
  686. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  687. f->slice_context[i]= fs;
  688. memcpy(fs, f, sizeof(*fs));
  689. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  690. fs->slice_width = sxe - sxs;
  691. fs->slice_height= sye - sys;
  692. fs->slice_x = sxs;
  693. fs->slice_y = sys;
  694. fs->sample_buffer = av_malloc(9 * (fs->width+6) * sizeof(*fs->sample_buffer));
  695. if (!fs->sample_buffer)
  696. return AVERROR(ENOMEM);
  697. }
  698. return 0;
  699. }
  700. static int allocate_initial_states(FFV1Context *f){
  701. int i;
  702. for(i=0; i<f->quant_table_count; i++){
  703. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  704. if(!f->initial_states[i])
  705. return AVERROR(ENOMEM);
  706. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  707. }
  708. return 0;
  709. }
  710. #if CONFIG_FFV1_ENCODER
  711. static int write_extra_header(FFV1Context *f){
  712. RangeCoder * const c= &f->c;
  713. uint8_t state[CONTEXT_SIZE];
  714. int i, j, k;
  715. uint8_t state2[32][CONTEXT_SIZE];
  716. memset(state2, 128, sizeof(state2));
  717. memset(state, 128, sizeof(state));
  718. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  719. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  720. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  721. put_symbol(c, state, f->version, 0);
  722. put_symbol(c, state, f->ac, 0);
  723. if(f->ac>1){
  724. for(i=1; i<256; i++){
  725. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  726. }
  727. }
  728. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  729. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  730. put_rac(c, state, 1); //chroma planes
  731. put_symbol(c, state, f->chroma_h_shift, 0);
  732. put_symbol(c, state, f->chroma_v_shift, 0);
  733. put_rac(c, state, 0); //no transparency plane
  734. put_symbol(c, state, f->num_h_slices-1, 0);
  735. put_symbol(c, state, f->num_v_slices-1, 0);
  736. put_symbol(c, state, f->quant_table_count, 0);
  737. for(i=0; i<f->quant_table_count; i++)
  738. write_quant_tables(c, f->quant_tables[i]);
  739. for(i=0; i<f->quant_table_count; i++){
  740. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  741. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  742. break;
  743. if(j<f->context_count[i]*CONTEXT_SIZE){
  744. put_rac(c, state, 1);
  745. for(j=0; j<f->context_count[i]; j++){
  746. for(k=0; k<CONTEXT_SIZE; k++){
  747. int pred= j ? f->initial_states[i][j-1][k] : 128;
  748. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  749. }
  750. }
  751. }else{
  752. put_rac(c, state, 0);
  753. }
  754. }
  755. f->avctx->extradata_size= ff_rac_terminate(c);
  756. return 0;
  757. }
  758. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  759. int i,i2,changed,print=0;
  760. do{
  761. changed=0;
  762. for(i=12; i<244; i++){
  763. for(i2=i+1; i2<245 && i2<i+4; i2++){
  764. #define COST(old, new) \
  765. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  766. +s->rc_stat[old][1]*-log2( (new) /256.0)
  767. #define COST2(old, new) \
  768. COST(old, new)\
  769. +COST(256-(old), 256-(new))
  770. double size0= COST2(i, i ) + COST2(i2, i2);
  771. double sizeX= COST2(i, i2) + COST2(i2, i );
  772. if(sizeX < size0 && i!=128 && i2!=128){
  773. int j;
  774. FFSWAP(int, stt[ i], stt[ i2]);
  775. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  776. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  777. if(i != 256-i2){
  778. FFSWAP(int, stt[256-i], stt[256-i2]);
  779. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  780. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  781. }
  782. for(j=1; j<256; j++){
  783. if (stt[j] == i ) stt[j] = i2;
  784. else if(stt[j] == i2) stt[j] = i ;
  785. if(i != 256-i2){
  786. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  787. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  788. }
  789. }
  790. print=changed=1;
  791. }
  792. }
  793. }
  794. }while(changed);
  795. return print;
  796. }
  797. static av_cold int encode_init(AVCodecContext *avctx)
  798. {
  799. FFV1Context *s = avctx->priv_data;
  800. int i, j, k, m;
  801. common_init(avctx);
  802. s->version=0;
  803. s->ac= avctx->coder_type ? 2:0;
  804. if(s->ac>1)
  805. for(i=1; i<256; i++)
  806. s->state_transition[i]=ver2_state[i];
  807. s->plane_count=2;
  808. for(i=0; i<256; i++){
  809. s->quant_table_count=2;
  810. if(avctx->bits_per_raw_sample <=8){
  811. s->quant_tables[0][0][i]= quant11[i];
  812. s->quant_tables[0][1][i]= 11*quant11[i];
  813. s->quant_tables[0][2][i]= 11*11*quant11[i];
  814. s->quant_tables[1][0][i]= quant11[i];
  815. s->quant_tables[1][1][i]= 11*quant11[i];
  816. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  817. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  818. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  819. }else{
  820. s->quant_tables[0][0][i]= quant9_10bit[i];
  821. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  822. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  823. s->quant_tables[1][0][i]= quant9_10bit[i];
  824. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  825. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  826. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  827. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  828. }
  829. }
  830. s->context_count[0]= (11*11*11+1)/2;
  831. s->context_count[1]= (11*11*5*5*5+1)/2;
  832. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  833. for(i=0; i<s->plane_count; i++){
  834. PlaneContext * const p= &s->plane[i];
  835. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  836. p->quant_table_index= avctx->context_model;
  837. p->context_count= s->context_count[p->quant_table_index];
  838. }
  839. if(allocate_initial_states(s) < 0)
  840. return AVERROR(ENOMEM);
  841. avctx->coded_frame= &s->picture;
  842. switch(avctx->pix_fmt){
  843. case PIX_FMT_YUV444P16:
  844. case PIX_FMT_YUV422P16:
  845. case PIX_FMT_YUV420P16:
  846. if(avctx->bits_per_raw_sample <=8){
  847. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  848. return -1;
  849. }
  850. if(!s->ac){
  851. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  852. return -1;
  853. }
  854. s->version= FFMAX(s->version, 1);
  855. case PIX_FMT_YUV444P:
  856. case PIX_FMT_YUV422P:
  857. case PIX_FMT_YUV420P:
  858. case PIX_FMT_YUV411P:
  859. case PIX_FMT_YUV410P:
  860. s->colorspace= 0;
  861. break;
  862. case PIX_FMT_RGB32:
  863. s->colorspace= 1;
  864. break;
  865. default:
  866. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  867. return -1;
  868. }
  869. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  870. s->picture_number=0;
  871. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  872. for(i=0; i<s->quant_table_count; i++){
  873. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  874. if(!s->rc_stat2[i])
  875. return AVERROR(ENOMEM);
  876. }
  877. }
  878. if(avctx->stats_in){
  879. char *p= avctx->stats_in;
  880. uint8_t best_state[256][256];
  881. int gob_count=0;
  882. char *next;
  883. av_assert0(s->version>=2);
  884. for(;;){
  885. for(j=0; j<256; j++){
  886. for(i=0; i<2; i++){
  887. s->rc_stat[j][i]= strtol(p, &next, 0);
  888. if(next==p){
  889. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  890. return -1;
  891. }
  892. p=next;
  893. }
  894. }
  895. for(i=0; i<s->quant_table_count; i++){
  896. for(j=0; j<s->context_count[i]; j++){
  897. for(k=0; k<32; k++){
  898. for(m=0; m<2; m++){
  899. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  900. if(next==p){
  901. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  902. return -1;
  903. }
  904. p=next;
  905. }
  906. }
  907. }
  908. }
  909. gob_count= strtol(p, &next, 0);
  910. if(next==p || gob_count <0){
  911. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  912. return -1;
  913. }
  914. p=next;
  915. while(*p=='\n' || *p==' ') p++;
  916. if(p[0]==0) break;
  917. }
  918. sort_stt(s, s->state_transition);
  919. find_best_state(best_state, s->state_transition);
  920. for(i=0; i<s->quant_table_count; i++){
  921. for(j=0; j<s->context_count[i]; j++){
  922. for(k=0; k<32; k++){
  923. double p= 128;
  924. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  925. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  926. }
  927. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  928. }
  929. }
  930. }
  931. }
  932. if(s->version>1){
  933. s->num_h_slices=2;
  934. s->num_v_slices=2;
  935. write_extra_header(s);
  936. }
  937. if(init_slice_contexts(s) < 0)
  938. return -1;
  939. if(init_slice_state(s) < 0)
  940. return -1;
  941. #define STATS_OUT_SIZE 1024*1024*6
  942. if(avctx->flags & CODEC_FLAG_PASS1){
  943. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  944. for(i=0; i<s->quant_table_count; i++){
  945. for(j=0; j<s->slice_count; j++){
  946. FFV1Context *sf= s->slice_context[j];
  947. av_assert0(!sf->rc_stat2[i]);
  948. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  949. if(!sf->rc_stat2[i])
  950. return AVERROR(ENOMEM);
  951. }
  952. }
  953. }
  954. return 0;
  955. }
  956. #endif /* CONFIG_FFV1_ENCODER */
  957. static void clear_state(FFV1Context *f){
  958. int i, si, j;
  959. for(si=0; si<f->slice_count; si++){
  960. FFV1Context *fs= f->slice_context[si];
  961. for(i=0; i<f->plane_count; i++){
  962. PlaneContext *p= &fs->plane[i];
  963. p->interlace_bit_state[0]= 128;
  964. p->interlace_bit_state[1]= 128;
  965. if(fs->ac){
  966. if(f->initial_states[p->quant_table_index]){
  967. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  968. }else
  969. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  970. }else{
  971. for(j=0; j<p->context_count; j++){
  972. p->vlc_state[j].drift= 0;
  973. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  974. p->vlc_state[j].bias= 0;
  975. p->vlc_state[j].count= 1;
  976. }
  977. }
  978. }
  979. }
  980. }
  981. #if CONFIG_FFV1_ENCODER
  982. static int encode_slice(AVCodecContext *c, void *arg){
  983. FFV1Context *fs= *(void**)arg;
  984. FFV1Context *f= fs->avctx->priv_data;
  985. int width = fs->slice_width;
  986. int height= fs->slice_height;
  987. int x= fs->slice_x;
  988. int y= fs->slice_y;
  989. AVFrame * const p= &f->picture;
  990. if(f->colorspace==0){
  991. const int chroma_width = -((-width )>>f->chroma_h_shift);
  992. const int chroma_height= -((-height)>>f->chroma_v_shift);
  993. const int cx= x>>f->chroma_h_shift;
  994. const int cy= y>>f->chroma_v_shift;
  995. encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  996. encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  997. encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  998. }else{
  999. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1000. }
  1001. emms_c();
  1002. return 0;
  1003. }
  1004. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1005. FFV1Context *f = avctx->priv_data;
  1006. RangeCoder * const c= &f->slice_context[0]->c;
  1007. AVFrame *pict = data;
  1008. AVFrame * const p= &f->picture;
  1009. int used_count= 0;
  1010. uint8_t keystate=128;
  1011. uint8_t *buf_p;
  1012. int i;
  1013. ff_init_range_encoder(c, buf, buf_size);
  1014. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1015. *p = *pict;
  1016. p->pict_type= AV_PICTURE_TYPE_I;
  1017. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  1018. put_rac(c, &keystate, 1);
  1019. p->key_frame= 1;
  1020. f->gob_count++;
  1021. write_header(f);
  1022. clear_state(f);
  1023. }else{
  1024. put_rac(c, &keystate, 0);
  1025. p->key_frame= 0;
  1026. }
  1027. if(!f->ac){
  1028. used_count += ff_rac_terminate(c);
  1029. //printf("pos=%d\n", used_count);
  1030. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  1031. }else if (f->ac>1){
  1032. int i;
  1033. for(i=1; i<256; i++){
  1034. c->one_state[i]= f->state_transition[i];
  1035. c->zero_state[256-i]= 256-c->one_state[i];
  1036. }
  1037. }
  1038. for(i=1; i<f->slice_count; i++){
  1039. FFV1Context *fs= f->slice_context[i];
  1040. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  1041. int len= buf_size/f->slice_count;
  1042. if(fs->ac){
  1043. ff_init_range_encoder(&fs->c, start, len);
  1044. }else{
  1045. init_put_bits(&fs->pb, start, len);
  1046. }
  1047. }
  1048. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1049. buf_p=buf;
  1050. for(i=0; i<f->slice_count; i++){
  1051. FFV1Context *fs= f->slice_context[i];
  1052. int bytes;
  1053. if(fs->ac){
  1054. uint8_t state=128;
  1055. put_rac(&fs->c, &state, 0);
  1056. bytes= ff_rac_terminate(&fs->c);
  1057. }else{
  1058. flush_put_bits(&fs->pb); //nicer padding FIXME
  1059. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1060. used_count= 0;
  1061. }
  1062. if(i>0){
  1063. av_assert0(bytes < buf_size/f->slice_count);
  1064. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1065. av_assert0(bytes < (1<<24));
  1066. AV_WB24(buf_p+bytes, bytes);
  1067. bytes+=3;
  1068. }
  1069. buf_p += bytes;
  1070. }
  1071. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1072. int j, k, m;
  1073. char *p= avctx->stats_out;
  1074. char *end= p + STATS_OUT_SIZE;
  1075. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1076. for(i=0; i<f->quant_table_count; i++)
  1077. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1078. for(j=0; j<f->slice_count; j++){
  1079. FFV1Context *fs= f->slice_context[j];
  1080. for(i=0; i<256; i++){
  1081. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1082. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1083. }
  1084. for(i=0; i<f->quant_table_count; i++){
  1085. for(k=0; k<f->context_count[i]; k++){
  1086. for(m=0; m<32; m++){
  1087. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1088. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1089. }
  1090. }
  1091. }
  1092. }
  1093. for(j=0; j<256; j++){
  1094. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1095. p+= strlen(p);
  1096. }
  1097. snprintf(p, end-p, "\n");
  1098. for(i=0; i<f->quant_table_count; i++){
  1099. for(j=0; j<f->context_count[i]; j++){
  1100. for(m=0; m<32; m++){
  1101. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1102. p+= strlen(p);
  1103. }
  1104. }
  1105. }
  1106. snprintf(p, end-p, "%d\n", f->gob_count);
  1107. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1108. avctx->stats_out[0] = '\0';
  1109. f->picture_number++;
  1110. return buf_p-buf;
  1111. }
  1112. #endif /* CONFIG_FFV1_ENCODER */
  1113. static av_cold int common_end(AVCodecContext *avctx){
  1114. FFV1Context *s = avctx->priv_data;
  1115. int i, j;
  1116. if (avctx->codec->decode && s->picture.data[0])
  1117. avctx->release_buffer(avctx, &s->picture);
  1118. for(j=0; j<s->slice_count; j++){
  1119. FFV1Context *fs= s->slice_context[j];
  1120. for(i=0; i<s->plane_count; i++){
  1121. PlaneContext *p= &fs->plane[i];
  1122. av_freep(&p->state);
  1123. av_freep(&p->vlc_state);
  1124. }
  1125. av_freep(&fs->sample_buffer);
  1126. }
  1127. av_freep(&avctx->stats_out);
  1128. for(j=0; j<s->quant_table_count; j++){
  1129. av_freep(&s->initial_states[j]);
  1130. for(i=0; i<s->slice_count; i++){
  1131. FFV1Context *sf= s->slice_context[i];
  1132. av_freep(&sf->rc_stat2[j]);
  1133. }
  1134. av_freep(&s->rc_stat2[j]);
  1135. }
  1136. for(i=0; i<s->slice_count; i++){
  1137. av_freep(&s->slice_context[i]);
  1138. }
  1139. return 0;
  1140. }
  1141. static av_always_inline void decode_line(FFV1Context *s, int w,
  1142. int16_t *sample[2],
  1143. int plane_index, int bits)
  1144. {
  1145. PlaneContext * const p= &s->plane[plane_index];
  1146. RangeCoder * const c= &s->c;
  1147. int x;
  1148. int run_count=0;
  1149. int run_mode=0;
  1150. int run_index= s->run_index;
  1151. for(x=0; x<w; x++){
  1152. int diff, context, sign;
  1153. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1154. if(context < 0){
  1155. context= -context;
  1156. sign=1;
  1157. }else
  1158. sign=0;
  1159. av_assert2(context < p->context_count);
  1160. if(s->ac){
  1161. diff= get_symbol_inline(c, p->state[context], 1);
  1162. }else{
  1163. if(context == 0 && run_mode==0) run_mode=1;
  1164. if(run_mode){
  1165. if(run_count==0 && run_mode==1){
  1166. if(get_bits1(&s->gb)){
  1167. run_count = 1<<ff_log2_run[run_index];
  1168. if(x + run_count <= w) run_index++;
  1169. }else{
  1170. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1171. else run_count=0;
  1172. if(run_index) run_index--;
  1173. run_mode=2;
  1174. }
  1175. }
  1176. run_count--;
  1177. if(run_count < 0){
  1178. run_mode=0;
  1179. run_count=0;
  1180. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1181. if(diff>=0) diff++;
  1182. }else
  1183. diff=0;
  1184. }else
  1185. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1186. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1187. }
  1188. if(sign) diff= -diff;
  1189. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1190. }
  1191. s->run_index= run_index;
  1192. }
  1193. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1194. int x, y;
  1195. int16_t *sample[2];
  1196. sample[0]=s->sample_buffer +3;
  1197. sample[1]=s->sample_buffer+w+6+3;
  1198. s->run_index=0;
  1199. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1200. for(y=0; y<h; y++){
  1201. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1202. sample[0]= sample[1];
  1203. sample[1]= temp;
  1204. sample[1][-1]= sample[0][0 ];
  1205. sample[0][ w]= sample[0][w-1];
  1206. //{START_TIMER
  1207. if(s->avctx->bits_per_raw_sample <= 8){
  1208. decode_line(s, w, sample, plane_index, 8);
  1209. for(x=0; x<w; x++){
  1210. src[x + stride*y]= sample[1][x];
  1211. }
  1212. }else{
  1213. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1214. for(x=0; x<w; x++){
  1215. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1216. }
  1217. }
  1218. //STOP_TIMER("decode-line")}
  1219. }
  1220. }
  1221. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1222. int x, y, p;
  1223. int16_t *sample[3][2];
  1224. for(x=0; x<3; x++){
  1225. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1226. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1227. }
  1228. s->run_index=0;
  1229. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  1230. for(y=0; y<h; y++){
  1231. for(p=0; p<3; p++){
  1232. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1233. sample[p][0]= sample[p][1];
  1234. sample[p][1]= temp;
  1235. sample[p][1][-1]= sample[p][0][0 ];
  1236. sample[p][0][ w]= sample[p][0][w-1];
  1237. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  1238. }
  1239. for(x=0; x<w; x++){
  1240. int g= sample[0][1][x];
  1241. int b= sample[1][1][x];
  1242. int r= sample[2][1][x];
  1243. // assert(g>=0 && b>=0 && r>=0);
  1244. // assert(g<256 && b<512 && r<512);
  1245. b -= 0x100;
  1246. r -= 0x100;
  1247. g -= (b + r)>>2;
  1248. b += g;
  1249. r += g;
  1250. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  1251. }
  1252. }
  1253. }
  1254. static int decode_slice(AVCodecContext *c, void *arg){
  1255. FFV1Context *fs= *(void**)arg;
  1256. FFV1Context *f= fs->avctx->priv_data;
  1257. int width = fs->slice_width;
  1258. int height= fs->slice_height;
  1259. int x= fs->slice_x;
  1260. int y= fs->slice_y;
  1261. AVFrame * const p= &f->picture;
  1262. av_assert1(width && height);
  1263. if(f->colorspace==0){
  1264. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1265. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1266. const int cx= x>>f->chroma_h_shift;
  1267. const int cy= y>>f->chroma_v_shift;
  1268. decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1269. decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1270. decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1271. }else{
  1272. decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1273. }
  1274. emms_c();
  1275. return 0;
  1276. }
  1277. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1278. int v;
  1279. int i=0;
  1280. uint8_t state[CONTEXT_SIZE];
  1281. memset(state, 128, sizeof(state));
  1282. for(v=0; i<128 ; v++){
  1283. int len= get_symbol(c, state, 0) + 1;
  1284. if(len + i > 128) return -1;
  1285. while(len--){
  1286. quant_table[i] = scale*v;
  1287. i++;
  1288. //printf("%2d ",v);
  1289. //if(i%16==0) printf("\n");
  1290. }
  1291. }
  1292. for(i=1; i<128; i++){
  1293. quant_table[256-i]= -quant_table[i];
  1294. }
  1295. quant_table[128]= -quant_table[127];
  1296. return 2*v - 1;
  1297. }
  1298. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1299. int i;
  1300. int context_count=1;
  1301. for(i=0; i<5; i++){
  1302. context_count*= read_quant_table(c, quant_table[i], context_count);
  1303. if(context_count > 32768U){
  1304. return -1;
  1305. }
  1306. }
  1307. return (context_count+1)/2;
  1308. }
  1309. static int read_extra_header(FFV1Context *f){
  1310. RangeCoder * const c= &f->c;
  1311. uint8_t state[CONTEXT_SIZE];
  1312. int i, j, k;
  1313. uint8_t state2[32][CONTEXT_SIZE];
  1314. memset(state2, 128, sizeof(state2));
  1315. memset(state, 128, sizeof(state));
  1316. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1317. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1318. f->version= get_symbol(c, state, 0);
  1319. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1320. if(f->ac>1){
  1321. for(i=1; i<256; i++){
  1322. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1323. }
  1324. }
  1325. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1326. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1327. get_rac(c, state); //no chroma = false
  1328. f->chroma_h_shift= get_symbol(c, state, 0);
  1329. f->chroma_v_shift= get_symbol(c, state, 0);
  1330. get_rac(c, state); //transparency plane
  1331. f->plane_count= 2;
  1332. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1333. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1334. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1335. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1336. return -1;
  1337. }
  1338. f->quant_table_count= get_symbol(c, state, 0);
  1339. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1340. return -1;
  1341. for(i=0; i<f->quant_table_count; i++){
  1342. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1343. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1344. return -1;
  1345. }
  1346. }
  1347. if(allocate_initial_states(f) < 0)
  1348. return AVERROR(ENOMEM);
  1349. for(i=0; i<f->quant_table_count; i++){
  1350. if(get_rac(c, state)){
  1351. for(j=0; j<f->context_count[i]; j++){
  1352. for(k=0; k<CONTEXT_SIZE; k++){
  1353. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1354. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1355. }
  1356. }
  1357. }
  1358. }
  1359. return 0;
  1360. }
  1361. static int read_header(FFV1Context *f){
  1362. uint8_t state[CONTEXT_SIZE];
  1363. int i, j, context_count;
  1364. RangeCoder * const c= &f->slice_context[0]->c;
  1365. memset(state, 128, sizeof(state));
  1366. if(f->version < 2){
  1367. f->version= get_symbol(c, state, 0);
  1368. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1369. if(f->ac>1){
  1370. for(i=1; i<256; i++){
  1371. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1372. }
  1373. }
  1374. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1375. if(f->version>0)
  1376. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1377. get_rac(c, state); //no chroma = false
  1378. f->chroma_h_shift= get_symbol(c, state, 0);
  1379. f->chroma_v_shift= get_symbol(c, state, 0);
  1380. get_rac(c, state); //transparency plane
  1381. f->plane_count= 2;
  1382. }
  1383. if(f->colorspace==0){
  1384. if(f->avctx->bits_per_raw_sample<=8){
  1385. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1386. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1387. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1388. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1389. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1390. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1391. default:
  1392. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1393. return -1;
  1394. }
  1395. }else{
  1396. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1397. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1398. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1399. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1400. default:
  1401. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1402. return -1;
  1403. }
  1404. }
  1405. }else if(f->colorspace==1){
  1406. if(f->chroma_h_shift || f->chroma_v_shift){
  1407. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1408. return -1;
  1409. }
  1410. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1411. }else{
  1412. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1413. return -1;
  1414. }
  1415. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1416. if(f->version < 2){
  1417. context_count= read_quant_tables(c, f->quant_table);
  1418. if(context_count < 0){
  1419. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1420. return -1;
  1421. }
  1422. }else{
  1423. f->slice_count= get_symbol(c, state, 0);
  1424. if(f->slice_count > (unsigned)MAX_SLICES)
  1425. return -1;
  1426. }
  1427. for(j=0; j<f->slice_count; j++){
  1428. FFV1Context *fs= f->slice_context[j];
  1429. fs->ac= f->ac;
  1430. if(f->version >= 2){
  1431. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1432. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1433. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1434. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1435. fs->slice_x /= f->num_h_slices;
  1436. fs->slice_y /= f->num_v_slices;
  1437. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1438. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1439. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1440. return -1;
  1441. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1442. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1443. return -1;
  1444. }
  1445. for(i=0; i<f->plane_count; i++){
  1446. PlaneContext * const p= &fs->plane[i];
  1447. if(f->version >= 2){
  1448. int idx=get_symbol(c, state, 0);
  1449. if(idx > (unsigned)f->quant_table_count){
  1450. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1451. return -1;
  1452. }
  1453. p->quant_table_index= idx;
  1454. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1455. context_count= f->context_count[idx];
  1456. }else{
  1457. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1458. }
  1459. if(p->context_count < context_count){
  1460. av_freep(&p->state);
  1461. av_freep(&p->vlc_state);
  1462. }
  1463. p->context_count= context_count;
  1464. }
  1465. }
  1466. return 0;
  1467. }
  1468. static av_cold int decode_init(AVCodecContext *avctx)
  1469. {
  1470. FFV1Context *f = avctx->priv_data;
  1471. common_init(avctx);
  1472. if(avctx->extradata && read_extra_header(f) < 0)
  1473. return -1;
  1474. if(init_slice_contexts(f) < 0)
  1475. return -1;
  1476. return 0;
  1477. }
  1478. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1479. const uint8_t *buf = avpkt->data;
  1480. int buf_size = avpkt->size;
  1481. FFV1Context *f = avctx->priv_data;
  1482. RangeCoder * const c= &f->slice_context[0]->c;
  1483. AVFrame * const p= &f->picture;
  1484. int bytes_read, i;
  1485. uint8_t keystate= 128;
  1486. const uint8_t *buf_p;
  1487. AVFrame *picture = data;
  1488. /* release previously stored data */
  1489. if (p->data[0])
  1490. avctx->release_buffer(avctx, p);
  1491. ff_init_range_decoder(c, buf, buf_size);
  1492. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1493. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1494. if(get_rac(c, &keystate)){
  1495. p->key_frame= 1;
  1496. if(read_header(f) < 0)
  1497. return -1;
  1498. if(init_slice_state(f) < 0)
  1499. return -1;
  1500. clear_state(f);
  1501. }else{
  1502. p->key_frame= 0;
  1503. }
  1504. if(f->ac>1){
  1505. int i;
  1506. for(i=1; i<256; i++){
  1507. c->one_state[i]= f->state_transition[i];
  1508. c->zero_state[256-i]= 256-c->one_state[i];
  1509. }
  1510. }
  1511. p->reference= 0;
  1512. if(avctx->get_buffer(avctx, p) < 0){
  1513. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1514. return -1;
  1515. }
  1516. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1517. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1518. if(!f->ac){
  1519. bytes_read = c->bytestream - c->bytestream_start - 1;
  1520. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1521. //printf("pos=%d\n", bytes_read);
  1522. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, buf_size - bytes_read);
  1523. } else {
  1524. bytes_read = 0; /* avoid warning */
  1525. }
  1526. buf_p= buf + buf_size;
  1527. for(i=f->slice_count-1; i>0; i--){
  1528. FFV1Context *fs= f->slice_context[i];
  1529. int v= AV_RB24(buf_p-3)+3;
  1530. if(buf_p - buf <= v){
  1531. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1532. return -1;
  1533. }
  1534. buf_p -= v;
  1535. if(fs->ac){
  1536. ff_init_range_decoder(&fs->c, buf_p, v);
  1537. }else{
  1538. init_get_bits(&fs->gb, buf_p, v);
  1539. }
  1540. }
  1541. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1542. f->picture_number++;
  1543. *picture= *p;
  1544. *data_size = sizeof(AVFrame);
  1545. return buf_size;
  1546. }
  1547. AVCodec ff_ffv1_decoder = {
  1548. "ffv1",
  1549. AVMEDIA_TYPE_VIDEO,
  1550. CODEC_ID_FFV1,
  1551. sizeof(FFV1Context),
  1552. decode_init,
  1553. NULL,
  1554. common_end,
  1555. decode_frame,
  1556. CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS,
  1557. NULL,
  1558. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1559. };
  1560. #if CONFIG_FFV1_ENCODER
  1561. AVCodec ff_ffv1_encoder = {
  1562. "ffv1",
  1563. AVMEDIA_TYPE_VIDEO,
  1564. CODEC_ID_FFV1,
  1565. sizeof(FFV1Context),
  1566. encode_init,
  1567. encode_frame,
  1568. common_end,
  1569. .capabilities = CODEC_CAP_SLICE_THREADS,
  1570. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_NONE},
  1571. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1572. };
  1573. #endif