You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1767 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include <stdint.h>
  35. #include <float.h>
  36. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  37. #define NOISE_FLOOR_OFFSET 6.0f
  38. /**
  39. * SBR VLC tables
  40. */
  41. enum {
  42. T_HUFFMAN_ENV_1_5DB,
  43. F_HUFFMAN_ENV_1_5DB,
  44. T_HUFFMAN_ENV_BAL_1_5DB,
  45. F_HUFFMAN_ENV_BAL_1_5DB,
  46. T_HUFFMAN_ENV_3_0DB,
  47. F_HUFFMAN_ENV_3_0DB,
  48. T_HUFFMAN_ENV_BAL_3_0DB,
  49. F_HUFFMAN_ENV_BAL_3_0DB,
  50. T_HUFFMAN_NOISE_3_0DB,
  51. T_HUFFMAN_NOISE_BAL_3_0DB,
  52. };
  53. /**
  54. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  55. */
  56. enum {
  57. FIXFIX,
  58. FIXVAR,
  59. VARFIX,
  60. VARVAR,
  61. };
  62. enum {
  63. EXTENSION_ID_PS = 2,
  64. };
  65. static VLC vlc_sbr[10];
  66. static const int8_t vlc_sbr_lav[10] =
  67. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  68. static const DECLARE_ALIGNED(16, float, zero64)[64];
  69. #define SBR_INIT_VLC_STATIC(num, size) \
  70. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  71. sbr_tmp[num].sbr_bits , 1, 1, \
  72. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  73. size)
  74. #define SBR_VLC_ROW(name) \
  75. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  76. av_cold void ff_aac_sbr_init(void)
  77. {
  78. int n;
  79. static const struct {
  80. const void *sbr_codes, *sbr_bits;
  81. const unsigned int table_size, elem_size;
  82. } sbr_tmp[] = {
  83. SBR_VLC_ROW(t_huffman_env_1_5dB),
  84. SBR_VLC_ROW(f_huffman_env_1_5dB),
  85. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_3_0dB),
  88. SBR_VLC_ROW(f_huffman_env_3_0dB),
  89. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  93. };
  94. // SBR VLC table initialization
  95. SBR_INIT_VLC_STATIC(0, 1098);
  96. SBR_INIT_VLC_STATIC(1, 1092);
  97. SBR_INIT_VLC_STATIC(2, 768);
  98. SBR_INIT_VLC_STATIC(3, 1026);
  99. SBR_INIT_VLC_STATIC(4, 1058);
  100. SBR_INIT_VLC_STATIC(5, 1052);
  101. SBR_INIT_VLC_STATIC(6, 544);
  102. SBR_INIT_VLC_STATIC(7, 544);
  103. SBR_INIT_VLC_STATIC(8, 592);
  104. SBR_INIT_VLC_STATIC(9, 512);
  105. for (n = 1; n < 320; n++)
  106. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  107. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  108. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  109. for (n = 0; n < 320; n++)
  110. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  111. ff_ps_init();
  112. }
  113. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  114. {
  115. float mdct_scale;
  116. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  117. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  118. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  119. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  120. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  121. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  122. * and scale back down at synthesis. */
  123. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  124. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  125. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  126. ff_ps_ctx_init(&sbr->ps);
  127. }
  128. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  129. {
  130. ff_mdct_end(&sbr->mdct);
  131. ff_mdct_end(&sbr->mdct_ana);
  132. }
  133. static int qsort_comparison_function_int16(const void *a, const void *b)
  134. {
  135. return *(const int16_t *)a - *(const int16_t *)b;
  136. }
  137. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  138. {
  139. int i;
  140. for (i = 0; i <= last_el; i++)
  141. if (table[i] == needle)
  142. return 1;
  143. return 0;
  144. }
  145. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  146. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  147. {
  148. int k;
  149. if (sbr->bs_limiter_bands > 0) {
  150. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  151. 1.18509277094158210129f, //2^(0.49/2)
  152. 1.11987160404675912501f }; //2^(0.49/3)
  153. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  154. int16_t patch_borders[7];
  155. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  156. patch_borders[0] = sbr->kx[1];
  157. for (k = 1; k <= sbr->num_patches; k++)
  158. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  159. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  160. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  161. if (sbr->num_patches > 1)
  162. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  163. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  164. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  165. sizeof(sbr->f_tablelim[0]),
  166. qsort_comparison_function_int16);
  167. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  168. while (out < sbr->f_tablelim + sbr->n_lim) {
  169. if (*in >= *out * lim_bands_per_octave_warped) {
  170. *++out = *in++;
  171. } else if (*in == *out ||
  172. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  173. in++;
  174. sbr->n_lim--;
  175. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  176. *out = *in++;
  177. sbr->n_lim--;
  178. } else {
  179. *++out = *in++;
  180. }
  181. }
  182. } else {
  183. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  184. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  185. sbr->n_lim = 1;
  186. }
  187. }
  188. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  189. {
  190. unsigned int cnt = get_bits_count(gb);
  191. uint8_t bs_header_extra_1;
  192. uint8_t bs_header_extra_2;
  193. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  194. SpectrumParameters old_spectrum_params;
  195. sbr->start = 1;
  196. // Save last spectrum parameters variables to compare to new ones
  197. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  198. sbr->bs_amp_res_header = get_bits1(gb);
  199. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  200. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  201. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  202. skip_bits(gb, 2); // bs_reserved
  203. bs_header_extra_1 = get_bits1(gb);
  204. bs_header_extra_2 = get_bits1(gb);
  205. if (bs_header_extra_1) {
  206. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  207. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  208. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  209. } else {
  210. sbr->spectrum_params.bs_freq_scale = 2;
  211. sbr->spectrum_params.bs_alter_scale = 1;
  212. sbr->spectrum_params.bs_noise_bands = 2;
  213. }
  214. // Check if spectrum parameters changed
  215. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  216. sbr->reset = 1;
  217. if (bs_header_extra_2) {
  218. sbr->bs_limiter_bands = get_bits(gb, 2);
  219. sbr->bs_limiter_gains = get_bits(gb, 2);
  220. sbr->bs_interpol_freq = get_bits1(gb);
  221. sbr->bs_smoothing_mode = get_bits1(gb);
  222. } else {
  223. sbr->bs_limiter_bands = 2;
  224. sbr->bs_limiter_gains = 2;
  225. sbr->bs_interpol_freq = 1;
  226. sbr->bs_smoothing_mode = 1;
  227. }
  228. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  229. sbr_make_f_tablelim(sbr);
  230. return get_bits_count(gb) - cnt;
  231. }
  232. static int array_min_int16(const int16_t *array, int nel)
  233. {
  234. int i, min = array[0];
  235. for (i = 1; i < nel; i++)
  236. min = FFMIN(array[i], min);
  237. return min;
  238. }
  239. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  240. {
  241. int k, previous, present;
  242. float base, prod;
  243. base = powf((float)stop / start, 1.0f / num_bands);
  244. prod = start;
  245. previous = start;
  246. for (k = 0; k < num_bands-1; k++) {
  247. prod *= base;
  248. present = lrintf(prod);
  249. bands[k] = present - previous;
  250. previous = present;
  251. }
  252. bands[num_bands-1] = stop - previous;
  253. }
  254. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  255. {
  256. // Requirements (14496-3 sp04 p205)
  257. if (n_master <= 0) {
  258. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  259. return -1;
  260. }
  261. if (bs_xover_band >= n_master) {
  262. av_log(avctx, AV_LOG_ERROR,
  263. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  264. bs_xover_band);
  265. return -1;
  266. }
  267. return 0;
  268. }
  269. /// Master Frequency Band Table (14496-3 sp04 p194)
  270. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  271. SpectrumParameters *spectrum)
  272. {
  273. unsigned int temp, max_qmf_subbands;
  274. unsigned int start_min, stop_min;
  275. int k;
  276. const int8_t *sbr_offset_ptr;
  277. int16_t stop_dk[13];
  278. if (sbr->sample_rate < 32000) {
  279. temp = 3000;
  280. } else if (sbr->sample_rate < 64000) {
  281. temp = 4000;
  282. } else
  283. temp = 5000;
  284. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  285. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  286. switch (sbr->sample_rate) {
  287. case 16000:
  288. sbr_offset_ptr = sbr_offset[0];
  289. break;
  290. case 22050:
  291. sbr_offset_ptr = sbr_offset[1];
  292. break;
  293. case 24000:
  294. sbr_offset_ptr = sbr_offset[2];
  295. break;
  296. case 32000:
  297. sbr_offset_ptr = sbr_offset[3];
  298. break;
  299. case 44100: case 48000: case 64000:
  300. sbr_offset_ptr = sbr_offset[4];
  301. break;
  302. case 88200: case 96000: case 128000: case 176400: case 192000:
  303. sbr_offset_ptr = sbr_offset[5];
  304. break;
  305. default:
  306. av_log(ac->avctx, AV_LOG_ERROR,
  307. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  308. return -1;
  309. }
  310. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  311. if (spectrum->bs_stop_freq < 14) {
  312. sbr->k[2] = stop_min;
  313. make_bands(stop_dk, stop_min, 64, 13);
  314. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  315. for (k = 0; k < spectrum->bs_stop_freq; k++)
  316. sbr->k[2] += stop_dk[k];
  317. } else if (spectrum->bs_stop_freq == 14) {
  318. sbr->k[2] = 2*sbr->k[0];
  319. } else if (spectrum->bs_stop_freq == 15) {
  320. sbr->k[2] = 3*sbr->k[0];
  321. } else {
  322. av_log(ac->avctx, AV_LOG_ERROR,
  323. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  324. return -1;
  325. }
  326. sbr->k[2] = FFMIN(64, sbr->k[2]);
  327. // Requirements (14496-3 sp04 p205)
  328. if (sbr->sample_rate <= 32000) {
  329. max_qmf_subbands = 48;
  330. } else if (sbr->sample_rate == 44100) {
  331. max_qmf_subbands = 35;
  332. } else if (sbr->sample_rate >= 48000)
  333. max_qmf_subbands = 32;
  334. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  335. av_log(ac->avctx, AV_LOG_ERROR,
  336. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  337. return -1;
  338. }
  339. if (!spectrum->bs_freq_scale) {
  340. int dk, k2diff;
  341. dk = spectrum->bs_alter_scale + 1;
  342. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  343. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  344. return -1;
  345. for (k = 1; k <= sbr->n_master; k++)
  346. sbr->f_master[k] = dk;
  347. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  348. if (k2diff < 0) {
  349. sbr->f_master[1]--;
  350. sbr->f_master[2]-= (k2diff < -1);
  351. } else if (k2diff) {
  352. sbr->f_master[sbr->n_master]++;
  353. }
  354. sbr->f_master[0] = sbr->k[0];
  355. for (k = 1; k <= sbr->n_master; k++)
  356. sbr->f_master[k] += sbr->f_master[k - 1];
  357. } else {
  358. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  359. int two_regions, num_bands_0;
  360. int vdk0_max, vdk1_min;
  361. int16_t vk0[49];
  362. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  363. two_regions = 1;
  364. sbr->k[1] = 2 * sbr->k[0];
  365. } else {
  366. two_regions = 0;
  367. sbr->k[1] = sbr->k[2];
  368. }
  369. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  370. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  371. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  372. return -1;
  373. }
  374. vk0[0] = 0;
  375. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  376. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  377. vdk0_max = vk0[num_bands_0];
  378. vk0[0] = sbr->k[0];
  379. for (k = 1; k <= num_bands_0; k++) {
  380. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  381. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  382. return -1;
  383. }
  384. vk0[k] += vk0[k-1];
  385. }
  386. if (two_regions) {
  387. int16_t vk1[49];
  388. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  389. : 1.0f; // bs_alter_scale = {0,1}
  390. int num_bands_1 = lrintf(half_bands * invwarp *
  391. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  392. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  393. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  394. if (vdk1_min < vdk0_max) {
  395. int change;
  396. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  397. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  398. vk1[1] += change;
  399. vk1[num_bands_1] -= change;
  400. }
  401. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  402. vk1[0] = sbr->k[1];
  403. for (k = 1; k <= num_bands_1; k++) {
  404. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  405. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  406. return -1;
  407. }
  408. vk1[k] += vk1[k-1];
  409. }
  410. sbr->n_master = num_bands_0 + num_bands_1;
  411. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  412. return -1;
  413. memcpy(&sbr->f_master[0], vk0,
  414. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  415. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  416. num_bands_1 * sizeof(sbr->f_master[0]));
  417. } else {
  418. sbr->n_master = num_bands_0;
  419. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  420. return -1;
  421. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  422. }
  423. }
  424. return 0;
  425. }
  426. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  427. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  428. {
  429. int i, k, sb = 0;
  430. int msb = sbr->k[0];
  431. int usb = sbr->kx[1];
  432. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  433. sbr->num_patches = 0;
  434. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  435. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  436. } else
  437. k = sbr->n_master;
  438. do {
  439. int odd = 0;
  440. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  441. sb = sbr->f_master[i];
  442. odd = (sb + sbr->k[0]) & 1;
  443. }
  444. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  445. // After this check the final number of patches can still be six which is
  446. // illegal however the Coding Technologies decoder check stream has a final
  447. // count of 6 patches
  448. if (sbr->num_patches > 5) {
  449. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  450. return -1;
  451. }
  452. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  453. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  454. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  455. usb = sb;
  456. msb = sb;
  457. sbr->num_patches++;
  458. } else
  459. msb = sbr->kx[1];
  460. if (sbr->f_master[k] - sb < 3)
  461. k = sbr->n_master;
  462. } while (sb != sbr->kx[1] + sbr->m[1]);
  463. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  464. sbr->num_patches--;
  465. return 0;
  466. }
  467. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  468. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  469. {
  470. int k, temp;
  471. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  472. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  473. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  474. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  475. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  476. sbr->kx[1] = sbr->f_tablehigh[0];
  477. // Requirements (14496-3 sp04 p205)
  478. if (sbr->kx[1] + sbr->m[1] > 64) {
  479. av_log(ac->avctx, AV_LOG_ERROR,
  480. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  481. return -1;
  482. }
  483. if (sbr->kx[1] > 32) {
  484. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  485. return -1;
  486. }
  487. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  488. temp = sbr->n[1] & 1;
  489. for (k = 1; k <= sbr->n[0]; k++)
  490. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  491. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  492. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  493. if (sbr->n_q > 5) {
  494. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  495. return -1;
  496. }
  497. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  498. temp = 0;
  499. for (k = 1; k <= sbr->n_q; k++) {
  500. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  501. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  502. }
  503. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  504. return -1;
  505. sbr_make_f_tablelim(sbr);
  506. sbr->data[0].f_indexnoise = 0;
  507. sbr->data[1].f_indexnoise = 0;
  508. return 0;
  509. }
  510. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  511. int elements)
  512. {
  513. int i;
  514. for (i = 0; i < elements; i++) {
  515. vec[i] = get_bits1(gb);
  516. }
  517. }
  518. /** ceil(log2(index+1)) */
  519. static const int8_t ceil_log2[] = {
  520. 0, 1, 2, 2, 3, 3,
  521. };
  522. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  523. GetBitContext *gb, SBRData *ch_data)
  524. {
  525. int i;
  526. unsigned bs_pointer = 0;
  527. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  528. int abs_bord_trail = 16;
  529. int num_rel_lead, num_rel_trail;
  530. unsigned bs_num_env_old = ch_data->bs_num_env;
  531. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  532. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  533. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  534. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  535. case FIXFIX:
  536. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  537. num_rel_lead = ch_data->bs_num_env - 1;
  538. if (ch_data->bs_num_env == 1)
  539. ch_data->bs_amp_res = 0;
  540. if (ch_data->bs_num_env > 4) {
  541. av_log(ac->avctx, AV_LOG_ERROR,
  542. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  543. ch_data->bs_num_env);
  544. return -1;
  545. }
  546. ch_data->t_env[0] = 0;
  547. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  548. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  549. ch_data->bs_num_env;
  550. for (i = 0; i < num_rel_lead; i++)
  551. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  552. ch_data->bs_freq_res[1] = get_bits1(gb);
  553. for (i = 1; i < ch_data->bs_num_env; i++)
  554. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  555. break;
  556. case FIXVAR:
  557. abs_bord_trail += get_bits(gb, 2);
  558. num_rel_trail = get_bits(gb, 2);
  559. ch_data->bs_num_env = num_rel_trail + 1;
  560. ch_data->t_env[0] = 0;
  561. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  562. for (i = 0; i < num_rel_trail; i++)
  563. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  564. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  565. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  566. for (i = 0; i < ch_data->bs_num_env; i++)
  567. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  568. break;
  569. case VARFIX:
  570. ch_data->t_env[0] = get_bits(gb, 2);
  571. num_rel_lead = get_bits(gb, 2);
  572. ch_data->bs_num_env = num_rel_lead + 1;
  573. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  574. for (i = 0; i < num_rel_lead; i++)
  575. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  576. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  577. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  578. break;
  579. case VARVAR:
  580. ch_data->t_env[0] = get_bits(gb, 2);
  581. abs_bord_trail += get_bits(gb, 2);
  582. num_rel_lead = get_bits(gb, 2);
  583. num_rel_trail = get_bits(gb, 2);
  584. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  585. if (ch_data->bs_num_env > 5) {
  586. av_log(ac->avctx, AV_LOG_ERROR,
  587. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  588. ch_data->bs_num_env);
  589. return -1;
  590. }
  591. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  592. for (i = 0; i < num_rel_lead; i++)
  593. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  594. for (i = 0; i < num_rel_trail; i++)
  595. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  596. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  597. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  598. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  599. break;
  600. }
  601. if (bs_pointer > ch_data->bs_num_env + 1) {
  602. av_log(ac->avctx, AV_LOG_ERROR,
  603. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  604. bs_pointer);
  605. return -1;
  606. }
  607. for (i = 1; i <= ch_data->bs_num_env; i++) {
  608. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  609. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  610. return -1;
  611. }
  612. }
  613. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  614. ch_data->t_q[0] = ch_data->t_env[0];
  615. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  616. if (ch_data->bs_num_noise > 1) {
  617. unsigned int idx;
  618. if (ch_data->bs_frame_class == FIXFIX) {
  619. idx = ch_data->bs_num_env >> 1;
  620. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  621. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  622. } else { // VARFIX
  623. if (!bs_pointer)
  624. idx = 1;
  625. else if (bs_pointer == 1)
  626. idx = ch_data->bs_num_env - 1;
  627. else // bs_pointer > 1
  628. idx = bs_pointer - 1;
  629. }
  630. ch_data->t_q[1] = ch_data->t_env[idx];
  631. }
  632. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  633. ch_data->e_a[1] = -1;
  634. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  635. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  636. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  637. ch_data->e_a[1] = bs_pointer - 1;
  638. return 0;
  639. }
  640. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  641. //These variables are saved from the previous frame rather than copied
  642. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  643. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  644. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  645. //These variables are read from the bitstream and therefore copied
  646. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  647. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  648. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  649. dst->bs_num_env = src->bs_num_env;
  650. dst->bs_amp_res = src->bs_amp_res;
  651. dst->bs_num_noise = src->bs_num_noise;
  652. dst->bs_frame_class = src->bs_frame_class;
  653. dst->e_a[1] = src->e_a[1];
  654. }
  655. /// Read how the envelope and noise floor data is delta coded
  656. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  657. SBRData *ch_data)
  658. {
  659. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  660. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  661. }
  662. /// Read inverse filtering data
  663. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  664. SBRData *ch_data)
  665. {
  666. int i;
  667. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  668. for (i = 0; i < sbr->n_q; i++)
  669. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  670. }
  671. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  672. SBRData *ch_data, int ch)
  673. {
  674. int bits;
  675. int i, j, k;
  676. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  677. int t_lav, f_lav;
  678. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  679. const int odd = sbr->n[1] & 1;
  680. if (sbr->bs_coupling && ch) {
  681. if (ch_data->bs_amp_res) {
  682. bits = 5;
  683. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  684. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  685. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  686. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  687. } else {
  688. bits = 6;
  689. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  690. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  691. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  692. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  693. }
  694. } else {
  695. if (ch_data->bs_amp_res) {
  696. bits = 6;
  697. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  698. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  699. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  700. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  701. } else {
  702. bits = 7;
  703. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  704. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  705. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  706. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  707. }
  708. }
  709. for (i = 0; i < ch_data->bs_num_env; i++) {
  710. if (ch_data->bs_df_env[i]) {
  711. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  712. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  713. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  714. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  715. } else if (ch_data->bs_freq_res[i + 1]) {
  716. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  717. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  718. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  719. }
  720. } else {
  721. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  722. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  723. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  724. }
  725. }
  726. } else {
  727. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  728. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  729. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  730. }
  731. }
  732. //assign 0th elements of env_facs from last elements
  733. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  734. sizeof(ch_data->env_facs[0]));
  735. }
  736. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  737. SBRData *ch_data, int ch)
  738. {
  739. int i, j;
  740. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  741. int t_lav, f_lav;
  742. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  743. if (sbr->bs_coupling && ch) {
  744. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  745. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  746. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  747. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  748. } else {
  749. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  750. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  751. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  752. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  753. }
  754. for (i = 0; i < ch_data->bs_num_noise; i++) {
  755. if (ch_data->bs_df_noise[i]) {
  756. for (j = 0; j < sbr->n_q; j++)
  757. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  758. } else {
  759. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  760. for (j = 1; j < sbr->n_q; j++)
  761. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  762. }
  763. }
  764. //assign 0th elements of noise_facs from last elements
  765. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  766. sizeof(ch_data->noise_facs[0]));
  767. }
  768. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  769. GetBitContext *gb,
  770. int bs_extension_id, int *num_bits_left)
  771. {
  772. switch (bs_extension_id) {
  773. case EXTENSION_ID_PS:
  774. if (!ac->m4ac.ps) {
  775. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  776. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  777. *num_bits_left = 0;
  778. } else {
  779. #if 1
  780. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  781. #else
  782. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  783. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  784. *num_bits_left = 0;
  785. #endif
  786. }
  787. break;
  788. default:
  789. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  790. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  791. *num_bits_left = 0;
  792. break;
  793. }
  794. }
  795. static int read_sbr_single_channel_element(AACContext *ac,
  796. SpectralBandReplication *sbr,
  797. GetBitContext *gb)
  798. {
  799. if (get_bits1(gb)) // bs_data_extra
  800. skip_bits(gb, 4); // bs_reserved
  801. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  802. return -1;
  803. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  804. read_sbr_invf(sbr, gb, &sbr->data[0]);
  805. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  806. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  807. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  808. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  809. return 0;
  810. }
  811. static int read_sbr_channel_pair_element(AACContext *ac,
  812. SpectralBandReplication *sbr,
  813. GetBitContext *gb)
  814. {
  815. if (get_bits1(gb)) // bs_data_extra
  816. skip_bits(gb, 8); // bs_reserved
  817. if ((sbr->bs_coupling = get_bits1(gb))) {
  818. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  819. return -1;
  820. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  821. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  822. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  823. read_sbr_invf(sbr, gb, &sbr->data[0]);
  824. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  825. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  826. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  827. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  828. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  829. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  830. } else {
  831. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  832. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  833. return -1;
  834. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  835. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  836. read_sbr_invf(sbr, gb, &sbr->data[0]);
  837. read_sbr_invf(sbr, gb, &sbr->data[1]);
  838. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  839. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  840. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  841. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  842. }
  843. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  844. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  845. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  846. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  847. return 0;
  848. }
  849. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  850. GetBitContext *gb, int id_aac)
  851. {
  852. unsigned int cnt = get_bits_count(gb);
  853. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  854. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  855. sbr->start = 0;
  856. return get_bits_count(gb) - cnt;
  857. }
  858. } else if (id_aac == TYPE_CPE) {
  859. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  860. sbr->start = 0;
  861. return get_bits_count(gb) - cnt;
  862. }
  863. } else {
  864. av_log(ac->avctx, AV_LOG_ERROR,
  865. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  866. sbr->start = 0;
  867. return get_bits_count(gb) - cnt;
  868. }
  869. if (get_bits1(gb)) { // bs_extended_data
  870. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  871. if (num_bits_left == 15)
  872. num_bits_left += get_bits(gb, 8); // bs_esc_count
  873. num_bits_left <<= 3;
  874. while (num_bits_left > 7) {
  875. num_bits_left -= 2;
  876. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  877. }
  878. if (num_bits_left < 0) {
  879. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  880. }
  881. if (num_bits_left > 0)
  882. skip_bits(gb, num_bits_left);
  883. }
  884. return get_bits_count(gb) - cnt;
  885. }
  886. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  887. {
  888. int err;
  889. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  890. if (err >= 0)
  891. err = sbr_make_f_derived(ac, sbr);
  892. if (err < 0) {
  893. av_log(ac->avctx, AV_LOG_ERROR,
  894. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  895. sbr->start = 0;
  896. }
  897. }
  898. /**
  899. * Decode Spectral Band Replication extension data; reference: table 4.55.
  900. *
  901. * @param crc flag indicating the presence of CRC checksum
  902. * @param cnt length of TYPE_FIL syntactic element in bytes
  903. *
  904. * @return Returns number of bytes consumed from the TYPE_FIL element.
  905. */
  906. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  907. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  908. {
  909. unsigned int num_sbr_bits = 0, num_align_bits;
  910. unsigned bytes_read;
  911. GetBitContext gbc = *gb_host, *gb = &gbc;
  912. skip_bits_long(gb_host, cnt*8 - 4);
  913. sbr->reset = 0;
  914. if (!sbr->sample_rate)
  915. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  916. if (!ac->m4ac.ext_sample_rate)
  917. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  918. if (crc) {
  919. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  920. num_sbr_bits += 10;
  921. }
  922. //Save some state from the previous frame.
  923. sbr->kx[0] = sbr->kx[1];
  924. sbr->m[0] = sbr->m[1];
  925. num_sbr_bits++;
  926. if (get_bits1(gb)) // bs_header_flag
  927. num_sbr_bits += read_sbr_header(sbr, gb);
  928. if (sbr->reset)
  929. sbr_reset(ac, sbr);
  930. if (sbr->start)
  931. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  932. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  933. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  934. if (bytes_read > cnt) {
  935. av_log(ac->avctx, AV_LOG_ERROR,
  936. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  937. }
  938. return cnt;
  939. }
  940. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  941. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  942. {
  943. int k, e;
  944. int ch;
  945. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  946. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  947. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  948. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  949. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  950. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  951. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  952. float fac = temp1 / (1.0f + temp2);
  953. sbr->data[0].env_facs[e][k] = fac;
  954. sbr->data[1].env_facs[e][k] = fac * temp2;
  955. }
  956. }
  957. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  958. for (k = 0; k < sbr->n_q; k++) {
  959. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  960. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  961. float fac = temp1 / (1.0f + temp2);
  962. sbr->data[0].noise_facs[e][k] = fac;
  963. sbr->data[1].noise_facs[e][k] = fac * temp2;
  964. }
  965. }
  966. } else { // SCE or one non-coupled CPE
  967. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  968. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  969. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  970. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  971. sbr->data[ch].env_facs[e][k] =
  972. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  973. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  974. for (k = 0; k < sbr->n_q; k++)
  975. sbr->data[ch].noise_facs[e][k] =
  976. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  977. }
  978. }
  979. }
  980. /**
  981. * Analysis QMF Bank (14496-3 sp04 p206)
  982. *
  983. * @param x pointer to the beginning of the first sample window
  984. * @param W array of complex-valued samples split into subbands
  985. */
  986. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  987. float z[320], float W[2][32][32][2])
  988. {
  989. int i, k;
  990. memcpy(W[0], W[1], sizeof(W[0]));
  991. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  992. memcpy(x+288, in, 1024*sizeof(x[0]));
  993. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  994. // are not supported
  995. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  996. for (k = 0; k < 64; k++) {
  997. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  998. z[k] = f;
  999. }
  1000. //Shuffle to IMDCT
  1001. z[64] = z[0];
  1002. for (k = 1; k < 32; k++) {
  1003. z[64+2*k-1] = z[ k];
  1004. z[64+2*k ] = -z[64-k];
  1005. }
  1006. z[64+63] = z[32];
  1007. mdct->imdct_half(mdct, z, z+64);
  1008. for (k = 0; k < 32; k++) {
  1009. W[1][i][k][0] = -z[63-k];
  1010. W[1][i][k][1] = z[k];
  1011. }
  1012. x += 32;
  1013. }
  1014. }
  1015. /**
  1016. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1017. * (14496-3 sp04 p206)
  1018. */
  1019. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1020. float *out, float X[2][38][64],
  1021. float mdct_buf[2][64],
  1022. float *v0, int *v_off, const unsigned int div)
  1023. {
  1024. int i, n;
  1025. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1026. float *v;
  1027. for (i = 0; i < 32; i++) {
  1028. if (*v_off == 0) {
  1029. int saved_samples = (1280 - 128) >> div;
  1030. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1031. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1032. } else {
  1033. *v_off -= 128 >> div;
  1034. }
  1035. v = v0 + *v_off;
  1036. if (div) {
  1037. for (n = 0; n < 32; n++) {
  1038. X[0][i][ n] = -X[0][i][n];
  1039. X[0][i][32+n] = X[1][i][31-n];
  1040. }
  1041. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1042. for (n = 0; n < 32; n++) {
  1043. v[ n] = mdct_buf[0][63 - 2*n];
  1044. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1045. }
  1046. } else {
  1047. for (n = 1; n < 64; n+=2) {
  1048. X[1][i][n] = -X[1][i][n];
  1049. }
  1050. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1051. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1052. for (n = 0; n < 64; n++) {
  1053. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1054. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1055. }
  1056. }
  1057. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1065. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1067. out += 64 >> div;
  1068. }
  1069. }
  1070. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1071. {
  1072. int i;
  1073. float real_sum = 0.0f;
  1074. float imag_sum = 0.0f;
  1075. if (lag) {
  1076. for (i = 1; i < 38; i++) {
  1077. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1078. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1079. }
  1080. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1081. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1082. if (lag == 1) {
  1083. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1084. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1085. }
  1086. } else {
  1087. for (i = 1; i < 38; i++) {
  1088. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1089. }
  1090. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1091. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1092. }
  1093. }
  1094. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1095. * (14496-3 sp04 p214)
  1096. * Warning: This routine does not seem numerically stable.
  1097. */
  1098. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1099. const float X_low[32][40][2], int k0)
  1100. {
  1101. int k;
  1102. for (k = 0; k < k0; k++) {
  1103. float phi[3][2][2], dk;
  1104. autocorrelate(X_low[k], phi, 0);
  1105. autocorrelate(X_low[k], phi, 1);
  1106. autocorrelate(X_low[k], phi, 2);
  1107. dk = phi[2][1][0] * phi[1][0][0] -
  1108. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1109. if (!dk) {
  1110. alpha1[k][0] = 0;
  1111. alpha1[k][1] = 0;
  1112. } else {
  1113. float temp_real, temp_im;
  1114. temp_real = phi[0][0][0] * phi[1][1][0] -
  1115. phi[0][0][1] * phi[1][1][1] -
  1116. phi[0][1][0] * phi[1][0][0];
  1117. temp_im = phi[0][0][0] * phi[1][1][1] +
  1118. phi[0][0][1] * phi[1][1][0] -
  1119. phi[0][1][1] * phi[1][0][0];
  1120. alpha1[k][0] = temp_real / dk;
  1121. alpha1[k][1] = temp_im / dk;
  1122. }
  1123. if (!phi[1][0][0]) {
  1124. alpha0[k][0] = 0;
  1125. alpha0[k][1] = 0;
  1126. } else {
  1127. float temp_real, temp_im;
  1128. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1129. alpha1[k][1] * phi[1][1][1];
  1130. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1131. alpha1[k][0] * phi[1][1][1];
  1132. alpha0[k][0] = -temp_real / phi[1][0][0];
  1133. alpha0[k][1] = -temp_im / phi[1][0][0];
  1134. }
  1135. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1136. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1137. alpha1[k][0] = 0;
  1138. alpha1[k][1] = 0;
  1139. alpha0[k][0] = 0;
  1140. alpha0[k][1] = 0;
  1141. }
  1142. }
  1143. }
  1144. /// Chirp Factors (14496-3 sp04 p214)
  1145. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1146. {
  1147. int i;
  1148. float new_bw;
  1149. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1150. for (i = 0; i < sbr->n_q; i++) {
  1151. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1152. new_bw = 0.6f;
  1153. } else
  1154. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1155. if (new_bw < ch_data->bw_array[i]) {
  1156. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1157. } else
  1158. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1159. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1160. }
  1161. }
  1162. /// Generate the subband filtered lowband
  1163. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1164. float X_low[32][40][2], const float W[2][32][32][2])
  1165. {
  1166. int i, k;
  1167. const int t_HFGen = 8;
  1168. const int i_f = 32;
  1169. memset(X_low, 0, 32*sizeof(*X_low));
  1170. for (k = 0; k < sbr->kx[1]; k++) {
  1171. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1172. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1173. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1174. }
  1175. }
  1176. for (k = 0; k < sbr->kx[0]; k++) {
  1177. for (i = 0; i < t_HFGen; i++) {
  1178. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1179. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1180. }
  1181. }
  1182. return 0;
  1183. }
  1184. /// High Frequency Generator (14496-3 sp04 p215)
  1185. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1186. float X_high[64][40][2], const float X_low[32][40][2],
  1187. const float (*alpha0)[2], const float (*alpha1)[2],
  1188. const float bw_array[5], const uint8_t *t_env,
  1189. int bs_num_env)
  1190. {
  1191. int i, j, x;
  1192. int g = 0;
  1193. int k = sbr->kx[1];
  1194. for (j = 0; j < sbr->num_patches; j++) {
  1195. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1196. float alpha[4];
  1197. const int p = sbr->patch_start_subband[j] + x;
  1198. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1199. g++;
  1200. g--;
  1201. if (g < 0) {
  1202. av_log(ac->avctx, AV_LOG_ERROR,
  1203. "ERROR : no subband found for frequency %d\n", k);
  1204. return -1;
  1205. }
  1206. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1207. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1208. alpha[2] = alpha0[p][0] * bw_array[g];
  1209. alpha[3] = alpha0[p][1] * bw_array[g];
  1210. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1211. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1212. X_high[k][idx][0] =
  1213. X_low[p][idx - 2][0] * alpha[0] -
  1214. X_low[p][idx - 2][1] * alpha[1] +
  1215. X_low[p][idx - 1][0] * alpha[2] -
  1216. X_low[p][idx - 1][1] * alpha[3] +
  1217. X_low[p][idx][0];
  1218. X_high[k][idx][1] =
  1219. X_low[p][idx - 2][1] * alpha[0] +
  1220. X_low[p][idx - 2][0] * alpha[1] +
  1221. X_low[p][idx - 1][1] * alpha[2] +
  1222. X_low[p][idx - 1][0] * alpha[3] +
  1223. X_low[p][idx][1];
  1224. }
  1225. }
  1226. }
  1227. if (k < sbr->m[1] + sbr->kx[1])
  1228. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1229. return 0;
  1230. }
  1231. /// Generate the subband filtered lowband
  1232. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1233. const float X_low[32][40][2], const float Y[2][38][64][2],
  1234. int ch)
  1235. {
  1236. int k, i;
  1237. const int i_f = 32;
  1238. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1239. memset(X, 0, 2*sizeof(*X));
  1240. for (k = 0; k < sbr->kx[0]; k++) {
  1241. for (i = 0; i < i_Temp; i++) {
  1242. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1243. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1244. }
  1245. }
  1246. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1247. for (i = 0; i < i_Temp; i++) {
  1248. X[0][i][k] = Y[0][i + i_f][k][0];
  1249. X[1][i][k] = Y[0][i + i_f][k][1];
  1250. }
  1251. }
  1252. for (k = 0; k < sbr->kx[1]; k++) {
  1253. for (i = i_Temp; i < 38; i++) {
  1254. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1255. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1256. }
  1257. }
  1258. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1259. for (i = i_Temp; i < i_f; i++) {
  1260. X[0][i][k] = Y[1][i][k][0];
  1261. X[1][i][k] = Y[1][i][k][1];
  1262. }
  1263. }
  1264. return 0;
  1265. }
  1266. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1267. * (14496-3 sp04 p217)
  1268. */
  1269. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1270. SBRData *ch_data, int e_a[2])
  1271. {
  1272. int e, i, m;
  1273. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1274. for (e = 0; e < ch_data->bs_num_env; e++) {
  1275. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1276. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1277. int k;
  1278. for (i = 0; i < ilim; i++)
  1279. for (m = table[i]; m < table[i + 1]; m++)
  1280. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1281. // ch_data->bs_num_noise > 1 => 2 noise floors
  1282. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1283. for (i = 0; i < sbr->n_q; i++)
  1284. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1285. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1286. for (i = 0; i < sbr->n[1]; i++) {
  1287. if (ch_data->bs_add_harmonic_flag) {
  1288. const unsigned int m_midpoint =
  1289. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1290. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1291. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1292. }
  1293. }
  1294. for (i = 0; i < ilim; i++) {
  1295. int additional_sinusoid_present = 0;
  1296. for (m = table[i]; m < table[i + 1]; m++) {
  1297. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1298. additional_sinusoid_present = 1;
  1299. break;
  1300. }
  1301. }
  1302. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1303. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1304. }
  1305. }
  1306. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1307. }
  1308. /// Estimation of current envelope (14496-3 sp04 p218)
  1309. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1310. SpectralBandReplication *sbr, SBRData *ch_data)
  1311. {
  1312. int e, i, m;
  1313. if (sbr->bs_interpol_freq) {
  1314. for (e = 0; e < ch_data->bs_num_env; e++) {
  1315. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1316. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1317. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1318. for (m = 0; m < sbr->m[1]; m++) {
  1319. float sum = 0.0f;
  1320. for (i = ilb; i < iub; i++) {
  1321. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1322. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1323. }
  1324. e_curr[e][m] = sum * recip_env_size;
  1325. }
  1326. }
  1327. } else {
  1328. int k, p;
  1329. for (e = 0; e < ch_data->bs_num_env; e++) {
  1330. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1331. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1332. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1333. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1334. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1335. float sum = 0.0f;
  1336. const int den = env_size * (table[p + 1] - table[p]);
  1337. for (k = table[p]; k < table[p + 1]; k++) {
  1338. for (i = ilb; i < iub; i++) {
  1339. sum += X_high[k][i][0] * X_high[k][i][0] +
  1340. X_high[k][i][1] * X_high[k][i][1];
  1341. }
  1342. }
  1343. sum /= den;
  1344. for (k = table[p]; k < table[p + 1]; k++) {
  1345. e_curr[e][k - sbr->kx[1]] = sum;
  1346. }
  1347. }
  1348. }
  1349. }
  1350. }
  1351. /**
  1352. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1353. * and Calculation of gain (14496-3 sp04 p219)
  1354. */
  1355. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1356. SBRData *ch_data, const int e_a[2])
  1357. {
  1358. int e, k, m;
  1359. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1360. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1361. for (e = 0; e < ch_data->bs_num_env; e++) {
  1362. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1363. for (k = 0; k < sbr->n_lim; k++) {
  1364. float gain_boost, gain_max;
  1365. float sum[2] = { 0.0f, 0.0f };
  1366. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1367. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1368. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1369. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1370. if (!sbr->s_mapped[e][m]) {
  1371. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1372. ((1.0f + sbr->e_curr[e][m]) *
  1373. (1.0f + sbr->q_mapped[e][m] * delta)));
  1374. } else {
  1375. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1376. ((1.0f + sbr->e_curr[e][m]) *
  1377. (1.0f + sbr->q_mapped[e][m])));
  1378. }
  1379. }
  1380. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1381. sum[0] += sbr->e_origmapped[e][m];
  1382. sum[1] += sbr->e_curr[e][m];
  1383. }
  1384. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1385. gain_max = FFMIN(100000.f, gain_max);
  1386. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1387. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1388. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1389. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1390. }
  1391. sum[0] = sum[1] = 0.0f;
  1392. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1393. sum[0] += sbr->e_origmapped[e][m];
  1394. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1395. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1396. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1397. }
  1398. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1399. gain_boost = FFMIN(1.584893192f, gain_boost);
  1400. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1401. sbr->gain[e][m] *= gain_boost;
  1402. sbr->q_m[e][m] *= gain_boost;
  1403. sbr->s_m[e][m] *= gain_boost;
  1404. }
  1405. }
  1406. }
  1407. }
  1408. /// Assembling HF Signals (14496-3 sp04 p220)
  1409. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1410. SpectralBandReplication *sbr, SBRData *ch_data,
  1411. const int e_a[2])
  1412. {
  1413. int e, i, j, m;
  1414. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1415. const int kx = sbr->kx[1];
  1416. const int m_max = sbr->m[1];
  1417. static const float h_smooth[5] = {
  1418. 0.33333333333333,
  1419. 0.30150283239582,
  1420. 0.21816949906249,
  1421. 0.11516383427084,
  1422. 0.03183050093751,
  1423. };
  1424. static const int8_t phi[2][4] = {
  1425. { 1, 0, -1, 0}, // real
  1426. { 0, 1, 0, -1}, // imaginary
  1427. };
  1428. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1429. int indexnoise = ch_data->f_indexnoise;
  1430. int indexsine = ch_data->f_indexsine;
  1431. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1432. if (sbr->reset) {
  1433. for (i = 0; i < h_SL; i++) {
  1434. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1435. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1436. }
  1437. } else if (h_SL) {
  1438. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1439. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1440. }
  1441. for (e = 0; e < ch_data->bs_num_env; e++) {
  1442. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1443. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1444. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1445. }
  1446. }
  1447. for (e = 0; e < ch_data->bs_num_env; e++) {
  1448. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1449. int phi_sign = (1 - 2*(kx & 1));
  1450. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1451. for (m = 0; m < m_max; m++) {
  1452. const int idx1 = i + h_SL;
  1453. float g_filt = 0.0f;
  1454. for (j = 0; j <= h_SL; j++)
  1455. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1456. Y[1][i][m + kx][0] =
  1457. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1458. Y[1][i][m + kx][1] =
  1459. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1460. }
  1461. } else {
  1462. for (m = 0; m < m_max; m++) {
  1463. const float g_filt = g_temp[i + h_SL][m];
  1464. Y[1][i][m + kx][0] =
  1465. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1466. Y[1][i][m + kx][1] =
  1467. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1468. }
  1469. }
  1470. if (e != e_a[0] && e != e_a[1]) {
  1471. for (m = 0; m < m_max; m++) {
  1472. indexnoise = (indexnoise + 1) & 0x1ff;
  1473. if (sbr->s_m[e][m]) {
  1474. Y[1][i][m + kx][0] +=
  1475. sbr->s_m[e][m] * phi[0][indexsine];
  1476. Y[1][i][m + kx][1] +=
  1477. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1478. } else {
  1479. float q_filt;
  1480. if (h_SL) {
  1481. const int idx1 = i + h_SL;
  1482. q_filt = 0.0f;
  1483. for (j = 0; j <= h_SL; j++)
  1484. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1485. } else {
  1486. q_filt = q_temp[i][m];
  1487. }
  1488. Y[1][i][m + kx][0] +=
  1489. q_filt * sbr_noise_table[indexnoise][0];
  1490. Y[1][i][m + kx][1] +=
  1491. q_filt * sbr_noise_table[indexnoise][1];
  1492. }
  1493. phi_sign = -phi_sign;
  1494. }
  1495. } else {
  1496. indexnoise = (indexnoise + m_max) & 0x1ff;
  1497. for (m = 0; m < m_max; m++) {
  1498. Y[1][i][m + kx][0] +=
  1499. sbr->s_m[e][m] * phi[0][indexsine];
  1500. Y[1][i][m + kx][1] +=
  1501. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1502. phi_sign = -phi_sign;
  1503. }
  1504. }
  1505. indexsine = (indexsine + 1) & 3;
  1506. }
  1507. }
  1508. ch_data->f_indexnoise = indexnoise;
  1509. ch_data->f_indexsine = indexsine;
  1510. }
  1511. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1512. float* L, float* R)
  1513. {
  1514. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1515. int ch;
  1516. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1517. if (sbr->start) {
  1518. sbr_dequant(sbr, id_aac);
  1519. }
  1520. for (ch = 0; ch < nch; ch++) {
  1521. /* decode channel */
  1522. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1523. (float*)sbr->qmf_filter_scratch,
  1524. sbr->data[ch].W);
  1525. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1526. if (sbr->start) {
  1527. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1528. sbr_chirp(sbr, &sbr->data[ch]);
  1529. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1530. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1531. sbr->data[ch].bs_num_env);
  1532. // hf_adj
  1533. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1534. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1535. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1536. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1537. sbr->data[ch].e_a);
  1538. }
  1539. /* synthesis */
  1540. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1541. }
  1542. if (ac->m4ac.ps == 1) {
  1543. if (sbr->ps.start) {
  1544. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1545. } else {
  1546. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1547. }
  1548. nch = 2;
  1549. }
  1550. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1551. sbr->data[0].synthesis_filterbank_samples,
  1552. &sbr->data[0].synthesis_filterbank_samples_offset,
  1553. downsampled);
  1554. if (nch == 2)
  1555. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1556. sbr->data[1].synthesis_filterbank_samples,
  1557. &sbr->data[1].synthesis_filterbank_samples_offset,
  1558. downsampled);
  1559. }