You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

435 lines
14KB

  1. /*
  2. * WMA compatible encoder
  3. * Copyright (c) 2007 Michael Niedermayer
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "wma.h"
  23. #undef NDEBUG
  24. #include <assert.h>
  25. static int encode_init(AVCodecContext * avctx){
  26. WMACodecContext *s = avctx->priv_data;
  27. int i, flags1, flags2;
  28. uint8_t *extradata;
  29. s->avctx = avctx;
  30. if(avctx->channels > MAX_CHANNELS) {
  31. av_log(avctx, AV_LOG_ERROR, "too many channels: got %i, need %i or fewer",
  32. avctx->channels, MAX_CHANNELS);
  33. return AVERROR(EINVAL);
  34. }
  35. if (avctx->sample_rate > 48000) {
  36. av_log(avctx, AV_LOG_ERROR, "sample rate is too high: %d > 48kHz",
  37. avctx->sample_rate);
  38. return AVERROR(EINVAL);
  39. }
  40. if(avctx->bit_rate < 24*1000) {
  41. av_log(avctx, AV_LOG_ERROR, "bitrate too low: got %i, need 24000 or higher\n",
  42. avctx->bit_rate);
  43. return AVERROR(EINVAL);
  44. }
  45. /* extract flag infos */
  46. flags1 = 0;
  47. flags2 = 1;
  48. if (avctx->codec->id == CODEC_ID_WMAV1) {
  49. extradata= av_malloc(4);
  50. avctx->extradata_size= 4;
  51. AV_WL16(extradata, flags1);
  52. AV_WL16(extradata+2, flags2);
  53. } else if (avctx->codec->id == CODEC_ID_WMAV2) {
  54. extradata= av_mallocz(10);
  55. avctx->extradata_size= 10;
  56. AV_WL32(extradata, flags1);
  57. AV_WL16(extradata+4, flags2);
  58. }else
  59. assert(0);
  60. avctx->extradata= extradata;
  61. s->use_exp_vlc = flags2 & 0x0001;
  62. s->use_bit_reservoir = flags2 & 0x0002;
  63. s->use_variable_block_len = flags2 & 0x0004;
  64. if (avctx->channels == 2)
  65. s->ms_stereo = 1;
  66. ff_wma_init(avctx, flags2);
  67. /* init MDCT */
  68. for(i = 0; i < s->nb_block_sizes; i++)
  69. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 0, 1.0);
  70. s->block_align = avctx->bit_rate * (int64_t)s->frame_len /
  71. (avctx->sample_rate * 8);
  72. s->block_align = FFMIN(s->block_align, MAX_CODED_SUPERFRAME_SIZE);
  73. avctx->block_align = s->block_align;
  74. avctx->bit_rate = avctx->block_align * 8LL * avctx->sample_rate /
  75. s->frame_len;
  76. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d\n", s->block_align, avctx->bit_rate, s->frame_len, avctx->sample_rate);
  77. avctx->frame_size= s->frame_len;
  78. return 0;
  79. }
  80. static void apply_window_and_mdct(AVCodecContext * avctx, const signed short * audio, int len) {
  81. WMACodecContext *s = avctx->priv_data;
  82. int window_index= s->frame_len_bits - s->block_len_bits;
  83. FFTContext *mdct = &s->mdct_ctx[window_index];
  84. int i, j, channel;
  85. const float * win = s->windows[window_index];
  86. int window_len = 1 << s->block_len_bits;
  87. float n = window_len/2;
  88. for (channel = 0; channel < avctx->channels; channel++) {
  89. memcpy(s->output, s->frame_out[channel], sizeof(float)*window_len);
  90. j = channel;
  91. for (i = 0; i < len; i++, j += avctx->channels){
  92. s->output[i+window_len] = audio[j] / n * win[window_len - i - 1];
  93. s->frame_out[channel][i] = audio[j] / n * win[i];
  94. }
  95. mdct->mdct_calc(mdct, s->coefs[channel], s->output);
  96. }
  97. }
  98. //FIXME use for decoding too
  99. static void init_exp(WMACodecContext *s, int ch, const int *exp_param){
  100. int n;
  101. const uint16_t *ptr;
  102. float v, *q, max_scale, *q_end;
  103. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  104. q = s->exponents[ch];
  105. q_end = q + s->block_len;
  106. max_scale = 0;
  107. while (q < q_end) {
  108. /* XXX: use a table */
  109. v = pow(10, *exp_param++ * (1.0 / 16.0));
  110. max_scale= FFMAX(max_scale, v);
  111. n = *ptr++;
  112. do {
  113. *q++ = v;
  114. } while (--n);
  115. }
  116. s->max_exponent[ch] = max_scale;
  117. }
  118. static void encode_exp_vlc(WMACodecContext *s, int ch, const int *exp_param){
  119. int last_exp;
  120. const uint16_t *ptr;
  121. float *q, *q_end;
  122. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  123. q = s->exponents[ch];
  124. q_end = q + s->block_len;
  125. if (s->version == 1) {
  126. last_exp= *exp_param++;
  127. assert(last_exp-10 >= 0 && last_exp-10 < 32);
  128. put_bits(&s->pb, 5, last_exp - 10);
  129. q+= *ptr++;
  130. }else
  131. last_exp = 36;
  132. while (q < q_end) {
  133. int exp = *exp_param++;
  134. int code = exp - last_exp + 60;
  135. assert(code >= 0 && code < 120);
  136. put_bits(&s->pb, ff_aac_scalefactor_bits[code], ff_aac_scalefactor_code[code]);
  137. /* XXX: use a table */
  138. q+= *ptr++;
  139. last_exp= exp;
  140. }
  141. }
  142. static int encode_block(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], int total_gain){
  143. int v, bsize, ch, coef_nb_bits, parse_exponents;
  144. float mdct_norm;
  145. int nb_coefs[MAX_CHANNELS];
  146. static const int fixed_exp[25]={20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20};
  147. //FIXME remove duplication relative to decoder
  148. if (s->use_variable_block_len) {
  149. assert(0); //FIXME not implemented
  150. }else{
  151. /* fixed block len */
  152. s->next_block_len_bits = s->frame_len_bits;
  153. s->prev_block_len_bits = s->frame_len_bits;
  154. s->block_len_bits = s->frame_len_bits;
  155. }
  156. s->block_len = 1 << s->block_len_bits;
  157. // assert((s->block_pos + s->block_len) <= s->frame_len);
  158. bsize = s->frame_len_bits - s->block_len_bits;
  159. //FIXME factor
  160. v = s->coefs_end[bsize] - s->coefs_start;
  161. for(ch = 0; ch < s->nb_channels; ch++)
  162. nb_coefs[ch] = v;
  163. {
  164. int n4 = s->block_len / 2;
  165. mdct_norm = 1.0 / (float)n4;
  166. if (s->version == 1) {
  167. mdct_norm *= sqrt(n4);
  168. }
  169. }
  170. if (s->nb_channels == 2) {
  171. put_bits(&s->pb, 1, !!s->ms_stereo);
  172. }
  173. for(ch = 0; ch < s->nb_channels; ch++) {
  174. s->channel_coded[ch] = 1; //FIXME only set channel_coded when needed, instead of always
  175. if (s->channel_coded[ch]) {
  176. init_exp(s, ch, fixed_exp);
  177. }
  178. }
  179. for(ch = 0; ch < s->nb_channels; ch++) {
  180. if (s->channel_coded[ch]) {
  181. WMACoef *coefs1;
  182. float *coefs, *exponents, mult;
  183. int i, n;
  184. coefs1 = s->coefs1[ch];
  185. exponents = s->exponents[ch];
  186. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  187. mult *= mdct_norm;
  188. coefs = src_coefs[ch];
  189. if (s->use_noise_coding && 0) {
  190. assert(0); //FIXME not implemented
  191. } else {
  192. coefs += s->coefs_start;
  193. n = nb_coefs[ch];
  194. for(i = 0;i < n; i++){
  195. double t= *coefs++ / (exponents[i] * mult);
  196. if(t<-32768 || t>32767)
  197. return -1;
  198. coefs1[i] = lrint(t);
  199. }
  200. }
  201. }
  202. }
  203. v = 0;
  204. for(ch = 0; ch < s->nb_channels; ch++) {
  205. int a = s->channel_coded[ch];
  206. put_bits(&s->pb, 1, a);
  207. v |= a;
  208. }
  209. if (!v)
  210. return 1;
  211. for(v= total_gain-1; v>=127; v-= 127)
  212. put_bits(&s->pb, 7, 127);
  213. put_bits(&s->pb, 7, v);
  214. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  215. if (s->use_noise_coding) {
  216. for(ch = 0; ch < s->nb_channels; ch++) {
  217. if (s->channel_coded[ch]) {
  218. int i, n;
  219. n = s->exponent_high_sizes[bsize];
  220. for(i=0;i<n;i++) {
  221. put_bits(&s->pb, 1, s->high_band_coded[ch][i]= 0);
  222. if (0)
  223. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  224. }
  225. }
  226. }
  227. }
  228. parse_exponents = 1;
  229. if (s->block_len_bits != s->frame_len_bits) {
  230. put_bits(&s->pb, 1, parse_exponents);
  231. }
  232. if (parse_exponents) {
  233. for(ch = 0; ch < s->nb_channels; ch++) {
  234. if (s->channel_coded[ch]) {
  235. if (s->use_exp_vlc) {
  236. encode_exp_vlc(s, ch, fixed_exp);
  237. } else {
  238. assert(0); //FIXME not implemented
  239. // encode_exp_lsp(s, ch);
  240. }
  241. }
  242. }
  243. } else {
  244. assert(0); //FIXME not implemented
  245. }
  246. for(ch = 0; ch < s->nb_channels; ch++) {
  247. if (s->channel_coded[ch]) {
  248. int run, tindex;
  249. WMACoef *ptr, *eptr;
  250. tindex = (ch == 1 && s->ms_stereo);
  251. ptr = &s->coefs1[ch][0];
  252. eptr = ptr + nb_coefs[ch];
  253. run=0;
  254. for(;ptr < eptr; ptr++){
  255. if(*ptr){
  256. int level= *ptr;
  257. int abs_level= FFABS(level);
  258. int code= 0;
  259. if(abs_level <= s->coef_vlcs[tindex]->max_level){
  260. if(run < s->coef_vlcs[tindex]->levels[abs_level-1])
  261. code= run + s->int_table[tindex][abs_level-1];
  262. }
  263. assert(code < s->coef_vlcs[tindex]->n);
  264. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[code], s->coef_vlcs[tindex]->huffcodes[code]);
  265. if(code == 0){
  266. if(1<<coef_nb_bits <= abs_level)
  267. return -1;
  268. //Workaround minor rounding differences for the regression tests, FIXME we should find and replace the problematic float by fixpoint for reg tests
  269. if(abs_level == 0x71B && (s->avctx->flags & CODEC_FLAG_BITEXACT)) abs_level=0x71A;
  270. put_bits(&s->pb, coef_nb_bits, abs_level);
  271. put_bits(&s->pb, s->frame_len_bits, run);
  272. }
  273. put_bits(&s->pb, 1, level < 0); //FIXME the sign is fliped somewhere
  274. run=0;
  275. }else{
  276. run++;
  277. }
  278. }
  279. if(run)
  280. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[1], s->coef_vlcs[tindex]->huffcodes[1]);
  281. }
  282. if (s->version == 1 && s->nb_channels >= 2) {
  283. avpriv_align_put_bits(&s->pb);
  284. }
  285. }
  286. return 0;
  287. }
  288. static int encode_frame(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], uint8_t *buf, int buf_size, int total_gain){
  289. init_put_bits(&s->pb, buf, buf_size);
  290. if (s->use_bit_reservoir) {
  291. assert(0);//FIXME not implemented
  292. }else{
  293. if(encode_block(s, src_coefs, total_gain) < 0)
  294. return INT_MAX;
  295. }
  296. avpriv_align_put_bits(&s->pb);
  297. return put_bits_count(&s->pb)/8 - s->block_align;
  298. }
  299. static int encode_superframe(AVCodecContext *avctx,
  300. unsigned char *buf, int buf_size, void *data){
  301. WMACodecContext *s = avctx->priv_data;
  302. const short *samples = data;
  303. int i, total_gain;
  304. s->block_len_bits= s->frame_len_bits; //required by non variable block len
  305. s->block_len = 1 << s->block_len_bits;
  306. apply_window_and_mdct(avctx, samples, avctx->frame_size);
  307. if (s->ms_stereo) {
  308. float a, b;
  309. int i;
  310. for(i = 0; i < s->block_len; i++) {
  311. a = s->coefs[0][i]*0.5;
  312. b = s->coefs[1][i]*0.5;
  313. s->coefs[0][i] = a + b;
  314. s->coefs[1][i] = a - b;
  315. }
  316. }
  317. if (buf_size < 2 * MAX_CODED_SUPERFRAME_SIZE) {
  318. av_log(avctx, AV_LOG_ERROR, "output buffer size is too small\n");
  319. return AVERROR(EINVAL);
  320. }
  321. #if 1
  322. total_gain= 128;
  323. for(i=64; i; i>>=1){
  324. int error= encode_frame(s, s->coefs, buf, buf_size, total_gain-i);
  325. if(error<0)
  326. total_gain-= i;
  327. }
  328. #else
  329. total_gain= 90;
  330. best= encode_frame(s, s->coefs, buf, buf_size, total_gain);
  331. for(i=32; i; i>>=1){
  332. int scoreL= encode_frame(s, s->coefs, buf, buf_size, total_gain-i);
  333. int scoreR= encode_frame(s, s->coefs, buf, buf_size, total_gain+i);
  334. av_log(NULL, AV_LOG_ERROR, "%d %d %d (%d)\n", scoreL, best, scoreR, total_gain);
  335. if(scoreL < FFMIN(best, scoreR)){
  336. best = scoreL;
  337. total_gain -= i;
  338. }else if(scoreR < best){
  339. best = scoreR;
  340. total_gain += i;
  341. }
  342. }
  343. #endif
  344. if ((i = encode_frame(s, s->coefs, buf, buf_size, total_gain)) >= 0) {
  345. av_log(avctx, AV_LOG_ERROR, "required frame size too large. please "
  346. "use a higher bit rate.\n");
  347. return AVERROR(EINVAL);
  348. }
  349. assert((put_bits_count(&s->pb) & 7) == 0);
  350. while (i++)
  351. put_bits(&s->pb, 8, 'N');
  352. flush_put_bits(&s->pb);
  353. return s->block_align;
  354. }
  355. AVCodec ff_wmav1_encoder = {
  356. .name = "wmav1",
  357. .type = AVMEDIA_TYPE_AUDIO,
  358. .id = CODEC_ID_WMAV1,
  359. .priv_data_size = sizeof(WMACodecContext),
  360. .init = encode_init,
  361. .encode = encode_superframe,
  362. .close = ff_wma_end,
  363. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  364. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  365. };
  366. AVCodec ff_wmav2_encoder = {
  367. .name = "wmav2",
  368. .type = AVMEDIA_TYPE_AUDIO,
  369. .id = CODEC_ID_WMAV2,
  370. .priv_data_size = sizeof(WMACodecContext),
  371. .init = encode_init,
  372. .encode = encode_superframe,
  373. .close = ff_wma_end,
  374. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  375. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  376. };