You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

393 lines
10KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "ra144.h"
  24. #define NBLOCKS 4 ///< number of subblocks within a block
  25. #define BLOCKSIZE 40 ///< subblock size in 16-bit words
  26. #define BUFFERSIZE 146 ///< the size of the adaptive codebook
  27. typedef struct {
  28. unsigned int old_energy; ///< previous frame energy
  29. unsigned int lpc_tables[2][10];
  30. /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
  31. * and lpc_coef[1] of the previous one */
  32. unsigned int *lpc_coef[2];
  33. unsigned int lpc_refl_rms[2];
  34. /** the current subblock padded by the last 10 values of the previous one*/
  35. int16_t curr_sblock[50];
  36. /** adaptive codebook. Its size is two units bigger to avoid a
  37. * buffer overflow */
  38. uint16_t adapt_cb[148];
  39. } RA144Context;
  40. static int ra144_decode_init(AVCodecContext * avctx)
  41. {
  42. RA144Context *ractx = avctx->priv_data;
  43. ractx->lpc_coef[0] = ractx->lpc_tables[0];
  44. ractx->lpc_coef[1] = ractx->lpc_tables[1];
  45. return 0;
  46. }
  47. /**
  48. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  49. * odd way to make the output identical to the binary decoder.
  50. */
  51. static int t_sqrt(unsigned int x)
  52. {
  53. int s = 2;
  54. while (x > 0xfff) {
  55. s++;
  56. x = x >> 2;
  57. }
  58. return ff_sqrt(x << 20) << s;
  59. }
  60. /**
  61. * Evaluate the LPC filter coefficients from the reflection coefficients.
  62. * Does the inverse of the eval_refl() function.
  63. */
  64. static void eval_coefs(int *coefs, const int *refl)
  65. {
  66. int buffer[10];
  67. int *b1 = buffer;
  68. int *b2 = coefs;
  69. int x, y;
  70. for (x=0; x < 10; x++) {
  71. b1[x] = refl[x] << 4;
  72. for (y=0; y < x; y++)
  73. b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
  74. FFSWAP(int *, b1, b2);
  75. }
  76. for (x=0; x < 10; x++)
  77. coefs[x] >>= 4;
  78. }
  79. /**
  80. * Copy the last offset values of *source to *target. If those values are not
  81. * enough to fill the target buffer, fill it with another copy of those values.
  82. */
  83. static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
  84. {
  85. source += BUFFERSIZE - offset;
  86. if (offset > BLOCKSIZE) {
  87. memcpy(target, source, BLOCKSIZE*sizeof(*target));
  88. } else {
  89. memcpy(target, source, offset*sizeof(*target));
  90. memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
  91. }
  92. }
  93. /** inverse root mean square */
  94. static int irms(const int16_t *data)
  95. {
  96. unsigned int i, sum = 0;
  97. for (i=0; i < BLOCKSIZE; i++)
  98. sum += data[i] * data[i];
  99. if (sum == 0)
  100. return 0; /* OOPS - division by zero */
  101. return 0x20000000 / (t_sqrt(sum) >> 8);
  102. }
  103. static void add_wav(int16_t *dest, int n, int skip_first, int *m,
  104. const int16_t *s1, const int8_t *s2, const int8_t *s3)
  105. {
  106. int i;
  107. int v[3];
  108. v[0] = 0;
  109. for (i=!skip_first; i<3; i++)
  110. v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
  111. for (i=0; i < BLOCKSIZE; i++)
  112. dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
  113. }
  114. /**
  115. * LPC Filter. Each output value is predicted from the 10 previous computed
  116. * ones. It overwrites the input with the output.
  117. *
  118. * @param in the input of the filter. It should be an array of size len + 10.
  119. * The 10 first input values are used to evaluate the first filtered one.
  120. */
  121. static void lpc_filter(uint16_t *in, const int16_t *lpc_coefs, int len)
  122. {
  123. int x, i;
  124. int16_t *ptr = in;
  125. for (i=0; i<len; i++) {
  126. int sum = 0;
  127. int new_val;
  128. for(x=0; x<10; x++)
  129. sum += lpc_coefs[9-x] * ptr[x];
  130. sum >>= 12;
  131. new_val = ptr[10] - sum;
  132. if (new_val < -32768 || new_val > 32767) {
  133. memset(in, 0, 50*sizeof(*in));
  134. return;
  135. }
  136. ptr[10] = new_val;
  137. ptr++;
  138. }
  139. }
  140. static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
  141. {
  142. return (rms * energy) >> 10;
  143. }
  144. static unsigned int rms(const int *data)
  145. {
  146. int x;
  147. unsigned int res = 0x10000;
  148. int b = 0;
  149. for (x=0; x<10; x++) {
  150. res = (((0x1000000 - data[x]*data[x]) >> 12) * res) >> 12;
  151. if (res == 0)
  152. return 0;
  153. while (res <= 0x3fff) {
  154. b++;
  155. res <<= 2;
  156. }
  157. }
  158. res = t_sqrt(res);
  159. res >>= (b + 10);
  160. return res;
  161. }
  162. static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
  163. int gval, GetBitContext *gb)
  164. {
  165. uint16_t buffer_a[40];
  166. uint16_t *block;
  167. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  168. int gain = get_bits(gb, 8);
  169. int cb1_idx = get_bits(gb, 7);
  170. int cb2_idx = get_bits(gb, 7);
  171. int m[3];
  172. if (cba_idx) {
  173. cba_idx += BLOCKSIZE/2 - 1;
  174. copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
  175. m[0] = (irms(buffer_a) * gval) >> 12;
  176. } else {
  177. m[0] = 0;
  178. }
  179. m[1] = (cb1_base[cb1_idx] * gval) >> 8;
  180. m[2] = (cb2_base[cb2_idx] * gval) >> 8;
  181. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  182. (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
  183. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  184. add_wav(block, gain, cba_idx, m, buffer_a,
  185. cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
  186. memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
  187. 10*sizeof(*ractx->curr_sblock));
  188. memcpy(ractx->curr_sblock + 10, block,
  189. BLOCKSIZE*sizeof(*ractx->curr_sblock));
  190. lpc_filter(ractx->curr_sblock, lpc_coefs, BLOCKSIZE);
  191. }
  192. static void int_to_int16(int16_t *out, const int *inp)
  193. {
  194. int i;
  195. for (i=0; i<30; i++)
  196. *(out++) = *(inp++);
  197. }
  198. /**
  199. * Evaluate the reflection coefficients from the filter coefficients.
  200. * Does the inverse of the eval_coefs() function.
  201. *
  202. * @return 1 if one of the reflection coefficients is of magnitude greater than
  203. * 4095, 0 if not.
  204. */
  205. static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
  206. {
  207. int retval = 0;
  208. int b, c, i;
  209. unsigned int u;
  210. int buffer1[10];
  211. int buffer2[10];
  212. int *bp1 = buffer1;
  213. int *bp2 = buffer2;
  214. for (i=0; i < 10; i++)
  215. buffer2[i] = coefs[i];
  216. u = refl[9] = bp2[9];
  217. if (u + 0x1000 > 0x1fff) {
  218. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  219. return 1;
  220. }
  221. for (c=8; c >= 0; c--) {
  222. if (u == 0x1000)
  223. u++;
  224. if (u == 0xfffff000)
  225. u--;
  226. b = 0x1000-((u * u) >> 12);
  227. if (b == 0)
  228. b++;
  229. for (u=0; u<=c; u++)
  230. bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
  231. refl[c] = u = bp1[c];
  232. if ((u + 0x1000) > 0x1fff)
  233. retval = 1;
  234. FFSWAP(int *, bp1, bp2);
  235. }
  236. return retval;
  237. }
  238. static int interp(RA144Context *ractx, int16_t *out, int block_num,
  239. int copyold, int energy)
  240. {
  241. int work[10];
  242. int a = block_num + 1;
  243. int b = NBLOCKS - a;
  244. int x;
  245. // Interpolate block coefficients from the this frame forth block and
  246. // last frame forth block
  247. for (x=0; x<30; x++)
  248. out[x] = (a * ractx->lpc_coef[0][x] + b * ractx->lpc_coef[1][x])>> 2;
  249. if (eval_refl(work, out, ractx)) {
  250. // The interpolated coefficients are unstable, copy either new or old
  251. // coefficients
  252. int_to_int16(out, ractx->lpc_coef[copyold]);
  253. return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
  254. } else {
  255. return rescale_rms(rms(work), energy);
  256. }
  257. }
  258. /* Uncompress one block (20 bytes -> 160*2 bytes) */
  259. static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
  260. int *data_size, const uint8_t *buf, int buf_size)
  261. {
  262. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  263. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  264. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  265. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  266. int i, c;
  267. int16_t *data = vdata;
  268. unsigned int energy;
  269. RA144Context *ractx = avctx->priv_data;
  270. GetBitContext gb;
  271. if(buf_size < 20) {
  272. av_log(avctx, AV_LOG_ERROR,
  273. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  274. *data_size = 0;
  275. return buf_size;
  276. }
  277. init_get_bits(&gb, buf, 20 * 8);
  278. for (i=0; i<10; i++)
  279. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
  280. eval_coefs(ractx->lpc_coef[0], lpc_refl);
  281. ractx->lpc_refl_rms[0] = rms(lpc_refl);
  282. energy = energy_tab[get_bits(&gb, 5)];
  283. refl_rms[0] = interp(ractx, block_coefs[0], 0, 1, ractx->old_energy);
  284. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy <= ractx->old_energy,
  285. t_sqrt(energy*ractx->old_energy) >> 12);
  286. refl_rms[2] = interp(ractx, block_coefs[2], 2, 0, energy);
  287. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
  288. int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
  289. for (c=0; c<4; c++) {
  290. do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb);
  291. for (i=0; i<BLOCKSIZE; i++)
  292. *data++ = av_clip_int16(ractx->curr_sblock[i + 10] << 2);
  293. }
  294. ractx->old_energy = energy;
  295. ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  296. FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  297. *data_size = 2*160;
  298. return 20;
  299. }
  300. AVCodec ra_144_decoder =
  301. {
  302. "real_144",
  303. CODEC_TYPE_AUDIO,
  304. CODEC_ID_RA_144,
  305. sizeof(RA144Context),
  306. ra144_decode_init,
  307. NULL,
  308. NULL,
  309. ra144_decode_frame,
  310. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  311. };