You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

816 lines
31KB

  1. ;******************************************************************************
  2. ;* VP9 loop filter SIMD optimizations
  3. ;*
  4. ;* Copyright (C) 2013-2014 Clément Bœsch <u pkh me>
  5. ;*
  6. ;* This file is part of FFmpeg.
  7. ;*
  8. ;* FFmpeg is free software; you can redistribute it and/or
  9. ;* modify it under the terms of the GNU Lesser General Public
  10. ;* License as published by the Free Software Foundation; either
  11. ;* version 2.1 of the License, or (at your option) any later version.
  12. ;*
  13. ;* FFmpeg is distributed in the hope that it will be useful,
  14. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. ;* Lesser General Public License for more details.
  17. ;*
  18. ;* You should have received a copy of the GNU Lesser General Public
  19. ;* License along with FFmpeg; if not, write to the Free Software
  20. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. ;******************************************************************************
  22. %if ARCH_X86_64
  23. %include "libavutil/x86/x86util.asm"
  24. SECTION_RODATA
  25. cextern pb_3
  26. cextern pb_80
  27. pb_4: times 16 db 0x04
  28. pb_10: times 16 db 0x10
  29. pb_40: times 16 db 0x40
  30. pb_81: times 16 db 0x81
  31. pb_f8: times 16 db 0xf8
  32. pb_fe: times 16 db 0xfe
  33. pw_4: times 8 dw 4
  34. pw_8: times 8 dw 8
  35. ; with mix functions, two 8-bit thresholds are stored in a 16-bit storage,
  36. ; the following mask is used to splat both in the same register
  37. mask_mix: times 8 db 0
  38. times 8 db 1
  39. mask_mix84: times 8 db 0xff
  40. times 8 db 0x00
  41. mask_mix48: times 8 db 0x00
  42. times 8 db 0xff
  43. SECTION .text
  44. ; %1 = abs(%2-%3)
  45. %macro ABSSUB 4 ; dst, src1 (RO), src2 (RO), tmp
  46. psubusb %1, %3, %2
  47. psubusb %4, %2, %3
  48. por %1, %4
  49. %endmacro
  50. ; %1 = %1<=%2
  51. %macro CMP_LTE 3-4 ; src/dst, cmp, tmp, pb_80
  52. %if %0 == 4
  53. pxor %1, %4
  54. %endif
  55. pcmpgtb %3, %2, %1 ; cmp > src?
  56. pcmpeqb %1, %2 ; cmp == src? XXX: avoid this with a -1/+1 well placed?
  57. por %1, %3 ; cmp >= src?
  58. %endmacro
  59. ; %1 = abs(%2-%3) <= %4
  60. %macro ABSSUB_CMP 6-7 [pb_80]; dst, src1, src2, cmp, tmp1, tmp2, [pb_80]
  61. ABSSUB %1, %2, %3, %6 ; dst = abs(src1-src2)
  62. CMP_LTE %1, %4, %6, %7 ; dst <= cmp
  63. %endmacro
  64. %macro MASK_APPLY 4 ; %1=new_data/dst %2=old_data %3=mask %4=tmp
  65. pand %1, %3 ; new &= mask
  66. pandn %4, %3, %2 ; tmp = ~mask & old
  67. por %1, %4 ; new&mask | old&~mask
  68. %endmacro
  69. %macro FILTER_SUBx2_ADDx2 8 ; %1=dst %2=h/l %3=cache %4=sub1 %5=sub2 %6=add1 %7=add2 %8=rshift
  70. punpck%2bw %3, %4, m0
  71. psubw %1, %3
  72. punpck%2bw %3, %5, m0
  73. psubw %1, %3
  74. punpck%2bw %3, %6, m0
  75. paddw %1, %3
  76. punpck%2bw %3, %7, m0
  77. paddw %3, %1
  78. psraw %1, %3, %8
  79. %endmacro
  80. %macro FILTER_INIT 8 ; tmp1, tmp2, cacheL, cacheH, dstp, filterid, mask, source
  81. FILTER%6_INIT %1, l, %3
  82. FILTER%6_INIT %2, h, %4
  83. packuswb %1, %2
  84. MASK_APPLY %1, %8, %7, %2
  85. mova %5, %1
  86. %endmacro
  87. %macro FILTER_UPDATE 11-14 ; tmp1, tmp2, cacheL, cacheH, dstp, -, -, +, +, rshift, mask, [source], [preload reg + value]
  88. %if %0 == 13 ; no source + preload
  89. mova %12, %13
  90. %elif %0 == 14 ; source + preload
  91. mova %13, %14
  92. %endif
  93. FILTER_SUBx2_ADDx2 %1, l, %3, %6, %7, %8, %9, %10
  94. FILTER_SUBx2_ADDx2 %2, h, %4, %6, %7, %8, %9, %10
  95. packuswb %1, %2
  96. %if %0 == 12 || %0 == 14
  97. MASK_APPLY %1, %12, %11, %2
  98. %else
  99. MASK_APPLY %1, %5, %11, %2
  100. %endif
  101. mova %5, %1
  102. %endmacro
  103. %macro SRSHIFT3B_2X 4 ; reg1, reg2, [pb_10], tmp
  104. mova %4, [pb_f8]
  105. pand %1, %4
  106. pand %2, %4
  107. psrlq %1, 3
  108. psrlq %2, 3
  109. pxor %1, %3
  110. pxor %2, %3
  111. psubb %1, %3
  112. psubb %2, %3
  113. %endmacro
  114. %macro EXTRACT_POS_NEG 3 ; i8, neg, pos
  115. pxor %3, %3
  116. pxor %2, %2
  117. pcmpgtb %3, %1 ; i8 < 0 mask
  118. psubb %2, %1 ; neg values (only the originally - will be kept)
  119. pand %2, %3 ; negative values of i8 (but stored as +)
  120. pandn %3, %1 ; positive values of i8
  121. %endmacro
  122. ; clip_u8(u8 + i8)
  123. %macro SIGN_ADD 5 ; dst, u8, i8, tmp1, tmp2
  124. EXTRACT_POS_NEG %3, %4, %5
  125. psubusb %1, %2, %4 ; sub the negatives
  126. paddusb %1, %5 ; add the positives
  127. %endmacro
  128. ; clip_u8(u8 - i8)
  129. %macro SIGN_SUB 5 ; dst, u8, i8, tmp1, tmp2
  130. EXTRACT_POS_NEG %3, %4, %5
  131. psubusb %1, %2, %5 ; sub the positives
  132. paddusb %1, %4 ; add the negatives
  133. %endmacro
  134. %macro FILTER6_INIT 3 ; %1=dst %2=h/l %3=cache
  135. punpck%2bw %1, m14, m0 ; p3: B->W
  136. paddw %3, %1, %1 ; p3*2
  137. paddw %3, %1 ; p3*3
  138. punpck%2bw %1, m15, m0 ; p2: B->W
  139. paddw %3, %1 ; p3*3 + p2
  140. paddw %3, %1 ; p3*3 + p2*2
  141. punpck%2bw %1, m10, m0 ; p1: B->W
  142. paddw %3, %1 ; p3*3 + p2*2 + p1
  143. punpck%2bw %1, m11, m0 ; p0: B->W
  144. paddw %3, %1 ; p3*3 + p2*2 + p1 + p0
  145. punpck%2bw %1, m12, m0 ; q0: B->W
  146. paddw %3, %1 ; p3*3 + p2*2 + p1 + p0 + q0
  147. paddw %3, [pw_4] ; p3*3 + p2*2 + p1 + p0 + q0 + 4
  148. psraw %1, %3, 3 ; (p3*3 + p2*2 + p1 + p0 + q0 + 4) >> 3
  149. %endmacro
  150. %macro FILTER14_INIT 3 ; %1=dst %2=h/l %3=cache
  151. punpck%2bw %1, m2, m0 ; p7: B->W
  152. psllw %3, %1, 3 ; p7*8
  153. psubw %3, %1 ; p7*7
  154. punpck%2bw %1, m3, m0 ; p6: B->W
  155. paddw %3, %1 ; p7*7 + p6
  156. paddw %3, %1 ; p7*7 + p6*2
  157. punpck%2bw %1, m8, m0 ; p5: B->W
  158. paddw %3, %1 ; p7*7 + p6*2 + p5
  159. punpck%2bw %1, m9, m0 ; p4: B->W
  160. paddw %3, %1 ; p7*7 + p6*2 + p5 + p4
  161. punpck%2bw %1, m14, m0 ; p3: B->W
  162. paddw %3, %1 ; p7*7 + p6*2 + p5 + p4 + p3
  163. punpck%2bw %1, m15, m0 ; p2: B->W
  164. paddw %3, %1 ; p7*7 + p6*2 + p5 + .. + p2
  165. punpck%2bw %1, m10, m0 ; p1: B->W
  166. paddw %3, %1 ; p7*7 + p6*2 + p5 + .. + p1
  167. punpck%2bw %1, m11, m0 ; p0: B->W
  168. paddw %3, %1 ; p7*7 + p6*2 + p5 + .. + p0
  169. punpck%2bw %1, m12, m0 ; q0: B->W
  170. paddw %3, %1 ; p7*7 + p6*2 + p5 + .. + p0 + q0
  171. paddw %3, [pw_8] ; p7*7 + p6*2 + p5 + .. + p0 + q0 + 8
  172. psraw %1, %3, 4 ; (p7*7 + p6*2 + p5 + .. + p0 + q0 + 8) >> 4
  173. %endmacro
  174. %macro TRANSPOSE16x16B 17
  175. mova %17, m%16
  176. SBUTTERFLY bw, %1, %2, %16
  177. SBUTTERFLY bw, %3, %4, %16
  178. SBUTTERFLY bw, %5, %6, %16
  179. SBUTTERFLY bw, %7, %8, %16
  180. SBUTTERFLY bw, %9, %10, %16
  181. SBUTTERFLY bw, %11, %12, %16
  182. SBUTTERFLY bw, %13, %14, %16
  183. mova m%16, %17
  184. mova %17, m%14
  185. SBUTTERFLY bw, %15, %16, %14
  186. SBUTTERFLY wd, %1, %3, %14
  187. SBUTTERFLY wd, %2, %4, %14
  188. SBUTTERFLY wd, %5, %7, %14
  189. SBUTTERFLY wd, %6, %8, %14
  190. SBUTTERFLY wd, %9, %11, %14
  191. SBUTTERFLY wd, %10, %12, %14
  192. SBUTTERFLY wd, %13, %15, %14
  193. mova m%14, %17
  194. mova %17, m%12
  195. SBUTTERFLY wd, %14, %16, %12
  196. SBUTTERFLY dq, %1, %5, %12
  197. SBUTTERFLY dq, %2, %6, %12
  198. SBUTTERFLY dq, %3, %7, %12
  199. SBUTTERFLY dq, %4, %8, %12
  200. SBUTTERFLY dq, %9, %13, %12
  201. SBUTTERFLY dq, %10, %14, %12
  202. SBUTTERFLY dq, %11, %15, %12
  203. mova m%12, %17
  204. mova %17, m%8
  205. SBUTTERFLY dq, %12, %16, %8
  206. SBUTTERFLY qdq, %1, %9, %8
  207. SBUTTERFLY qdq, %2, %10, %8
  208. SBUTTERFLY qdq, %3, %11, %8
  209. SBUTTERFLY qdq, %4, %12, %8
  210. SBUTTERFLY qdq, %5, %13, %8
  211. SBUTTERFLY qdq, %6, %14, %8
  212. SBUTTERFLY qdq, %7, %15, %8
  213. mova m%8, %17
  214. mova %17, m%1
  215. SBUTTERFLY qdq, %8, %16, %1
  216. mova m%1, %17
  217. SWAP %2, %9
  218. SWAP %3, %5
  219. SWAP %4, %13
  220. SWAP %6, %11
  221. SWAP %8, %15
  222. SWAP %12, %14
  223. %endmacro
  224. ; transpose 16 half lines (high part) to 8 full centered lines
  225. %macro TRANSPOSE16x8B 16
  226. punpcklbw m%1, m%2
  227. punpcklbw m%3, m%4
  228. punpcklbw m%5, m%6
  229. punpcklbw m%7, m%8
  230. punpcklbw m%9, m%10
  231. punpcklbw m%11, m%12
  232. punpcklbw m%13, m%14
  233. punpcklbw m%15, m%16
  234. SBUTTERFLY wd, %1, %3, %2
  235. SBUTTERFLY wd, %5, %7, %2
  236. SBUTTERFLY wd, %9, %11, %2
  237. SBUTTERFLY wd, %13, %15, %2
  238. SBUTTERFLY dq, %1, %5, %2
  239. SBUTTERFLY dq, %3, %7, %2
  240. SBUTTERFLY dq, %9, %13, %2
  241. SBUTTERFLY dq, %11, %15, %2
  242. SBUTTERFLY qdq, %1, %9, %2
  243. SBUTTERFLY qdq, %3, %11, %2
  244. SBUTTERFLY qdq, %5, %13, %2
  245. SBUTTERFLY qdq, %7, %15, %2
  246. SWAP %5, %1
  247. SWAP %6, %9
  248. SWAP %7, %1
  249. SWAP %8, %13
  250. SWAP %9, %3
  251. SWAP %10, %11
  252. SWAP %11, %1
  253. SWAP %12, %15
  254. %endmacro
  255. %macro DEFINE_REAL_P7_TO_Q7 0-1 0
  256. %define P7 dst1q + 2*mstrideq + %1
  257. %define P6 dst1q + mstrideq + %1
  258. %define P5 dst1q + %1
  259. %define P4 dst1q + strideq + %1
  260. %define P3 dstq + 4*mstrideq + %1
  261. %define P2 dstq + mstride3q + %1
  262. %define P1 dstq + 2*mstrideq + %1
  263. %define P0 dstq + mstrideq + %1
  264. %define Q0 dstq + %1
  265. %define Q1 dstq + strideq + %1
  266. %define Q2 dstq + 2*strideq + %1
  267. %define Q3 dstq + stride3q + %1
  268. %define Q4 dstq + 4*strideq + %1
  269. %define Q5 dst2q + mstrideq + %1
  270. %define Q6 dst2q + %1
  271. %define Q7 dst2q + strideq + %1
  272. %endmacro
  273. ; ..............AB -> AAAAAAAABBBBBBBB
  274. %macro SPLATB_MIX 1-2 [mask_mix]
  275. %if cpuflag(ssse3)
  276. pshufb %1, %2
  277. %else
  278. punpcklbw %1, %1
  279. punpcklqdq %1, %1
  280. pshuflw %1, %1, 0
  281. pshufhw %1, %1, 0x55
  282. %endif
  283. %endmacro
  284. %macro LOOPFILTER 2 ; %1=v/h %2=size1
  285. lea mstrideq, [strideq]
  286. neg mstrideq
  287. lea stride3q, [strideq+2*strideq]
  288. mov mstride3q, stride3q
  289. neg mstride3q
  290. %ifidn %1, h
  291. %if %2 > 16
  292. %define movx movh
  293. lea dstq, [dstq + 8*strideq - 4]
  294. %else
  295. %define movx movu
  296. lea dstq, [dstq + 8*strideq - 8] ; go from top center (h pos) to center left (v pos)
  297. %endif
  298. %endif
  299. lea dst1q, [dstq + 2*mstride3q] ; dst1q = &dst[stride * -6]
  300. lea dst2q, [dstq + 2* stride3q] ; dst2q = &dst[stride * +6]
  301. DEFINE_REAL_P7_TO_Q7
  302. %ifidn %1, h
  303. movx m0, [P7]
  304. movx m1, [P6]
  305. movx m2, [P5]
  306. movx m3, [P4]
  307. movx m4, [P3]
  308. movx m5, [P2]
  309. movx m6, [P1]
  310. movx m7, [P0]
  311. movx m8, [Q0]
  312. movx m9, [Q1]
  313. movx m10, [Q2]
  314. movx m11, [Q3]
  315. movx m12, [Q4]
  316. movx m13, [Q5]
  317. movx m14, [Q6]
  318. movx m15, [Q7]
  319. %define P7 rsp + 0
  320. %define P6 rsp + 16
  321. %define P5 rsp + 32
  322. %define P4 rsp + 48
  323. %define P3 rsp + 64
  324. %define P2 rsp + 80
  325. %define P1 rsp + 96
  326. %define P0 rsp + 112
  327. %define Q0 rsp + 128
  328. %define Q1 rsp + 144
  329. %define Q2 rsp + 160
  330. %define Q3 rsp + 176
  331. %define Q4 rsp + 192
  332. %define Q5 rsp + 208
  333. %define Q6 rsp + 224
  334. %define Q7 rsp + 240
  335. %if %2 == 16
  336. TRANSPOSE16x16B 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, [rsp]
  337. mova [P7], m0
  338. mova [P6], m1
  339. mova [P5], m2
  340. mova [P4], m3
  341. %else
  342. TRANSPOSE16x8B 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  343. %endif
  344. mova [P3], m4
  345. mova [P2], m5
  346. mova [P1], m6
  347. mova [P0], m7
  348. mova [Q0], m8
  349. mova [Q1], m9
  350. mova [Q2], m10
  351. mova [Q3], m11
  352. %if %2 == 16
  353. mova [Q4], m12
  354. mova [Q5], m13
  355. mova [Q6], m14
  356. mova [Q7], m15
  357. %endif
  358. %endif
  359. ; calc fm mask
  360. %if %2 == 16
  361. %if cpuflag(ssse3)
  362. pxor m0, m0
  363. %endif
  364. SPLATB_REG m2, I, m0 ; I I I I ...
  365. SPLATB_REG m3, E, m0 ; E E E E ...
  366. %else
  367. %if cpuflag(ssse3)
  368. mova m0, [mask_mix]
  369. %endif
  370. movd m2, Id
  371. movd m3, Ed
  372. SPLATB_MIX m2, m0
  373. SPLATB_MIX m3, m0
  374. %endif
  375. mova m0, [pb_80]
  376. pxor m2, m0
  377. pxor m3, m0
  378. %ifidn %1, v
  379. mova m8, [P3]
  380. mova m9, [P2]
  381. mova m10, [P1]
  382. mova m11, [P0]
  383. mova m12, [Q0]
  384. mova m13, [Q1]
  385. mova m14, [Q2]
  386. mova m15, [Q3]
  387. %else
  388. SWAP 8, 4, 12
  389. SWAP 9, 5, 13
  390. SWAP 10, 6, 14
  391. SWAP 11, 7, 15
  392. %endif
  393. ABSSUB_CMP m5, m8, m9, m2, m6, m7, m0 ; m5 = abs(p3-p2) <= I
  394. ABSSUB_CMP m1, m9, m10, m2, m6, m7, m0 ; m1 = abs(p2-p1) <= I
  395. pand m5, m1
  396. ABSSUB_CMP m1, m10, m11, m2, m6, m7, m0 ; m1 = abs(p1-p0) <= I
  397. pand m5, m1
  398. ABSSUB_CMP m1, m12, m13, m2, m6, m7, m0 ; m1 = abs(q1-q0) <= I
  399. pand m5, m1
  400. ABSSUB_CMP m1, m13, m14, m2, m6, m7, m0 ; m1 = abs(q2-q1) <= I
  401. pand m5, m1
  402. ABSSUB_CMP m1, m14, m15, m2, m6, m7, m0 ; m1 = abs(q3-q2) <= I
  403. pand m5, m1
  404. ABSSUB m1, m11, m12, m7 ; abs(p0-q0)
  405. paddusb m1, m1 ; abs(p0-q0) * 2
  406. ABSSUB m2, m10, m13, m7 ; abs(p1-q1)
  407. pand m2, [pb_fe] ; drop lsb so shift can work
  408. psrlq m2, 1 ; abs(p1-q1)/2
  409. paddusb m1, m2 ; abs(p0-q0)*2 + abs(p1-q1)/2
  410. pxor m1, m0
  411. pcmpgtb m4, m3, m1 ; E > X?
  412. pcmpeqb m3, m1 ; E == X?
  413. por m3, m4 ; E >= X?
  414. pand m3, m5 ; fm final value
  415. ; (m3: fm, m8..15: p3 p2 p1 p0 q0 q1 q2 q3)
  416. ; calc flat8in (if not 44_16) and hev masks
  417. mova m6, [pb_81] ; [1 1 1 1 ...] ^ 0x80
  418. %if %2 != 44
  419. ABSSUB_CMP m2, m8, m11, m6, m4, m5 ; abs(p3 - p0) <= 1
  420. mova m8, [pb_80]
  421. ABSSUB_CMP m1, m9, m11, m6, m4, m5, m8 ; abs(p2 - p0) <= 1
  422. pand m2, m1
  423. ABSSUB m4, m10, m11, m5 ; abs(p1 - p0)
  424. %if %2 == 16
  425. %if cpuflag(ssse3)
  426. pxor m0, m0
  427. %endif
  428. SPLATB_REG m7, H, m0 ; H H H H ...
  429. %else
  430. movd m7, Hd
  431. SPLATB_MIX m7
  432. %endif
  433. pxor m7, m8
  434. pxor m4, m8
  435. pcmpgtb m0, m4, m7 ; abs(p1 - p0) > H (1/2 hev condition)
  436. CMP_LTE m4, m6, m5 ; abs(p1 - p0) <= 1
  437. pand m2, m4 ; (flat8in)
  438. ABSSUB m4, m13, m12, m1 ; abs(q1 - q0)
  439. pxor m4, m8
  440. pcmpgtb m5, m4, m7 ; abs(q1 - q0) > H (2/2 hev condition)
  441. por m0, m5 ; hev final value
  442. CMP_LTE m4, m6, m5 ; abs(q1 - q0) <= 1
  443. pand m2, m4 ; (flat8in)
  444. ABSSUB_CMP m1, m14, m12, m6, m4, m5, m8 ; abs(q2 - q0) <= 1
  445. pand m2, m1
  446. ABSSUB_CMP m1, m15, m12, m6, m4, m5, m8 ; abs(q3 - q0) <= 1
  447. pand m2, m1 ; flat8in final value
  448. %if %2 == 84 || %2 == 48
  449. pand m2, [mask_mix%2]
  450. %endif
  451. %else
  452. mova m6, [pb_80]
  453. movd m7, Hd
  454. SPLATB_MIX m7
  455. pxor m7, m6
  456. ABSSUB m4, m10, m11, m1 ; abs(p1 - p0)
  457. pxor m4, m6
  458. pcmpgtb m0, m4, m7 ; abs(p1 - p0) > H (1/2 hev condition)
  459. ABSSUB m4, m13, m12, m1 ; abs(q1 - q0)
  460. pxor m4, m6
  461. pcmpgtb m5, m4, m7 ; abs(q1 - q0) > H (2/2 hev condition)
  462. por m0, m5 ; hev final value
  463. %endif
  464. %if %2 == 16
  465. ; (m0: hev, m2: flat8in, m3: fm, m6: pb_81, m9..15: p2 p1 p0 q0 q1 q2 q3)
  466. ; calc flat8out mask
  467. mova m8, [P7]
  468. mova m9, [P6]
  469. ABSSUB_CMP m1, m8, m11, m6, m4, m5 ; abs(p7 - p0) <= 1
  470. ABSSUB_CMP m7, m9, m11, m6, m4, m5 ; abs(p6 - p0) <= 1
  471. pand m1, m7
  472. mova m8, [P5]
  473. mova m9, [P4]
  474. ABSSUB_CMP m7, m8, m11, m6, m4, m5 ; abs(p5 - p0) <= 1
  475. pand m1, m7
  476. ABSSUB_CMP m7, m9, m11, m6, m4, m5 ; abs(p4 - p0) <= 1
  477. pand m1, m7
  478. mova m14, [Q4]
  479. mova m15, [Q5]
  480. ABSSUB_CMP m7, m14, m12, m6, m4, m5 ; abs(q4 - q0) <= 1
  481. pand m1, m7
  482. ABSSUB_CMP m7, m15, m12, m6, m4, m5 ; abs(q5 - q0) <= 1
  483. pand m1, m7
  484. mova m14, [Q6]
  485. mova m15, [Q7]
  486. ABSSUB_CMP m7, m14, m12, m6, m4, m5 ; abs(q4 - q0) <= 1
  487. pand m1, m7
  488. ABSSUB_CMP m7, m15, m12, m6, m4, m5 ; abs(q5 - q0) <= 1
  489. pand m1, m7 ; flat8out final value
  490. %endif
  491. ; if (fm) {
  492. ; if (out && in) filter_14()
  493. ; else if (in) filter_6()
  494. ; else if (hev) filter_2()
  495. ; else filter_4()
  496. ; }
  497. ;
  498. ; f14: fm & out & in
  499. ; f6: fm & ~f14 & in => fm & ~(out & in) & in => fm & ~out & in
  500. ; f2: fm & ~f14 & ~f6 & hev => fm & ~(out & in) & ~(~out & in) & hev => fm & ~in & hev
  501. ; f4: fm & ~f14 & ~f6 & ~f2 => fm & ~(out & in) & ~(~out & in) & ~(~in & hev) => fm & ~in & ~hev
  502. ; (m0: hev, [m1: flat8out], [m2: flat8in], m3: fm, m8..15: p5 p4 p1 p0 q0 q1 q6 q7)
  503. ; filter2()
  504. %if %2 != 44
  505. mova m6, [pb_80] ; already in m6 if 44_16
  506. %endif
  507. pxor m15, m12, m6 ; q0 ^ 0x80
  508. pxor m14, m11, m6 ; p0 ^ 0x80
  509. psubsb m15, m14 ; (signed) q0 - p0
  510. pxor m4, m10, m6 ; p1 ^ 0x80
  511. pxor m5, m13, m6 ; q1 ^ 0x80
  512. psubsb m4, m5 ; (signed) p1 - q1
  513. paddsb m4, m15 ; (q0 - p0) + (p1 - q1)
  514. paddsb m4, m15 ; 2*(q0 - p0) + (p1 - q1)
  515. paddsb m4, m15 ; 3*(q0 - p0) + (p1 - q1)
  516. paddsb m6, m4, [pb_4] ; m6: f1 = clip(f + 4, 127)
  517. paddsb m4, [pb_3] ; m4: f2 = clip(f + 3, 127)
  518. mova m14, [pb_10] ; will be reused in filter4()
  519. SRSHIFT3B_2X m6, m4, m14, m7 ; f1 and f2 sign byte shift by 3
  520. SIGN_SUB m7, m12, m6, m5, m9 ; m7 = q0 - f1
  521. SIGN_ADD m8, m11, m4, m5, m9 ; m8 = p0 + f2
  522. %if %2 != 44
  523. pandn m6, m2, m3 ; ~mask(in) & mask(fm)
  524. pand m6, m0 ; (~mask(in) & mask(fm)) & mask(hev)
  525. %else
  526. pand m6, m3, m0
  527. %endif
  528. MASK_APPLY m7, m12, m6, m5 ; m7 = filter2(q0) & mask / we write it in filter4()
  529. MASK_APPLY m8, m11, m6, m5 ; m8 = filter2(p0) & mask / we write it in filter4()
  530. ; (m0: hev, [m1: flat8out], [m2: flat8in], m3: fm, m7..m8: q0' p0', m10..13: p1 p0 q0 q1, m14: pb_10, m15: q0-p0)
  531. ; filter4()
  532. mova m4, m15
  533. paddsb m15, m4 ; 2 * (q0 - p0)
  534. paddsb m15, m4 ; 3 * (q0 - p0)
  535. paddsb m6, m15, [pb_4] ; m6: f1 = clip(f + 4, 127)
  536. paddsb m15, [pb_3] ; m15: f2 = clip(f + 3, 127)
  537. SRSHIFT3B_2X m6, m15, m14, m9 ; f1 and f2 sign byte shift by 3
  538. %if %2 != 44
  539. %define p0tmp m7
  540. %define q0tmp m9
  541. pandn m5, m2, m3 ; ~mask(in) & mask(fm)
  542. pandn m0, m5 ; ~mask(hev) & (~mask(in) & mask(fm))
  543. %else
  544. %define p0tmp m1
  545. %define q0tmp m2
  546. pandn m0, m3
  547. %endif
  548. SIGN_SUB q0tmp, m12, m6, m4, m14 ; q0 - f1
  549. MASK_APPLY q0tmp, m7, m0, m5 ; filter4(q0) & mask
  550. mova [Q0], q0tmp
  551. SIGN_ADD p0tmp, m11, m15, m4, m14 ; p0 + f2
  552. MASK_APPLY p0tmp, m8, m0, m5 ; filter4(p0) & mask
  553. mova [P0], p0tmp
  554. paddb m6, [pb_80] ;
  555. pxor m8, m8 ; f=(f1+1)>>1
  556. pavgb m6, m8 ;
  557. psubb m6, [pb_40] ;
  558. SIGN_ADD m7, m10, m6, m8, m9 ; p1 + f
  559. SIGN_SUB m4, m13, m6, m8, m9 ; q1 - f
  560. MASK_APPLY m7, m10, m0, m14 ; m7 = filter4(p1)
  561. MASK_APPLY m4, m13, m0, m14 ; m4 = filter4(q1)
  562. mova [P1], m7
  563. mova [Q1], m4
  564. ; ([m1: flat8out], m2: flat8in, m3: fm, m10..13: p1 p0 q0 q1)
  565. ; filter6()
  566. %if %2 != 44
  567. pxor m0, m0
  568. %if %2 > 16
  569. pand m3, m2
  570. %else
  571. pand m2, m3 ; mask(fm) & mask(in)
  572. pandn m3, m1, m2 ; ~mask(out) & (mask(fm) & mask(in))
  573. %endif
  574. mova m14, [P3]
  575. mova m15, [P2]
  576. mova m8, [Q2]
  577. mova m9, [Q3]
  578. FILTER_INIT m4, m5, m6, m7, [P2], 6, m3, m15 ; [p2]
  579. FILTER_UPDATE m6, m7, m4, m5, [P1], m14, m15, m10, m13, 3, m3 ; [p1] -p3 -p2 +p1 +q1
  580. FILTER_UPDATE m4, m5, m6, m7, [P0], m14, m10, m11, m8, 3, m3 ; [p0] -p3 -p1 +p0 +q2
  581. FILTER_UPDATE m6, m7, m4, m5, [Q0], m14, m11, m12, m9, 3, m3 ; [q0] -p3 -p0 +q0 +q3
  582. FILTER_UPDATE m4, m5, m6, m7, [Q1], m15, m12, m13, m9, 3, m3 ; [q1] -p2 -q0 +q1 +q3
  583. FILTER_UPDATE m6, m7, m4, m5, [Q2], m10, m13, m8, m9, 3, m3, m8 ; [q2] -p1 -q1 +q2 +q3
  584. %endif
  585. ; (m0: 0, [m1: flat8out], m2: fm & flat8in, m8..15: q2 q3 p1 p0 q0 q1 p3 p2)
  586. ; filter14()
  587. ;
  588. ; m2 m3 m8 m9 m14 m15 m10 m11 m12 m13
  589. ;
  590. ; q2 q3 p3 p2 p1 p0 q0 q1
  591. ; p6 -7 p7 p6 p5 p4 . . . . .
  592. ; p5 -6 -p7 -p6 +p5 +q1 . . . .
  593. ; p4 -5 -p7 -p5 +p4 +q2 . . . q2
  594. ; p3 -4 -p7 -p4 +p3 +q3 . . . q3
  595. ; p2 -3 -p7 -p3 +p2 +q4 . . . q4
  596. ; p1 -2 -p7 -p2 +p1 +q5 . . . q5
  597. ; p0 -1 -p7 -p1 +p0 +q6 . . . q6
  598. ; q0 +0 -p7 -p0 +q0 +q7 . . . q7
  599. ; q1 +1 -p6 -q0 +q1 +q7 q1 . . .
  600. ; q2 +2 -p5 -q1 +q2 +q7 . q2 . .
  601. ; q3 +3 -p4 -q2 +q3 +q7 . q3 . .
  602. ; q4 +4 -p3 -q3 +q4 +q7 . q4 . .
  603. ; q5 +5 -p2 -q4 +q5 +q7 . q5 . .
  604. ; q6 +6 -p1 -q5 +q6 +q7 . q6 . .
  605. %if %2 == 16
  606. pand m1, m2 ; mask(out) & (mask(fm) & mask(in))
  607. mova m2, [P7]
  608. mova m3, [P6]
  609. mova m8, [P5]
  610. mova m9, [P4]
  611. FILTER_INIT m4, m5, m6, m7, [P6], 14, m1, m3
  612. FILTER_UPDATE m6, m7, m4, m5, [P5], m2, m3, m8, m13, 4, m1, m8 ; [p5] -p7 -p6 +p5 +q1
  613. FILTER_UPDATE m4, m5, m6, m7, [P4], m2, m8, m9, m13, 4, m1, m9, m13, [Q2] ; [p4] -p7 -p5 +p4 +q2
  614. FILTER_UPDATE m6, m7, m4, m5, [P3], m2, m9, m14, m13, 4, m1, m14, m13, [Q3] ; [p3] -p7 -p4 +p3 +q3
  615. FILTER_UPDATE m4, m5, m6, m7, [P2], m2, m14, m15, m13, 4, m1, m13, [Q4] ; [p2] -p7 -p3 +p2 +q4
  616. FILTER_UPDATE m6, m7, m4, m5, [P1], m2, m15, m10, m13, 4, m1, m13, [Q5] ; [p1] -p7 -p2 +p1 +q5
  617. FILTER_UPDATE m4, m5, m6, m7, [P0], m2, m10, m11, m13, 4, m1, m13, [Q6] ; [p0] -p7 -p1 +p0 +q6
  618. FILTER_UPDATE m6, m7, m4, m5, [Q0], m2, m11, m12, m13, 4, m1, m13, [Q7] ; [q0] -p7 -p0 +q0 +q7
  619. FILTER_UPDATE m4, m5, m6, m7, [Q1], m3, m12, m2, m13, 4, m1, m2, [Q1] ; [q1] -p6 -q0 +q1 +q7
  620. FILTER_UPDATE m6, m7, m4, m5, [Q2], m8, m2, m3, m13, 4, m1, m3, [Q2] ; [q2] -p5 -q1 +q2 +q7
  621. FILTER_UPDATE m4, m5, m6, m7, [Q3], m9, m3, m8, m13, 4, m1, m8, m8, [Q3] ; [q3] -p4 -q2 +q3 +q7
  622. FILTER_UPDATE m6, m7, m4, m5, [Q4], m14, m8, m9, m13, 4, m1, m9, m9, [Q4] ; [q4] -p3 -q3 +q4 +q7
  623. FILTER_UPDATE m4, m5, m6, m7, [Q5], m15, m9, m14, m13, 4, m1, m14, m14, [Q5] ; [q5] -p2 -q4 +q5 +q7
  624. FILTER_UPDATE m6, m7, m4, m5, [Q6], m10, m14, m15, m13, 4, m1, m15, m15, [Q6] ; [q6] -p1 -q5 +q6 +q7
  625. %endif
  626. %ifidn %1, h
  627. %if %2 == 16
  628. mova m0, [P7]
  629. mova m1, [P6]
  630. mova m2, [P5]
  631. mova m3, [P4]
  632. mova m4, [P3]
  633. mova m5, [P2]
  634. mova m6, [P1]
  635. mova m7, [P0]
  636. mova m8, [Q0]
  637. mova m9, [Q1]
  638. mova m10, [Q2]
  639. mova m11, [Q3]
  640. mova m12, [Q4]
  641. mova m13, [Q5]
  642. mova m14, [Q6]
  643. mova m15, [Q7]
  644. TRANSPOSE16x16B 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, [rsp]
  645. DEFINE_REAL_P7_TO_Q7
  646. movu [P7], m0
  647. movu [P6], m1
  648. movu [P5], m2
  649. movu [P4], m3
  650. movu [P3], m4
  651. movu [P2], m5
  652. movu [P1], m6
  653. movu [P0], m7
  654. movu [Q0], m8
  655. movu [Q1], m9
  656. movu [Q2], m10
  657. movu [Q3], m11
  658. movu [Q4], m12
  659. movu [Q5], m13
  660. movu [Q6], m14
  661. movu [Q7], m15
  662. %elif %2 == 44
  663. SWAP 0, 7 ; m0 = p1
  664. SWAP 3, 4 ; m3 = q1
  665. DEFINE_REAL_P7_TO_Q7 2
  666. SBUTTERFLY bw, 0, 1, 8
  667. SBUTTERFLY bw, 2, 3, 8
  668. SBUTTERFLY wd, 0, 2, 8
  669. SBUTTERFLY wd, 1, 3, 8
  670. SBUTTERFLY dq, 0, 4, 8
  671. SBUTTERFLY dq, 1, 5, 8
  672. SBUTTERFLY dq, 2, 6, 8
  673. SBUTTERFLY dq, 3, 7, 8
  674. movd [P7], m0
  675. punpckhqdq m0, m8
  676. movd [P6], m0
  677. movd [Q0], m1
  678. punpckhqdq m1, m9
  679. movd [Q1], m1
  680. movd [P3], m2
  681. punpckhqdq m2, m10
  682. movd [P2], m2
  683. movd [Q4], m3
  684. punpckhqdq m3, m11
  685. movd [Q5], m3
  686. movd [P5], m4
  687. punpckhqdq m4, m12
  688. movd [P4], m4
  689. movd [Q2], m5
  690. punpckhqdq m5, m13
  691. movd [Q3], m5
  692. movd [P1], m6
  693. punpckhqdq m6, m14
  694. movd [P0], m6
  695. movd [Q6], m7
  696. punpckhqdq m7, m8
  697. movd [Q7], m7
  698. %else
  699. ; the following code do a transpose of 8 full lines to 16 half
  700. ; lines (high part). It is inlined to avoid the need of a staging area
  701. mova m0, [P3]
  702. mova m1, [P2]
  703. mova m2, [P1]
  704. mova m3, [P0]
  705. mova m4, [Q0]
  706. mova m5, [Q1]
  707. mova m6, [Q2]
  708. mova m7, [Q3]
  709. DEFINE_REAL_P7_TO_Q7
  710. SBUTTERFLY bw, 0, 1, 8
  711. SBUTTERFLY bw, 2, 3, 8
  712. SBUTTERFLY bw, 4, 5, 8
  713. SBUTTERFLY bw, 6, 7, 8
  714. SBUTTERFLY wd, 0, 2, 8
  715. SBUTTERFLY wd, 1, 3, 8
  716. SBUTTERFLY wd, 4, 6, 8
  717. SBUTTERFLY wd, 5, 7, 8
  718. SBUTTERFLY dq, 0, 4, 8
  719. SBUTTERFLY dq, 1, 5, 8
  720. SBUTTERFLY dq, 2, 6, 8
  721. SBUTTERFLY dq, 3, 7, 8
  722. movh [P7], m0
  723. punpckhqdq m0, m8
  724. movh [P6], m0
  725. movh [Q0], m1
  726. punpckhqdq m1, m9
  727. movh [Q1], m1
  728. movh [P3], m2
  729. punpckhqdq m2, m10
  730. movh [P2], m2
  731. movh [Q4], m3
  732. punpckhqdq m3, m11
  733. movh [Q5], m3
  734. movh [P5], m4
  735. punpckhqdq m4, m12
  736. movh [P4], m4
  737. movh [Q2], m5
  738. punpckhqdq m5, m13
  739. movh [Q3], m5
  740. movh [P1], m6
  741. punpckhqdq m6, m14
  742. movh [P0], m6
  743. movh [Q6], m7
  744. punpckhqdq m7, m8
  745. movh [Q7], m7
  746. %endif
  747. %endif
  748. RET
  749. %endmacro
  750. %macro LPF_16_VH 2
  751. INIT_XMM %2
  752. cglobal vp9_loop_filter_v_%1_16, 5,10,16, dst, stride, E, I, H, mstride, dst1, dst2, stride3, mstride3
  753. LOOPFILTER v, %1
  754. cglobal vp9_loop_filter_h_%1_16, 5,10,16, 256, dst, stride, E, I, H, mstride, dst1, dst2, stride3, mstride3
  755. LOOPFILTER h, %1
  756. %endmacro
  757. %macro LPF_16_VH_ALL_OPTS 1
  758. LPF_16_VH %1, sse2
  759. LPF_16_VH %1, ssse3
  760. LPF_16_VH %1, avx
  761. %endmacro
  762. LPF_16_VH_ALL_OPTS 16
  763. LPF_16_VH_ALL_OPTS 44
  764. LPF_16_VH_ALL_OPTS 48
  765. LPF_16_VH_ALL_OPTS 84
  766. LPF_16_VH_ALL_OPTS 88
  767. %endif ; x86-64