You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2068 lines
57KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options in @command{avconv}
  16. and @command{avplay}, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your Libav build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your Libav build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section boxblur
  138. Apply boxblur algorithm to the input video.
  139. This filter accepts the parameters:
  140. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  141. Chroma and alpha parameters are optional, if not specified they default
  142. to the corresponding values set for @var{luma_radius} and
  143. @var{luma_power}.
  144. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  145. the radius in pixels of the box used for blurring the corresponding
  146. input plane. They are expressions, and can contain the following
  147. constants:
  148. @table @option
  149. @item w, h
  150. the input width and height in pixels
  151. @item cw, ch
  152. the input chroma image width and height in pixels
  153. @item hsub, vsub
  154. horizontal and vertical chroma subsample values. For example for the
  155. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  156. @end table
  157. The radius must be a non-negative number, and must not be greater than
  158. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  159. and of @code{min(cw,ch)/2} for the chroma planes.
  160. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  161. how many times the boxblur filter is applied to the corresponding
  162. plane.
  163. Some examples follow:
  164. @itemize
  165. @item
  166. Apply a boxblur filter with luma, chroma, and alpha radius
  167. set to 2:
  168. @example
  169. boxblur=2:1
  170. @end example
  171. @item
  172. Set luma radius to 2, alpha and chroma radius to 0
  173. @example
  174. boxblur=2:1:0:0:0:0
  175. @end example
  176. @item
  177. Set luma and chroma radius to a fraction of the video dimension
  178. @example
  179. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  180. @end example
  181. @end itemize
  182. @section copy
  183. Copy the input source unchanged to the output. Mainly useful for
  184. testing purposes.
  185. @section crop
  186. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  187. The parameters are expressions containing the following constants:
  188. @table @option
  189. @item E, PI, PHI
  190. the corresponding mathematical approximated values for e
  191. (euler number), pi (greek PI), PHI (golden ratio)
  192. @item x, y
  193. the computed values for @var{x} and @var{y}. They are evaluated for
  194. each new frame.
  195. @item in_w, in_h
  196. the input width and height
  197. @item iw, ih
  198. same as @var{in_w} and @var{in_h}
  199. @item out_w, out_h
  200. the output (cropped) width and height
  201. @item ow, oh
  202. same as @var{out_w} and @var{out_h}
  203. @item n
  204. the number of input frame, starting from 0
  205. @item pos
  206. the position in the file of the input frame, NAN if unknown
  207. @item t
  208. timestamp expressed in seconds, NAN if the input timestamp is unknown
  209. @end table
  210. The @var{out_w} and @var{out_h} parameters specify the expressions for
  211. the width and height of the output (cropped) video. They are
  212. evaluated just at the configuration of the filter.
  213. The default value of @var{out_w} is "in_w", and the default value of
  214. @var{out_h} is "in_h".
  215. The expression for @var{out_w} may depend on the value of @var{out_h},
  216. and the expression for @var{out_h} may depend on @var{out_w}, but they
  217. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  218. evaluated after @var{out_w} and @var{out_h}.
  219. The @var{x} and @var{y} parameters specify the expressions for the
  220. position of the top-left corner of the output (non-cropped) area. They
  221. are evaluated for each frame. If the evaluated value is not valid, it
  222. is approximated to the nearest valid value.
  223. The default value of @var{x} is "(in_w-out_w)/2", and the default
  224. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  225. the center of the input image.
  226. The expression for @var{x} may depend on @var{y}, and the expression
  227. for @var{y} may depend on @var{x}.
  228. Follow some examples:
  229. @example
  230. # crop the central input area with size 100x100
  231. crop=100:100
  232. # crop the central input area with size 2/3 of the input video
  233. "crop=2/3*in_w:2/3*in_h"
  234. # crop the input video central square
  235. crop=in_h
  236. # delimit the rectangle with the top-left corner placed at position
  237. # 100:100 and the right-bottom corner corresponding to the right-bottom
  238. # corner of the input image.
  239. crop=in_w-100:in_h-100:100:100
  240. # crop 10 pixels from the left and right borders, and 20 pixels from
  241. # the top and bottom borders
  242. "crop=in_w-2*10:in_h-2*20"
  243. # keep only the bottom right quarter of the input image
  244. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  245. # crop height for getting Greek harmony
  246. "crop=in_w:1/PHI*in_w"
  247. # trembling effect
  248. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  249. # erratic camera effect depending on timestamp
  250. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  251. # set x depending on the value of y
  252. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  253. @end example
  254. @section cropdetect
  255. Auto-detect crop size.
  256. Calculate necessary cropping parameters and prints the recommended
  257. parameters through the logging system. The detected dimensions
  258. correspond to the non-black area of the input video.
  259. It accepts the syntax:
  260. @example
  261. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  262. @end example
  263. @table @option
  264. @item limit
  265. Threshold, which can be optionally specified from nothing (0) to
  266. everything (255), defaults to 24.
  267. @item round
  268. Value which the width/height should be divisible by, defaults to
  269. 16. The offset is automatically adjusted to center the video. Use 2 to
  270. get only even dimensions (needed for 4:2:2 video). 16 is best when
  271. encoding to most video codecs.
  272. @item reset
  273. Counter that determines after how many frames cropdetect will reset
  274. the previously detected largest video area and start over to detect
  275. the current optimal crop area. Defaults to 0.
  276. This can be useful when channel logos distort the video area. 0
  277. indicates never reset and return the largest area encountered during
  278. playback.
  279. @end table
  280. @section delogo
  281. Suppress a TV station logo by a simple interpolation of the surrounding
  282. pixels. Just set a rectangle covering the logo and watch it disappear
  283. (and sometimes something even uglier appear - your mileage may vary).
  284. The filter accepts parameters as a string of the form
  285. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  286. @var{key}=@var{value} pairs, separated by ":".
  287. The description of the accepted parameters follows.
  288. @table @option
  289. @item x, y
  290. Specify the top left corner coordinates of the logo. They must be
  291. specified.
  292. @item w, h
  293. Specify the width and height of the logo to clear. They must be
  294. specified.
  295. @item band, t
  296. Specify the thickness of the fuzzy edge of the rectangle (added to
  297. @var{w} and @var{h}). The default value is 4.
  298. @item show
  299. When set to 1, a green rectangle is drawn on the screen to simplify
  300. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  301. @var{band} is set to 4. The default value is 0.
  302. @end table
  303. Some examples follow.
  304. @itemize
  305. @item
  306. Set a rectangle covering the area with top left corner coordinates 0,0
  307. and size 100x77, setting a band of size 10:
  308. @example
  309. delogo=0:0:100:77:10
  310. @end example
  311. @item
  312. As the previous example, but use named options:
  313. @example
  314. delogo=x=0:y=0:w=100:h=77:band=10
  315. @end example
  316. @end itemize
  317. @section drawbox
  318. Draw a colored box on the input image.
  319. It accepts the syntax:
  320. @example
  321. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  322. @end example
  323. @table @option
  324. @item x, y
  325. Specify the top left corner coordinates of the box. Default to 0.
  326. @item width, height
  327. Specify the width and height of the box, if 0 they are interpreted as
  328. the input width and height. Default to 0.
  329. @item color
  330. Specify the color of the box to write, it can be the name of a color
  331. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  332. @end table
  333. Follow some examples:
  334. @example
  335. # draw a black box around the edge of the input image
  336. drawbox
  337. # draw a box with color red and an opacity of 50%
  338. drawbox=10:20:200:60:red@@0.5"
  339. @end example
  340. @section drawtext
  341. Draw text string or text from specified file on top of video using the
  342. libfreetype library.
  343. To enable compilation of this filter you need to configure Libav with
  344. @code{--enable-libfreetype}.
  345. The filter also recognizes strftime() sequences in the provided text
  346. and expands them accordingly. Check the documentation of strftime().
  347. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  348. separated by ":".
  349. The description of the accepted parameters follows.
  350. @table @option
  351. @item fontfile
  352. The font file to be used for drawing text. Path must be included.
  353. This parameter is mandatory.
  354. @item text
  355. The text string to be drawn. The text must be a sequence of UTF-8
  356. encoded characters.
  357. This parameter is mandatory if no file is specified with the parameter
  358. @var{textfile}.
  359. @item textfile
  360. A text file containing text to be drawn. The text must be a sequence
  361. of UTF-8 encoded characters.
  362. This parameter is mandatory if no text string is specified with the
  363. parameter @var{text}.
  364. If both text and textfile are specified, an error is thrown.
  365. @item x, y
  366. The offsets where text will be drawn within the video frame.
  367. Relative to the top/left border of the output image.
  368. They accept expressions similar to the @ref{overlay} filter:
  369. @table @option
  370. @item x, y
  371. the computed values for @var{x} and @var{y}. They are evaluated for
  372. each new frame.
  373. @item main_w, main_h
  374. main input width and height
  375. @item W, H
  376. same as @var{main_w} and @var{main_h}
  377. @item text_w, text_h
  378. rendered text width and height
  379. @item w, h
  380. same as @var{text_w} and @var{text_h}
  381. @item n
  382. the number of frames processed, starting from 0
  383. @item t
  384. timestamp expressed in seconds, NAN if the input timestamp is unknown
  385. @end table
  386. The default value of @var{x} and @var{y} is 0.
  387. @item fontsize
  388. The font size to be used for drawing text.
  389. The default value of @var{fontsize} is 16.
  390. @item fontcolor
  391. The color to be used for drawing fonts.
  392. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  393. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  394. The default value of @var{fontcolor} is "black".
  395. @item boxcolor
  396. The color to be used for drawing box around text.
  397. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  398. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  399. The default value of @var{boxcolor} is "white".
  400. @item box
  401. Used to draw a box around text using background color.
  402. Value should be either 1 (enable) or 0 (disable).
  403. The default value of @var{box} is 0.
  404. @item shadowx, shadowy
  405. The x and y offsets for the text shadow position with respect to the
  406. position of the text. They can be either positive or negative
  407. values. Default value for both is "0".
  408. @item shadowcolor
  409. The color to be used for drawing a shadow behind the drawn text. It
  410. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  411. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  412. The default value of @var{shadowcolor} is "black".
  413. @item ft_load_flags
  414. Flags to be used for loading the fonts.
  415. The flags map the corresponding flags supported by libfreetype, and are
  416. a combination of the following values:
  417. @table @var
  418. @item default
  419. @item no_scale
  420. @item no_hinting
  421. @item render
  422. @item no_bitmap
  423. @item vertical_layout
  424. @item force_autohint
  425. @item crop_bitmap
  426. @item pedantic
  427. @item ignore_global_advance_width
  428. @item no_recurse
  429. @item ignore_transform
  430. @item monochrome
  431. @item linear_design
  432. @item no_autohint
  433. @item end table
  434. @end table
  435. Default value is "render".
  436. For more information consult the documentation for the FT_LOAD_*
  437. libfreetype flags.
  438. @item tabsize
  439. The size in number of spaces to use for rendering the tab.
  440. Default value is 4.
  441. @end table
  442. For example the command:
  443. @example
  444. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  445. @end example
  446. will draw "Test Text" with font FreeSerif, using the default values
  447. for the optional parameters.
  448. The command:
  449. @example
  450. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  451. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  452. @end example
  453. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  454. and y=50 (counting from the top-left corner of the screen), text is
  455. yellow with a red box around it. Both the text and the box have an
  456. opacity of 20%.
  457. Note that the double quotes are not necessary if spaces are not used
  458. within the parameter list.
  459. For more information about libfreetype, check:
  460. @url{http://www.freetype.org/}.
  461. @section fade
  462. Apply fade-in/out effect to input video.
  463. It accepts the parameters:
  464. @var{type}:@var{start_frame}:@var{nb_frames}
  465. @var{type} specifies if the effect type, can be either "in" for
  466. fade-in, or "out" for a fade-out effect.
  467. @var{start_frame} specifies the number of the start frame for starting
  468. to apply the fade effect.
  469. @var{nb_frames} specifies the number of frames for which the fade
  470. effect has to last. At the end of the fade-in effect the output video
  471. will have the same intensity as the input video, at the end of the
  472. fade-out transition the output video will be completely black.
  473. A few usage examples follow, usable too as test scenarios.
  474. @example
  475. # fade in first 30 frames of video
  476. fade=in:0:30
  477. # fade out last 45 frames of a 200-frame video
  478. fade=out:155:45
  479. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  480. fade=in:0:25, fade=out:975:25
  481. # make first 5 frames black, then fade in from frame 5-24
  482. fade=in:5:20
  483. @end example
  484. @section fieldorder
  485. Transform the field order of the input video.
  486. It accepts one parameter which specifies the required field order that
  487. the input interlaced video will be transformed to. The parameter can
  488. assume one of the following values:
  489. @table @option
  490. @item 0 or bff
  491. output bottom field first
  492. @item 1 or tff
  493. output top field first
  494. @end table
  495. Default value is "tff".
  496. Transformation is achieved by shifting the picture content up or down
  497. by one line, and filling the remaining line with appropriate picture content.
  498. This method is consistent with most broadcast field order converters.
  499. If the input video is not flagged as being interlaced, or it is already
  500. flagged as being of the required output field order then this filter does
  501. not alter the incoming video.
  502. This filter is very useful when converting to or from PAL DV material,
  503. which is bottom field first.
  504. For example:
  505. @example
  506. ./avconv -i in.vob -vf "fieldorder=bff" out.dv
  507. @end example
  508. @section fifo
  509. Buffer input images and send them when they are requested.
  510. This filter is mainly useful when auto-inserted by the libavfilter
  511. framework.
  512. The filter does not take parameters.
  513. @section format
  514. Convert the input video to one of the specified pixel formats.
  515. Libavfilter will try to pick one that is supported for the input to
  516. the next filter.
  517. The filter accepts a list of pixel format names, separated by ":",
  518. for example "yuv420p:monow:rgb24".
  519. Some examples follow:
  520. @example
  521. # convert the input video to the format "yuv420p"
  522. format=yuv420p
  523. # convert the input video to any of the formats in the list
  524. format=yuv420p:yuv444p:yuv410p
  525. @end example
  526. @anchor{frei0r}
  527. @section frei0r
  528. Apply a frei0r effect to the input video.
  529. To enable compilation of this filter you need to install the frei0r
  530. header and configure Libav with --enable-frei0r.
  531. The filter supports the syntax:
  532. @example
  533. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  534. @end example
  535. @var{filter_name} is the name to the frei0r effect to load. If the
  536. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  537. is searched in each one of the directories specified by the colon
  538. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  539. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  540. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  541. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  542. for the frei0r effect.
  543. A frei0r effect parameter can be a boolean (whose values are specified
  544. with "y" and "n"), a double, a color (specified by the syntax
  545. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  546. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  547. description), a position (specified by the syntax @var{X}/@var{Y},
  548. @var{X} and @var{Y} being float numbers) and a string.
  549. The number and kind of parameters depend on the loaded effect. If an
  550. effect parameter is not specified the default value is set.
  551. Some examples follow:
  552. @example
  553. # apply the distort0r effect, set the first two double parameters
  554. frei0r=distort0r:0.5:0.01
  555. # apply the colordistance effect, takes a color as first parameter
  556. frei0r=colordistance:0.2/0.3/0.4
  557. frei0r=colordistance:violet
  558. frei0r=colordistance:0x112233
  559. # apply the perspective effect, specify the top left and top right
  560. # image positions
  561. frei0r=perspective:0.2/0.2:0.8/0.2
  562. @end example
  563. For more information see:
  564. @url{http://piksel.org/frei0r}
  565. @section gradfun
  566. Fix the banding artifacts that are sometimes introduced into nearly flat
  567. regions by truncation to 8bit colordepth.
  568. Interpolate the gradients that should go where the bands are, and
  569. dither them.
  570. This filter is designed for playback only. Do not use it prior to
  571. lossy compression, because compression tends to lose the dither and
  572. bring back the bands.
  573. The filter takes two optional parameters, separated by ':':
  574. @var{strength}:@var{radius}
  575. @var{strength} is the maximum amount by which the filter will change
  576. any one pixel. Also the threshold for detecting nearly flat
  577. regions. Acceptable values range from .51 to 255, default value is
  578. 1.2, out-of-range values will be clipped to the valid range.
  579. @var{radius} is the neighborhood to fit the gradient to. A larger
  580. radius makes for smoother gradients, but also prevents the filter from
  581. modifying the pixels near detailed regions. Acceptable values are
  582. 8-32, default value is 16, out-of-range values will be clipped to the
  583. valid range.
  584. @example
  585. # default parameters
  586. gradfun=1.2:16
  587. # omitting radius
  588. gradfun=1.2
  589. @end example
  590. @section hflip
  591. Flip the input video horizontally.
  592. For example to horizontally flip the input video with @command{avconv}:
  593. @example
  594. avconv -i in.avi -vf "hflip" out.avi
  595. @end example
  596. @section hqdn3d
  597. High precision/quality 3d denoise filter. This filter aims to reduce
  598. image noise producing smooth images and making still images really
  599. still. It should enhance compressibility.
  600. It accepts the following optional parameters:
  601. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  602. @table @option
  603. @item luma_spatial
  604. a non-negative float number which specifies spatial luma strength,
  605. defaults to 4.0
  606. @item chroma_spatial
  607. a non-negative float number which specifies spatial chroma strength,
  608. defaults to 3.0*@var{luma_spatial}/4.0
  609. @item luma_tmp
  610. a float number which specifies luma temporal strength, defaults to
  611. 6.0*@var{luma_spatial}/4.0
  612. @item chroma_tmp
  613. a float number which specifies chroma temporal strength, defaults to
  614. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  615. @end table
  616. @section lut, lutrgb, lutyuv
  617. Compute a look-up table for binding each pixel component input value
  618. to an output value, and apply it to input video.
  619. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  620. to an RGB input video.
  621. These filters accept in input a ":"-separated list of options, which
  622. specify the expressions used for computing the lookup table for the
  623. corresponding pixel component values.
  624. The @var{lut} filter requires either YUV or RGB pixel formats in
  625. input, and accepts the options:
  626. @table @option
  627. @var{c0} (first pixel component)
  628. @var{c1} (second pixel component)
  629. @var{c2} (third pixel component)
  630. @var{c3} (fourth pixel component, corresponds to the alpha component)
  631. @end table
  632. The exact component associated to each option depends on the format in
  633. input.
  634. The @var{lutrgb} filter requires RGB pixel formats in input, and
  635. accepts the options:
  636. @table @option
  637. @var{r} (red component)
  638. @var{g} (green component)
  639. @var{b} (blue component)
  640. @var{a} (alpha component)
  641. @end table
  642. The @var{lutyuv} filter requires YUV pixel formats in input, and
  643. accepts the options:
  644. @table @option
  645. @var{y} (Y/luminance component)
  646. @var{u} (U/Cb component)
  647. @var{v} (V/Cr component)
  648. @var{a} (alpha component)
  649. @end table
  650. The expressions can contain the following constants and functions:
  651. @table @option
  652. @item E, PI, PHI
  653. the corresponding mathematical approximated values for e
  654. (euler number), pi (greek PI), PHI (golden ratio)
  655. @item w, h
  656. the input width and height
  657. @item val
  658. input value for the pixel component
  659. @item clipval
  660. the input value clipped in the @var{minval}-@var{maxval} range
  661. @item maxval
  662. maximum value for the pixel component
  663. @item minval
  664. minimum value for the pixel component
  665. @item negval
  666. the negated value for the pixel component value clipped in the
  667. @var{minval}-@var{maxval} range , it corresponds to the expression
  668. "maxval-clipval+minval"
  669. @item clip(val)
  670. the computed value in @var{val} clipped in the
  671. @var{minval}-@var{maxval} range
  672. @item gammaval(gamma)
  673. the computed gamma correction value of the pixel component value
  674. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  675. expression
  676. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  677. @end table
  678. All expressions default to "val".
  679. Some examples follow:
  680. @example
  681. # negate input video
  682. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  683. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  684. # the above is the same as
  685. lutrgb="r=negval:g=negval:b=negval"
  686. lutyuv="y=negval:u=negval:v=negval"
  687. # negate luminance
  688. lutyuv=negval
  689. # remove chroma components, turns the video into a graytone image
  690. lutyuv="u=128:v=128"
  691. # apply a luma burning effect
  692. lutyuv="y=2*val"
  693. # remove green and blue components
  694. lutrgb="g=0:b=0"
  695. # set a constant alpha channel value on input
  696. format=rgba,lutrgb=a="maxval-minval/2"
  697. # correct luminance gamma by a 0.5 factor
  698. lutyuv=y=gammaval(0.5)
  699. @end example
  700. @section negate
  701. Negate input video.
  702. This filter accepts an integer in input, if non-zero it negates the
  703. alpha component (if available). The default value in input is 0.
  704. Force libavfilter not to use any of the specified pixel formats for the
  705. input to the next filter.
  706. The filter accepts a list of pixel format names, separated by ":",
  707. for example "yuv420p:monow:rgb24".
  708. Some examples follow:
  709. @example
  710. # force libavfilter to use a format different from "yuv420p" for the
  711. # input to the vflip filter
  712. noformat=yuv420p,vflip
  713. # convert the input video to any of the formats not contained in the list
  714. noformat=yuv420p:yuv444p:yuv410p
  715. @end example
  716. @section null
  717. Pass the video source unchanged to the output.
  718. @section ocv
  719. Apply video transform using libopencv.
  720. To enable this filter install libopencv library and headers and
  721. configure Libav with --enable-libopencv.
  722. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  723. @var{filter_name} is the name of the libopencv filter to apply.
  724. @var{filter_params} specifies the parameters to pass to the libopencv
  725. filter. If not specified the default values are assumed.
  726. Refer to the official libopencv documentation for more precise
  727. information:
  728. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  729. Follows the list of supported libopencv filters.
  730. @anchor{dilate}
  731. @subsection dilate
  732. Dilate an image by using a specific structuring element.
  733. This filter corresponds to the libopencv function @code{cvDilate}.
  734. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  735. @var{struct_el} represents a structuring element, and has the syntax:
  736. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  737. @var{cols} and @var{rows} represent the number of columns and rows of
  738. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  739. point, and @var{shape} the shape for the structuring element, and
  740. can be one of the values "rect", "cross", "ellipse", "custom".
  741. If the value for @var{shape} is "custom", it must be followed by a
  742. string of the form "=@var{filename}". The file with name
  743. @var{filename} is assumed to represent a binary image, with each
  744. printable character corresponding to a bright pixel. When a custom
  745. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  746. or columns and rows of the read file are assumed instead.
  747. The default value for @var{struct_el} is "3x3+0x0/rect".
  748. @var{nb_iterations} specifies the number of times the transform is
  749. applied to the image, and defaults to 1.
  750. Follow some example:
  751. @example
  752. # use the default values
  753. ocv=dilate
  754. # dilate using a structuring element with a 5x5 cross, iterate two times
  755. ocv=dilate=5x5+2x2/cross:2
  756. # read the shape from the file diamond.shape, iterate two times
  757. # the file diamond.shape may contain a pattern of characters like this:
  758. # *
  759. # ***
  760. # *****
  761. # ***
  762. # *
  763. # the specified cols and rows are ignored (but not the anchor point coordinates)
  764. ocv=0x0+2x2/custom=diamond.shape:2
  765. @end example
  766. @subsection erode
  767. Erode an image by using a specific structuring element.
  768. This filter corresponds to the libopencv function @code{cvErode}.
  769. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  770. with the same syntax and semantics as the @ref{dilate} filter.
  771. @subsection smooth
  772. Smooth the input video.
  773. The filter takes the following parameters:
  774. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  775. @var{type} is the type of smooth filter to apply, and can be one of
  776. the following values: "blur", "blur_no_scale", "median", "gaussian",
  777. "bilateral". The default value is "gaussian".
  778. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  779. parameters whose meanings depend on smooth type. @var{param1} and
  780. @var{param2} accept integer positive values or 0, @var{param3} and
  781. @var{param4} accept float values.
  782. The default value for @var{param1} is 3, the default value for the
  783. other parameters is 0.
  784. These parameters correspond to the parameters assigned to the
  785. libopencv function @code{cvSmooth}.
  786. @anchor{overlay}
  787. @section overlay
  788. Overlay one video on top of another.
  789. It takes two inputs and one output, the first input is the "main"
  790. video on which the second input is overlayed.
  791. It accepts the parameters: @var{x}:@var{y}.
  792. @var{x} is the x coordinate of the overlayed video on the main video,
  793. @var{y} is the y coordinate. The parameters are expressions containing
  794. the following parameters:
  795. @table @option
  796. @item main_w, main_h
  797. main input width and height
  798. @item W, H
  799. same as @var{main_w} and @var{main_h}
  800. @item overlay_w, overlay_h
  801. overlay input width and height
  802. @item w, h
  803. same as @var{overlay_w} and @var{overlay_h}
  804. @end table
  805. Be aware that frames are taken from each input video in timestamp
  806. order, hence, if their initial timestamps differ, it is a a good idea
  807. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  808. have them begin in the same zero timestamp, as it does the example for
  809. the @var{movie} filter.
  810. Follow some examples:
  811. @example
  812. # draw the overlay at 10 pixels from the bottom right
  813. # corner of the main video.
  814. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  815. # insert a transparent PNG logo in the bottom left corner of the input
  816. movie=logo.png [logo];
  817. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  818. # insert 2 different transparent PNG logos (second logo on bottom
  819. # right corner):
  820. movie=logo1.png [logo1];
  821. movie=logo2.png [logo2];
  822. [in][logo1] overlay=10:H-h-10 [in+logo1];
  823. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  824. # add a transparent color layer on top of the main video,
  825. # WxH specifies the size of the main input to the overlay filter
  826. color=red@.3:WxH [over]; [in][over] overlay [out]
  827. @end example
  828. You can chain together more overlays but the efficiency of such
  829. approach is yet to be tested.
  830. @section pad
  831. Add paddings to the input image, and places the original input at the
  832. given coordinates @var{x}, @var{y}.
  833. It accepts the following parameters:
  834. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  835. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  836. expressions containing the following constants:
  837. @table @option
  838. @item E, PI, PHI
  839. the corresponding mathematical approximated values for e
  840. (euler number), pi (greek PI), phi (golden ratio)
  841. @item in_w, in_h
  842. the input video width and height
  843. @item iw, ih
  844. same as @var{in_w} and @var{in_h}
  845. @item out_w, out_h
  846. the output width and height, that is the size of the padded area as
  847. specified by the @var{width} and @var{height} expressions
  848. @item ow, oh
  849. same as @var{out_w} and @var{out_h}
  850. @item x, y
  851. x and y offsets as specified by the @var{x} and @var{y}
  852. expressions, or NAN if not yet specified
  853. @item a
  854. input display aspect ratio, same as @var{iw} / @var{ih}
  855. @item hsub, vsub
  856. horizontal and vertical chroma subsample values. For example for the
  857. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  858. @end table
  859. Follows the description of the accepted parameters.
  860. @table @option
  861. @item width, height
  862. Specify the size of the output image with the paddings added. If the
  863. value for @var{width} or @var{height} is 0, the corresponding input size
  864. is used for the output.
  865. The @var{width} expression can reference the value set by the
  866. @var{height} expression, and vice versa.
  867. The default value of @var{width} and @var{height} is 0.
  868. @item x, y
  869. Specify the offsets where to place the input image in the padded area
  870. with respect to the top/left border of the output image.
  871. The @var{x} expression can reference the value set by the @var{y}
  872. expression, and vice versa.
  873. The default value of @var{x} and @var{y} is 0.
  874. @item color
  875. Specify the color of the padded area, it can be the name of a color
  876. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  877. The default value of @var{color} is "black".
  878. @end table
  879. Some examples follow:
  880. @example
  881. # Add paddings with color "violet" to the input video. Output video
  882. # size is 640x480, the top-left corner of the input video is placed at
  883. # column 0, row 40.
  884. pad=640:480:0:40:violet
  885. # pad the input to get an output with dimensions increased bt 3/2,
  886. # and put the input video at the center of the padded area
  887. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  888. # pad the input to get a squared output with size equal to the maximum
  889. # value between the input width and height, and put the input video at
  890. # the center of the padded area
  891. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  892. # pad the input to get a final w/h ratio of 16:9
  893. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  894. # double output size and put the input video in the bottom-right
  895. # corner of the output padded area
  896. pad="2*iw:2*ih:ow-iw:oh-ih"
  897. @end example
  898. @section pixdesctest
  899. Pixel format descriptor test filter, mainly useful for internal
  900. testing. The output video should be equal to the input video.
  901. For example:
  902. @example
  903. format=monow, pixdesctest
  904. @end example
  905. can be used to test the monowhite pixel format descriptor definition.
  906. @section scale
  907. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  908. The parameters @var{width} and @var{height} are expressions containing
  909. the following constants:
  910. @table @option
  911. @item E, PI, PHI
  912. the corresponding mathematical approximated values for e
  913. (euler number), pi (greek PI), phi (golden ratio)
  914. @item in_w, in_h
  915. the input width and height
  916. @item iw, ih
  917. same as @var{in_w} and @var{in_h}
  918. @item out_w, out_h
  919. the output (cropped) width and height
  920. @item ow, oh
  921. same as @var{out_w} and @var{out_h}
  922. @item dar, a
  923. input display aspect ratio, same as @var{iw} / @var{ih}
  924. @item sar
  925. input sample aspect ratio
  926. @item hsub, vsub
  927. horizontal and vertical chroma subsample values. For example for the
  928. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  929. @end table
  930. If the input image format is different from the format requested by
  931. the next filter, the scale filter will convert the input to the
  932. requested format.
  933. If the value for @var{width} or @var{height} is 0, the respective input
  934. size is used for the output.
  935. If the value for @var{width} or @var{height} is -1, the scale filter will
  936. use, for the respective output size, a value that maintains the aspect
  937. ratio of the input image.
  938. The default value of @var{width} and @var{height} is 0.
  939. Some examples follow:
  940. @example
  941. # scale the input video to a size of 200x100.
  942. scale=200:100
  943. # scale the input to 2x
  944. scale=2*iw:2*ih
  945. # the above is the same as
  946. scale=2*in_w:2*in_h
  947. # scale the input to half size
  948. scale=iw/2:ih/2
  949. # increase the width, and set the height to the same size
  950. scale=3/2*iw:ow
  951. # seek for Greek harmony
  952. scale=iw:1/PHI*iw
  953. scale=ih*PHI:ih
  954. # increase the height, and set the width to 3/2 of the height
  955. scale=3/2*oh:3/5*ih
  956. # increase the size, but make the size a multiple of the chroma
  957. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  958. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  959. scale='min(500\, iw*3/2):-1'
  960. @end example
  961. @section select
  962. Select frames to pass in output.
  963. It accepts in input an expression, which is evaluated for each input
  964. frame. If the expression is evaluated to a non-zero value, the frame
  965. is selected and passed to the output, otherwise it is discarded.
  966. The expression can contain the following constants:
  967. @table @option
  968. @item PI
  969. Greek PI
  970. @item PHI
  971. golden ratio
  972. @item E
  973. Euler number
  974. @item n
  975. the sequential number of the filtered frame, starting from 0
  976. @item selected_n
  977. the sequential number of the selected frame, starting from 0
  978. @item prev_selected_n
  979. the sequential number of the last selected frame, NAN if undefined
  980. @item TB
  981. timebase of the input timestamps
  982. @item pts
  983. the PTS (Presentation TimeStamp) of the filtered video frame,
  984. expressed in @var{TB} units, NAN if undefined
  985. @item t
  986. the PTS (Presentation TimeStamp) of the filtered video frame,
  987. expressed in seconds, NAN if undefined
  988. @item prev_pts
  989. the PTS of the previously filtered video frame, NAN if undefined
  990. @item prev_selected_pts
  991. the PTS of the last previously filtered video frame, NAN if undefined
  992. @item prev_selected_t
  993. the PTS of the last previously selected video frame, NAN if undefined
  994. @item start_pts
  995. the PTS of the first video frame in the video, NAN if undefined
  996. @item start_t
  997. the time of the first video frame in the video, NAN if undefined
  998. @item pict_type
  999. the type of the filtered frame, can assume one of the following
  1000. values:
  1001. @table @option
  1002. @item I
  1003. @item P
  1004. @item B
  1005. @item S
  1006. @item SI
  1007. @item SP
  1008. @item BI
  1009. @end table
  1010. @item interlace_type
  1011. the frame interlace type, can assume one of the following values:
  1012. @table @option
  1013. @item PROGRESSIVE
  1014. the frame is progressive (not interlaced)
  1015. @item TOPFIRST
  1016. the frame is top-field-first
  1017. @item BOTTOMFIRST
  1018. the frame is bottom-field-first
  1019. @end table
  1020. @item key
  1021. 1 if the filtered frame is a key-frame, 0 otherwise
  1022. @item pos
  1023. the position in the file of the filtered frame, -1 if the information
  1024. is not available (e.g. for synthetic video)
  1025. @end table
  1026. The default value of the select expression is "1".
  1027. Some examples follow:
  1028. @example
  1029. # select all frames in input
  1030. select
  1031. # the above is the same as:
  1032. select=1
  1033. # skip all frames:
  1034. select=0
  1035. # select only I-frames
  1036. select='eq(pict_type\,I)'
  1037. # select one frame every 100
  1038. select='not(mod(n\,100))'
  1039. # select only frames contained in the 10-20 time interval
  1040. select='gte(t\,10)*lte(t\,20)'
  1041. # select only I frames contained in the 10-20 time interval
  1042. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1043. # select frames with a minimum distance of 10 seconds
  1044. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1045. @end example
  1046. @anchor{setdar}
  1047. @section setdar
  1048. Set the Display Aspect Ratio for the filter output video.
  1049. This is done by changing the specified Sample (aka Pixel) Aspect
  1050. Ratio, according to the following equation:
  1051. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1052. Keep in mind that this filter does not modify the pixel dimensions of
  1053. the video frame. Also the display aspect ratio set by this filter may
  1054. be changed by later filters in the filterchain, e.g. in case of
  1055. scaling or if another "setdar" or a "setsar" filter is applied.
  1056. The filter accepts a parameter string which represents the wanted
  1057. display aspect ratio.
  1058. The parameter can be a floating point number string, or an expression
  1059. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1060. numerator and denominator of the aspect ratio.
  1061. If the parameter is not specified, it is assumed the value "0:1".
  1062. For example to change the display aspect ratio to 16:9, specify:
  1063. @example
  1064. setdar=16:9
  1065. # the above is equivalent to
  1066. setdar=1.77777
  1067. @end example
  1068. See also the @ref{setsar} filter documentation.
  1069. @section setpts
  1070. Change the PTS (presentation timestamp) of the input video frames.
  1071. Accept in input an expression evaluated through the eval API, which
  1072. can contain the following constants:
  1073. @table @option
  1074. @item PTS
  1075. the presentation timestamp in input
  1076. @item PI
  1077. Greek PI
  1078. @item PHI
  1079. golden ratio
  1080. @item E
  1081. Euler number
  1082. @item N
  1083. the count of the input frame, starting from 0.
  1084. @item STARTPTS
  1085. the PTS of the first video frame
  1086. @item INTERLACED
  1087. tell if the current frame is interlaced
  1088. @item POS
  1089. original position in the file of the frame, or undefined if undefined
  1090. for the current frame
  1091. @item PREV_INPTS
  1092. previous input PTS
  1093. @item PREV_OUTPTS
  1094. previous output PTS
  1095. @end table
  1096. Some examples follow:
  1097. @example
  1098. # start counting PTS from zero
  1099. setpts=PTS-STARTPTS
  1100. # fast motion
  1101. setpts=0.5*PTS
  1102. # slow motion
  1103. setpts=2.0*PTS
  1104. # fixed rate 25 fps
  1105. setpts=N/(25*TB)
  1106. # fixed rate 25 fps with some jitter
  1107. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1108. @end example
  1109. @anchor{setsar}
  1110. @section setsar
  1111. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1112. Note that as a consequence of the application of this filter, the
  1113. output display aspect ratio will change according to the following
  1114. equation:
  1115. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1116. Keep in mind that the sample aspect ratio set by this filter may be
  1117. changed by later filters in the filterchain, e.g. if another "setsar"
  1118. or a "setdar" filter is applied.
  1119. The filter accepts a parameter string which represents the wanted
  1120. sample aspect ratio.
  1121. The parameter can be a floating point number string, or an expression
  1122. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1123. numerator and denominator of the aspect ratio.
  1124. If the parameter is not specified, it is assumed the value "0:1".
  1125. For example to change the sample aspect ratio to 10:11, specify:
  1126. @example
  1127. setsar=10:11
  1128. @end example
  1129. @section settb
  1130. Set the timebase to use for the output frames timestamps.
  1131. It is mainly useful for testing timebase configuration.
  1132. It accepts in input an arithmetic expression representing a rational.
  1133. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1134. default timebase), and "intb" (the input timebase).
  1135. The default value for the input is "intb".
  1136. Follow some examples.
  1137. @example
  1138. # set the timebase to 1/25
  1139. settb=1/25
  1140. # set the timebase to 1/10
  1141. settb=0.1
  1142. #set the timebase to 1001/1000
  1143. settb=1+0.001
  1144. #set the timebase to 2*intb
  1145. settb=2*intb
  1146. #set the default timebase value
  1147. settb=AVTB
  1148. @end example
  1149. @section showinfo
  1150. Show a line containing various information for each input video frame.
  1151. The input video is not modified.
  1152. The shown line contains a sequence of key/value pairs of the form
  1153. @var{key}:@var{value}.
  1154. A description of each shown parameter follows:
  1155. @table @option
  1156. @item n
  1157. sequential number of the input frame, starting from 0
  1158. @item pts
  1159. Presentation TimeStamp of the input frame, expressed as a number of
  1160. time base units. The time base unit depends on the filter input pad.
  1161. @item pts_time
  1162. Presentation TimeStamp of the input frame, expressed as a number of
  1163. seconds
  1164. @item pos
  1165. position of the frame in the input stream, -1 if this information in
  1166. unavailable and/or meaningless (for example in case of synthetic video)
  1167. @item fmt
  1168. pixel format name
  1169. @item sar
  1170. sample aspect ratio of the input frame, expressed in the form
  1171. @var{num}/@var{den}
  1172. @item s
  1173. size of the input frame, expressed in the form
  1174. @var{width}x@var{height}
  1175. @item i
  1176. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1177. for bottom field first)
  1178. @item iskey
  1179. 1 if the frame is a key frame, 0 otherwise
  1180. @item type
  1181. picture type of the input frame ("I" for an I-frame, "P" for a
  1182. P-frame, "B" for a B-frame, "?" for unknown type).
  1183. Check also the documentation of the @code{AVPictureType} enum and of
  1184. the @code{av_get_picture_type_char} function defined in
  1185. @file{libavutil/avutil.h}.
  1186. @item checksum
  1187. Adler-32 checksum of all the planes of the input frame
  1188. @item plane_checksum
  1189. Adler-32 checksum of each plane of the input frame, expressed in the form
  1190. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1191. @end table
  1192. @section slicify
  1193. Pass the images of input video on to next video filter as multiple
  1194. slices.
  1195. @example
  1196. ./avconv -i in.avi -vf "slicify=32" out.avi
  1197. @end example
  1198. The filter accepts the slice height as parameter. If the parameter is
  1199. not specified it will use the default value of 16.
  1200. Adding this in the beginning of filter chains should make filtering
  1201. faster due to better use of the memory cache.
  1202. @section transpose
  1203. Transpose rows with columns in the input video and optionally flip it.
  1204. It accepts a parameter representing an integer, which can assume the
  1205. values:
  1206. @table @samp
  1207. @item 0
  1208. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1209. @example
  1210. L.R L.l
  1211. . . -> . .
  1212. l.r R.r
  1213. @end example
  1214. @item 1
  1215. Rotate by 90 degrees clockwise, that is:
  1216. @example
  1217. L.R l.L
  1218. . . -> . .
  1219. l.r r.R
  1220. @end example
  1221. @item 2
  1222. Rotate by 90 degrees counterclockwise, that is:
  1223. @example
  1224. L.R R.r
  1225. . . -> . .
  1226. l.r L.l
  1227. @end example
  1228. @item 3
  1229. Rotate by 90 degrees clockwise and vertically flip, that is:
  1230. @example
  1231. L.R r.R
  1232. . . -> . .
  1233. l.r l.L
  1234. @end example
  1235. @end table
  1236. @section unsharp
  1237. Sharpen or blur the input video.
  1238. It accepts the following parameters:
  1239. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1240. Negative values for the amount will blur the input video, while positive
  1241. values will sharpen. All parameters are optional and default to the
  1242. equivalent of the string '5:5:1.0:5:5:0.0'.
  1243. @table @option
  1244. @item luma_msize_x
  1245. Set the luma matrix horizontal size. It can be an integer between 3
  1246. and 13, default value is 5.
  1247. @item luma_msize_y
  1248. Set the luma matrix vertical size. It can be an integer between 3
  1249. and 13, default value is 5.
  1250. @item luma_amount
  1251. Set the luma effect strength. It can be a float number between -2.0
  1252. and 5.0, default value is 1.0.
  1253. @item chroma_msize_x
  1254. Set the chroma matrix horizontal size. It can be an integer between 3
  1255. and 13, default value is 5.
  1256. @item chroma_msize_y
  1257. Set the chroma matrix vertical size. It can be an integer between 3
  1258. and 13, default value is 5.
  1259. @item luma_amount
  1260. Set the chroma effect strength. It can be a float number between -2.0
  1261. and 5.0, default value is 0.0.
  1262. @end table
  1263. @example
  1264. # Strong luma sharpen effect parameters
  1265. unsharp=7:7:2.5
  1266. # Strong blur of both luma and chroma parameters
  1267. unsharp=7:7:-2:7:7:-2
  1268. # Use the default values with @command{avconv}
  1269. ./avconv -i in.avi -vf "unsharp" out.mp4
  1270. @end example
  1271. @section vflip
  1272. Flip the input video vertically.
  1273. @example
  1274. ./avconv -i in.avi -vf "vflip" out.avi
  1275. @end example
  1276. @section yadif
  1277. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1278. filter").
  1279. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1280. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1281. following values:
  1282. @table @option
  1283. @item 0
  1284. output 1 frame for each frame
  1285. @item 1
  1286. output 1 frame for each field
  1287. @item 2
  1288. like 0 but skips spatial interlacing check
  1289. @item 3
  1290. like 1 but skips spatial interlacing check
  1291. @end table
  1292. Default value is 0.
  1293. @var{parity} specifies the picture field parity assumed for the input
  1294. interlaced video, accepts one of the following values:
  1295. @table @option
  1296. @item 0
  1297. assume top field first
  1298. @item 1
  1299. assume bottom field first
  1300. @item -1
  1301. enable automatic detection
  1302. @end table
  1303. Default value is -1.
  1304. If interlacing is unknown or decoder does not export this information,
  1305. top field first will be assumed.
  1306. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1307. and only deinterlace frames marked as interlaced
  1308. @table @option
  1309. @item 0
  1310. deinterlace all frames
  1311. @item 1
  1312. only deinterlace frames marked as interlaced
  1313. @end table
  1314. Default value is 0.
  1315. @c man end VIDEO FILTERS
  1316. @chapter Video Sources
  1317. @c man begin VIDEO SOURCES
  1318. Below is a description of the currently available video sources.
  1319. @section buffer
  1320. Buffer video frames, and make them available to the filter chain.
  1321. This source is mainly intended for a programmatic use, in particular
  1322. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1323. It accepts the following parameters:
  1324. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}
  1325. All the parameters need to be explicitly defined.
  1326. Follows the list of the accepted parameters.
  1327. @table @option
  1328. @item width, height
  1329. Specify the width and height of the buffered video frames.
  1330. @item pix_fmt_string
  1331. A string representing the pixel format of the buffered video frames.
  1332. It may be a number corresponding to a pixel format, or a pixel format
  1333. name.
  1334. @item timebase_num, timebase_den
  1335. Specify numerator and denomitor of the timebase assumed by the
  1336. timestamps of the buffered frames.
  1337. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1338. Specify numerator and denominator of the sample aspect ratio assumed
  1339. by the video frames.
  1340. @end table
  1341. For example:
  1342. @example
  1343. buffer=320:240:yuv410p:1:24:1:1
  1344. @end example
  1345. will instruct the source to accept video frames with size 320x240 and
  1346. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1347. square pixels (1:1 sample aspect ratio).
  1348. Since the pixel format with name "yuv410p" corresponds to the number 6
  1349. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1350. this example corresponds to:
  1351. @example
  1352. buffer=320:240:6:1:24
  1353. @end example
  1354. @section color
  1355. Provide an uniformly colored input.
  1356. It accepts the following parameters:
  1357. @var{color}:@var{frame_size}:@var{frame_rate}
  1358. Follows the description of the accepted parameters.
  1359. @table @option
  1360. @item color
  1361. Specify the color of the source. It can be the name of a color (case
  1362. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1363. alpha specifier. The default value is "black".
  1364. @item frame_size
  1365. Specify the size of the sourced video, it may be a string of the form
  1366. @var{width}x@var{height}, or the name of a size abbreviation. The
  1367. default value is "320x240".
  1368. @item frame_rate
  1369. Specify the frame rate of the sourced video, as the number of frames
  1370. generated per second. It has to be a string in the format
  1371. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1372. number or a valid video frame rate abbreviation. The default value is
  1373. "25".
  1374. @end table
  1375. For example the following graph description will generate a red source
  1376. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1377. frames per second, which will be overlayed over the source connected
  1378. to the pad with identifier "in".
  1379. @example
  1380. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1381. @end example
  1382. @section movie
  1383. Read a video stream from a movie container.
  1384. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1385. @var{movie_name} is the name of the resource to read (not necessarily
  1386. a file but also a device or a stream accessed through some protocol),
  1387. and @var{options} is an optional sequence of @var{key}=@var{value}
  1388. pairs, separated by ":".
  1389. The description of the accepted options follows.
  1390. @table @option
  1391. @item format_name, f
  1392. Specifies the format assumed for the movie to read, and can be either
  1393. the name of a container or an input device. If not specified the
  1394. format is guessed from @var{movie_name} or by probing.
  1395. @item seek_point, sp
  1396. Specifies the seek point in seconds, the frames will be output
  1397. starting from this seek point, the parameter is evaluated with
  1398. @code{av_strtod} so the numerical value may be suffixed by an IS
  1399. postfix. Default value is "0".
  1400. @item stream_index, si
  1401. Specifies the index of the video stream to read. If the value is -1,
  1402. the best suited video stream will be automatically selected. Default
  1403. value is "-1".
  1404. @end table
  1405. This filter allows to overlay a second video on top of main input of
  1406. a filtergraph as shown in this graph:
  1407. @example
  1408. input -----------> deltapts0 --> overlay --> output
  1409. ^
  1410. |
  1411. movie --> scale--> deltapts1 -------+
  1412. @end example
  1413. Some examples follow:
  1414. @example
  1415. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1416. # on top of the input labelled as "in".
  1417. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1418. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1419. # read from a video4linux2 device, and overlay it on top of the input
  1420. # labelled as "in"
  1421. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1422. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1423. @end example
  1424. @section nullsrc
  1425. Null video source, never return images. It is mainly useful as a
  1426. template and to be employed in analysis / debugging tools.
  1427. It accepts as optional parameter a string of the form
  1428. @var{width}:@var{height}:@var{timebase}.
  1429. @var{width} and @var{height} specify the size of the configured
  1430. source. The default values of @var{width} and @var{height} are
  1431. respectively 352 and 288 (corresponding to the CIF size format).
  1432. @var{timebase} specifies an arithmetic expression representing a
  1433. timebase. The expression can contain the constants "PI", "E", "PHI",
  1434. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1435. @section frei0r_src
  1436. Provide a frei0r source.
  1437. To enable compilation of this filter you need to install the frei0r
  1438. header and configure Libav with --enable-frei0r.
  1439. The source supports the syntax:
  1440. @example
  1441. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1442. @end example
  1443. @var{size} is the size of the video to generate, may be a string of the
  1444. form @var{width}x@var{height} or a frame size abbreviation.
  1445. @var{rate} is the rate of the video to generate, may be a string of
  1446. the form @var{num}/@var{den} or a frame rate abbreviation.
  1447. @var{src_name} is the name to the frei0r source to load. For more
  1448. information regarding frei0r and how to set the parameters read the
  1449. section @ref{frei0r} in the description of the video filters.
  1450. Some examples follow:
  1451. @example
  1452. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1453. # which is overlayed on the overlay filter main input
  1454. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1455. @end example
  1456. @section rgbtestsrc, testsrc
  1457. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1458. detecting RGB vs BGR issues. You should see a red, green and blue
  1459. stripe from top to bottom.
  1460. The @code{testsrc} source generates a test video pattern, showing a
  1461. color pattern, a scrolling gradient and a timestamp. This is mainly
  1462. intended for testing purposes.
  1463. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1464. separated by ":". The description of the accepted options follows.
  1465. @table @option
  1466. @item size, s
  1467. Specify the size of the sourced video, it may be a string of the form
  1468. @var{width}x@var{height}, or the name of a size abbreviation. The
  1469. default value is "320x240".
  1470. @item rate, r
  1471. Specify the frame rate of the sourced video, as the number of frames
  1472. generated per second. It has to be a string in the format
  1473. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1474. number or a valid video frame rate abbreviation. The default value is
  1475. "25".
  1476. @item sar
  1477. Set the sample aspect ratio of the sourced video.
  1478. @item duration
  1479. Set the video duration of the sourced video. The accepted syntax is:
  1480. @example
  1481. [-]HH[:MM[:SS[.m...]]]
  1482. [-]S+[.m...]
  1483. @end example
  1484. See also the function @code{av_parse_time()}.
  1485. If not specified, or the expressed duration is negative, the video is
  1486. supposed to be generated forever.
  1487. @end table
  1488. For example the following:
  1489. @example
  1490. testsrc=duration=5.3:size=qcif:rate=10
  1491. @end example
  1492. will generate a video with a duration of 5.3 seconds, with size
  1493. 176x144 and a framerate of 10 frames per second.
  1494. @c man end VIDEO SOURCES
  1495. @chapter Video Sinks
  1496. @c man begin VIDEO SINKS
  1497. Below is a description of the currently available video sinks.
  1498. @section nullsink
  1499. Null video sink, do absolutely nothing with the input video. It is
  1500. mainly useful as a template and to be employed in analysis / debugging
  1501. tools.
  1502. @c man end VIDEO SINKS