You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

932 lines
28KB

  1. /*
  2. * Flash Screen Video Version 2 encoder
  3. * Copyright (C) 2009 Joshua Warner
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Flash Screen Video Version 2 encoder
  24. * @author Joshua Warner
  25. */
  26. /* Differences from version 1 stream:
  27. * NOTE: Currently, the only player that supports version 2 streams is Adobe Flash Player itself.
  28. * * Supports sending only a range of scanlines in a block,
  29. * indicating a difference from the corresponding block in the last keyframe.
  30. * * Supports initializing the zlib dictionary with data from the corresponding
  31. * block in the last keyframe, to improve compression.
  32. * * Supports a hybrid 15-bit rgb / 7-bit palette color space.
  33. */
  34. /* TODO:
  35. * Don't keep Block structures for both current frame and keyframe.
  36. * Make better heuristics for deciding stream parameters (optimum_* functions). Currently these return constants.
  37. * Figure out how to encode palette information in the stream, choose an optimum palette at each keyframe.
  38. * Figure out how the zlibPrimeCompressCurrent flag works, implement support.
  39. * Find other sample files (that weren't generated here), develop a decoder.
  40. */
  41. #include <stdio.h>
  42. #include <stdlib.h>
  43. #include <zlib.h>
  44. #include "libavutil/imgutils.h"
  45. #include "avcodec.h"
  46. #include "internal.h"
  47. #include "put_bits.h"
  48. #include "bytestream.h"
  49. #define HAS_IFRAME_IMAGE 0x02
  50. #define HAS_PALLET_INFO 0x01
  51. #define COLORSPACE_BGR 0x00
  52. #define COLORSPACE_15_7 0x10
  53. #define HAS_DIFF_BLOCKS 0x04
  54. #define ZLIB_PRIME_COMPRESS_CURRENT 0x02
  55. #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01
  56. // Disables experimental "smart" parameter-choosing code, as well as the statistics that it depends on.
  57. // At the moment, the "smart" code is a great example of how the parameters *shouldn't* be chosen.
  58. #define FLASHSV2_DUMB
  59. typedef struct Block {
  60. uint8_t *enc;
  61. uint8_t *sl_begin, *sl_end;
  62. int enc_size;
  63. uint8_t *data;
  64. unsigned long data_size;
  65. uint8_t start, len;
  66. uint8_t dirty;
  67. uint8_t col, row, width, height;
  68. uint8_t flags;
  69. } Block;
  70. typedef struct Palette {
  71. unsigned colors[128];
  72. uint8_t index[1 << 15];
  73. } Palette;
  74. typedef struct FlashSV2Context {
  75. AVCodecContext *avctx;
  76. uint8_t *current_frame;
  77. uint8_t *key_frame;
  78. AVFrame frame;
  79. uint8_t *encbuffer;
  80. uint8_t *keybuffer;
  81. uint8_t *databuffer;
  82. uint8_t *blockbuffer;
  83. int blockbuffer_size;
  84. Block *frame_blocks;
  85. Block *key_blocks;
  86. int frame_size;
  87. int blocks_size;
  88. int use15_7, dist, comp;
  89. int rows, cols;
  90. int last_key_frame;
  91. int image_width, image_height;
  92. int block_width, block_height;
  93. uint8_t flags;
  94. uint8_t use_custom_palette;
  95. uint8_t palette_type; ///< 0=>default, 1=>custom - changed when palette regenerated.
  96. Palette palette;
  97. #ifndef FLASHSV2_DUMB
  98. double tot_blocks; ///< blocks encoded since last keyframe
  99. double diff_blocks; ///< blocks that were different since last keyframe
  100. double tot_lines; ///< total scanlines in image since last keyframe
  101. double diff_lines; ///< scanlines that were different since last keyframe
  102. double raw_size; ///< size of raw frames since last keyframe
  103. double comp_size; ///< size of compressed data since last keyframe
  104. double uncomp_size; ///< size of uncompressed data since last keyframe
  105. double total_bits; ///< total bits written to stream so far
  106. #endif
  107. } FlashSV2Context;
  108. static av_cold void cleanup(FlashSV2Context * s)
  109. {
  110. av_freep(&s->encbuffer);
  111. av_freep(&s->keybuffer);
  112. av_freep(&s->databuffer);
  113. av_freep(&s->blockbuffer);
  114. av_freep(&s->current_frame);
  115. av_freep(&s->key_frame);
  116. av_freep(&s->frame_blocks);
  117. av_freep(&s->key_blocks);
  118. }
  119. static void init_blocks(FlashSV2Context * s, Block * blocks,
  120. uint8_t * encbuf, uint8_t * databuf)
  121. {
  122. int row, col;
  123. Block *b;
  124. for (col = 0; col < s->cols; col++) {
  125. for (row = 0; row < s->rows; row++) {
  126. b = blocks + (col + row * s->cols);
  127. b->width = (col < s->cols - 1) ?
  128. s->block_width :
  129. s->image_width - col * s->block_width;
  130. b->height = (row < s->rows - 1) ?
  131. s->block_height :
  132. s->image_height - row * s->block_height;
  133. b->row = row;
  134. b->col = col;
  135. b->enc = encbuf;
  136. b->data = databuf;
  137. encbuf += b->width * b->height * 3;
  138. databuf += !databuf ? 0 : b->width * b->height * 6;
  139. }
  140. }
  141. }
  142. static void reset_stats(FlashSV2Context * s)
  143. {
  144. #ifndef FLASHSV2_DUMB
  145. s->diff_blocks = 0.1;
  146. s->tot_blocks = 1;
  147. s->diff_lines = 0.1;
  148. s->tot_lines = 1;
  149. s->raw_size = s->comp_size = s->uncomp_size = 10;
  150. #endif
  151. }
  152. static av_cold int flashsv2_encode_init(AVCodecContext * avctx)
  153. {
  154. FlashSV2Context *s = avctx->priv_data;
  155. s->avctx = avctx;
  156. s->comp = avctx->compression_level;
  157. if (s->comp == -1)
  158. s->comp = 9;
  159. if (s->comp < 0 || s->comp > 9) {
  160. av_log(avctx, AV_LOG_ERROR,
  161. "Compression level should be 0-9, not %d\n", s->comp);
  162. return -1;
  163. }
  164. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  165. av_log(avctx, AV_LOG_ERROR,
  166. "Input dimensions too large, input must be max 4096x4096 !\n");
  167. return -1;
  168. }
  169. if ((avctx->width < 16) || (avctx->height < 16)) {
  170. av_log(avctx, AV_LOG_ERROR,
  171. "Input dimensions too small, input must be at least 16x16 !\n");
  172. return -1;
  173. }
  174. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0)
  175. return -1;
  176. s->last_key_frame = 0;
  177. s->image_width = avctx->width;
  178. s->image_height = avctx->height;
  179. s->block_width = (s->image_width / 12) & ~15;
  180. s->block_height = (s->image_height / 12) & ~15;
  181. if(!s->block_width)
  182. s->block_width = 1;
  183. if(!s->block_height)
  184. s->block_height = 1;
  185. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  186. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  187. s->frame_size = s->image_width * s->image_height * 3;
  188. s->blocks_size = s->rows * s->cols * sizeof(Block);
  189. s->encbuffer = av_mallocz(s->frame_size);
  190. s->keybuffer = av_mallocz(s->frame_size);
  191. s->databuffer = av_mallocz(s->frame_size * 6);
  192. s->current_frame = av_mallocz(s->frame_size);
  193. s->key_frame = av_mallocz(s->frame_size);
  194. s->frame_blocks = av_mallocz(s->blocks_size);
  195. s->key_blocks = av_mallocz(s->blocks_size);
  196. s->blockbuffer = NULL;
  197. s->blockbuffer_size = 0;
  198. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  199. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  200. reset_stats(s);
  201. #ifndef FLASHSV2_DUMB
  202. s->total_bits = 1;
  203. #endif
  204. s->use_custom_palette = 0;
  205. s->palette_type = -1; // so that the palette will be generated in reconfigure_at_keyframe
  206. if (!s->encbuffer || !s->keybuffer || !s->databuffer
  207. || !s->current_frame || !s->key_frame || !s->key_blocks
  208. || !s->frame_blocks) {
  209. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  210. cleanup(s);
  211. return -1;
  212. }
  213. return 0;
  214. }
  215. static int new_key_frame(FlashSV2Context * s)
  216. {
  217. int i;
  218. memcpy(s->key_blocks, s->frame_blocks, s->blocks_size);
  219. memcpy(s->key_frame, s->current_frame, s->frame_size);
  220. for (i = 0; i < s->rows * s->cols; i++) {
  221. s->key_blocks[i].enc += (s->keybuffer - s->encbuffer);
  222. s->key_blocks[i].sl_begin = 0;
  223. s->key_blocks[i].sl_end = 0;
  224. s->key_blocks[i].data = 0;
  225. }
  226. memcpy(s->keybuffer, s->encbuffer, s->frame_size);
  227. return 0;
  228. }
  229. static int write_palette(FlashSV2Context * s, uint8_t * buf, int buf_size)
  230. {
  231. //this isn't implemented yet! Default palette only!
  232. return -1;
  233. }
  234. static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size)
  235. {
  236. PutBitContext pb;
  237. int buf_pos, len;
  238. if (buf_size < 5)
  239. return -1;
  240. init_put_bits(&pb, buf, buf_size * 8);
  241. put_bits(&pb, 4, (s->block_width >> 4) - 1);
  242. put_bits(&pb, 12, s->image_width);
  243. put_bits(&pb, 4, (s->block_height >> 4) - 1);
  244. put_bits(&pb, 12, s->image_height);
  245. flush_put_bits(&pb);
  246. buf_pos = 4;
  247. buf[buf_pos++] = s->flags;
  248. if (s->flags & HAS_PALLET_INFO) {
  249. len = write_palette(s, buf + buf_pos, buf_size - buf_pos);
  250. if (len < 0)
  251. return -1;
  252. buf_pos += len;
  253. }
  254. return buf_pos;
  255. }
  256. static int write_block(Block * b, uint8_t * buf, int buf_size)
  257. {
  258. int buf_pos = 0;
  259. unsigned block_size = b->data_size;
  260. if (b->flags & HAS_DIFF_BLOCKS)
  261. block_size += 2;
  262. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT)
  263. block_size += 2;
  264. if (block_size > 0)
  265. block_size += 1;
  266. if (buf_size < block_size + 2)
  267. return -1;
  268. buf[buf_pos++] = block_size >> 8;
  269. buf[buf_pos++] = block_size;
  270. if (block_size == 0)
  271. return buf_pos;
  272. buf[buf_pos++] = b->flags;
  273. if (b->flags & HAS_DIFF_BLOCKS) {
  274. buf[buf_pos++] = (b->start);
  275. buf[buf_pos++] = (b->len);
  276. }
  277. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) {
  278. //This feature of the format is poorly understood, and as of now, unused.
  279. buf[buf_pos++] = (b->col);
  280. buf[buf_pos++] = (b->row);
  281. }
  282. memcpy(buf + buf_pos, b->data, b->data_size);
  283. buf_pos += b->data_size;
  284. return buf_pos;
  285. }
  286. static int encode_zlib(Block * b, uint8_t * buf, unsigned long *buf_size, int comp)
  287. {
  288. int res = compress2(buf, buf_size, b->sl_begin, b->sl_end - b->sl_begin, comp);
  289. return res == Z_OK ? 0 : -1;
  290. }
  291. static int encode_zlibprime(Block * b, Block * prime, uint8_t * buf,
  292. int *buf_size, int comp)
  293. {
  294. z_stream s;
  295. int res;
  296. s.zalloc = NULL;
  297. s.zfree = NULL;
  298. s.opaque = NULL;
  299. res = deflateInit(&s, comp);
  300. if (res < 0)
  301. return -1;
  302. s.next_in = prime->enc;
  303. s.avail_in = prime->enc_size;
  304. while (s.avail_in > 0) {
  305. s.next_out = buf;
  306. s.avail_out = *buf_size;
  307. res = deflate(&s, Z_SYNC_FLUSH);
  308. if (res < 0)
  309. return -1;
  310. }
  311. s.next_in = b->sl_begin;
  312. s.avail_in = b->sl_end - b->sl_begin;
  313. s.next_out = buf;
  314. s.avail_out = *buf_size;
  315. res = deflate(&s, Z_FINISH);
  316. deflateEnd(&s);
  317. *buf_size -= s.avail_out;
  318. if (res != Z_STREAM_END)
  319. return -1;
  320. return 0;
  321. }
  322. static int encode_bgr(Block * b, const uint8_t * src, int stride)
  323. {
  324. int i;
  325. uint8_t *ptr = b->enc;
  326. for (i = 0; i < b->start; i++)
  327. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  328. b->sl_begin = ptr + i * b->width * 3;
  329. for (; i < b->start + b->len; i++)
  330. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  331. b->sl_end = ptr + i * b->width * 3;
  332. for (; i < b->height; i++)
  333. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  334. b->enc_size = ptr + i * b->width * 3 - b->enc;
  335. return b->enc_size;
  336. }
  337. static inline unsigned pixel_color15(const uint8_t * src)
  338. {
  339. return (src[0] >> 3) | ((src[1] & 0xf8) << 2) | ((src[2] & 0xf8) << 7);
  340. }
  341. static inline unsigned int chroma_diff(unsigned int c1, unsigned int c2)
  342. {
  343. unsigned int t1 = (c1 & 0x000000ff) + ((c1 & 0x0000ff00) >> 8) + ((c1 & 0x00ff0000) >> 16);
  344. unsigned int t2 = (c2 & 0x000000ff) + ((c2 & 0x0000ff00) >> 8) + ((c2 & 0x00ff0000) >> 16);
  345. return abs(t1 - t2) + abs((c1 & 0x000000ff) - (c2 & 0x000000ff)) +
  346. abs(((c1 & 0x0000ff00) >> 8) - ((c2 & 0x0000ff00) >> 8)) +
  347. abs(((c1 & 0x00ff0000) >> 16) - ((c2 & 0x00ff0000) >> 16));
  348. }
  349. static inline int pixel_color7_fast(Palette * palette, unsigned c15)
  350. {
  351. return palette->index[c15];
  352. }
  353. static int pixel_color7_slow(Palette * palette, unsigned color)
  354. {
  355. int i, min = 0x7fffffff;
  356. int minc = -1;
  357. for (i = 0; i < 128; i++) {
  358. int c1 = palette->colors[i];
  359. int diff = chroma_diff(c1, color);
  360. if (diff < min) {
  361. min = diff;
  362. minc = i;
  363. }
  364. }
  365. return minc;
  366. }
  367. static inline unsigned pixel_bgr(const uint8_t * src)
  368. {
  369. return (src[0]) | (src[1] << 8) | (src[2] << 16);
  370. }
  371. static int write_pixel_15_7(Palette * palette, uint8_t * dest, const uint8_t * src,
  372. int dist)
  373. {
  374. unsigned c15 = pixel_color15(src);
  375. unsigned color = pixel_bgr(src);
  376. int d15 = chroma_diff(color, color & 0x00f8f8f8);
  377. int c7 = pixel_color7_fast(palette, c15);
  378. int d7 = chroma_diff(color, palette->colors[c7]);
  379. if (dist + d15 >= d7) {
  380. dest[0] = c7;
  381. return 1;
  382. } else {
  383. dest[0] = 0x80 | (c15 >> 8);
  384. dest[1] = c15 & 0xff;
  385. return 2;
  386. }
  387. }
  388. static int update_palette_index(Palette * palette)
  389. {
  390. int r, g, b;
  391. unsigned int bgr, c15, index;
  392. for (r = 4; r < 256; r += 8) {
  393. for (g = 4; g < 256; g += 8) {
  394. for (b = 4; b < 256; b += 8) {
  395. bgr = b | (g << 8) | (r << 16);
  396. c15 = (b >> 3) | ((g & 0xf8) << 2) | ((r & 0xf8) << 7);
  397. index = pixel_color7_slow(palette, bgr);
  398. palette->index[c15] = index;
  399. }
  400. }
  401. }
  402. return 0;
  403. }
  404. static const unsigned int default_screen_video_v2_palette[128] = {
  405. 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF,
  406. 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300,
  407. 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066,
  408. 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900,
  409. 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC,
  410. 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF,
  411. 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF,
  412. 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF,
  413. 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC,
  414. 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC,
  415. 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699,
  416. 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999,
  417. 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966,
  418. 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666,
  419. 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933,
  420. 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333,
  421. 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300,
  422. 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633,
  423. 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966,
  424. 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99,
  425. 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB,
  426. 0x00DDDDDD, 0x00EEEEEE
  427. };
  428. static int generate_default_palette(Palette * palette)
  429. {
  430. memcpy(palette->colors, default_screen_video_v2_palette,
  431. sizeof(default_screen_video_v2_palette));
  432. return update_palette_index(palette);
  433. }
  434. static int generate_optimum_palette(Palette * palette, const uint8_t * image,
  435. int width, int height, int stride)
  436. {
  437. //this isn't implemented yet! Default palette only!
  438. return -1;
  439. }
  440. static inline int encode_15_7_sl(Palette * palette, uint8_t * dest,
  441. const uint8_t * src, int width, int dist)
  442. {
  443. int len = 0, x;
  444. for (x = 0; x < width; x++) {
  445. len += write_pixel_15_7(palette, dest + len, src + 3 * x, dist);
  446. }
  447. return len;
  448. }
  449. static int encode_15_7(Palette * palette, Block * b, const uint8_t * src,
  450. int stride, int dist)
  451. {
  452. int i;
  453. uint8_t *ptr = b->enc;
  454. for (i = 0; i < b->start; i++)
  455. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  456. b->sl_begin = ptr;
  457. for (; i < b->start + b->len; i++)
  458. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  459. b->sl_end = ptr;
  460. for (; i < b->height; i++)
  461. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  462. b->enc_size = ptr - b->enc;
  463. return b->enc_size;
  464. }
  465. static int encode_block(FlashSV2Context *s, Palette * palette, Block * b,
  466. Block * prev, const uint8_t * src, int stride, int comp,
  467. int dist, int keyframe)
  468. {
  469. unsigned buf_size = b->width * b->height * 6;
  470. uint8_t *buf = s->blockbuffer;
  471. int res;
  472. if (b->flags & COLORSPACE_15_7) {
  473. encode_15_7(palette, b, src, stride, dist);
  474. } else {
  475. encode_bgr(b, src, stride);
  476. }
  477. if (b->len > 0) {
  478. b->data_size = buf_size;
  479. res = encode_zlib(b, b->data, &b->data_size, comp);
  480. if (res)
  481. return res;
  482. if (!keyframe) {
  483. res = encode_zlibprime(b, prev, buf, &buf_size, comp);
  484. if (res)
  485. return res;
  486. if (buf_size < b->data_size) {
  487. b->data_size = buf_size;
  488. memcpy(b->data, buf, buf_size);
  489. b->flags |= ZLIB_PRIME_COMPRESS_PREVIOUS;
  490. }
  491. }
  492. } else {
  493. b->data_size = 0;
  494. }
  495. return 0;
  496. }
  497. static int compare_sl(FlashSV2Context * s, Block * b, const uint8_t * src,
  498. uint8_t * frame, uint8_t * key, int y, int keyframe)
  499. {
  500. if (memcmp(src, frame, b->width * 3) != 0) {
  501. b->dirty = 1;
  502. memcpy(frame, src, b->width * 3);
  503. #ifndef FLASHSV2_DUMB
  504. s->diff_lines++;
  505. #endif
  506. }
  507. if (memcmp(src, key, b->width * 3) != 0) {
  508. if (b->len == 0)
  509. b->start = y;
  510. b->len = y + 1 - b->start;
  511. }
  512. return 0;
  513. }
  514. static int mark_all_blocks(FlashSV2Context * s, const uint8_t * src, int stride,
  515. int keyframe)
  516. {
  517. int sl, rsl, col, pos, possl;
  518. Block *b;
  519. for (sl = s->image_height - 1; sl >= 0; sl--) {
  520. for (col = 0; col < s->cols; col++) {
  521. rsl = s->image_height - sl - 1;
  522. b = s->frame_blocks + col + rsl / s->block_height * s->cols;
  523. possl = stride * sl + col * s->block_width * 3;
  524. pos = s->image_width * rsl * 3 + col * s->block_width * 3;
  525. compare_sl(s, b, src + possl, s->current_frame + pos,
  526. s->key_frame + pos, rsl % s->block_height, keyframe);
  527. }
  528. }
  529. #ifndef FLASHSV2_DUMB
  530. s->tot_lines += s->image_height * s->cols;
  531. #endif
  532. return 0;
  533. }
  534. static int encode_all_blocks(FlashSV2Context * s, int keyframe)
  535. {
  536. int row, col, res;
  537. uint8_t *data;
  538. Block *b, *prev;
  539. for (row = 0; row < s->rows; row++) {
  540. for (col = 0; col < s->cols; col++) {
  541. b = s->frame_blocks + (row * s->cols + col);
  542. prev = s->key_blocks + (row * s->cols + col);
  543. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  544. if (keyframe) {
  545. b->start = 0;
  546. b->len = b->height;
  547. } else if (!b->dirty) {
  548. b->start = 0;
  549. b->len = 0;
  550. b->data_size = 0;
  551. continue;
  552. } else if (b->start != 0 || b->len != b->height) {
  553. b->flags |= HAS_DIFF_BLOCKS;
  554. }
  555. data = s->current_frame + s->image_width * 3 * s->block_height * row + s->block_width * col * 3;
  556. res = encode_block(s, &s->palette, b, prev, data, s->image_width * 3, s->comp, s->dist, keyframe);
  557. #ifndef FLASHSV2_DUMB
  558. if (b->dirty)
  559. s->diff_blocks++;
  560. s->comp_size += b->data_size;
  561. s->uncomp_size += b->enc_size;
  562. #endif
  563. if (res)
  564. return res;
  565. }
  566. }
  567. #ifndef FLASHSV2_DUMB
  568. s->raw_size += s->image_width * s->image_height * 3;
  569. s->tot_blocks += s->rows * s->cols;
  570. #endif
  571. return 0;
  572. }
  573. static int write_all_blocks(FlashSV2Context * s, uint8_t * buf,
  574. int buf_size)
  575. {
  576. int row, col, buf_pos = 0, len;
  577. Block *b;
  578. for (row = 0; row < s->rows; row++) {
  579. for (col = 0; col < s->cols; col++) {
  580. b = s->frame_blocks + row * s->cols + col;
  581. len = write_block(b, buf + buf_pos, buf_size - buf_pos);
  582. b->start = b->len = b->dirty = 0;
  583. if (len < 0)
  584. return len;
  585. buf_pos += len;
  586. }
  587. }
  588. return buf_pos;
  589. }
  590. static int write_bitstream(FlashSV2Context * s, const uint8_t * src, int stride,
  591. uint8_t * buf, int buf_size, int keyframe)
  592. {
  593. int buf_pos, res;
  594. res = mark_all_blocks(s, src, stride, keyframe);
  595. if (res)
  596. return res;
  597. res = encode_all_blocks(s, keyframe);
  598. if (res)
  599. return res;
  600. res = write_header(s, buf, buf_size);
  601. if (res < 0) {
  602. return res;
  603. } else {
  604. buf_pos = res;
  605. }
  606. res = write_all_blocks(s, buf + buf_pos, buf_size - buf_pos);
  607. if (res < 0)
  608. return res;
  609. buf_pos += res;
  610. #ifndef FLASHSV2_DUMB
  611. s->total_bits += ((double) buf_pos) * 8.0;
  612. #endif
  613. return buf_pos;
  614. }
  615. static void recommend_keyframe(FlashSV2Context * s, int *keyframe)
  616. {
  617. #ifndef FLASHSV2_DUMB
  618. double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio;
  619. if (s->avctx->gop_size > 0) {
  620. block_ratio = s->diff_blocks / s->tot_blocks;
  621. line_ratio = s->diff_lines / s->tot_lines;
  622. enc_ratio = s->uncomp_size / s->raw_size;
  623. comp_ratio = s->comp_size / s->uncomp_size;
  624. data_ratio = s->comp_size / s->raw_size;
  625. if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) {
  626. *keyframe = 1;
  627. return;
  628. }
  629. }
  630. #else
  631. return;
  632. #endif
  633. }
  634. static const double block_size_fraction = 1.0 / 300;
  635. static int optimum_block_width(FlashSV2Context * s)
  636. {
  637. #ifndef FLASHSV2_DUMB
  638. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  639. double width = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_width;
  640. int pwidth = ((int) width);
  641. return FFCLIP(pwidth & ~15, 256, 16);
  642. #else
  643. return 64;
  644. #endif
  645. }
  646. static int optimum_block_height(FlashSV2Context * s)
  647. {
  648. #ifndef FLASHSV2_DUMB
  649. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  650. double height = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_height;
  651. int pheight = ((int) height);
  652. return FFCLIP(pheight & ~15, 256, 16);
  653. #else
  654. return 64;
  655. #endif
  656. }
  657. static const double use15_7_threshold = 8192;
  658. static int optimum_use15_7(FlashSV2Context * s)
  659. {
  660. #ifndef FLASHSV2_DUMB
  661. double ideal = ((double)(s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame)) /
  662. ((double) s->avctx->time_base.num) * s->avctx->frame_number;
  663. if (ideal + use15_7_threshold < s->total_bits) {
  664. return 1;
  665. } else {
  666. return 0;
  667. }
  668. #else
  669. return s->avctx->global_quality == 0;
  670. #endif
  671. }
  672. static const double color15_7_factor = 100;
  673. static int optimum_dist(FlashSV2Context * s)
  674. {
  675. #ifndef FLASHSV2_DUMB
  676. double ideal =
  677. s->avctx->bit_rate * s->avctx->time_base.den *
  678. s->avctx->ticks_per_frame;
  679. int dist = pow((s->total_bits / ideal) * color15_7_factor, 3);
  680. av_log(s->avctx, AV_LOG_DEBUG, "dist: %d\n", dist);
  681. return dist;
  682. #else
  683. return 15;
  684. #endif
  685. }
  686. static int reconfigure_at_keyframe(FlashSV2Context * s, const uint8_t * image,
  687. int stride)
  688. {
  689. int update_palette = 0;
  690. int res;
  691. int block_width = optimum_block_width (s);
  692. int block_height = optimum_block_height(s);
  693. s->rows = (s->image_height + block_height - 1) / block_height;
  694. s->cols = (s->image_width + block_width - 1) / block_width;
  695. if (block_width != s->block_width || block_height != s->block_height) {
  696. s->block_width = block_width;
  697. s->block_height = block_height;
  698. if (s->rows * s->cols > s->blocks_size / sizeof(Block)) {
  699. s->frame_blocks = av_realloc(s->frame_blocks, s->rows * s->cols * sizeof(Block));
  700. s->key_blocks = av_realloc(s->key_blocks, s->cols * s->rows * sizeof(Block));
  701. if (!s->frame_blocks || !s->key_blocks) {
  702. av_log(s->avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  703. return -1;
  704. }
  705. s->blocks_size = s->rows * s->cols * sizeof(Block);
  706. }
  707. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  708. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  709. av_fast_malloc(&s->blockbuffer, &s->blockbuffer_size, block_width * block_height * 6);
  710. if (!s->blockbuffer) {
  711. av_log(s->avctx, AV_LOG_ERROR, "Could not allocate block buffer.\n");
  712. return AVERROR(ENOMEM);
  713. }
  714. }
  715. s->use15_7 = optimum_use15_7(s);
  716. if (s->use15_7) {
  717. if ((s->use_custom_palette && s->palette_type != 1) || update_palette) {
  718. res = generate_optimum_palette(&s->palette, image, s->image_width, s->image_height, stride);
  719. if (res)
  720. return res;
  721. s->palette_type = 1;
  722. av_log(s->avctx, AV_LOG_DEBUG, "Generated optimum palette\n");
  723. } else if (!s->use_custom_palette && s->palette_type != 0) {
  724. res = generate_default_palette(&s->palette);
  725. if (res)
  726. return res;
  727. s->palette_type = 0;
  728. av_log(s->avctx, AV_LOG_DEBUG, "Generated default palette\n");
  729. }
  730. }
  731. reset_stats(s);
  732. return 0;
  733. }
  734. static int flashsv2_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  735. const AVFrame *pict, int *got_packet)
  736. {
  737. FlashSV2Context *const s = avctx->priv_data;
  738. AVFrame *const p = &s->frame;
  739. int res;
  740. int keyframe = 0;
  741. *p = *pict;
  742. if ((res = ff_alloc_packet2(avctx, pkt, s->frame_size + FF_MIN_BUFFER_SIZE)) < 0)
  743. return res;
  744. /* First frame needs to be a keyframe */
  745. if (avctx->frame_number == 0)
  746. keyframe = 1;
  747. /* Check the placement of keyframes */
  748. if (avctx->gop_size > 0) {
  749. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size)
  750. keyframe = 1;
  751. }
  752. if (!keyframe
  753. && avctx->frame_number > s->last_key_frame + avctx->keyint_min) {
  754. recommend_keyframe(s, &keyframe);
  755. if (keyframe)
  756. av_log(avctx, AV_LOG_DEBUG, "Recommending key frame at frame %d\n", avctx->frame_number);
  757. }
  758. if (keyframe) {
  759. res = reconfigure_at_keyframe(s, p->data[0], p->linesize[0]);
  760. if (res)
  761. return res;
  762. }
  763. if (s->use15_7)
  764. s->dist = optimum_dist(s);
  765. res = write_bitstream(s, p->data[0], p->linesize[0], pkt->data, pkt->size, keyframe);
  766. if (keyframe) {
  767. new_key_frame(s);
  768. p->pict_type = AV_PICTURE_TYPE_I;
  769. p->key_frame = 1;
  770. s->last_key_frame = avctx->frame_number;
  771. pkt->flags |= AV_PKT_FLAG_KEY;
  772. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n", avctx->frame_number);
  773. } else {
  774. p->pict_type = AV_PICTURE_TYPE_P;
  775. p->key_frame = 0;
  776. }
  777. avctx->coded_frame = p;
  778. pkt->size = res;
  779. *got_packet = 1;
  780. return 0;
  781. }
  782. static av_cold int flashsv2_encode_end(AVCodecContext * avctx)
  783. {
  784. FlashSV2Context *s = avctx->priv_data;
  785. cleanup(s);
  786. return 0;
  787. }
  788. AVCodec ff_flashsv2_encoder = {
  789. .name = "flashsv2",
  790. .type = AVMEDIA_TYPE_VIDEO,
  791. .id = AV_CODEC_ID_FLASHSV2,
  792. .priv_data_size = sizeof(FlashSV2Context),
  793. .init = flashsv2_encode_init,
  794. .encode2 = flashsv2_encode_frame,
  795. .close = flashsv2_encode_end,
  796. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_BGR24, PIX_FMT_NONE },
  797. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video Version 2"),
  798. };