You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4370 lines
155KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  48. 9262, 10202, 10756, 11310, 12228, 15078
  49. };
  50. /**
  51. * Init VC-1 specific tables and VC1Context members
  52. * @param v The VC1Context to initialize
  53. * @return Status
  54. */
  55. static int vc1_init_common(VC1Context *v)
  56. {
  57. static int done = 0;
  58. int i = 0;
  59. static VLC_TYPE vlc_table[15078][2];
  60. v->hrd_rate = v->hrd_buffer = NULL;
  61. /* VLC tables */
  62. if(!done)
  63. {
  64. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  65. ff_vc1_bfraction_bits, 1, 1,
  66. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  67. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  68. ff_vc1_norm2_bits, 1, 1,
  69. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  70. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  71. ff_vc1_norm6_bits, 1, 1,
  72. ff_vc1_norm6_codes, 2, 2, 556);
  73. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  74. ff_vc1_imode_bits, 1, 1,
  75. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  76. for (i=0; i<3; i++)
  77. {
  78. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  79. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  80. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  81. ff_vc1_ttmb_bits[i], 1, 1,
  82. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  83. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  84. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  85. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  86. ff_vc1_ttblk_bits[i], 1, 1,
  87. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  89. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  90. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  91. ff_vc1_subblkpat_bits[i], 1, 1,
  92. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. }
  94. for(i=0; i<4; i++)
  95. {
  96. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  97. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  98. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  99. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  100. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  101. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  102. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  103. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  104. ff_vc1_cbpcy_p_bits[i], 1, 1,
  105. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  106. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  107. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  108. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  109. ff_vc1_mv_diff_bits[i], 1, 1,
  110. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  111. }
  112. for(i=0; i<8; i++){
  113. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  114. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  115. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  116. &vc1_ac_tables[i][0][1], 8, 4,
  117. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. //FIXME: switching to INIT_VLC_STATIC() results in incorrect decoding
  120. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  121. &ff_msmp4_mb_i_table[0][1], 4, 2,
  122. &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
  123. done = 1;
  124. }
  125. /* Other defaults */
  126. v->pq = -1;
  127. v->mvrange = 0; /* 7.1.1.18, p80 */
  128. return 0;
  129. }
  130. /***********************************************************************/
  131. /**
  132. * @defgroup vc1bitplane VC-1 Bitplane decoding
  133. * @see 8.7, p56
  134. * @{
  135. */
  136. /**
  137. * Imode types
  138. * @{
  139. */
  140. enum Imode {
  141. IMODE_RAW,
  142. IMODE_NORM2,
  143. IMODE_DIFF2,
  144. IMODE_NORM6,
  145. IMODE_DIFF6,
  146. IMODE_ROWSKIP,
  147. IMODE_COLSKIP
  148. };
  149. /** @} */ //imode defines
  150. /** Decode rows by checking if they are skipped
  151. * @param plane Buffer to store decoded bits
  152. * @param[in] width Width of this buffer
  153. * @param[in] height Height of this buffer
  154. * @param[in] stride of this buffer
  155. */
  156. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  157. int x, y;
  158. for (y=0; y<height; y++){
  159. if (!get_bits1(gb)) //rowskip
  160. memset(plane, 0, width);
  161. else
  162. for (x=0; x<width; x++)
  163. plane[x] = get_bits1(gb);
  164. plane += stride;
  165. }
  166. }
  167. /** Decode columns by checking if they are skipped
  168. * @param plane Buffer to store decoded bits
  169. * @param[in] width Width of this buffer
  170. * @param[in] height Height of this buffer
  171. * @param[in] stride of this buffer
  172. * @todo FIXME: Optimize
  173. */
  174. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  175. int x, y;
  176. for (x=0; x<width; x++){
  177. if (!get_bits1(gb)) //colskip
  178. for (y=0; y<height; y++)
  179. plane[y*stride] = 0;
  180. else
  181. for (y=0; y<height; y++)
  182. plane[y*stride] = get_bits1(gb);
  183. plane ++;
  184. }
  185. }
  186. /** Decode a bitplane's bits
  187. * @param data bitplane where to store the decode bits
  188. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  189. * @param v VC-1 context for bit reading and logging
  190. * @return Status
  191. * @todo FIXME: Optimize
  192. */
  193. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  194. {
  195. GetBitContext *gb = &v->s.gb;
  196. int imode, x, y, code, offset;
  197. uint8_t invert, *planep = data;
  198. int width, height, stride;
  199. width = v->s.mb_width;
  200. height = v->s.mb_height;
  201. stride = v->s.mb_stride;
  202. invert = get_bits1(gb);
  203. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  204. *raw_flag = 0;
  205. switch (imode)
  206. {
  207. case IMODE_RAW:
  208. //Data is actually read in the MB layer (same for all tests == "raw")
  209. *raw_flag = 1; //invert ignored
  210. return invert;
  211. case IMODE_DIFF2:
  212. case IMODE_NORM2:
  213. if ((height * width) & 1)
  214. {
  215. *planep++ = get_bits1(gb);
  216. offset = 1;
  217. }
  218. else offset = 0;
  219. // decode bitplane as one long line
  220. for (y = offset; y < height * width; y += 2) {
  221. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  222. *planep++ = code & 1;
  223. offset++;
  224. if(offset == width) {
  225. offset = 0;
  226. planep += stride - width;
  227. }
  228. *planep++ = code >> 1;
  229. offset++;
  230. if(offset == width) {
  231. offset = 0;
  232. planep += stride - width;
  233. }
  234. }
  235. break;
  236. case IMODE_DIFF6:
  237. case IMODE_NORM6:
  238. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  239. for(y = 0; y < height; y+= 3) {
  240. for(x = width & 1; x < width; x += 2) {
  241. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  242. if(code < 0){
  243. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  244. return -1;
  245. }
  246. planep[x + 0] = (code >> 0) & 1;
  247. planep[x + 1] = (code >> 1) & 1;
  248. planep[x + 0 + stride] = (code >> 2) & 1;
  249. planep[x + 1 + stride] = (code >> 3) & 1;
  250. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  251. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  252. }
  253. planep += stride * 3;
  254. }
  255. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  256. } else { // 3x2
  257. planep += (height & 1) * stride;
  258. for(y = height & 1; y < height; y += 2) {
  259. for(x = width % 3; x < width; x += 3) {
  260. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  261. if(code < 0){
  262. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  263. return -1;
  264. }
  265. planep[x + 0] = (code >> 0) & 1;
  266. planep[x + 1] = (code >> 1) & 1;
  267. planep[x + 2] = (code >> 2) & 1;
  268. planep[x + 0 + stride] = (code >> 3) & 1;
  269. planep[x + 1 + stride] = (code >> 4) & 1;
  270. planep[x + 2 + stride] = (code >> 5) & 1;
  271. }
  272. planep += stride * 2;
  273. }
  274. x = width % 3;
  275. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  276. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  277. }
  278. break;
  279. case IMODE_ROWSKIP:
  280. decode_rowskip(data, width, height, stride, &v->s.gb);
  281. break;
  282. case IMODE_COLSKIP:
  283. decode_colskip(data, width, height, stride, &v->s.gb);
  284. break;
  285. default: break;
  286. }
  287. /* Applying diff operator */
  288. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  289. {
  290. planep = data;
  291. planep[0] ^= invert;
  292. for (x=1; x<width; x++)
  293. planep[x] ^= planep[x-1];
  294. for (y=1; y<height; y++)
  295. {
  296. planep += stride;
  297. planep[0] ^= planep[-stride];
  298. for (x=1; x<width; x++)
  299. {
  300. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  301. else planep[x] ^= planep[x-1];
  302. }
  303. }
  304. }
  305. else if (invert)
  306. {
  307. planep = data;
  308. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  309. }
  310. return (imode<<1) + invert;
  311. }
  312. /** @} */ //Bitplane group
  313. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  314. {
  315. int i, j;
  316. if(!s->first_slice_line)
  317. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  318. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  319. for(i = !s->mb_x*8; i < 16; i += 8)
  320. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  321. for(j = 0; j < 2; j++){
  322. if(!s->first_slice_line)
  323. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  324. if(s->mb_x)
  325. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  326. }
  327. }
  328. /***********************************************************************/
  329. /** VOP Dquant decoding
  330. * @param v VC-1 Context
  331. */
  332. static int vop_dquant_decoding(VC1Context *v)
  333. {
  334. GetBitContext *gb = &v->s.gb;
  335. int pqdiff;
  336. //variable size
  337. if (v->dquant == 2)
  338. {
  339. pqdiff = get_bits(gb, 3);
  340. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  341. else v->altpq = v->pq + pqdiff + 1;
  342. }
  343. else
  344. {
  345. v->dquantfrm = get_bits1(gb);
  346. if ( v->dquantfrm )
  347. {
  348. v->dqprofile = get_bits(gb, 2);
  349. switch (v->dqprofile)
  350. {
  351. case DQPROFILE_SINGLE_EDGE:
  352. case DQPROFILE_DOUBLE_EDGES:
  353. v->dqsbedge = get_bits(gb, 2);
  354. break;
  355. case DQPROFILE_ALL_MBS:
  356. v->dqbilevel = get_bits1(gb);
  357. if(!v->dqbilevel)
  358. v->halfpq = 0;
  359. default: break; //Forbidden ?
  360. }
  361. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  362. {
  363. pqdiff = get_bits(gb, 3);
  364. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  365. else v->altpq = v->pq + pqdiff + 1;
  366. }
  367. }
  368. }
  369. return 0;
  370. }
  371. /** Put block onto picture
  372. */
  373. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  374. {
  375. uint8_t *Y;
  376. int ys, us, vs;
  377. DSPContext *dsp = &v->s.dsp;
  378. if(v->rangeredfrm) {
  379. int i, j, k;
  380. for(k = 0; k < 6; k++)
  381. for(j = 0; j < 8; j++)
  382. for(i = 0; i < 8; i++)
  383. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  384. }
  385. ys = v->s.current_picture.linesize[0];
  386. us = v->s.current_picture.linesize[1];
  387. vs = v->s.current_picture.linesize[2];
  388. Y = v->s.dest[0];
  389. dsp->put_pixels_clamped(block[0], Y, ys);
  390. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  391. Y += ys * 8;
  392. dsp->put_pixels_clamped(block[2], Y, ys);
  393. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  394. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  395. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  396. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  397. }
  398. }
  399. /** Do motion compensation over 1 macroblock
  400. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  401. */
  402. static void vc1_mc_1mv(VC1Context *v, int dir)
  403. {
  404. MpegEncContext *s = &v->s;
  405. DSPContext *dsp = &v->s.dsp;
  406. uint8_t *srcY, *srcU, *srcV;
  407. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  408. if(!v->s.last_picture.data[0])return;
  409. mx = s->mv[dir][0][0];
  410. my = s->mv[dir][0][1];
  411. // store motion vectors for further use in B frames
  412. if(s->pict_type == FF_P_TYPE) {
  413. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  414. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  415. }
  416. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  417. uvmy = (my + ((my & 3) == 3)) >> 1;
  418. if(v->fastuvmc) {
  419. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  420. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  421. }
  422. if(!dir) {
  423. srcY = s->last_picture.data[0];
  424. srcU = s->last_picture.data[1];
  425. srcV = s->last_picture.data[2];
  426. } else {
  427. srcY = s->next_picture.data[0];
  428. srcU = s->next_picture.data[1];
  429. srcV = s->next_picture.data[2];
  430. }
  431. src_x = s->mb_x * 16 + (mx >> 2);
  432. src_y = s->mb_y * 16 + (my >> 2);
  433. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  434. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  435. if(v->profile != PROFILE_ADVANCED){
  436. src_x = av_clip( src_x, -16, s->mb_width * 16);
  437. src_y = av_clip( src_y, -16, s->mb_height * 16);
  438. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  439. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  440. }else{
  441. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  442. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  443. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  444. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  445. }
  446. srcY += src_y * s->linesize + src_x;
  447. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  448. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  449. /* for grayscale we should not try to read from unknown area */
  450. if(s->flags & CODEC_FLAG_GRAY) {
  451. srcU = s->edge_emu_buffer + 18 * s->linesize;
  452. srcV = s->edge_emu_buffer + 18 * s->linesize;
  453. }
  454. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  455. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  456. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  457. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  458. srcY -= s->mspel * (1 + s->linesize);
  459. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  460. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  461. srcY = s->edge_emu_buffer;
  462. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  463. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  464. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  465. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  466. srcU = uvbuf;
  467. srcV = uvbuf + 16;
  468. /* if we deal with range reduction we need to scale source blocks */
  469. if(v->rangeredfrm) {
  470. int i, j;
  471. uint8_t *src, *src2;
  472. src = srcY;
  473. for(j = 0; j < 17 + s->mspel*2; j++) {
  474. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  475. src += s->linesize;
  476. }
  477. src = srcU; src2 = srcV;
  478. for(j = 0; j < 9; j++) {
  479. for(i = 0; i < 9; i++) {
  480. src[i] = ((src[i] - 128) >> 1) + 128;
  481. src2[i] = ((src2[i] - 128) >> 1) + 128;
  482. }
  483. src += s->uvlinesize;
  484. src2 += s->uvlinesize;
  485. }
  486. }
  487. /* if we deal with intensity compensation we need to scale source blocks */
  488. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  489. int i, j;
  490. uint8_t *src, *src2;
  491. src = srcY;
  492. for(j = 0; j < 17 + s->mspel*2; j++) {
  493. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  494. src += s->linesize;
  495. }
  496. src = srcU; src2 = srcV;
  497. for(j = 0; j < 9; j++) {
  498. for(i = 0; i < 9; i++) {
  499. src[i] = v->lutuv[src[i]];
  500. src2[i] = v->lutuv[src2[i]];
  501. }
  502. src += s->uvlinesize;
  503. src2 += s->uvlinesize;
  504. }
  505. }
  506. srcY += s->mspel * (1 + s->linesize);
  507. }
  508. if(s->mspel) {
  509. dxy = ((my & 3) << 2) | (mx & 3);
  510. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  511. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  512. srcY += s->linesize * 8;
  513. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  514. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  515. } else { // hpel mc - always used for luma
  516. dxy = (my & 2) | ((mx & 2) >> 1);
  517. if(!v->rnd)
  518. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  519. else
  520. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  521. }
  522. if(s->flags & CODEC_FLAG_GRAY) return;
  523. /* Chroma MC always uses qpel bilinear */
  524. uvmx = (uvmx&3)<<1;
  525. uvmy = (uvmy&3)<<1;
  526. if(!v->rnd){
  527. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  528. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  529. }else{
  530. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  531. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  532. }
  533. }
  534. /** Do motion compensation for 4-MV macroblock - luminance block
  535. */
  536. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  537. {
  538. MpegEncContext *s = &v->s;
  539. DSPContext *dsp = &v->s.dsp;
  540. uint8_t *srcY;
  541. int dxy, mx, my, src_x, src_y;
  542. int off;
  543. if(!v->s.last_picture.data[0])return;
  544. mx = s->mv[0][n][0];
  545. my = s->mv[0][n][1];
  546. srcY = s->last_picture.data[0];
  547. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  548. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  549. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  550. if(v->profile != PROFILE_ADVANCED){
  551. src_x = av_clip( src_x, -16, s->mb_width * 16);
  552. src_y = av_clip( src_y, -16, s->mb_height * 16);
  553. }else{
  554. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  555. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  556. }
  557. srcY += src_y * s->linesize + src_x;
  558. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  559. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  560. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  561. srcY -= s->mspel * (1 + s->linesize);
  562. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  563. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  564. srcY = s->edge_emu_buffer;
  565. /* if we deal with range reduction we need to scale source blocks */
  566. if(v->rangeredfrm) {
  567. int i, j;
  568. uint8_t *src;
  569. src = srcY;
  570. for(j = 0; j < 9 + s->mspel*2; j++) {
  571. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  572. src += s->linesize;
  573. }
  574. }
  575. /* if we deal with intensity compensation we need to scale source blocks */
  576. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  577. int i, j;
  578. uint8_t *src;
  579. src = srcY;
  580. for(j = 0; j < 9 + s->mspel*2; j++) {
  581. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  582. src += s->linesize;
  583. }
  584. }
  585. srcY += s->mspel * (1 + s->linesize);
  586. }
  587. if(s->mspel) {
  588. dxy = ((my & 3) << 2) | (mx & 3);
  589. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  590. } else { // hpel mc - always used for luma
  591. dxy = (my & 2) | ((mx & 2) >> 1);
  592. if(!v->rnd)
  593. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  594. else
  595. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  596. }
  597. }
  598. static inline int median4(int a, int b, int c, int d)
  599. {
  600. if(a < b) {
  601. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  602. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  603. } else {
  604. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  605. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  606. }
  607. }
  608. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  609. */
  610. static void vc1_mc_4mv_chroma(VC1Context *v)
  611. {
  612. MpegEncContext *s = &v->s;
  613. DSPContext *dsp = &v->s.dsp;
  614. uint8_t *srcU, *srcV;
  615. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  616. int i, idx, tx = 0, ty = 0;
  617. int mvx[4], mvy[4], intra[4];
  618. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  619. if(!v->s.last_picture.data[0])return;
  620. if(s->flags & CODEC_FLAG_GRAY) return;
  621. for(i = 0; i < 4; i++) {
  622. mvx[i] = s->mv[0][i][0];
  623. mvy[i] = s->mv[0][i][1];
  624. intra[i] = v->mb_type[0][s->block_index[i]];
  625. }
  626. /* calculate chroma MV vector from four luma MVs */
  627. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  628. if(!idx) { // all blocks are inter
  629. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  630. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  631. } else if(count[idx] == 1) { // 3 inter blocks
  632. switch(idx) {
  633. case 0x1:
  634. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  635. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  636. break;
  637. case 0x2:
  638. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  639. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  640. break;
  641. case 0x4:
  642. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  643. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  644. break;
  645. case 0x8:
  646. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  647. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  648. break;
  649. }
  650. } else if(count[idx] == 2) {
  651. int t1 = 0, t2 = 0;
  652. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  653. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  654. tx = (mvx[t1] + mvx[t2]) / 2;
  655. ty = (mvy[t1] + mvy[t2]) / 2;
  656. } else {
  657. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  658. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  659. return; //no need to do MC for inter blocks
  660. }
  661. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  662. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  663. uvmx = (tx + ((tx&3) == 3)) >> 1;
  664. uvmy = (ty + ((ty&3) == 3)) >> 1;
  665. if(v->fastuvmc) {
  666. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  667. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  668. }
  669. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  670. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  671. if(v->profile != PROFILE_ADVANCED){
  672. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  673. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  674. }else{
  675. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  676. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  677. }
  678. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  679. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  680. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  681. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  682. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  683. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  684. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  685. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  686. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  687. srcU = s->edge_emu_buffer;
  688. srcV = s->edge_emu_buffer + 16;
  689. /* if we deal with range reduction we need to scale source blocks */
  690. if(v->rangeredfrm) {
  691. int i, j;
  692. uint8_t *src, *src2;
  693. src = srcU; src2 = srcV;
  694. for(j = 0; j < 9; j++) {
  695. for(i = 0; i < 9; i++) {
  696. src[i] = ((src[i] - 128) >> 1) + 128;
  697. src2[i] = ((src2[i] - 128) >> 1) + 128;
  698. }
  699. src += s->uvlinesize;
  700. src2 += s->uvlinesize;
  701. }
  702. }
  703. /* if we deal with intensity compensation we need to scale source blocks */
  704. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  705. int i, j;
  706. uint8_t *src, *src2;
  707. src = srcU; src2 = srcV;
  708. for(j = 0; j < 9; j++) {
  709. for(i = 0; i < 9; i++) {
  710. src[i] = v->lutuv[src[i]];
  711. src2[i] = v->lutuv[src2[i]];
  712. }
  713. src += s->uvlinesize;
  714. src2 += s->uvlinesize;
  715. }
  716. }
  717. }
  718. /* Chroma MC always uses qpel bilinear */
  719. uvmx = (uvmx&3)<<1;
  720. uvmy = (uvmy&3)<<1;
  721. if(!v->rnd){
  722. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  723. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  724. }else{
  725. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  726. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  727. }
  728. }
  729. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  730. /**
  731. * Decode Simple/Main Profiles sequence header
  732. * @see Figure 7-8, p16-17
  733. * @param avctx Codec context
  734. * @param gb GetBit context initialized from Codec context extra_data
  735. * @return Status
  736. */
  737. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  738. {
  739. VC1Context *v = avctx->priv_data;
  740. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  741. v->profile = get_bits(gb, 2);
  742. if (v->profile == PROFILE_COMPLEX)
  743. {
  744. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  745. }
  746. if (v->profile == PROFILE_ADVANCED)
  747. {
  748. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  749. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  750. return decode_sequence_header_adv(v, gb);
  751. }
  752. else
  753. {
  754. v->zz_8x4 = wmv2_scantableA;
  755. v->zz_4x8 = wmv2_scantableB;
  756. v->res_sm = get_bits(gb, 2); //reserved
  757. if (v->res_sm)
  758. {
  759. av_log(avctx, AV_LOG_ERROR,
  760. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  761. return -1;
  762. }
  763. }
  764. // (fps-2)/4 (->30)
  765. v->frmrtq_postproc = get_bits(gb, 3); //common
  766. // (bitrate-32kbps)/64kbps
  767. v->bitrtq_postproc = get_bits(gb, 5); //common
  768. v->s.loop_filter = get_bits1(gb); //common
  769. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  770. {
  771. av_log(avctx, AV_LOG_ERROR,
  772. "LOOPFILTER shell not be enabled in simple profile\n");
  773. }
  774. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  775. v->s.loop_filter = 0;
  776. v->res_x8 = get_bits1(gb); //reserved
  777. v->multires = get_bits1(gb);
  778. v->res_fasttx = get_bits1(gb);
  779. if (!v->res_fasttx)
  780. {
  781. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  782. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  783. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  784. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  785. }
  786. v->fastuvmc = get_bits1(gb); //common
  787. if (!v->profile && !v->fastuvmc)
  788. {
  789. av_log(avctx, AV_LOG_ERROR,
  790. "FASTUVMC unavailable in Simple Profile\n");
  791. return -1;
  792. }
  793. v->extended_mv = get_bits1(gb); //common
  794. if (!v->profile && v->extended_mv)
  795. {
  796. av_log(avctx, AV_LOG_ERROR,
  797. "Extended MVs unavailable in Simple Profile\n");
  798. return -1;
  799. }
  800. v->dquant = get_bits(gb, 2); //common
  801. v->vstransform = get_bits1(gb); //common
  802. v->res_transtab = get_bits1(gb);
  803. if (v->res_transtab)
  804. {
  805. av_log(avctx, AV_LOG_ERROR,
  806. "1 for reserved RES_TRANSTAB is forbidden\n");
  807. return -1;
  808. }
  809. v->overlap = get_bits1(gb); //common
  810. v->s.resync_marker = get_bits1(gb);
  811. v->rangered = get_bits1(gb);
  812. if (v->rangered && v->profile == PROFILE_SIMPLE)
  813. {
  814. av_log(avctx, AV_LOG_INFO,
  815. "RANGERED should be set to 0 in simple profile\n");
  816. }
  817. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  818. v->quantizer_mode = get_bits(gb, 2); //common
  819. v->finterpflag = get_bits1(gb); //common
  820. v->res_rtm_flag = get_bits1(gb); //reserved
  821. if (!v->res_rtm_flag)
  822. {
  823. // av_log(avctx, AV_LOG_ERROR,
  824. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  825. av_log(avctx, AV_LOG_ERROR,
  826. "Old WMV3 version detected, only I-frames will be decoded\n");
  827. //return -1;
  828. }
  829. //TODO: figure out what they mean (always 0x402F)
  830. if(!v->res_fasttx) skip_bits(gb, 16);
  831. av_log(avctx, AV_LOG_DEBUG,
  832. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  833. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  834. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  835. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  836. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  837. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  838. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  839. v->dquant, v->quantizer_mode, avctx->max_b_frames
  840. );
  841. return 0;
  842. }
  843. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  844. {
  845. v->res_rtm_flag = 1;
  846. v->level = get_bits(gb, 3);
  847. if(v->level >= 5)
  848. {
  849. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  850. }
  851. v->chromaformat = get_bits(gb, 2);
  852. if (v->chromaformat != 1)
  853. {
  854. av_log(v->s.avctx, AV_LOG_ERROR,
  855. "Only 4:2:0 chroma format supported\n");
  856. return -1;
  857. }
  858. // (fps-2)/4 (->30)
  859. v->frmrtq_postproc = get_bits(gb, 3); //common
  860. // (bitrate-32kbps)/64kbps
  861. v->bitrtq_postproc = get_bits(gb, 5); //common
  862. v->postprocflag = get_bits1(gb); //common
  863. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  864. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  865. v->s.avctx->width = v->s.avctx->coded_width;
  866. v->s.avctx->height = v->s.avctx->coded_height;
  867. v->broadcast = get_bits1(gb);
  868. v->interlace = get_bits1(gb);
  869. v->tfcntrflag = get_bits1(gb);
  870. v->finterpflag = get_bits1(gb);
  871. skip_bits1(gb); // reserved
  872. v->s.h_edge_pos = v->s.avctx->coded_width;
  873. v->s.v_edge_pos = v->s.avctx->coded_height;
  874. av_log(v->s.avctx, AV_LOG_DEBUG,
  875. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  876. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  877. "TFCTRflag=%i, FINTERPflag=%i\n",
  878. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  879. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  880. v->tfcntrflag, v->finterpflag
  881. );
  882. v->psf = get_bits1(gb);
  883. if(v->psf) { //PsF, 6.1.13
  884. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  885. return -1;
  886. }
  887. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  888. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  889. int w, h, ar = 0;
  890. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  891. v->s.avctx->width = w = get_bits(gb, 14) + 1;
  892. v->s.avctx->height = h = get_bits(gb, 14) + 1;
  893. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  894. if(get_bits1(gb))
  895. ar = get_bits(gb, 4);
  896. if(ar && ar < 14){
  897. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  898. }else if(ar == 15){
  899. w = get_bits(gb, 8);
  900. h = get_bits(gb, 8);
  901. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  902. }
  903. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  904. if(get_bits1(gb)){ //framerate stuff
  905. if(get_bits1(gb)) {
  906. v->s.avctx->time_base.num = 32;
  907. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  908. } else {
  909. int nr, dr;
  910. nr = get_bits(gb, 8);
  911. dr = get_bits(gb, 4);
  912. if(nr && nr < 8 && dr && dr < 3){
  913. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  914. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  915. }
  916. }
  917. }
  918. if(get_bits1(gb)){
  919. v->color_prim = get_bits(gb, 8);
  920. v->transfer_char = get_bits(gb, 8);
  921. v->matrix_coef = get_bits(gb, 8);
  922. }
  923. }
  924. v->hrd_param_flag = get_bits1(gb);
  925. if(v->hrd_param_flag) {
  926. int i;
  927. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  928. skip_bits(gb, 4); //bitrate exponent
  929. skip_bits(gb, 4); //buffer size exponent
  930. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  931. skip_bits(gb, 16); //hrd_rate[n]
  932. skip_bits(gb, 16); //hrd_buffer[n]
  933. }
  934. }
  935. return 0;
  936. }
  937. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  938. {
  939. VC1Context *v = avctx->priv_data;
  940. int i;
  941. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  942. v->broken_link = get_bits1(gb);
  943. v->closed_entry = get_bits1(gb);
  944. v->panscanflag = get_bits1(gb);
  945. v->refdist_flag = get_bits1(gb);
  946. v->s.loop_filter = get_bits1(gb);
  947. v->fastuvmc = get_bits1(gb);
  948. v->extended_mv = get_bits1(gb);
  949. v->dquant = get_bits(gb, 2);
  950. v->vstransform = get_bits1(gb);
  951. v->overlap = get_bits1(gb);
  952. v->quantizer_mode = get_bits(gb, 2);
  953. if(v->hrd_param_flag){
  954. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  955. skip_bits(gb, 8); //hrd_full[n]
  956. }
  957. }
  958. if(get_bits1(gb)){
  959. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  960. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  961. }
  962. if(v->extended_mv)
  963. v->extended_dmv = get_bits1(gb);
  964. if((v->range_mapy_flag = get_bits1(gb))) {
  965. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  966. v->range_mapy = get_bits(gb, 3);
  967. }
  968. if((v->range_mapuv_flag = get_bits1(gb))) {
  969. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  970. v->range_mapuv = get_bits(gb, 3);
  971. }
  972. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  973. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  974. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  975. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  976. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  977. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  978. return 0;
  979. }
  980. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  981. {
  982. int pqindex, lowquant, status;
  983. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  984. skip_bits(gb, 2); //framecnt unused
  985. v->rangeredfrm = 0;
  986. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  987. v->s.pict_type = get_bits1(gb);
  988. if (v->s.avctx->max_b_frames) {
  989. if (!v->s.pict_type) {
  990. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  991. else v->s.pict_type = FF_B_TYPE;
  992. } else v->s.pict_type = FF_P_TYPE;
  993. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  994. v->bi_type = 0;
  995. if(v->s.pict_type == FF_B_TYPE) {
  996. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  997. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  998. if(v->bfraction == 0) {
  999. v->s.pict_type = FF_BI_TYPE;
  1000. }
  1001. }
  1002. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1003. skip_bits(gb, 7); // skip buffer fullness
  1004. /* calculate RND */
  1005. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1006. v->rnd = 1;
  1007. if(v->s.pict_type == FF_P_TYPE)
  1008. v->rnd ^= 1;
  1009. /* Quantizer stuff */
  1010. pqindex = get_bits(gb, 5);
  1011. if(!pqindex) return -1;
  1012. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1013. v->pq = ff_vc1_pquant_table[0][pqindex];
  1014. else
  1015. v->pq = ff_vc1_pquant_table[1][pqindex];
  1016. v->pquantizer = 1;
  1017. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1018. v->pquantizer = pqindex < 9;
  1019. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1020. v->pquantizer = 0;
  1021. v->pqindex = pqindex;
  1022. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1023. else v->halfpq = 0;
  1024. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1025. v->pquantizer = get_bits1(gb);
  1026. v->dquantfrm = 0;
  1027. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1028. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1029. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1030. v->range_x = 1 << (v->k_x - 1);
  1031. v->range_y = 1 << (v->k_y - 1);
  1032. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1033. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1034. v->x8_type = get_bits1(gb);
  1035. }else v->x8_type = 0;
  1036. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1037. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1038. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1039. switch(v->s.pict_type) {
  1040. case FF_P_TYPE:
  1041. if (v->pq < 5) v->tt_index = 0;
  1042. else if(v->pq < 13) v->tt_index = 1;
  1043. else v->tt_index = 2;
  1044. lowquant = (v->pq > 12) ? 0 : 1;
  1045. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1046. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1047. {
  1048. int scale, shift, i;
  1049. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1050. v->lumscale = get_bits(gb, 6);
  1051. v->lumshift = get_bits(gb, 6);
  1052. v->use_ic = 1;
  1053. /* fill lookup tables for intensity compensation */
  1054. if(!v->lumscale) {
  1055. scale = -64;
  1056. shift = (255 - v->lumshift * 2) << 6;
  1057. if(v->lumshift > 31)
  1058. shift += 128 << 6;
  1059. } else {
  1060. scale = v->lumscale + 32;
  1061. if(v->lumshift > 31)
  1062. shift = (v->lumshift - 64) << 6;
  1063. else
  1064. shift = v->lumshift << 6;
  1065. }
  1066. for(i = 0; i < 256; i++) {
  1067. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1068. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1069. }
  1070. }
  1071. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1072. v->s.quarter_sample = 0;
  1073. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1074. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1075. v->s.quarter_sample = 0;
  1076. else
  1077. v->s.quarter_sample = 1;
  1078. } else
  1079. v->s.quarter_sample = 1;
  1080. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1081. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1082. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1083. || v->mv_mode == MV_PMODE_MIXED_MV)
  1084. {
  1085. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1086. if (status < 0) return -1;
  1087. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1088. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1089. } else {
  1090. v->mv_type_is_raw = 0;
  1091. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1092. }
  1093. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. /* Hopefully this is correct for P frames */
  1098. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1099. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1100. if (v->dquant)
  1101. {
  1102. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1103. vop_dquant_decoding(v);
  1104. }
  1105. v->ttfrm = 0; //FIXME Is that so ?
  1106. if (v->vstransform)
  1107. {
  1108. v->ttmbf = get_bits1(gb);
  1109. if (v->ttmbf)
  1110. {
  1111. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1112. }
  1113. } else {
  1114. v->ttmbf = 1;
  1115. v->ttfrm = TT_8X8;
  1116. }
  1117. break;
  1118. case FF_B_TYPE:
  1119. if (v->pq < 5) v->tt_index = 0;
  1120. else if(v->pq < 13) v->tt_index = 1;
  1121. else v->tt_index = 2;
  1122. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1123. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1124. v->s.mspel = v->s.quarter_sample;
  1125. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1126. if (status < 0) return -1;
  1127. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1128. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1129. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1130. if (status < 0) return -1;
  1131. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1132. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1133. v->s.mv_table_index = get_bits(gb, 2);
  1134. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1135. if (v->dquant)
  1136. {
  1137. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1138. vop_dquant_decoding(v);
  1139. }
  1140. v->ttfrm = 0;
  1141. if (v->vstransform)
  1142. {
  1143. v->ttmbf = get_bits1(gb);
  1144. if (v->ttmbf)
  1145. {
  1146. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1147. }
  1148. } else {
  1149. v->ttmbf = 1;
  1150. v->ttfrm = TT_8X8;
  1151. }
  1152. break;
  1153. }
  1154. if(!v->x8_type)
  1155. {
  1156. /* AC Syntax */
  1157. v->c_ac_table_index = decode012(gb);
  1158. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1159. {
  1160. v->y_ac_table_index = decode012(gb);
  1161. }
  1162. /* DC Syntax */
  1163. v->s.dc_table_index = get_bits1(gb);
  1164. }
  1165. if(v->s.pict_type == FF_BI_TYPE) {
  1166. v->s.pict_type = FF_B_TYPE;
  1167. v->bi_type = 1;
  1168. }
  1169. return 0;
  1170. }
  1171. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1172. {
  1173. int pqindex, lowquant;
  1174. int status;
  1175. v->p_frame_skipped = 0;
  1176. if(v->interlace){
  1177. v->fcm = decode012(gb);
  1178. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1179. }
  1180. switch(get_unary(gb, 0, 4)) {
  1181. case 0:
  1182. v->s.pict_type = FF_P_TYPE;
  1183. break;
  1184. case 1:
  1185. v->s.pict_type = FF_B_TYPE;
  1186. break;
  1187. case 2:
  1188. v->s.pict_type = FF_I_TYPE;
  1189. break;
  1190. case 3:
  1191. v->s.pict_type = FF_BI_TYPE;
  1192. break;
  1193. case 4:
  1194. v->s.pict_type = FF_P_TYPE; // skipped pic
  1195. v->p_frame_skipped = 1;
  1196. return 0;
  1197. }
  1198. if(v->tfcntrflag)
  1199. skip_bits(gb, 8);
  1200. if(v->broadcast) {
  1201. if(!v->interlace || v->psf) {
  1202. v->rptfrm = get_bits(gb, 2);
  1203. } else {
  1204. v->tff = get_bits1(gb);
  1205. v->rptfrm = get_bits1(gb);
  1206. }
  1207. }
  1208. if(v->panscanflag) {
  1209. //...
  1210. }
  1211. v->rnd = get_bits1(gb);
  1212. if(v->interlace)
  1213. v->uvsamp = get_bits1(gb);
  1214. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1215. if(v->s.pict_type == FF_B_TYPE) {
  1216. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1217. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1218. if(v->bfraction == 0) {
  1219. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1220. }
  1221. }
  1222. pqindex = get_bits(gb, 5);
  1223. if(!pqindex) return -1;
  1224. v->pqindex = pqindex;
  1225. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1226. v->pq = ff_vc1_pquant_table[0][pqindex];
  1227. else
  1228. v->pq = ff_vc1_pquant_table[1][pqindex];
  1229. v->pquantizer = 1;
  1230. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1231. v->pquantizer = pqindex < 9;
  1232. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1233. v->pquantizer = 0;
  1234. v->pqindex = pqindex;
  1235. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1236. else v->halfpq = 0;
  1237. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1238. v->pquantizer = get_bits1(gb);
  1239. if(v->postprocflag)
  1240. v->postproc = get_bits(gb, 2);
  1241. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1242. switch(v->s.pict_type) {
  1243. case FF_I_TYPE:
  1244. case FF_BI_TYPE:
  1245. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1246. if (status < 0) return -1;
  1247. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1248. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1249. v->condover = CONDOVER_NONE;
  1250. if(v->overlap && v->pq <= 8) {
  1251. v->condover = decode012(gb);
  1252. if(v->condover == CONDOVER_SELECT) {
  1253. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1254. if (status < 0) return -1;
  1255. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1256. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1257. }
  1258. }
  1259. break;
  1260. case FF_P_TYPE:
  1261. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1262. else v->mvrange = 0;
  1263. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1264. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1265. v->range_x = 1 << (v->k_x - 1);
  1266. v->range_y = 1 << (v->k_y - 1);
  1267. if (v->pq < 5) v->tt_index = 0;
  1268. else if(v->pq < 13) v->tt_index = 1;
  1269. else v->tt_index = 2;
  1270. lowquant = (v->pq > 12) ? 0 : 1;
  1271. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1272. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1273. {
  1274. int scale, shift, i;
  1275. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1276. v->lumscale = get_bits(gb, 6);
  1277. v->lumshift = get_bits(gb, 6);
  1278. /* fill lookup tables for intensity compensation */
  1279. if(!v->lumscale) {
  1280. scale = -64;
  1281. shift = (255 - v->lumshift * 2) << 6;
  1282. if(v->lumshift > 31)
  1283. shift += 128 << 6;
  1284. } else {
  1285. scale = v->lumscale + 32;
  1286. if(v->lumshift > 31)
  1287. shift = (v->lumshift - 64) << 6;
  1288. else
  1289. shift = v->lumshift << 6;
  1290. }
  1291. for(i = 0; i < 256; i++) {
  1292. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1293. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1294. }
  1295. v->use_ic = 1;
  1296. }
  1297. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1298. v->s.quarter_sample = 0;
  1299. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1300. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1301. v->s.quarter_sample = 0;
  1302. else
  1303. v->s.quarter_sample = 1;
  1304. } else
  1305. v->s.quarter_sample = 1;
  1306. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1307. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1308. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1309. || v->mv_mode == MV_PMODE_MIXED_MV)
  1310. {
  1311. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1312. if (status < 0) return -1;
  1313. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1314. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1315. } else {
  1316. v->mv_type_is_raw = 0;
  1317. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1318. }
  1319. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1320. if (status < 0) return -1;
  1321. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1322. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1323. /* Hopefully this is correct for P frames */
  1324. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1325. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1326. if (v->dquant)
  1327. {
  1328. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1329. vop_dquant_decoding(v);
  1330. }
  1331. v->ttfrm = 0; //FIXME Is that so ?
  1332. if (v->vstransform)
  1333. {
  1334. v->ttmbf = get_bits1(gb);
  1335. if (v->ttmbf)
  1336. {
  1337. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1338. }
  1339. } else {
  1340. v->ttmbf = 1;
  1341. v->ttfrm = TT_8X8;
  1342. }
  1343. break;
  1344. case FF_B_TYPE:
  1345. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1346. else v->mvrange = 0;
  1347. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1348. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1349. v->range_x = 1 << (v->k_x - 1);
  1350. v->range_y = 1 << (v->k_y - 1);
  1351. if (v->pq < 5) v->tt_index = 0;
  1352. else if(v->pq < 13) v->tt_index = 1;
  1353. else v->tt_index = 2;
  1354. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1355. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1356. v->s.mspel = v->s.quarter_sample;
  1357. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1358. if (status < 0) return -1;
  1359. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1360. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1361. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1362. if (status < 0) return -1;
  1363. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1364. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1365. v->s.mv_table_index = get_bits(gb, 2);
  1366. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1367. if (v->dquant)
  1368. {
  1369. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1370. vop_dquant_decoding(v);
  1371. }
  1372. v->ttfrm = 0;
  1373. if (v->vstransform)
  1374. {
  1375. v->ttmbf = get_bits1(gb);
  1376. if (v->ttmbf)
  1377. {
  1378. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1379. }
  1380. } else {
  1381. v->ttmbf = 1;
  1382. v->ttfrm = TT_8X8;
  1383. }
  1384. break;
  1385. }
  1386. /* AC Syntax */
  1387. v->c_ac_table_index = decode012(gb);
  1388. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1389. {
  1390. v->y_ac_table_index = decode012(gb);
  1391. }
  1392. /* DC Syntax */
  1393. v->s.dc_table_index = get_bits1(gb);
  1394. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1395. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1396. vop_dquant_decoding(v);
  1397. }
  1398. v->bi_type = 0;
  1399. if(v->s.pict_type == FF_BI_TYPE) {
  1400. v->s.pict_type = FF_B_TYPE;
  1401. v->bi_type = 1;
  1402. }
  1403. return 0;
  1404. }
  1405. /***********************************************************************/
  1406. /**
  1407. * @defgroup vc1block VC-1 Block-level functions
  1408. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1409. * @{
  1410. */
  1411. /**
  1412. * @def GET_MQUANT
  1413. * @brief Get macroblock-level quantizer scale
  1414. */
  1415. #define GET_MQUANT() \
  1416. if (v->dquantfrm) \
  1417. { \
  1418. int edges = 0; \
  1419. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1420. { \
  1421. if (v->dqbilevel) \
  1422. { \
  1423. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1424. } \
  1425. else \
  1426. { \
  1427. mqdiff = get_bits(gb, 3); \
  1428. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1429. else mquant = get_bits(gb, 5); \
  1430. } \
  1431. } \
  1432. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1433. edges = 1 << v->dqsbedge; \
  1434. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1435. edges = (3 << v->dqsbedge) % 15; \
  1436. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1437. edges = 15; \
  1438. if((edges&1) && !s->mb_x) \
  1439. mquant = v->altpq; \
  1440. if((edges&2) && s->first_slice_line) \
  1441. mquant = v->altpq; \
  1442. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1443. mquant = v->altpq; \
  1444. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1445. mquant = v->altpq; \
  1446. }
  1447. /**
  1448. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1449. * @brief Get MV differentials
  1450. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1451. * @param _dmv_x Horizontal differential for decoded MV
  1452. * @param _dmv_y Vertical differential for decoded MV
  1453. */
  1454. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1455. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1456. VC1_MV_DIFF_VLC_BITS, 2); \
  1457. if (index > 36) \
  1458. { \
  1459. mb_has_coeffs = 1; \
  1460. index -= 37; \
  1461. } \
  1462. else mb_has_coeffs = 0; \
  1463. s->mb_intra = 0; \
  1464. if (!index) { _dmv_x = _dmv_y = 0; } \
  1465. else if (index == 35) \
  1466. { \
  1467. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1468. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1469. } \
  1470. else if (index == 36) \
  1471. { \
  1472. _dmv_x = 0; \
  1473. _dmv_y = 0; \
  1474. s->mb_intra = 1; \
  1475. } \
  1476. else \
  1477. { \
  1478. index1 = index%6; \
  1479. if (!s->quarter_sample && index1 == 5) val = 1; \
  1480. else val = 0; \
  1481. if(size_table[index1] - val > 0) \
  1482. val = get_bits(gb, size_table[index1] - val); \
  1483. else val = 0; \
  1484. sign = 0 - (val&1); \
  1485. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1486. \
  1487. index1 = index/6; \
  1488. if (!s->quarter_sample && index1 == 5) val = 1; \
  1489. else val = 0; \
  1490. if(size_table[index1] - val > 0) \
  1491. val = get_bits(gb, size_table[index1] - val); \
  1492. else val = 0; \
  1493. sign = 0 - (val&1); \
  1494. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1495. }
  1496. /** Predict and set motion vector
  1497. */
  1498. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1499. {
  1500. int xy, wrap, off = 0;
  1501. int16_t *A, *B, *C;
  1502. int px, py;
  1503. int sum;
  1504. /* scale MV difference to be quad-pel */
  1505. dmv_x <<= 1 - s->quarter_sample;
  1506. dmv_y <<= 1 - s->quarter_sample;
  1507. wrap = s->b8_stride;
  1508. xy = s->block_index[n];
  1509. if(s->mb_intra){
  1510. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1511. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1512. s->current_picture.motion_val[1][xy][0] = 0;
  1513. s->current_picture.motion_val[1][xy][1] = 0;
  1514. if(mv1) { /* duplicate motion data for 1-MV block */
  1515. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1516. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1517. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1518. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1519. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1520. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1521. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1522. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1523. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1524. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1525. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1526. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1527. }
  1528. return;
  1529. }
  1530. C = s->current_picture.motion_val[0][xy - 1];
  1531. A = s->current_picture.motion_val[0][xy - wrap];
  1532. if(mv1)
  1533. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1534. else {
  1535. //in 4-MV mode different blocks have different B predictor position
  1536. switch(n){
  1537. case 0:
  1538. off = (s->mb_x > 0) ? -1 : 1;
  1539. break;
  1540. case 1:
  1541. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1542. break;
  1543. case 2:
  1544. off = 1;
  1545. break;
  1546. case 3:
  1547. off = -1;
  1548. }
  1549. }
  1550. B = s->current_picture.motion_val[0][xy - wrap + off];
  1551. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1552. if(s->mb_width == 1) {
  1553. px = A[0];
  1554. py = A[1];
  1555. } else {
  1556. px = mid_pred(A[0], B[0], C[0]);
  1557. py = mid_pred(A[1], B[1], C[1]);
  1558. }
  1559. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1560. px = C[0];
  1561. py = C[1];
  1562. } else {
  1563. px = py = 0;
  1564. }
  1565. /* Pullback MV as specified in 8.3.5.3.4 */
  1566. {
  1567. int qx, qy, X, Y;
  1568. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1569. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1570. X = (s->mb_width << 6) - 4;
  1571. Y = (s->mb_height << 6) - 4;
  1572. if(mv1) {
  1573. if(qx + px < -60) px = -60 - qx;
  1574. if(qy + py < -60) py = -60 - qy;
  1575. } else {
  1576. if(qx + px < -28) px = -28 - qx;
  1577. if(qy + py < -28) py = -28 - qy;
  1578. }
  1579. if(qx + px > X) px = X - qx;
  1580. if(qy + py > Y) py = Y - qy;
  1581. }
  1582. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1583. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1584. if(is_intra[xy - wrap])
  1585. sum = FFABS(px) + FFABS(py);
  1586. else
  1587. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1588. if(sum > 32) {
  1589. if(get_bits1(&s->gb)) {
  1590. px = A[0];
  1591. py = A[1];
  1592. } else {
  1593. px = C[0];
  1594. py = C[1];
  1595. }
  1596. } else {
  1597. if(is_intra[xy - 1])
  1598. sum = FFABS(px) + FFABS(py);
  1599. else
  1600. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1601. if(sum > 32) {
  1602. if(get_bits1(&s->gb)) {
  1603. px = A[0];
  1604. py = A[1];
  1605. } else {
  1606. px = C[0];
  1607. py = C[1];
  1608. }
  1609. }
  1610. }
  1611. }
  1612. /* store MV using signed modulus of MV range defined in 4.11 */
  1613. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1614. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1615. if(mv1) { /* duplicate motion data for 1-MV block */
  1616. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1617. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1618. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1619. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1620. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1621. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1622. }
  1623. }
  1624. /** Motion compensation for direct or interpolated blocks in B-frames
  1625. */
  1626. static void vc1_interp_mc(VC1Context *v)
  1627. {
  1628. MpegEncContext *s = &v->s;
  1629. DSPContext *dsp = &v->s.dsp;
  1630. uint8_t *srcY, *srcU, *srcV;
  1631. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1632. if(!v->s.next_picture.data[0])return;
  1633. mx = s->mv[1][0][0];
  1634. my = s->mv[1][0][1];
  1635. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1636. uvmy = (my + ((my & 3) == 3)) >> 1;
  1637. if(v->fastuvmc) {
  1638. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1639. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1640. }
  1641. srcY = s->next_picture.data[0];
  1642. srcU = s->next_picture.data[1];
  1643. srcV = s->next_picture.data[2];
  1644. src_x = s->mb_x * 16 + (mx >> 2);
  1645. src_y = s->mb_y * 16 + (my >> 2);
  1646. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1647. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1648. if(v->profile != PROFILE_ADVANCED){
  1649. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1650. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1651. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1652. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1653. }else{
  1654. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1655. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1656. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1657. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1658. }
  1659. srcY += src_y * s->linesize + src_x;
  1660. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1661. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1662. /* for grayscale we should not try to read from unknown area */
  1663. if(s->flags & CODEC_FLAG_GRAY) {
  1664. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1665. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1666. }
  1667. if(v->rangeredfrm
  1668. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1669. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1670. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1671. srcY -= s->mspel * (1 + s->linesize);
  1672. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1673. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1674. srcY = s->edge_emu_buffer;
  1675. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1676. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1677. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1678. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1679. srcU = uvbuf;
  1680. srcV = uvbuf + 16;
  1681. /* if we deal with range reduction we need to scale source blocks */
  1682. if(v->rangeredfrm) {
  1683. int i, j;
  1684. uint8_t *src, *src2;
  1685. src = srcY;
  1686. for(j = 0; j < 17 + s->mspel*2; j++) {
  1687. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1688. src += s->linesize;
  1689. }
  1690. src = srcU; src2 = srcV;
  1691. for(j = 0; j < 9; j++) {
  1692. for(i = 0; i < 9; i++) {
  1693. src[i] = ((src[i] - 128) >> 1) + 128;
  1694. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1695. }
  1696. src += s->uvlinesize;
  1697. src2 += s->uvlinesize;
  1698. }
  1699. }
  1700. srcY += s->mspel * (1 + s->linesize);
  1701. }
  1702. if(s->mspel) {
  1703. dxy = ((my & 3) << 2) | (mx & 3);
  1704. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1705. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1706. srcY += s->linesize * 8;
  1707. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1708. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1709. } else { // hpel mc
  1710. dxy = (my & 2) | ((mx & 2) >> 1);
  1711. if(!v->rnd)
  1712. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1713. else
  1714. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1715. }
  1716. if(s->flags & CODEC_FLAG_GRAY) return;
  1717. /* Chroma MC always uses qpel blilinear */
  1718. uvmx = (uvmx&3)<<1;
  1719. uvmy = (uvmy&3)<<1;
  1720. if(!v->rnd){
  1721. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1722. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1723. }else{
  1724. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1725. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1726. }
  1727. }
  1728. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1729. {
  1730. int n = bfrac;
  1731. #if B_FRACTION_DEN==256
  1732. if(inv)
  1733. n -= 256;
  1734. if(!qs)
  1735. return 2 * ((value * n + 255) >> 9);
  1736. return (value * n + 128) >> 8;
  1737. #else
  1738. if(inv)
  1739. n -= B_FRACTION_DEN;
  1740. if(!qs)
  1741. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1742. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1743. #endif
  1744. }
  1745. /** Reconstruct motion vector for B-frame and do motion compensation
  1746. */
  1747. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1748. {
  1749. if(v->use_ic) {
  1750. v->mv_mode2 = v->mv_mode;
  1751. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1752. }
  1753. if(direct) {
  1754. vc1_mc_1mv(v, 0);
  1755. vc1_interp_mc(v);
  1756. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1757. return;
  1758. }
  1759. if(mode == BMV_TYPE_INTERPOLATED) {
  1760. vc1_mc_1mv(v, 0);
  1761. vc1_interp_mc(v);
  1762. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1763. return;
  1764. }
  1765. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1766. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1767. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1768. }
  1769. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1770. {
  1771. MpegEncContext *s = &v->s;
  1772. int xy, wrap, off = 0;
  1773. int16_t *A, *B, *C;
  1774. int px, py;
  1775. int sum;
  1776. int r_x, r_y;
  1777. const uint8_t *is_intra = v->mb_type[0];
  1778. r_x = v->range_x;
  1779. r_y = v->range_y;
  1780. /* scale MV difference to be quad-pel */
  1781. dmv_x[0] <<= 1 - s->quarter_sample;
  1782. dmv_y[0] <<= 1 - s->quarter_sample;
  1783. dmv_x[1] <<= 1 - s->quarter_sample;
  1784. dmv_y[1] <<= 1 - s->quarter_sample;
  1785. wrap = s->b8_stride;
  1786. xy = s->block_index[0];
  1787. if(s->mb_intra) {
  1788. s->current_picture.motion_val[0][xy][0] =
  1789. s->current_picture.motion_val[0][xy][1] =
  1790. s->current_picture.motion_val[1][xy][0] =
  1791. s->current_picture.motion_val[1][xy][1] = 0;
  1792. return;
  1793. }
  1794. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1795. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1796. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1797. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1798. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1799. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1800. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1801. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1802. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1803. if(direct) {
  1804. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1805. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1806. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1807. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1808. return;
  1809. }
  1810. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1811. C = s->current_picture.motion_val[0][xy - 2];
  1812. A = s->current_picture.motion_val[0][xy - wrap*2];
  1813. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1814. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1815. if(!s->mb_x) C[0] = C[1] = 0;
  1816. if(!s->first_slice_line) { // predictor A is not out of bounds
  1817. if(s->mb_width == 1) {
  1818. px = A[0];
  1819. py = A[1];
  1820. } else {
  1821. px = mid_pred(A[0], B[0], C[0]);
  1822. py = mid_pred(A[1], B[1], C[1]);
  1823. }
  1824. } else if(s->mb_x) { // predictor C is not out of bounds
  1825. px = C[0];
  1826. py = C[1];
  1827. } else {
  1828. px = py = 0;
  1829. }
  1830. /* Pullback MV as specified in 8.3.5.3.4 */
  1831. {
  1832. int qx, qy, X, Y;
  1833. if(v->profile < PROFILE_ADVANCED) {
  1834. qx = (s->mb_x << 5);
  1835. qy = (s->mb_y << 5);
  1836. X = (s->mb_width << 5) - 4;
  1837. Y = (s->mb_height << 5) - 4;
  1838. if(qx + px < -28) px = -28 - qx;
  1839. if(qy + py < -28) py = -28 - qy;
  1840. if(qx + px > X) px = X - qx;
  1841. if(qy + py > Y) py = Y - qy;
  1842. } else {
  1843. qx = (s->mb_x << 6);
  1844. qy = (s->mb_y << 6);
  1845. X = (s->mb_width << 6) - 4;
  1846. Y = (s->mb_height << 6) - 4;
  1847. if(qx + px < -60) px = -60 - qx;
  1848. if(qy + py < -60) py = -60 - qy;
  1849. if(qx + px > X) px = X - qx;
  1850. if(qy + py > Y) py = Y - qy;
  1851. }
  1852. }
  1853. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1854. if(0 && !s->first_slice_line && s->mb_x) {
  1855. if(is_intra[xy - wrap])
  1856. sum = FFABS(px) + FFABS(py);
  1857. else
  1858. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1859. if(sum > 32) {
  1860. if(get_bits1(&s->gb)) {
  1861. px = A[0];
  1862. py = A[1];
  1863. } else {
  1864. px = C[0];
  1865. py = C[1];
  1866. }
  1867. } else {
  1868. if(is_intra[xy - 2])
  1869. sum = FFABS(px) + FFABS(py);
  1870. else
  1871. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1872. if(sum > 32) {
  1873. if(get_bits1(&s->gb)) {
  1874. px = A[0];
  1875. py = A[1];
  1876. } else {
  1877. px = C[0];
  1878. py = C[1];
  1879. }
  1880. }
  1881. }
  1882. }
  1883. /* store MV using signed modulus of MV range defined in 4.11 */
  1884. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1885. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1886. }
  1887. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1888. C = s->current_picture.motion_val[1][xy - 2];
  1889. A = s->current_picture.motion_val[1][xy - wrap*2];
  1890. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1891. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1892. if(!s->mb_x) C[0] = C[1] = 0;
  1893. if(!s->first_slice_line) { // predictor A is not out of bounds
  1894. if(s->mb_width == 1) {
  1895. px = A[0];
  1896. py = A[1];
  1897. } else {
  1898. px = mid_pred(A[0], B[0], C[0]);
  1899. py = mid_pred(A[1], B[1], C[1]);
  1900. }
  1901. } else if(s->mb_x) { // predictor C is not out of bounds
  1902. px = C[0];
  1903. py = C[1];
  1904. } else {
  1905. px = py = 0;
  1906. }
  1907. /* Pullback MV as specified in 8.3.5.3.4 */
  1908. {
  1909. int qx, qy, X, Y;
  1910. if(v->profile < PROFILE_ADVANCED) {
  1911. qx = (s->mb_x << 5);
  1912. qy = (s->mb_y << 5);
  1913. X = (s->mb_width << 5) - 4;
  1914. Y = (s->mb_height << 5) - 4;
  1915. if(qx + px < -28) px = -28 - qx;
  1916. if(qy + py < -28) py = -28 - qy;
  1917. if(qx + px > X) px = X - qx;
  1918. if(qy + py > Y) py = Y - qy;
  1919. } else {
  1920. qx = (s->mb_x << 6);
  1921. qy = (s->mb_y << 6);
  1922. X = (s->mb_width << 6) - 4;
  1923. Y = (s->mb_height << 6) - 4;
  1924. if(qx + px < -60) px = -60 - qx;
  1925. if(qy + py < -60) py = -60 - qy;
  1926. if(qx + px > X) px = X - qx;
  1927. if(qy + py > Y) py = Y - qy;
  1928. }
  1929. }
  1930. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1931. if(0 && !s->first_slice_line && s->mb_x) {
  1932. if(is_intra[xy - wrap])
  1933. sum = FFABS(px) + FFABS(py);
  1934. else
  1935. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1936. if(sum > 32) {
  1937. if(get_bits1(&s->gb)) {
  1938. px = A[0];
  1939. py = A[1];
  1940. } else {
  1941. px = C[0];
  1942. py = C[1];
  1943. }
  1944. } else {
  1945. if(is_intra[xy - 2])
  1946. sum = FFABS(px) + FFABS(py);
  1947. else
  1948. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1949. if(sum > 32) {
  1950. if(get_bits1(&s->gb)) {
  1951. px = A[0];
  1952. py = A[1];
  1953. } else {
  1954. px = C[0];
  1955. py = C[1];
  1956. }
  1957. }
  1958. }
  1959. }
  1960. /* store MV using signed modulus of MV range defined in 4.11 */
  1961. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1962. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1963. }
  1964. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1965. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1966. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1967. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1968. }
  1969. /** Get predicted DC value for I-frames only
  1970. * prediction dir: left=0, top=1
  1971. * @param s MpegEncContext
  1972. * @param overlap flag indicating that overlap filtering is used
  1973. * @param pq integer part of picture quantizer
  1974. * @param[in] n block index in the current MB
  1975. * @param dc_val_ptr Pointer to DC predictor
  1976. * @param dir_ptr Prediction direction for use in AC prediction
  1977. */
  1978. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1979. int16_t **dc_val_ptr, int *dir_ptr)
  1980. {
  1981. int a, b, c, wrap, pred, scale;
  1982. int16_t *dc_val;
  1983. static const uint16_t dcpred[32] = {
  1984. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1985. 114, 102, 93, 85, 79, 73, 68, 64,
  1986. 60, 57, 54, 51, 49, 47, 45, 43,
  1987. 41, 39, 38, 37, 35, 34, 33
  1988. };
  1989. /* find prediction - wmv3_dc_scale always used here in fact */
  1990. if (n < 4) scale = s->y_dc_scale;
  1991. else scale = s->c_dc_scale;
  1992. wrap = s->block_wrap[n];
  1993. dc_val= s->dc_val[0] + s->block_index[n];
  1994. /* B A
  1995. * C X
  1996. */
  1997. c = dc_val[ - 1];
  1998. b = dc_val[ - 1 - wrap];
  1999. a = dc_val[ - wrap];
  2000. if (pq < 9 || !overlap)
  2001. {
  2002. /* Set outer values */
  2003. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2004. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2005. }
  2006. else
  2007. {
  2008. /* Set outer values */
  2009. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2010. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2011. }
  2012. if (abs(a - b) <= abs(b - c)) {
  2013. pred = c;
  2014. *dir_ptr = 1;//left
  2015. } else {
  2016. pred = a;
  2017. *dir_ptr = 0;//top
  2018. }
  2019. /* update predictor */
  2020. *dc_val_ptr = &dc_val[0];
  2021. return pred;
  2022. }
  2023. /** Get predicted DC value
  2024. * prediction dir: left=0, top=1
  2025. * @param s MpegEncContext
  2026. * @param overlap flag indicating that overlap filtering is used
  2027. * @param pq integer part of picture quantizer
  2028. * @param[in] n block index in the current MB
  2029. * @param a_avail flag indicating top block availability
  2030. * @param c_avail flag indicating left block availability
  2031. * @param dc_val_ptr Pointer to DC predictor
  2032. * @param dir_ptr Prediction direction for use in AC prediction
  2033. */
  2034. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2035. int a_avail, int c_avail,
  2036. int16_t **dc_val_ptr, int *dir_ptr)
  2037. {
  2038. int a, b, c, wrap, pred;
  2039. int16_t *dc_val;
  2040. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2041. int q1, q2 = 0;
  2042. wrap = s->block_wrap[n];
  2043. dc_val= s->dc_val[0] + s->block_index[n];
  2044. /* B A
  2045. * C X
  2046. */
  2047. c = dc_val[ - 1];
  2048. b = dc_val[ - 1 - wrap];
  2049. a = dc_val[ - wrap];
  2050. /* scale predictors if needed */
  2051. q1 = s->current_picture.qscale_table[mb_pos];
  2052. if(c_avail && (n!= 1 && n!=3)) {
  2053. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2054. if(q2 && q2 != q1)
  2055. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2056. }
  2057. if(a_avail && (n!= 2 && n!=3)) {
  2058. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2059. if(q2 && q2 != q1)
  2060. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2061. }
  2062. if(a_avail && c_avail && (n!=3)) {
  2063. int off = mb_pos;
  2064. if(n != 1) off--;
  2065. if(n != 2) off -= s->mb_stride;
  2066. q2 = s->current_picture.qscale_table[off];
  2067. if(q2 && q2 != q1)
  2068. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2069. }
  2070. if(a_avail && c_avail) {
  2071. if(abs(a - b) <= abs(b - c)) {
  2072. pred = c;
  2073. *dir_ptr = 1;//left
  2074. } else {
  2075. pred = a;
  2076. *dir_ptr = 0;//top
  2077. }
  2078. } else if(a_avail) {
  2079. pred = a;
  2080. *dir_ptr = 0;//top
  2081. } else if(c_avail) {
  2082. pred = c;
  2083. *dir_ptr = 1;//left
  2084. } else {
  2085. pred = 0;
  2086. *dir_ptr = 1;//left
  2087. }
  2088. /* update predictor */
  2089. *dc_val_ptr = &dc_val[0];
  2090. return pred;
  2091. }
  2092. /** @} */ // Block group
  2093. /**
  2094. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2095. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2096. * @{
  2097. */
  2098. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2099. {
  2100. int xy, wrap, pred, a, b, c;
  2101. xy = s->block_index[n];
  2102. wrap = s->b8_stride;
  2103. /* B C
  2104. * A X
  2105. */
  2106. a = s->coded_block[xy - 1 ];
  2107. b = s->coded_block[xy - 1 - wrap];
  2108. c = s->coded_block[xy - wrap];
  2109. if (b == c) {
  2110. pred = a;
  2111. } else {
  2112. pred = c;
  2113. }
  2114. /* store value */
  2115. *coded_block_ptr = &s->coded_block[xy];
  2116. return pred;
  2117. }
  2118. /**
  2119. * Decode one AC coefficient
  2120. * @param v The VC1 context
  2121. * @param last Last coefficient
  2122. * @param skip How much zero coefficients to skip
  2123. * @param value Decoded AC coefficient value
  2124. * @param codingset set of VLC to decode data
  2125. * @see 8.1.3.4
  2126. */
  2127. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2128. {
  2129. GetBitContext *gb = &v->s.gb;
  2130. int index, escape, run = 0, level = 0, lst = 0;
  2131. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2132. if (index != vc1_ac_sizes[codingset] - 1) {
  2133. run = vc1_index_decode_table[codingset][index][0];
  2134. level = vc1_index_decode_table[codingset][index][1];
  2135. lst = index >= vc1_last_decode_table[codingset];
  2136. if(get_bits1(gb))
  2137. level = -level;
  2138. } else {
  2139. escape = decode210(gb);
  2140. if (escape != 2) {
  2141. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2142. run = vc1_index_decode_table[codingset][index][0];
  2143. level = vc1_index_decode_table[codingset][index][1];
  2144. lst = index >= vc1_last_decode_table[codingset];
  2145. if(escape == 0) {
  2146. if(lst)
  2147. level += vc1_last_delta_level_table[codingset][run];
  2148. else
  2149. level += vc1_delta_level_table[codingset][run];
  2150. } else {
  2151. if(lst)
  2152. run += vc1_last_delta_run_table[codingset][level] + 1;
  2153. else
  2154. run += vc1_delta_run_table[codingset][level] + 1;
  2155. }
  2156. if(get_bits1(gb))
  2157. level = -level;
  2158. } else {
  2159. int sign;
  2160. lst = get_bits1(gb);
  2161. if(v->s.esc3_level_length == 0) {
  2162. if(v->pq < 8 || v->dquantfrm) { // table 59
  2163. v->s.esc3_level_length = get_bits(gb, 3);
  2164. if(!v->s.esc3_level_length)
  2165. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2166. } else { //table 60
  2167. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2168. }
  2169. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2170. }
  2171. run = get_bits(gb, v->s.esc3_run_length);
  2172. sign = get_bits1(gb);
  2173. level = get_bits(gb, v->s.esc3_level_length);
  2174. if(sign)
  2175. level = -level;
  2176. }
  2177. }
  2178. *last = lst;
  2179. *skip = run;
  2180. *value = level;
  2181. }
  2182. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2183. * @param v VC1Context
  2184. * @param block block to decode
  2185. * @param[in] n subblock index
  2186. * @param coded are AC coeffs present or not
  2187. * @param codingset set of VLC to decode data
  2188. */
  2189. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2190. {
  2191. GetBitContext *gb = &v->s.gb;
  2192. MpegEncContext *s = &v->s;
  2193. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2194. int run_diff, i;
  2195. int16_t *dc_val;
  2196. int16_t *ac_val, *ac_val2;
  2197. int dcdiff;
  2198. /* Get DC differential */
  2199. if (n < 4) {
  2200. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2201. } else {
  2202. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2203. }
  2204. if (dcdiff < 0){
  2205. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2206. return -1;
  2207. }
  2208. if (dcdiff)
  2209. {
  2210. if (dcdiff == 119 /* ESC index value */)
  2211. {
  2212. /* TODO: Optimize */
  2213. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2214. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2215. else dcdiff = get_bits(gb, 8);
  2216. }
  2217. else
  2218. {
  2219. if (v->pq == 1)
  2220. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2221. else if (v->pq == 2)
  2222. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2223. }
  2224. if (get_bits1(gb))
  2225. dcdiff = -dcdiff;
  2226. }
  2227. /* Prediction */
  2228. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2229. *dc_val = dcdiff;
  2230. /* Store the quantized DC coeff, used for prediction */
  2231. if (n < 4) {
  2232. block[0] = dcdiff * s->y_dc_scale;
  2233. } else {
  2234. block[0] = dcdiff * s->c_dc_scale;
  2235. }
  2236. /* Skip ? */
  2237. run_diff = 0;
  2238. if (!coded) {
  2239. goto not_coded;
  2240. }
  2241. //AC Decoding
  2242. i = 1;
  2243. {
  2244. int last = 0, skip, value;
  2245. const int8_t *zz_table;
  2246. int scale;
  2247. int k;
  2248. scale = v->pq * 2 + v->halfpq;
  2249. if(v->s.ac_pred) {
  2250. if(!dc_pred_dir)
  2251. zz_table = wmv1_scantable[2];
  2252. else
  2253. zz_table = wmv1_scantable[3];
  2254. } else
  2255. zz_table = wmv1_scantable[1];
  2256. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2257. ac_val2 = ac_val;
  2258. if(dc_pred_dir) //left
  2259. ac_val -= 16;
  2260. else //top
  2261. ac_val -= 16 * s->block_wrap[n];
  2262. while (!last) {
  2263. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2264. i += skip;
  2265. if(i > 63)
  2266. break;
  2267. block[zz_table[i++]] = value;
  2268. }
  2269. /* apply AC prediction if needed */
  2270. if(s->ac_pred) {
  2271. if(dc_pred_dir) { //left
  2272. for(k = 1; k < 8; k++)
  2273. block[k << 3] += ac_val[k];
  2274. } else { //top
  2275. for(k = 1; k < 8; k++)
  2276. block[k] += ac_val[k + 8];
  2277. }
  2278. }
  2279. /* save AC coeffs for further prediction */
  2280. for(k = 1; k < 8; k++) {
  2281. ac_val2[k] = block[k << 3];
  2282. ac_val2[k + 8] = block[k];
  2283. }
  2284. /* scale AC coeffs */
  2285. for(k = 1; k < 64; k++)
  2286. if(block[k]) {
  2287. block[k] *= scale;
  2288. if(!v->pquantizer)
  2289. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2290. }
  2291. if(s->ac_pred) i = 63;
  2292. }
  2293. not_coded:
  2294. if(!coded) {
  2295. int k, scale;
  2296. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2297. ac_val2 = ac_val;
  2298. i = 0;
  2299. scale = v->pq * 2 + v->halfpq;
  2300. memset(ac_val2, 0, 16 * 2);
  2301. if(dc_pred_dir) {//left
  2302. ac_val -= 16;
  2303. if(s->ac_pred)
  2304. memcpy(ac_val2, ac_val, 8 * 2);
  2305. } else {//top
  2306. ac_val -= 16 * s->block_wrap[n];
  2307. if(s->ac_pred)
  2308. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2309. }
  2310. /* apply AC prediction if needed */
  2311. if(s->ac_pred) {
  2312. if(dc_pred_dir) { //left
  2313. for(k = 1; k < 8; k++) {
  2314. block[k << 3] = ac_val[k] * scale;
  2315. if(!v->pquantizer && block[k << 3])
  2316. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2317. }
  2318. } else { //top
  2319. for(k = 1; k < 8; k++) {
  2320. block[k] = ac_val[k + 8] * scale;
  2321. if(!v->pquantizer && block[k])
  2322. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2323. }
  2324. }
  2325. i = 63;
  2326. }
  2327. }
  2328. s->block_last_index[n] = i;
  2329. return 0;
  2330. }
  2331. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2332. * @param v VC1Context
  2333. * @param block block to decode
  2334. * @param[in] n subblock number
  2335. * @param coded are AC coeffs present or not
  2336. * @param codingset set of VLC to decode data
  2337. * @param mquant quantizer value for this macroblock
  2338. */
  2339. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2340. {
  2341. GetBitContext *gb = &v->s.gb;
  2342. MpegEncContext *s = &v->s;
  2343. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2344. int run_diff, i;
  2345. int16_t *dc_val;
  2346. int16_t *ac_val, *ac_val2;
  2347. int dcdiff;
  2348. int a_avail = v->a_avail, c_avail = v->c_avail;
  2349. int use_pred = s->ac_pred;
  2350. int scale;
  2351. int q1, q2 = 0;
  2352. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2353. /* Get DC differential */
  2354. if (n < 4) {
  2355. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2356. } else {
  2357. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2358. }
  2359. if (dcdiff < 0){
  2360. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2361. return -1;
  2362. }
  2363. if (dcdiff)
  2364. {
  2365. if (dcdiff == 119 /* ESC index value */)
  2366. {
  2367. /* TODO: Optimize */
  2368. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2369. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2370. else dcdiff = get_bits(gb, 8);
  2371. }
  2372. else
  2373. {
  2374. if (mquant == 1)
  2375. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2376. else if (mquant == 2)
  2377. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2378. }
  2379. if (get_bits1(gb))
  2380. dcdiff = -dcdiff;
  2381. }
  2382. /* Prediction */
  2383. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2384. *dc_val = dcdiff;
  2385. /* Store the quantized DC coeff, used for prediction */
  2386. if (n < 4) {
  2387. block[0] = dcdiff * s->y_dc_scale;
  2388. } else {
  2389. block[0] = dcdiff * s->c_dc_scale;
  2390. }
  2391. /* Skip ? */
  2392. run_diff = 0;
  2393. //AC Decoding
  2394. i = 1;
  2395. /* check if AC is needed at all */
  2396. if(!a_avail && !c_avail) use_pred = 0;
  2397. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2398. ac_val2 = ac_val;
  2399. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2400. if(dc_pred_dir) //left
  2401. ac_val -= 16;
  2402. else //top
  2403. ac_val -= 16 * s->block_wrap[n];
  2404. q1 = s->current_picture.qscale_table[mb_pos];
  2405. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2406. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2407. if(dc_pred_dir && n==1) q2 = q1;
  2408. if(!dc_pred_dir && n==2) q2 = q1;
  2409. if(n==3) q2 = q1;
  2410. if(coded) {
  2411. int last = 0, skip, value;
  2412. const int8_t *zz_table;
  2413. int k;
  2414. if(v->s.ac_pred) {
  2415. if(!dc_pred_dir)
  2416. zz_table = wmv1_scantable[2];
  2417. else
  2418. zz_table = wmv1_scantable[3];
  2419. } else
  2420. zz_table = wmv1_scantable[1];
  2421. while (!last) {
  2422. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2423. i += skip;
  2424. if(i > 63)
  2425. break;
  2426. block[zz_table[i++]] = value;
  2427. }
  2428. /* apply AC prediction if needed */
  2429. if(use_pred) {
  2430. /* scale predictors if needed*/
  2431. if(q2 && q1!=q2) {
  2432. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2433. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2434. if(dc_pred_dir) { //left
  2435. for(k = 1; k < 8; k++)
  2436. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2437. } else { //top
  2438. for(k = 1; k < 8; k++)
  2439. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2440. }
  2441. } else {
  2442. if(dc_pred_dir) { //left
  2443. for(k = 1; k < 8; k++)
  2444. block[k << 3] += ac_val[k];
  2445. } else { //top
  2446. for(k = 1; k < 8; k++)
  2447. block[k] += ac_val[k + 8];
  2448. }
  2449. }
  2450. }
  2451. /* save AC coeffs for further prediction */
  2452. for(k = 1; k < 8; k++) {
  2453. ac_val2[k] = block[k << 3];
  2454. ac_val2[k + 8] = block[k];
  2455. }
  2456. /* scale AC coeffs */
  2457. for(k = 1; k < 64; k++)
  2458. if(block[k]) {
  2459. block[k] *= scale;
  2460. if(!v->pquantizer)
  2461. block[k] += (block[k] < 0) ? -mquant : mquant;
  2462. }
  2463. if(use_pred) i = 63;
  2464. } else { // no AC coeffs
  2465. int k;
  2466. memset(ac_val2, 0, 16 * 2);
  2467. if(dc_pred_dir) {//left
  2468. if(use_pred) {
  2469. memcpy(ac_val2, ac_val, 8 * 2);
  2470. if(q2 && q1!=q2) {
  2471. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2472. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2473. for(k = 1; k < 8; k++)
  2474. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2475. }
  2476. }
  2477. } else {//top
  2478. if(use_pred) {
  2479. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2480. if(q2 && q1!=q2) {
  2481. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2482. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2483. for(k = 1; k < 8; k++)
  2484. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2485. }
  2486. }
  2487. }
  2488. /* apply AC prediction if needed */
  2489. if(use_pred) {
  2490. if(dc_pred_dir) { //left
  2491. for(k = 1; k < 8; k++) {
  2492. block[k << 3] = ac_val2[k] * scale;
  2493. if(!v->pquantizer && block[k << 3])
  2494. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2495. }
  2496. } else { //top
  2497. for(k = 1; k < 8; k++) {
  2498. block[k] = ac_val2[k + 8] * scale;
  2499. if(!v->pquantizer && block[k])
  2500. block[k] += (block[k] < 0) ? -mquant : mquant;
  2501. }
  2502. }
  2503. i = 63;
  2504. }
  2505. }
  2506. s->block_last_index[n] = i;
  2507. return 0;
  2508. }
  2509. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2510. * @param v VC1Context
  2511. * @param block block to decode
  2512. * @param[in] n subblock index
  2513. * @param coded are AC coeffs present or not
  2514. * @param mquant block quantizer
  2515. * @param codingset set of VLC to decode data
  2516. */
  2517. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2518. {
  2519. GetBitContext *gb = &v->s.gb;
  2520. MpegEncContext *s = &v->s;
  2521. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2522. int run_diff, i;
  2523. int16_t *dc_val;
  2524. int16_t *ac_val, *ac_val2;
  2525. int dcdiff;
  2526. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2527. int a_avail = v->a_avail, c_avail = v->c_avail;
  2528. int use_pred = s->ac_pred;
  2529. int scale;
  2530. int q1, q2 = 0;
  2531. /* XXX: Guard against dumb values of mquant */
  2532. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2533. /* Set DC scale - y and c use the same */
  2534. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2535. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2536. /* Get DC differential */
  2537. if (n < 4) {
  2538. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2539. } else {
  2540. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2541. }
  2542. if (dcdiff < 0){
  2543. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2544. return -1;
  2545. }
  2546. if (dcdiff)
  2547. {
  2548. if (dcdiff == 119 /* ESC index value */)
  2549. {
  2550. /* TODO: Optimize */
  2551. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2552. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2553. else dcdiff = get_bits(gb, 8);
  2554. }
  2555. else
  2556. {
  2557. if (mquant == 1)
  2558. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2559. else if (mquant == 2)
  2560. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2561. }
  2562. if (get_bits1(gb))
  2563. dcdiff = -dcdiff;
  2564. }
  2565. /* Prediction */
  2566. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2567. *dc_val = dcdiff;
  2568. /* Store the quantized DC coeff, used for prediction */
  2569. if (n < 4) {
  2570. block[0] = dcdiff * s->y_dc_scale;
  2571. } else {
  2572. block[0] = dcdiff * s->c_dc_scale;
  2573. }
  2574. /* Skip ? */
  2575. run_diff = 0;
  2576. //AC Decoding
  2577. i = 1;
  2578. /* check if AC is needed at all and adjust direction if needed */
  2579. if(!a_avail) dc_pred_dir = 1;
  2580. if(!c_avail) dc_pred_dir = 0;
  2581. if(!a_avail && !c_avail) use_pred = 0;
  2582. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2583. ac_val2 = ac_val;
  2584. scale = mquant * 2 + v->halfpq;
  2585. if(dc_pred_dir) //left
  2586. ac_val -= 16;
  2587. else //top
  2588. ac_val -= 16 * s->block_wrap[n];
  2589. q1 = s->current_picture.qscale_table[mb_pos];
  2590. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2591. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2592. if(dc_pred_dir && n==1) q2 = q1;
  2593. if(!dc_pred_dir && n==2) q2 = q1;
  2594. if(n==3) q2 = q1;
  2595. if(coded) {
  2596. int last = 0, skip, value;
  2597. const int8_t *zz_table;
  2598. int k;
  2599. zz_table = wmv1_scantable[0];
  2600. while (!last) {
  2601. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2602. i += skip;
  2603. if(i > 63)
  2604. break;
  2605. block[zz_table[i++]] = value;
  2606. }
  2607. /* apply AC prediction if needed */
  2608. if(use_pred) {
  2609. /* scale predictors if needed*/
  2610. if(q2 && q1!=q2) {
  2611. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2612. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2613. if(dc_pred_dir) { //left
  2614. for(k = 1; k < 8; k++)
  2615. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2616. } else { //top
  2617. for(k = 1; k < 8; k++)
  2618. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2619. }
  2620. } else {
  2621. if(dc_pred_dir) { //left
  2622. for(k = 1; k < 8; k++)
  2623. block[k << 3] += ac_val[k];
  2624. } else { //top
  2625. for(k = 1; k < 8; k++)
  2626. block[k] += ac_val[k + 8];
  2627. }
  2628. }
  2629. }
  2630. /* save AC coeffs for further prediction */
  2631. for(k = 1; k < 8; k++) {
  2632. ac_val2[k] = block[k << 3];
  2633. ac_val2[k + 8] = block[k];
  2634. }
  2635. /* scale AC coeffs */
  2636. for(k = 1; k < 64; k++)
  2637. if(block[k]) {
  2638. block[k] *= scale;
  2639. if(!v->pquantizer)
  2640. block[k] += (block[k] < 0) ? -mquant : mquant;
  2641. }
  2642. if(use_pred) i = 63;
  2643. } else { // no AC coeffs
  2644. int k;
  2645. memset(ac_val2, 0, 16 * 2);
  2646. if(dc_pred_dir) {//left
  2647. if(use_pred) {
  2648. memcpy(ac_val2, ac_val, 8 * 2);
  2649. if(q2 && q1!=q2) {
  2650. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2651. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2652. for(k = 1; k < 8; k++)
  2653. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2654. }
  2655. }
  2656. } else {//top
  2657. if(use_pred) {
  2658. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2659. if(q2 && q1!=q2) {
  2660. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2661. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2662. for(k = 1; k < 8; k++)
  2663. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2664. }
  2665. }
  2666. }
  2667. /* apply AC prediction if needed */
  2668. if(use_pred) {
  2669. if(dc_pred_dir) { //left
  2670. for(k = 1; k < 8; k++) {
  2671. block[k << 3] = ac_val2[k] * scale;
  2672. if(!v->pquantizer && block[k << 3])
  2673. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2674. }
  2675. } else { //top
  2676. for(k = 1; k < 8; k++) {
  2677. block[k] = ac_val2[k + 8] * scale;
  2678. if(!v->pquantizer && block[k])
  2679. block[k] += (block[k] < 0) ? -mquant : mquant;
  2680. }
  2681. }
  2682. i = 63;
  2683. }
  2684. }
  2685. s->block_last_index[n] = i;
  2686. return 0;
  2687. }
  2688. /** Decode P block
  2689. */
  2690. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2691. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2692. {
  2693. MpegEncContext *s = &v->s;
  2694. GetBitContext *gb = &s->gb;
  2695. int i, j;
  2696. int subblkpat = 0;
  2697. int scale, off, idx, last, skip, value;
  2698. int ttblk = ttmb & 7;
  2699. int pat = 0;
  2700. if(ttmb == -1) {
  2701. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2702. }
  2703. if(ttblk == TT_4X4) {
  2704. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2705. }
  2706. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2707. subblkpat = decode012(gb);
  2708. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2709. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2710. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2711. }
  2712. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2713. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2714. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2715. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2716. ttblk = TT_8X4;
  2717. }
  2718. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2719. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2720. ttblk = TT_4X8;
  2721. }
  2722. switch(ttblk) {
  2723. case TT_8X8:
  2724. pat = 0xF;
  2725. i = 0;
  2726. last = 0;
  2727. while (!last) {
  2728. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2729. i += skip;
  2730. if(i > 63)
  2731. break;
  2732. idx = wmv1_scantable[0][i++];
  2733. block[idx] = value * scale;
  2734. if(!v->pquantizer)
  2735. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2736. }
  2737. if(!skip_block){
  2738. s->dsp.vc1_inv_trans_8x8(block);
  2739. s->dsp.add_pixels_clamped(block, dst, linesize);
  2740. if(apply_filter && cbp_top & 0xC)
  2741. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2742. if(apply_filter && cbp_left & 0xA)
  2743. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2744. }
  2745. break;
  2746. case TT_4X4:
  2747. pat = ~subblkpat & 0xF;
  2748. for(j = 0; j < 4; j++) {
  2749. last = subblkpat & (1 << (3 - j));
  2750. i = 0;
  2751. off = (j & 1) * 4 + (j & 2) * 16;
  2752. while (!last) {
  2753. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2754. i += skip;
  2755. if(i > 15)
  2756. break;
  2757. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2758. block[idx + off] = value * scale;
  2759. if(!v->pquantizer)
  2760. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2761. }
  2762. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2763. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2764. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2765. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2766. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2767. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2768. }
  2769. }
  2770. break;
  2771. case TT_8X4:
  2772. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2773. for(j = 0; j < 2; j++) {
  2774. last = subblkpat & (1 << (1 - j));
  2775. i = 0;
  2776. off = j * 32;
  2777. while (!last) {
  2778. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2779. i += skip;
  2780. if(i > 31)
  2781. break;
  2782. idx = v->zz_8x4[i++]+off;
  2783. block[idx] = value * scale;
  2784. if(!v->pquantizer)
  2785. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2786. }
  2787. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2788. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2789. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2790. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  2791. if(apply_filter && cbp_left & (2 << j))
  2792. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  2793. }
  2794. }
  2795. break;
  2796. case TT_4X8:
  2797. pat = ~(subblkpat*5) & 0xF;
  2798. for(j = 0; j < 2; j++) {
  2799. last = subblkpat & (1 << (1 - j));
  2800. i = 0;
  2801. off = j * 4;
  2802. while (!last) {
  2803. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2804. i += skip;
  2805. if(i > 31)
  2806. break;
  2807. idx = v->zz_4x8[i++]+off;
  2808. block[idx] = value * scale;
  2809. if(!v->pquantizer)
  2810. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2811. }
  2812. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2813. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2814. if(apply_filter && cbp_top & (2 << j))
  2815. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  2816. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2817. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  2818. }
  2819. }
  2820. break;
  2821. }
  2822. return pat;
  2823. }
  2824. /** @} */ // Macroblock group
  2825. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2826. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2827. /** Decode one P-frame MB (in Simple/Main profile)
  2828. */
  2829. static int vc1_decode_p_mb(VC1Context *v)
  2830. {
  2831. MpegEncContext *s = &v->s;
  2832. GetBitContext *gb = &s->gb;
  2833. int i, j;
  2834. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2835. int cbp; /* cbp decoding stuff */
  2836. int mqdiff, mquant; /* MB quantization */
  2837. int ttmb = v->ttfrm; /* MB Transform type */
  2838. int mb_has_coeffs = 1; /* last_flag */
  2839. int dmv_x, dmv_y; /* Differential MV components */
  2840. int index, index1; /* LUT indexes */
  2841. int val, sign; /* temp values */
  2842. int first_block = 1;
  2843. int dst_idx, off;
  2844. int skipped, fourmv;
  2845. int block_cbp = 0, pat;
  2846. int apply_loop_filter;
  2847. mquant = v->pq; /* Loosy initialization */
  2848. if (v->mv_type_is_raw)
  2849. fourmv = get_bits1(gb);
  2850. else
  2851. fourmv = v->mv_type_mb_plane[mb_pos];
  2852. if (v->skip_is_raw)
  2853. skipped = get_bits1(gb);
  2854. else
  2855. skipped = v->s.mbskip_table[mb_pos];
  2856. s->dsp.clear_blocks(s->block[0]);
  2857. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2858. if (!fourmv) /* 1MV mode */
  2859. {
  2860. if (!skipped)
  2861. {
  2862. GET_MVDATA(dmv_x, dmv_y);
  2863. if (s->mb_intra) {
  2864. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2865. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2866. }
  2867. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2868. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2869. /* FIXME Set DC val for inter block ? */
  2870. if (s->mb_intra && !mb_has_coeffs)
  2871. {
  2872. GET_MQUANT();
  2873. s->ac_pred = get_bits1(gb);
  2874. cbp = 0;
  2875. }
  2876. else if (mb_has_coeffs)
  2877. {
  2878. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2879. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2880. GET_MQUANT();
  2881. }
  2882. else
  2883. {
  2884. mquant = v->pq;
  2885. cbp = 0;
  2886. }
  2887. s->current_picture.qscale_table[mb_pos] = mquant;
  2888. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2889. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2890. VC1_TTMB_VLC_BITS, 2);
  2891. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2892. dst_idx = 0;
  2893. for (i=0; i<6; i++)
  2894. {
  2895. s->dc_val[0][s->block_index[i]] = 0;
  2896. dst_idx += i >> 2;
  2897. val = ((cbp >> (5 - i)) & 1);
  2898. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2899. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2900. if(s->mb_intra) {
  2901. /* check if prediction blocks A and C are available */
  2902. v->a_avail = v->c_avail = 0;
  2903. if(i == 2 || i == 3 || !s->first_slice_line)
  2904. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2905. if(i == 1 || i == 3 || s->mb_x)
  2906. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2907. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2908. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2909. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2910. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2911. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2912. if(v->pq >= 9 && v->overlap) {
  2913. if(v->c_avail)
  2914. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2915. if(v->a_avail)
  2916. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2917. }
  2918. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2919. int left_cbp, top_cbp;
  2920. if(i & 4){
  2921. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2922. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2923. }else{
  2924. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2925. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2926. }
  2927. if(left_cbp & 0xC)
  2928. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2929. if(top_cbp & 0xA)
  2930. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2931. }
  2932. block_cbp |= 0xF << (i << 2);
  2933. } else if(val) {
  2934. int left_cbp = 0, top_cbp = 0, filter = 0;
  2935. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2936. filter = 1;
  2937. if(i & 4){
  2938. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2939. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2940. }else{
  2941. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2942. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2943. }
  2944. if(left_cbp & 0xC)
  2945. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2946. if(top_cbp & 0xA)
  2947. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2948. }
  2949. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2950. block_cbp |= pat << (i << 2);
  2951. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2952. first_block = 0;
  2953. }
  2954. }
  2955. }
  2956. else //Skipped
  2957. {
  2958. s->mb_intra = 0;
  2959. for(i = 0; i < 6; i++) {
  2960. v->mb_type[0][s->block_index[i]] = 0;
  2961. s->dc_val[0][s->block_index[i]] = 0;
  2962. }
  2963. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2964. s->current_picture.qscale_table[mb_pos] = 0;
  2965. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2966. vc1_mc_1mv(v, 0);
  2967. return 0;
  2968. }
  2969. } //1MV mode
  2970. else //4MV mode
  2971. {
  2972. if (!skipped /* unskipped MB */)
  2973. {
  2974. int intra_count = 0, coded_inter = 0;
  2975. int is_intra[6], is_coded[6];
  2976. /* Get CBPCY */
  2977. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2978. for (i=0; i<6; i++)
  2979. {
  2980. val = ((cbp >> (5 - i)) & 1);
  2981. s->dc_val[0][s->block_index[i]] = 0;
  2982. s->mb_intra = 0;
  2983. if(i < 4) {
  2984. dmv_x = dmv_y = 0;
  2985. s->mb_intra = 0;
  2986. mb_has_coeffs = 0;
  2987. if(val) {
  2988. GET_MVDATA(dmv_x, dmv_y);
  2989. }
  2990. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2991. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2992. intra_count += s->mb_intra;
  2993. is_intra[i] = s->mb_intra;
  2994. is_coded[i] = mb_has_coeffs;
  2995. }
  2996. if(i&4){
  2997. is_intra[i] = (intra_count >= 3);
  2998. is_coded[i] = val;
  2999. }
  3000. if(i == 4) vc1_mc_4mv_chroma(v);
  3001. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3002. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3003. }
  3004. // if there are no coded blocks then don't do anything more
  3005. if(!intra_count && !coded_inter) return 0;
  3006. dst_idx = 0;
  3007. GET_MQUANT();
  3008. s->current_picture.qscale_table[mb_pos] = mquant;
  3009. /* test if block is intra and has pred */
  3010. {
  3011. int intrapred = 0;
  3012. for(i=0; i<6; i++)
  3013. if(is_intra[i]) {
  3014. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3015. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3016. intrapred = 1;
  3017. break;
  3018. }
  3019. }
  3020. if(intrapred)s->ac_pred = get_bits1(gb);
  3021. else s->ac_pred = 0;
  3022. }
  3023. if (!v->ttmbf && coded_inter)
  3024. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3025. for (i=0; i<6; i++)
  3026. {
  3027. dst_idx += i >> 2;
  3028. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3029. s->mb_intra = is_intra[i];
  3030. if (is_intra[i]) {
  3031. /* check if prediction blocks A and C are available */
  3032. v->a_avail = v->c_avail = 0;
  3033. if(i == 2 || i == 3 || !s->first_slice_line)
  3034. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3035. if(i == 1 || i == 3 || s->mb_x)
  3036. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3037. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3038. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3039. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3040. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3041. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3042. if(v->pq >= 9 && v->overlap) {
  3043. if(v->c_avail)
  3044. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3045. if(v->a_avail)
  3046. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3047. }
  3048. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3049. int left_cbp, top_cbp;
  3050. if(i & 4){
  3051. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3052. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3053. }else{
  3054. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3055. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3056. }
  3057. if(left_cbp & 0xC)
  3058. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3059. if(top_cbp & 0xA)
  3060. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3061. }
  3062. block_cbp |= 0xF << (i << 2);
  3063. } else if(is_coded[i]) {
  3064. int left_cbp = 0, top_cbp = 0, filter = 0;
  3065. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3066. filter = 1;
  3067. if(i & 4){
  3068. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3069. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3070. }else{
  3071. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3072. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3073. }
  3074. if(left_cbp & 0xC)
  3075. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3076. if(top_cbp & 0xA)
  3077. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3078. }
  3079. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3080. block_cbp |= pat << (i << 2);
  3081. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3082. first_block = 0;
  3083. }
  3084. }
  3085. return 0;
  3086. }
  3087. else //Skipped MB
  3088. {
  3089. s->mb_intra = 0;
  3090. s->current_picture.qscale_table[mb_pos] = 0;
  3091. for (i=0; i<6; i++) {
  3092. v->mb_type[0][s->block_index[i]] = 0;
  3093. s->dc_val[0][s->block_index[i]] = 0;
  3094. }
  3095. for (i=0; i<4; i++)
  3096. {
  3097. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3098. vc1_mc_4mv_luma(v, i);
  3099. }
  3100. vc1_mc_4mv_chroma(v);
  3101. s->current_picture.qscale_table[mb_pos] = 0;
  3102. return 0;
  3103. }
  3104. }
  3105. v->cbp[s->mb_x] = block_cbp;
  3106. /* Should never happen */
  3107. return -1;
  3108. }
  3109. /** Decode one B-frame MB (in Main profile)
  3110. */
  3111. static void vc1_decode_b_mb(VC1Context *v)
  3112. {
  3113. MpegEncContext *s = &v->s;
  3114. GetBitContext *gb = &s->gb;
  3115. int i, j;
  3116. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3117. int cbp = 0; /* cbp decoding stuff */
  3118. int mqdiff, mquant; /* MB quantization */
  3119. int ttmb = v->ttfrm; /* MB Transform type */
  3120. int mb_has_coeffs = 0; /* last_flag */
  3121. int index, index1; /* LUT indexes */
  3122. int val, sign; /* temp values */
  3123. int first_block = 1;
  3124. int dst_idx, off;
  3125. int skipped, direct;
  3126. int dmv_x[2], dmv_y[2];
  3127. int bmvtype = BMV_TYPE_BACKWARD;
  3128. mquant = v->pq; /* Loosy initialization */
  3129. s->mb_intra = 0;
  3130. if (v->dmb_is_raw)
  3131. direct = get_bits1(gb);
  3132. else
  3133. direct = v->direct_mb_plane[mb_pos];
  3134. if (v->skip_is_raw)
  3135. skipped = get_bits1(gb);
  3136. else
  3137. skipped = v->s.mbskip_table[mb_pos];
  3138. s->dsp.clear_blocks(s->block[0]);
  3139. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3140. for(i = 0; i < 6; i++) {
  3141. v->mb_type[0][s->block_index[i]] = 0;
  3142. s->dc_val[0][s->block_index[i]] = 0;
  3143. }
  3144. s->current_picture.qscale_table[mb_pos] = 0;
  3145. if (!direct) {
  3146. if (!skipped) {
  3147. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3148. dmv_x[1] = dmv_x[0];
  3149. dmv_y[1] = dmv_y[0];
  3150. }
  3151. if(skipped || !s->mb_intra) {
  3152. bmvtype = decode012(gb);
  3153. switch(bmvtype) {
  3154. case 0:
  3155. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3156. break;
  3157. case 1:
  3158. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3159. break;
  3160. case 2:
  3161. bmvtype = BMV_TYPE_INTERPOLATED;
  3162. dmv_x[0] = dmv_y[0] = 0;
  3163. }
  3164. }
  3165. }
  3166. for(i = 0; i < 6; i++)
  3167. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3168. if (skipped) {
  3169. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3170. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3171. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3172. return;
  3173. }
  3174. if (direct) {
  3175. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3176. GET_MQUANT();
  3177. s->mb_intra = 0;
  3178. s->current_picture.qscale_table[mb_pos] = mquant;
  3179. if(!v->ttmbf)
  3180. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3181. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3182. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3183. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3184. } else {
  3185. if(!mb_has_coeffs && !s->mb_intra) {
  3186. /* no coded blocks - effectively skipped */
  3187. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3188. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3189. return;
  3190. }
  3191. if(s->mb_intra && !mb_has_coeffs) {
  3192. GET_MQUANT();
  3193. s->current_picture.qscale_table[mb_pos] = mquant;
  3194. s->ac_pred = get_bits1(gb);
  3195. cbp = 0;
  3196. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3197. } else {
  3198. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3199. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3200. if(!mb_has_coeffs) {
  3201. /* interpolated skipped block */
  3202. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3203. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3204. return;
  3205. }
  3206. }
  3207. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3208. if(!s->mb_intra) {
  3209. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3210. }
  3211. if(s->mb_intra)
  3212. s->ac_pred = get_bits1(gb);
  3213. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3214. GET_MQUANT();
  3215. s->current_picture.qscale_table[mb_pos] = mquant;
  3216. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3217. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3218. }
  3219. }
  3220. dst_idx = 0;
  3221. for (i=0; i<6; i++)
  3222. {
  3223. s->dc_val[0][s->block_index[i]] = 0;
  3224. dst_idx += i >> 2;
  3225. val = ((cbp >> (5 - i)) & 1);
  3226. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3227. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3228. if(s->mb_intra) {
  3229. /* check if prediction blocks A and C are available */
  3230. v->a_avail = v->c_avail = 0;
  3231. if(i == 2 || i == 3 || !s->first_slice_line)
  3232. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3233. if(i == 1 || i == 3 || s->mb_x)
  3234. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3235. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3236. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3237. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3238. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3239. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3240. } else if(val) {
  3241. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3242. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3243. first_block = 0;
  3244. }
  3245. }
  3246. }
  3247. /** Decode blocks of I-frame
  3248. */
  3249. static void vc1_decode_i_blocks(VC1Context *v)
  3250. {
  3251. int k, j;
  3252. MpegEncContext *s = &v->s;
  3253. int cbp, val;
  3254. uint8_t *coded_val;
  3255. int mb_pos;
  3256. /* select codingmode used for VLC tables selection */
  3257. switch(v->y_ac_table_index){
  3258. case 0:
  3259. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3260. break;
  3261. case 1:
  3262. v->codingset = CS_HIGH_MOT_INTRA;
  3263. break;
  3264. case 2:
  3265. v->codingset = CS_MID_RATE_INTRA;
  3266. break;
  3267. }
  3268. switch(v->c_ac_table_index){
  3269. case 0:
  3270. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3271. break;
  3272. case 1:
  3273. v->codingset2 = CS_HIGH_MOT_INTER;
  3274. break;
  3275. case 2:
  3276. v->codingset2 = CS_MID_RATE_INTER;
  3277. break;
  3278. }
  3279. /* Set DC scale - y and c use the same */
  3280. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3281. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3282. //do frame decode
  3283. s->mb_x = s->mb_y = 0;
  3284. s->mb_intra = 1;
  3285. s->first_slice_line = 1;
  3286. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3287. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3288. ff_init_block_index(s);
  3289. ff_update_block_index(s);
  3290. s->dsp.clear_blocks(s->block[0]);
  3291. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3292. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3293. s->current_picture.qscale_table[mb_pos] = v->pq;
  3294. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3295. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3296. // do actual MB decoding and displaying
  3297. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3298. v->s.ac_pred = get_bits1(&v->s.gb);
  3299. for(k = 0; k < 6; k++) {
  3300. val = ((cbp >> (5 - k)) & 1);
  3301. if (k < 4) {
  3302. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3303. val = val ^ pred;
  3304. *coded_val = val;
  3305. }
  3306. cbp |= val << (5 - k);
  3307. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3308. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3309. if(v->pq >= 9 && v->overlap) {
  3310. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3311. }
  3312. }
  3313. vc1_put_block(v, s->block);
  3314. if(v->pq >= 9 && v->overlap) {
  3315. if(s->mb_x) {
  3316. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3317. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3318. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3319. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3320. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3321. }
  3322. }
  3323. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3324. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3325. if(!s->first_slice_line) {
  3326. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3327. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3328. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3329. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3330. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3331. }
  3332. }
  3333. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3334. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3335. }
  3336. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3337. if(get_bits_count(&s->gb) > v->bits) {
  3338. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3339. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3340. return;
  3341. }
  3342. }
  3343. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3344. s->first_slice_line = 0;
  3345. }
  3346. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3347. }
  3348. /** Decode blocks of I-frame for advanced profile
  3349. */
  3350. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3351. {
  3352. int k, j;
  3353. MpegEncContext *s = &v->s;
  3354. int cbp, val;
  3355. uint8_t *coded_val;
  3356. int mb_pos;
  3357. int mquant = v->pq;
  3358. int mqdiff;
  3359. int overlap;
  3360. GetBitContext *gb = &s->gb;
  3361. /* select codingmode used for VLC tables selection */
  3362. switch(v->y_ac_table_index){
  3363. case 0:
  3364. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3365. break;
  3366. case 1:
  3367. v->codingset = CS_HIGH_MOT_INTRA;
  3368. break;
  3369. case 2:
  3370. v->codingset = CS_MID_RATE_INTRA;
  3371. break;
  3372. }
  3373. switch(v->c_ac_table_index){
  3374. case 0:
  3375. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3376. break;
  3377. case 1:
  3378. v->codingset2 = CS_HIGH_MOT_INTER;
  3379. break;
  3380. case 2:
  3381. v->codingset2 = CS_MID_RATE_INTER;
  3382. break;
  3383. }
  3384. //do frame decode
  3385. s->mb_x = s->mb_y = 0;
  3386. s->mb_intra = 1;
  3387. s->first_slice_line = 1;
  3388. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3389. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3390. ff_init_block_index(s);
  3391. ff_update_block_index(s);
  3392. s->dsp.clear_blocks(s->block[0]);
  3393. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3394. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3395. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3396. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3397. // do actual MB decoding and displaying
  3398. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3399. if(v->acpred_is_raw)
  3400. v->s.ac_pred = get_bits1(&v->s.gb);
  3401. else
  3402. v->s.ac_pred = v->acpred_plane[mb_pos];
  3403. if(v->condover == CONDOVER_SELECT) {
  3404. if(v->overflg_is_raw)
  3405. overlap = get_bits1(&v->s.gb);
  3406. else
  3407. overlap = v->over_flags_plane[mb_pos];
  3408. } else
  3409. overlap = (v->condover == CONDOVER_ALL);
  3410. GET_MQUANT();
  3411. s->current_picture.qscale_table[mb_pos] = mquant;
  3412. /* Set DC scale - y and c use the same */
  3413. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3414. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3415. for(k = 0; k < 6; k++) {
  3416. val = ((cbp >> (5 - k)) & 1);
  3417. if (k < 4) {
  3418. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3419. val = val ^ pred;
  3420. *coded_val = val;
  3421. }
  3422. cbp |= val << (5 - k);
  3423. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3424. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3425. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3426. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3427. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3428. }
  3429. vc1_put_block(v, s->block);
  3430. if(overlap) {
  3431. if(s->mb_x) {
  3432. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3433. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3434. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3435. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3436. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3437. }
  3438. }
  3439. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3440. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3441. if(!s->first_slice_line) {
  3442. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3443. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3444. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3445. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3446. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3447. }
  3448. }
  3449. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3450. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3451. }
  3452. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3453. if(get_bits_count(&s->gb) > v->bits) {
  3454. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3455. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3456. return;
  3457. }
  3458. }
  3459. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3460. s->first_slice_line = 0;
  3461. }
  3462. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3463. }
  3464. static void vc1_decode_p_blocks(VC1Context *v)
  3465. {
  3466. MpegEncContext *s = &v->s;
  3467. /* select codingmode used for VLC tables selection */
  3468. switch(v->c_ac_table_index){
  3469. case 0:
  3470. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3471. break;
  3472. case 1:
  3473. v->codingset = CS_HIGH_MOT_INTRA;
  3474. break;
  3475. case 2:
  3476. v->codingset = CS_MID_RATE_INTRA;
  3477. break;
  3478. }
  3479. switch(v->c_ac_table_index){
  3480. case 0:
  3481. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3482. break;
  3483. case 1:
  3484. v->codingset2 = CS_HIGH_MOT_INTER;
  3485. break;
  3486. case 2:
  3487. v->codingset2 = CS_MID_RATE_INTER;
  3488. break;
  3489. }
  3490. s->first_slice_line = 1;
  3491. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3492. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3493. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3494. ff_init_block_index(s);
  3495. ff_update_block_index(s);
  3496. s->dsp.clear_blocks(s->block[0]);
  3497. vc1_decode_p_mb(v);
  3498. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3499. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3500. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3501. return;
  3502. }
  3503. }
  3504. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3505. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3506. s->first_slice_line = 0;
  3507. }
  3508. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3509. }
  3510. static void vc1_decode_b_blocks(VC1Context *v)
  3511. {
  3512. MpegEncContext *s = &v->s;
  3513. /* select codingmode used for VLC tables selection */
  3514. switch(v->c_ac_table_index){
  3515. case 0:
  3516. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3517. break;
  3518. case 1:
  3519. v->codingset = CS_HIGH_MOT_INTRA;
  3520. break;
  3521. case 2:
  3522. v->codingset = CS_MID_RATE_INTRA;
  3523. break;
  3524. }
  3525. switch(v->c_ac_table_index){
  3526. case 0:
  3527. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3528. break;
  3529. case 1:
  3530. v->codingset2 = CS_HIGH_MOT_INTER;
  3531. break;
  3532. case 2:
  3533. v->codingset2 = CS_MID_RATE_INTER;
  3534. break;
  3535. }
  3536. s->first_slice_line = 1;
  3537. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3538. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3539. ff_init_block_index(s);
  3540. ff_update_block_index(s);
  3541. s->dsp.clear_blocks(s->block[0]);
  3542. vc1_decode_b_mb(v);
  3543. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3544. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3545. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3546. return;
  3547. }
  3548. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3549. }
  3550. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3551. s->first_slice_line = 0;
  3552. }
  3553. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3554. }
  3555. static void vc1_decode_skip_blocks(VC1Context *v)
  3556. {
  3557. MpegEncContext *s = &v->s;
  3558. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3559. s->first_slice_line = 1;
  3560. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3561. s->mb_x = 0;
  3562. ff_init_block_index(s);
  3563. ff_update_block_index(s);
  3564. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3565. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3566. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3567. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3568. s->first_slice_line = 0;
  3569. }
  3570. s->pict_type = FF_P_TYPE;
  3571. }
  3572. static void vc1_decode_blocks(VC1Context *v)
  3573. {
  3574. v->s.esc3_level_length = 0;
  3575. if(v->x8_type){
  3576. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3577. }else{
  3578. switch(v->s.pict_type) {
  3579. case FF_I_TYPE:
  3580. if(v->profile == PROFILE_ADVANCED)
  3581. vc1_decode_i_blocks_adv(v);
  3582. else
  3583. vc1_decode_i_blocks(v);
  3584. break;
  3585. case FF_P_TYPE:
  3586. if(v->p_frame_skipped)
  3587. vc1_decode_skip_blocks(v);
  3588. else
  3589. vc1_decode_p_blocks(v);
  3590. break;
  3591. case FF_B_TYPE:
  3592. if(v->bi_type){
  3593. if(v->profile == PROFILE_ADVANCED)
  3594. vc1_decode_i_blocks_adv(v);
  3595. else
  3596. vc1_decode_i_blocks(v);
  3597. }else
  3598. vc1_decode_b_blocks(v);
  3599. break;
  3600. }
  3601. }
  3602. }
  3603. /** Find VC-1 marker in buffer
  3604. * @return position where next marker starts or end of buffer if no marker found
  3605. */
  3606. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3607. {
  3608. uint32_t mrk = 0xFFFFFFFF;
  3609. if(end-src < 4) return end;
  3610. while(src < end){
  3611. mrk = (mrk << 8) | *src++;
  3612. if(IS_MARKER(mrk))
  3613. return src-4;
  3614. }
  3615. return end;
  3616. }
  3617. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3618. {
  3619. int dsize = 0, i;
  3620. if(size < 4){
  3621. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3622. return size;
  3623. }
  3624. for(i = 0; i < size; i++, src++) {
  3625. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3626. dst[dsize++] = src[1];
  3627. src++;
  3628. i++;
  3629. } else
  3630. dst[dsize++] = *src;
  3631. }
  3632. return dsize;
  3633. }
  3634. /** Initialize a VC1/WMV3 decoder
  3635. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3636. * @todo TODO: Decypher remaining bits in extra_data
  3637. */
  3638. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3639. {
  3640. VC1Context *v = avctx->priv_data;
  3641. MpegEncContext *s = &v->s;
  3642. GetBitContext gb;
  3643. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3644. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3645. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3646. else
  3647. avctx->pix_fmt = PIX_FMT_GRAY8;
  3648. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3649. v->s.avctx = avctx;
  3650. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3651. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3652. if(avctx->idct_algo==FF_IDCT_AUTO){
  3653. avctx->idct_algo=FF_IDCT_WMV2;
  3654. }
  3655. if(ff_h263_decode_init(avctx) < 0)
  3656. return -1;
  3657. if (vc1_init_common(v) < 0) return -1;
  3658. avctx->coded_width = avctx->width;
  3659. avctx->coded_height = avctx->height;
  3660. if (avctx->codec_id == CODEC_ID_WMV3)
  3661. {
  3662. int count = 0;
  3663. // looks like WMV3 has a sequence header stored in the extradata
  3664. // advanced sequence header may be before the first frame
  3665. // the last byte of the extradata is a version number, 1 for the
  3666. // samples we can decode
  3667. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3668. if (decode_sequence_header(avctx, &gb) < 0)
  3669. return -1;
  3670. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3671. if (count>0)
  3672. {
  3673. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3674. count, get_bits(&gb, count));
  3675. }
  3676. else if (count < 0)
  3677. {
  3678. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3679. }
  3680. } else { // VC1/WVC1
  3681. const uint8_t *start = avctx->extradata;
  3682. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3683. const uint8_t *next;
  3684. int size, buf2_size;
  3685. uint8_t *buf2 = NULL;
  3686. int seq_initialized = 0, ep_initialized = 0;
  3687. if(avctx->extradata_size < 16) {
  3688. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3689. return -1;
  3690. }
  3691. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3692. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3693. next = start;
  3694. for(; next < end; start = next){
  3695. next = find_next_marker(start + 4, end);
  3696. size = next - start - 4;
  3697. if(size <= 0) continue;
  3698. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3699. init_get_bits(&gb, buf2, buf2_size * 8);
  3700. switch(AV_RB32(start)){
  3701. case VC1_CODE_SEQHDR:
  3702. if(decode_sequence_header(avctx, &gb) < 0){
  3703. av_free(buf2);
  3704. return -1;
  3705. }
  3706. seq_initialized = 1;
  3707. break;
  3708. case VC1_CODE_ENTRYPOINT:
  3709. if(decode_entry_point(avctx, &gb) < 0){
  3710. av_free(buf2);
  3711. return -1;
  3712. }
  3713. ep_initialized = 1;
  3714. break;
  3715. }
  3716. }
  3717. av_free(buf2);
  3718. if(!seq_initialized || !ep_initialized){
  3719. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3720. return -1;
  3721. }
  3722. }
  3723. avctx->has_b_frames= !!(avctx->max_b_frames);
  3724. s->low_delay = !avctx->has_b_frames;
  3725. s->mb_width = (avctx->coded_width+15)>>4;
  3726. s->mb_height = (avctx->coded_height+15)>>4;
  3727. /* Allocate mb bitplanes */
  3728. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3729. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3730. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3731. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3732. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3733. v->cbp = v->cbp_base + s->mb_stride;
  3734. /* allocate block type info in that way so it could be used with s->block_index[] */
  3735. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3736. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3737. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3738. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3739. /* Init coded blocks info */
  3740. if (v->profile == PROFILE_ADVANCED)
  3741. {
  3742. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3743. // return -1;
  3744. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3745. // return -1;
  3746. }
  3747. ff_intrax8_common_init(&v->x8,s);
  3748. return 0;
  3749. }
  3750. /** Decode a VC1/WMV3 frame
  3751. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3752. */
  3753. static int vc1_decode_frame(AVCodecContext *avctx,
  3754. void *data, int *data_size,
  3755. AVPacket *avpkt)
  3756. {
  3757. const uint8_t *buf = avpkt->data;
  3758. int buf_size = avpkt->size;
  3759. VC1Context *v = avctx->priv_data;
  3760. MpegEncContext *s = &v->s;
  3761. AVFrame *pict = data;
  3762. uint8_t *buf2 = NULL;
  3763. const uint8_t *buf_start = buf;
  3764. /* no supplementary picture */
  3765. if (buf_size == 0) {
  3766. /* special case for last picture */
  3767. if (s->low_delay==0 && s->next_picture_ptr) {
  3768. *pict= *(AVFrame*)s->next_picture_ptr;
  3769. s->next_picture_ptr= NULL;
  3770. *data_size = sizeof(AVFrame);
  3771. }
  3772. return 0;
  3773. }
  3774. /* We need to set current_picture_ptr before reading the header,
  3775. * otherwise we cannot store anything in there. */
  3776. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3777. int i= ff_find_unused_picture(s, 0);
  3778. s->current_picture_ptr= &s->picture[i];
  3779. }
  3780. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3781. if (v->profile < PROFILE_ADVANCED)
  3782. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3783. else
  3784. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3785. }
  3786. //for advanced profile we may need to parse and unescape data
  3787. if (avctx->codec_id == CODEC_ID_VC1) {
  3788. int buf_size2 = 0;
  3789. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3790. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3791. const uint8_t *start, *end, *next;
  3792. int size;
  3793. next = buf;
  3794. for(start = buf, end = buf + buf_size; next < end; start = next){
  3795. next = find_next_marker(start + 4, end);
  3796. size = next - start - 4;
  3797. if(size <= 0) continue;
  3798. switch(AV_RB32(start)){
  3799. case VC1_CODE_FRAME:
  3800. if (avctx->hwaccel ||
  3801. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3802. buf_start = start;
  3803. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3804. break;
  3805. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3806. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3807. init_get_bits(&s->gb, buf2, buf_size2*8);
  3808. decode_entry_point(avctx, &s->gb);
  3809. break;
  3810. case VC1_CODE_SLICE:
  3811. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3812. av_free(buf2);
  3813. return -1;
  3814. }
  3815. }
  3816. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3817. const uint8_t *divider;
  3818. divider = find_next_marker(buf, buf + buf_size);
  3819. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3820. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3821. av_free(buf2);
  3822. return -1;
  3823. }
  3824. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3825. // TODO
  3826. av_free(buf2);return -1;
  3827. }else{
  3828. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3829. }
  3830. init_get_bits(&s->gb, buf2, buf_size2*8);
  3831. } else
  3832. init_get_bits(&s->gb, buf, buf_size*8);
  3833. // do parse frame header
  3834. if(v->profile < PROFILE_ADVANCED) {
  3835. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3836. av_free(buf2);
  3837. return -1;
  3838. }
  3839. } else {
  3840. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3841. av_free(buf2);
  3842. return -1;
  3843. }
  3844. }
  3845. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3846. av_free(buf2);
  3847. return -1;
  3848. }
  3849. // for hurry_up==5
  3850. s->current_picture.pict_type= s->pict_type;
  3851. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3852. /* skip B-frames if we don't have reference frames */
  3853. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3854. av_free(buf2);
  3855. return -1;//buf_size;
  3856. }
  3857. /* skip b frames if we are in a hurry */
  3858. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3859. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3860. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3861. || avctx->skip_frame >= AVDISCARD_ALL) {
  3862. av_free(buf2);
  3863. return buf_size;
  3864. }
  3865. /* skip everything if we are in a hurry>=5 */
  3866. if(avctx->hurry_up>=5) {
  3867. av_free(buf2);
  3868. return -1;//buf_size;
  3869. }
  3870. if(s->next_p_frame_damaged){
  3871. if(s->pict_type==FF_B_TYPE)
  3872. return buf_size;
  3873. else
  3874. s->next_p_frame_damaged=0;
  3875. }
  3876. if(MPV_frame_start(s, avctx) < 0) {
  3877. av_free(buf2);
  3878. return -1;
  3879. }
  3880. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3881. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3882. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3883. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3884. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3885. else if (avctx->hwaccel) {
  3886. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3887. return -1;
  3888. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3889. return -1;
  3890. if (avctx->hwaccel->end_frame(avctx) < 0)
  3891. return -1;
  3892. } else {
  3893. ff_er_frame_start(s);
  3894. v->bits = buf_size * 8;
  3895. vc1_decode_blocks(v);
  3896. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3897. // if(get_bits_count(&s->gb) > buf_size * 8)
  3898. // return -1;
  3899. ff_er_frame_end(s);
  3900. }
  3901. MPV_frame_end(s);
  3902. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3903. assert(s->current_picture.pict_type == s->pict_type);
  3904. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3905. *pict= *(AVFrame*)s->current_picture_ptr;
  3906. } else if (s->last_picture_ptr != NULL) {
  3907. *pict= *(AVFrame*)s->last_picture_ptr;
  3908. }
  3909. if(s->last_picture_ptr || s->low_delay){
  3910. *data_size = sizeof(AVFrame);
  3911. ff_print_debug_info(s, pict);
  3912. }
  3913. /* Return the Picture timestamp as the frame number */
  3914. /* we subtract 1 because it is added on utils.c */
  3915. avctx->frame_number = s->picture_number - 1;
  3916. av_free(buf2);
  3917. return buf_size;
  3918. }
  3919. /** Close a VC1/WMV3 decoder
  3920. * @warning Initial try at using MpegEncContext stuff
  3921. */
  3922. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3923. {
  3924. VC1Context *v = avctx->priv_data;
  3925. av_freep(&v->hrd_rate);
  3926. av_freep(&v->hrd_buffer);
  3927. MPV_common_end(&v->s);
  3928. av_freep(&v->mv_type_mb_plane);
  3929. av_freep(&v->direct_mb_plane);
  3930. av_freep(&v->acpred_plane);
  3931. av_freep(&v->over_flags_plane);
  3932. av_freep(&v->mb_type_base);
  3933. av_freep(&v->cbp_base);
  3934. ff_intrax8_common_end(&v->x8);
  3935. return 0;
  3936. }
  3937. AVCodec vc1_decoder = {
  3938. "vc1",
  3939. CODEC_TYPE_VIDEO,
  3940. CODEC_ID_VC1,
  3941. sizeof(VC1Context),
  3942. vc1_decode_init,
  3943. NULL,
  3944. vc1_decode_end,
  3945. vc1_decode_frame,
  3946. CODEC_CAP_DELAY,
  3947. NULL,
  3948. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3949. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3950. };
  3951. AVCodec wmv3_decoder = {
  3952. "wmv3",
  3953. CODEC_TYPE_VIDEO,
  3954. CODEC_ID_WMV3,
  3955. sizeof(VC1Context),
  3956. vc1_decode_init,
  3957. NULL,
  3958. vc1_decode_end,
  3959. vc1_decode_frame,
  3960. CODEC_CAP_DELAY,
  3961. NULL,
  3962. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3963. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3964. };
  3965. #if CONFIG_WMV3_VDPAU_DECODER
  3966. AVCodec wmv3_vdpau_decoder = {
  3967. "wmv3_vdpau",
  3968. CODEC_TYPE_VIDEO,
  3969. CODEC_ID_WMV3,
  3970. sizeof(VC1Context),
  3971. vc1_decode_init,
  3972. NULL,
  3973. vc1_decode_end,
  3974. vc1_decode_frame,
  3975. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3976. NULL,
  3977. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3978. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3979. };
  3980. #endif
  3981. #if CONFIG_VC1_VDPAU_DECODER
  3982. AVCodec vc1_vdpau_decoder = {
  3983. "vc1_vdpau",
  3984. CODEC_TYPE_VIDEO,
  3985. CODEC_ID_VC1,
  3986. sizeof(VC1Context),
  3987. vc1_decode_init,
  3988. NULL,
  3989. vc1_decode_end,
  3990. vc1_decode_frame,
  3991. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3992. NULL,
  3993. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3994. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3995. };
  3996. #endif