You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1064 lines
35KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "ratecontrol.h"
  29. #include "mpegvideo.h"
  30. #include "libavutil/eval.h"
  31. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  32. #include <assert.h>
  33. #ifndef M_E
  34. #define M_E 2.718281828
  35. #endif
  36. static int init_pass2(MpegEncContext *s);
  37. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  38. double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s)
  40. {
  41. snprintf(s->avctx->stats_out, 256,
  42. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  43. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  44. s->current_picture_ptr->f.display_picture_number,
  45. s->current_picture_ptr->f.coded_picture_number,
  46. s->pict_type,
  47. s->current_picture.f.quality,
  48. s->i_tex_bits,
  49. s->p_tex_bits,
  50. s->mv_bits,
  51. s->misc_bits,
  52. s->f_code,
  53. s->b_code,
  54. s->current_picture.mc_mb_var_sum,
  55. s->current_picture.mb_var_sum,
  56. s->i_count, s->skip_count,
  57. s->header_bits);
  58. }
  59. static double get_fps(AVCodecContext *avctx)
  60. {
  61. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  62. }
  63. static inline double qp2bits(RateControlEntry *rce, double qp)
  64. {
  65. if (qp <= 0.0) {
  66. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  67. }
  68. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  69. }
  70. static inline double bits2qp(RateControlEntry *rce, double bits)
  71. {
  72. if (bits < 0.9) {
  73. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  74. }
  75. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  76. }
  77. av_cold int ff_rate_control_init(MpegEncContext *s)
  78. {
  79. RateControlContext *rcc = &s->rc_context;
  80. int i, res;
  81. static const char * const const_names[] = {
  82. "PI",
  83. "E",
  84. "iTex",
  85. "pTex",
  86. "tex",
  87. "mv",
  88. "fCode",
  89. "iCount",
  90. "mcVar",
  91. "var",
  92. "isI",
  93. "isP",
  94. "isB",
  95. "avgQP",
  96. "qComp",
  97. #if 0
  98. "lastIQP",
  99. "lastPQP",
  100. "lastBQP",
  101. "nextNonBQP",
  102. #endif
  103. "avgIITex",
  104. "avgPITex",
  105. "avgPPTex",
  106. "avgBPTex",
  107. "avgTex",
  108. NULL
  109. };
  110. static double (* const func1[])(void *, double) = {
  111. (void *)bits2qp,
  112. (void *)qp2bits,
  113. NULL
  114. };
  115. static const char * const func1_names[] = {
  116. "bits2qp",
  117. "qp2bits",
  118. NULL
  119. };
  120. emms_c();
  121. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  122. if (s->avctx->rc_max_rate) {
  123. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  124. } else
  125. s->avctx->rc_max_available_vbv_use = 1.0;
  126. }
  127. res = av_expr_parse(&rcc->rc_eq_eval,
  128. s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
  129. const_names, func1_names, func1,
  130. NULL, NULL, 0, s->avctx);
  131. if (res < 0) {
  132. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  133. return res;
  134. }
  135. for (i = 0; i < 5; i++) {
  136. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  137. rcc->pred[i].count = 1.0;
  138. rcc->pred[i].decay = 0.4;
  139. rcc->i_cplx_sum [i] =
  140. rcc->p_cplx_sum [i] =
  141. rcc->mv_bits_sum[i] =
  142. rcc->qscale_sum [i] =
  143. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  144. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  145. }
  146. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  147. if (!rcc->buffer_index)
  148. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  149. if (s->flags & CODEC_FLAG_PASS2) {
  150. int i;
  151. char *p;
  152. /* find number of pics */
  153. p = s->avctx->stats_in;
  154. for (i = -1; p; i++)
  155. p = strchr(p + 1, ';');
  156. i += s->max_b_frames;
  157. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  158. return -1;
  159. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  160. rcc->num_entries = i;
  161. /* init all to skipped p frames
  162. * (with b frames we might have a not encoded frame at the end FIXME) */
  163. for (i = 0; i < rcc->num_entries; i++) {
  164. RateControlEntry *rce = &rcc->entry[i];
  165. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  166. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  167. rce->misc_bits = s->mb_num + 10;
  168. rce->mb_var_sum = s->mb_num * 100;
  169. }
  170. /* read stats */
  171. p = s->avctx->stats_in;
  172. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  173. RateControlEntry *rce;
  174. int picture_number;
  175. int e;
  176. char *next;
  177. next = strchr(p, ';');
  178. if (next) {
  179. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  180. next++;
  181. }
  182. e = sscanf(p, " in:%d ", &picture_number);
  183. assert(picture_number >= 0);
  184. assert(picture_number < rcc->num_entries);
  185. rce = &rcc->entry[picture_number];
  186. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  187. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  188. &rce->mv_bits, &rce->misc_bits,
  189. &rce->f_code, &rce->b_code,
  190. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  191. &rce->i_count, &rce->skip_count, &rce->header_bits);
  192. if (e != 14) {
  193. av_log(s->avctx, AV_LOG_ERROR,
  194. "statistics are damaged at line %d, parser out=%d\n",
  195. i, e);
  196. return -1;
  197. }
  198. p = next;
  199. }
  200. if (init_pass2(s) < 0)
  201. return -1;
  202. // FIXME maybe move to end
  203. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  204. #if CONFIG_LIBXVID
  205. return ff_xvid_rate_control_init(s);
  206. #else
  207. av_log(s->avctx, AV_LOG_ERROR,
  208. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  209. return -1;
  210. #endif
  211. }
  212. }
  213. if (!(s->flags & CODEC_FLAG_PASS2)) {
  214. rcc->short_term_qsum = 0.001;
  215. rcc->short_term_qcount = 0.001;
  216. rcc->pass1_rc_eq_output_sum = 0.001;
  217. rcc->pass1_wanted_bits = 0.001;
  218. if (s->avctx->qblur > 1.0) {
  219. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  220. return -1;
  221. }
  222. /* init stuff with the user specified complexity */
  223. if (s->avctx->rc_initial_cplx) {
  224. for (i = 0; i < 60 * 30; i++) {
  225. double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  226. RateControlEntry rce;
  227. if (i % ((s->gop_size + 3) / 4) == 0)
  228. rce.pict_type = AV_PICTURE_TYPE_I;
  229. else if (i % (s->max_b_frames + 1))
  230. rce.pict_type = AV_PICTURE_TYPE_B;
  231. else
  232. rce.pict_type = AV_PICTURE_TYPE_P;
  233. rce.new_pict_type = rce.pict_type;
  234. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  235. rce.mb_var_sum = s->mb_num;
  236. rce.qscale = FF_QP2LAMBDA * 2;
  237. rce.f_code = 2;
  238. rce.b_code = 1;
  239. rce.misc_bits = 1;
  240. if (s->pict_type == AV_PICTURE_TYPE_I) {
  241. rce.i_count = s->mb_num;
  242. rce.i_tex_bits = bits;
  243. rce.p_tex_bits = 0;
  244. rce.mv_bits = 0;
  245. } else {
  246. rce.i_count = 0; // FIXME we do know this approx
  247. rce.i_tex_bits = 0;
  248. rce.p_tex_bits = bits * 0.9;
  249. rce.mv_bits = bits * 0.1;
  250. }
  251. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  252. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  253. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  254. rcc->frame_count[rce.pict_type]++;
  255. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  256. // FIXME misbehaves a little for variable fps
  257. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  258. }
  259. }
  260. }
  261. return 0;
  262. }
  263. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  264. {
  265. RateControlContext *rcc = &s->rc_context;
  266. emms_c();
  267. av_expr_free(rcc->rc_eq_eval);
  268. av_freep(&rcc->entry);
  269. #if CONFIG_LIBXVID
  270. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  271. ff_xvid_rate_control_uninit(s);
  272. #endif
  273. }
  274. int ff_vbv_update(MpegEncContext *s, int frame_size)
  275. {
  276. RateControlContext *rcc = &s->rc_context;
  277. const double fps = get_fps(s->avctx);
  278. const int buffer_size = s->avctx->rc_buffer_size;
  279. const double min_rate = s->avctx->rc_min_rate / fps;
  280. const double max_rate = s->avctx->rc_max_rate / fps;
  281. av_dlog(s, "%d %f %d %f %f\n",
  282. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  283. if (buffer_size) {
  284. int left;
  285. rcc->buffer_index -= frame_size;
  286. if (rcc->buffer_index < 0) {
  287. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  288. rcc->buffer_index = 0;
  289. }
  290. left = buffer_size - rcc->buffer_index - 1;
  291. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  292. if (rcc->buffer_index > buffer_size) {
  293. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  294. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  295. stuffing = 4;
  296. rcc->buffer_index -= 8 * stuffing;
  297. if (s->avctx->debug & FF_DEBUG_RC)
  298. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  299. return stuffing;
  300. }
  301. }
  302. return 0;
  303. }
  304. /**
  305. * Modify the bitrate curve from pass1 for one frame.
  306. */
  307. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  308. double rate_factor, int frame_num)
  309. {
  310. RateControlContext *rcc = &s->rc_context;
  311. AVCodecContext *a = s->avctx;
  312. const int pict_type = rce->new_pict_type;
  313. const double mb_num = s->mb_num;
  314. double q, bits;
  315. int i;
  316. double const_values[] = {
  317. M_PI,
  318. M_E,
  319. rce->i_tex_bits * rce->qscale,
  320. rce->p_tex_bits * rce->qscale,
  321. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  322. rce->mv_bits / mb_num,
  323. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  324. rce->i_count / mb_num,
  325. rce->mc_mb_var_sum / mb_num,
  326. rce->mb_var_sum / mb_num,
  327. rce->pict_type == AV_PICTURE_TYPE_I,
  328. rce->pict_type == AV_PICTURE_TYPE_P,
  329. rce->pict_type == AV_PICTURE_TYPE_B,
  330. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  331. a->qcompress,
  332. #if 0
  333. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  334. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  335. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  336. rcc->next_non_b_qscale,
  337. #endif
  338. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  339. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  340. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  341. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  342. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  343. 0
  344. };
  345. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  346. if (isnan(bits)) {
  347. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  348. return -1;
  349. }
  350. rcc->pass1_rc_eq_output_sum += bits;
  351. bits *= rate_factor;
  352. if (bits < 0.0)
  353. bits = 0.0;
  354. bits += 1.0; // avoid 1/0 issues
  355. /* user override */
  356. for (i = 0; i < s->avctx->rc_override_count; i++) {
  357. RcOverride *rco = s->avctx->rc_override;
  358. if (rco[i].start_frame > frame_num)
  359. continue;
  360. if (rco[i].end_frame < frame_num)
  361. continue;
  362. if (rco[i].qscale)
  363. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  364. else
  365. bits *= rco[i].quality_factor;
  366. }
  367. q = bits2qp(rce, bits);
  368. /* I/B difference */
  369. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  370. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  371. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  372. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  373. if (q < 1)
  374. q = 1;
  375. return q;
  376. }
  377. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  378. {
  379. RateControlContext *rcc = &s->rc_context;
  380. AVCodecContext *a = s->avctx;
  381. const int pict_type = rce->new_pict_type;
  382. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  383. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  384. if (pict_type == AV_PICTURE_TYPE_I &&
  385. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  386. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  387. else if (pict_type == AV_PICTURE_TYPE_B &&
  388. a->b_quant_factor > 0.0)
  389. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  390. if (q < 1)
  391. q = 1;
  392. /* last qscale / qdiff stuff */
  393. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  394. double last_q = rcc->last_qscale_for[pict_type];
  395. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  396. if (q > last_q + maxdiff)
  397. q = last_q + maxdiff;
  398. else if (q < last_q - maxdiff)
  399. q = last_q - maxdiff;
  400. }
  401. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  402. if (pict_type != AV_PICTURE_TYPE_B)
  403. rcc->last_non_b_pict_type = pict_type;
  404. return q;
  405. }
  406. /**
  407. * Get the qmin & qmax for pict_type.
  408. */
  409. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  410. {
  411. int qmin = s->avctx->lmin;
  412. int qmax = s->avctx->lmax;
  413. assert(qmin <= qmax);
  414. switch (pict_type) {
  415. case AV_PICTURE_TYPE_B:
  416. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  417. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  418. break;
  419. case AV_PICTURE_TYPE_I:
  420. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  421. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  422. break;
  423. }
  424. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  425. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  426. if (qmax < qmin)
  427. qmax = qmin;
  428. *qmin_ret = qmin;
  429. *qmax_ret = qmax;
  430. }
  431. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  432. double q, int frame_num)
  433. {
  434. RateControlContext *rcc = &s->rc_context;
  435. const double buffer_size = s->avctx->rc_buffer_size;
  436. const double fps = get_fps(s->avctx);
  437. const double min_rate = s->avctx->rc_min_rate / fps;
  438. const double max_rate = s->avctx->rc_max_rate / fps;
  439. const int pict_type = rce->new_pict_type;
  440. int qmin, qmax;
  441. get_qminmax(&qmin, &qmax, s, pict_type);
  442. /* modulation */
  443. if (s->avctx->rc_qmod_freq &&
  444. frame_num % s->avctx->rc_qmod_freq == 0 &&
  445. pict_type == AV_PICTURE_TYPE_P)
  446. q *= s->avctx->rc_qmod_amp;
  447. /* buffer overflow/underflow protection */
  448. if (buffer_size) {
  449. double expected_size = rcc->buffer_index;
  450. double q_limit;
  451. if (min_rate) {
  452. double d = 2 * (buffer_size - expected_size) / buffer_size;
  453. if (d > 1.0)
  454. d = 1.0;
  455. else if (d < 0.0001)
  456. d = 0.0001;
  457. q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  458. q_limit = bits2qp(rce,
  459. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  460. s->avctx->rc_min_vbv_overflow_use, 1));
  461. if (q > q_limit) {
  462. if (s->avctx->debug & FF_DEBUG_RC)
  463. av_log(s->avctx, AV_LOG_DEBUG,
  464. "limiting QP %f -> %f\n", q, q_limit);
  465. q = q_limit;
  466. }
  467. }
  468. if (max_rate) {
  469. double d = 2 * expected_size / buffer_size;
  470. if (d > 1.0)
  471. d = 1.0;
  472. else if (d < 0.0001)
  473. d = 0.0001;
  474. q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  475. q_limit = bits2qp(rce,
  476. FFMAX(rcc->buffer_index *
  477. s->avctx->rc_max_available_vbv_use,
  478. 1));
  479. if (q < q_limit) {
  480. if (s->avctx->debug & FF_DEBUG_RC)
  481. av_log(s->avctx, AV_LOG_DEBUG,
  482. "limiting QP %f -> %f\n", q, q_limit);
  483. q = q_limit;
  484. }
  485. }
  486. }
  487. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  488. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  489. s->avctx->rc_buffer_aggressivity);
  490. if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
  491. if (q < qmin)
  492. q = qmin;
  493. else if (q > qmax)
  494. q = qmax;
  495. } else {
  496. double min2 = log(qmin);
  497. double max2 = log(qmax);
  498. q = log(q);
  499. q = (q - min2) / (max2 - min2) - 0.5;
  500. q *= -4.0;
  501. q = 1.0 / (1.0 + exp(q));
  502. q = q * (max2 - min2) + min2;
  503. q = exp(q);
  504. }
  505. return q;
  506. }
  507. // ----------------------------------
  508. // 1 Pass Code
  509. static double predict_size(Predictor *p, double q, double var)
  510. {
  511. return p->coeff * var / (q * p->count);
  512. }
  513. static void update_predictor(Predictor *p, double q, double var, double size)
  514. {
  515. double new_coeff = size * q / (var + 1);
  516. if (var < 10)
  517. return;
  518. p->count *= p->decay;
  519. p->coeff *= p->decay;
  520. p->count++;
  521. p->coeff += new_coeff;
  522. }
  523. static void adaptive_quantization(MpegEncContext *s, double q)
  524. {
  525. int i;
  526. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  527. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  528. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  529. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  530. const float p_masking = s->avctx->p_masking;
  531. const float border_masking = s->avctx->border_masking;
  532. float bits_sum = 0.0;
  533. float cplx_sum = 0.0;
  534. float *cplx_tab = s->cplx_tab;
  535. float *bits_tab = s->bits_tab;
  536. const int qmin = s->avctx->mb_lmin;
  537. const int qmax = s->avctx->mb_lmax;
  538. Picture *const pic = &s->current_picture;
  539. const int mb_width = s->mb_width;
  540. const int mb_height = s->mb_height;
  541. for (i = 0; i < s->mb_num; i++) {
  542. const int mb_xy = s->mb_index2xy[i];
  543. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  544. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  545. const int lumi = pic->mb_mean[mb_xy];
  546. float bits, cplx, factor;
  547. int mb_x = mb_xy % s->mb_stride;
  548. int mb_y = mb_xy / s->mb_stride;
  549. int mb_distance;
  550. float mb_factor = 0.0;
  551. if (spat_cplx < 4)
  552. spat_cplx = 4; // FIXME finetune
  553. if (temp_cplx < 4)
  554. temp_cplx = 4; // FIXME finetune
  555. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  556. cplx = spat_cplx;
  557. factor = 1.0 + p_masking;
  558. } else {
  559. cplx = temp_cplx;
  560. factor = pow(temp_cplx, -temp_cplx_masking);
  561. }
  562. factor *= pow(spat_cplx, -spatial_cplx_masking);
  563. if (lumi > 127)
  564. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  565. else
  566. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  567. if (mb_x < mb_width / 5) {
  568. mb_distance = mb_width / 5 - mb_x;
  569. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  570. } else if (mb_x > 4 * mb_width / 5) {
  571. mb_distance = mb_x - 4 * mb_width / 5;
  572. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  573. }
  574. if (mb_y < mb_height / 5) {
  575. mb_distance = mb_height / 5 - mb_y;
  576. mb_factor = FFMAX(mb_factor,
  577. (float)mb_distance / (float)(mb_height / 5));
  578. } else if (mb_y > 4 * mb_height / 5) {
  579. mb_distance = mb_y - 4 * mb_height / 5;
  580. mb_factor = FFMAX(mb_factor,
  581. (float)mb_distance / (float)(mb_height / 5));
  582. }
  583. factor *= 1.0 - border_masking * mb_factor;
  584. if (factor < 0.00001)
  585. factor = 0.00001;
  586. bits = cplx * factor;
  587. cplx_sum += cplx;
  588. bits_sum += bits;
  589. cplx_tab[i] = cplx;
  590. bits_tab[i] = bits;
  591. }
  592. /* handle qmin/qmax clipping */
  593. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  594. float factor = bits_sum / cplx_sum;
  595. for (i = 0; i < s->mb_num; i++) {
  596. float newq = q * cplx_tab[i] / bits_tab[i];
  597. newq *= factor;
  598. if (newq > qmax) {
  599. bits_sum -= bits_tab[i];
  600. cplx_sum -= cplx_tab[i] * q / qmax;
  601. } else if (newq < qmin) {
  602. bits_sum -= bits_tab[i];
  603. cplx_sum -= cplx_tab[i] * q / qmin;
  604. }
  605. }
  606. if (bits_sum < 0.001)
  607. bits_sum = 0.001;
  608. if (cplx_sum < 0.001)
  609. cplx_sum = 0.001;
  610. }
  611. for (i = 0; i < s->mb_num; i++) {
  612. const int mb_xy = s->mb_index2xy[i];
  613. float newq = q * cplx_tab[i] / bits_tab[i];
  614. int intq;
  615. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  616. newq *= bits_sum / cplx_sum;
  617. }
  618. intq = (int)(newq + 0.5);
  619. if (intq > qmax)
  620. intq = qmax;
  621. else if (intq < qmin)
  622. intq = qmin;
  623. s->lambda_table[mb_xy] = intq;
  624. }
  625. }
  626. void ff_get_2pass_fcode(MpegEncContext *s)
  627. {
  628. RateControlContext *rcc = &s->rc_context;
  629. RateControlEntry *rce = &rcc->entry[s->picture_number];
  630. s->f_code = rce->f_code;
  631. s->b_code = rce->b_code;
  632. }
  633. // FIXME rd or at least approx for dquant
  634. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  635. {
  636. float q;
  637. int qmin, qmax;
  638. float br_compensation;
  639. double diff;
  640. double short_term_q;
  641. double fps;
  642. int picture_number = s->picture_number;
  643. int64_t wanted_bits;
  644. RateControlContext *rcc = &s->rc_context;
  645. AVCodecContext *a = s->avctx;
  646. RateControlEntry local_rce, *rce;
  647. double bits;
  648. double rate_factor;
  649. int var;
  650. const int pict_type = s->pict_type;
  651. Picture * const pic = &s->current_picture;
  652. emms_c();
  653. #if CONFIG_LIBXVID
  654. if ((s->flags & CODEC_FLAG_PASS2) &&
  655. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  656. return ff_xvid_rate_estimate_qscale(s, dry_run);
  657. #endif
  658. get_qminmax(&qmin, &qmax, s, pict_type);
  659. fps = get_fps(s->avctx);
  660. /* update predictors */
  661. if (picture_number > 2 && !dry_run) {
  662. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  663. : rcc->last_mc_mb_var_sum;
  664. av_assert1(s->frame_bits >= s->stuffing_bits);
  665. update_predictor(&rcc->pred[s->last_pict_type],
  666. rcc->last_qscale,
  667. sqrt(last_var),
  668. s->frame_bits - s->stuffing_bits);
  669. }
  670. if (s->flags & CODEC_FLAG_PASS2) {
  671. assert(picture_number >= 0);
  672. if (picture_number >= rcc->num_entries) {
  673. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  674. return -1;
  675. }
  676. rce = &rcc->entry[picture_number];
  677. wanted_bits = rce->expected_bits;
  678. } else {
  679. Picture *dts_pic;
  680. rce = &local_rce;
  681. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  682. * here instead of reordering but the reordering is simpler for now
  683. * until H.264 B-pyramid must be handled. */
  684. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  685. dts_pic = s->current_picture_ptr;
  686. else
  687. dts_pic = s->last_picture_ptr;
  688. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  689. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  690. else
  691. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps);
  692. }
  693. diff = s->total_bits - wanted_bits;
  694. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  695. if (br_compensation <= 0.0)
  696. br_compensation = 0.001;
  697. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  698. short_term_q = 0; /* avoid warning */
  699. if (s->flags & CODEC_FLAG_PASS2) {
  700. if (pict_type != AV_PICTURE_TYPE_I)
  701. assert(pict_type == rce->new_pict_type);
  702. q = rce->new_qscale / br_compensation;
  703. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  704. br_compensation, s->frame_bits, var, pict_type);
  705. } else {
  706. rce->pict_type =
  707. rce->new_pict_type = pict_type;
  708. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  709. rce->mb_var_sum = pic->mb_var_sum;
  710. rce->qscale = FF_QP2LAMBDA * 2;
  711. rce->f_code = s->f_code;
  712. rce->b_code = s->b_code;
  713. rce->misc_bits = 1;
  714. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  715. if (pict_type == AV_PICTURE_TYPE_I) {
  716. rce->i_count = s->mb_num;
  717. rce->i_tex_bits = bits;
  718. rce->p_tex_bits = 0;
  719. rce->mv_bits = 0;
  720. } else {
  721. rce->i_count = 0; // FIXME we do know this approx
  722. rce->i_tex_bits = 0;
  723. rce->p_tex_bits = bits * 0.9;
  724. rce->mv_bits = bits * 0.1;
  725. }
  726. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  727. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  728. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  729. rcc->frame_count[pict_type]++;
  730. bits = rce->i_tex_bits + rce->p_tex_bits;
  731. rate_factor = rcc->pass1_wanted_bits /
  732. rcc->pass1_rc_eq_output_sum * br_compensation;
  733. q = get_qscale(s, rce, rate_factor, picture_number);
  734. if (q < 0)
  735. return -1;
  736. assert(q > 0.0);
  737. q = get_diff_limited_q(s, rce, q);
  738. assert(q > 0.0);
  739. // FIXME type dependent blur like in 2-pass
  740. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  741. rcc->short_term_qsum *= a->qblur;
  742. rcc->short_term_qcount *= a->qblur;
  743. rcc->short_term_qsum += q;
  744. rcc->short_term_qcount++;
  745. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  746. }
  747. assert(q > 0.0);
  748. q = modify_qscale(s, rce, q, picture_number);
  749. rcc->pass1_wanted_bits += s->bit_rate / fps;
  750. assert(q > 0.0);
  751. }
  752. if (s->avctx->debug & FF_DEBUG_RC) {
  753. av_log(s->avctx, AV_LOG_DEBUG,
  754. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  755. "size:%d var:%d/%d br:%d fps:%d\n",
  756. av_get_picture_type_char(pict_type),
  757. qmin, q, qmax, picture_number,
  758. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  759. br_compensation, short_term_q, s->frame_bits,
  760. pic->mb_var_sum, pic->mc_mb_var_sum,
  761. s->bit_rate / 1000, (int)fps);
  762. }
  763. if (q < qmin)
  764. q = qmin;
  765. else if (q > qmax)
  766. q = qmax;
  767. if (s->adaptive_quant)
  768. adaptive_quantization(s, q);
  769. else
  770. q = (int)(q + 0.5);
  771. if (!dry_run) {
  772. rcc->last_qscale = q;
  773. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  774. rcc->last_mb_var_sum = pic->mb_var_sum;
  775. }
  776. return q;
  777. }
  778. // ----------------------------------------------
  779. // 2-Pass code
  780. static int init_pass2(MpegEncContext *s)
  781. {
  782. RateControlContext *rcc = &s->rc_context;
  783. AVCodecContext *a = s->avctx;
  784. int i, toobig;
  785. double fps = get_fps(s->avctx);
  786. double complexity[5] = { 0 }; // approximate bits at quant=1
  787. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  788. uint64_t all_const_bits;
  789. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  790. (double)rcc->num_entries / fps);
  791. double rate_factor = 0;
  792. double step;
  793. const int filter_size = (int)(a->qblur * 4) | 1;
  794. double expected_bits = 0; // init to silence gcc warning
  795. double *qscale, *blurred_qscale, qscale_sum;
  796. /* find complexity & const_bits & decide the pict_types */
  797. for (i = 0; i < rcc->num_entries; i++) {
  798. RateControlEntry *rce = &rcc->entry[i];
  799. rce->new_pict_type = rce->pict_type;
  800. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  801. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  802. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  803. rcc->frame_count[rce->pict_type]++;
  804. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  805. (double)rce->qscale;
  806. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  807. }
  808. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  809. const_bits[AV_PICTURE_TYPE_P] +
  810. const_bits[AV_PICTURE_TYPE_B];
  811. if (all_available_bits < all_const_bits) {
  812. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  813. return -1;
  814. }
  815. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  816. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  817. toobig = 0;
  818. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  819. expected_bits = 0;
  820. rate_factor += step;
  821. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  822. /* find qscale */
  823. for (i = 0; i < rcc->num_entries; i++) {
  824. RateControlEntry *rce = &rcc->entry[i];
  825. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  826. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  827. }
  828. assert(filter_size % 2 == 1);
  829. /* fixed I/B QP relative to P mode */
  830. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  831. RateControlEntry *rce = &rcc->entry[i];
  832. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  833. }
  834. for (i = rcc->num_entries - 1; i >= 0; i--) {
  835. RateControlEntry *rce = &rcc->entry[i];
  836. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  837. }
  838. /* smooth curve */
  839. for (i = 0; i < rcc->num_entries; i++) {
  840. RateControlEntry *rce = &rcc->entry[i];
  841. const int pict_type = rce->new_pict_type;
  842. int j;
  843. double q = 0.0, sum = 0.0;
  844. for (j = 0; j < filter_size; j++) {
  845. int index = i + j - filter_size / 2;
  846. double d = index - i;
  847. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  848. if (index < 0 || index >= rcc->num_entries)
  849. continue;
  850. if (pict_type != rcc->entry[index].new_pict_type)
  851. continue;
  852. q += qscale[index] * coeff;
  853. sum += coeff;
  854. }
  855. blurred_qscale[i] = q / sum;
  856. }
  857. /* find expected bits */
  858. for (i = 0; i < rcc->num_entries; i++) {
  859. RateControlEntry *rce = &rcc->entry[i];
  860. double bits;
  861. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  862. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  863. bits += 8 * ff_vbv_update(s, bits);
  864. rce->expected_bits = expected_bits;
  865. expected_bits += bits;
  866. }
  867. av_dlog(s->avctx,
  868. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  869. expected_bits, (int)all_available_bits, rate_factor);
  870. if (expected_bits > all_available_bits) {
  871. rate_factor -= step;
  872. ++toobig;
  873. }
  874. }
  875. av_free(qscale);
  876. av_free(blurred_qscale);
  877. /* check bitrate calculations and print info */
  878. qscale_sum = 0.0;
  879. for (i = 0; i < rcc->num_entries; i++) {
  880. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  881. i,
  882. rcc->entry[i].new_qscale,
  883. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  884. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  885. s->avctx->qmin, s->avctx->qmax);
  886. }
  887. assert(toobig <= 40);
  888. av_log(s->avctx, AV_LOG_DEBUG,
  889. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  890. s->bit_rate,
  891. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  892. av_log(s->avctx, AV_LOG_DEBUG,
  893. "[lavc rc] estimated target average qp: %.3f\n",
  894. (float)qscale_sum / rcc->num_entries);
  895. if (toobig == 0) {
  896. av_log(s->avctx, AV_LOG_INFO,
  897. "[lavc rc] Using all of requested bitrate is not "
  898. "necessary for this video with these parameters.\n");
  899. } else if (toobig == 40) {
  900. av_log(s->avctx, AV_LOG_ERROR,
  901. "[lavc rc] Error: bitrate too low for this video "
  902. "with these parameters.\n");
  903. return -1;
  904. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  905. av_log(s->avctx, AV_LOG_ERROR,
  906. "[lavc rc] Error: 2pass curve failed to converge\n");
  907. return -1;
  908. }
  909. return 0;
  910. }