You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1567 lines
51KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. static const unsigned char classic_shift_luma[] = {
  79. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  80. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  81. 69,68, 0,
  82. 0,0,0,0,0,0,0,0,
  83. };
  84. static const unsigned char classic_shift_chroma[] = {
  85. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  86. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  87. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  88. 0,0,0,0,0,0,0,0,
  89. };
  90. static const unsigned char classic_add_luma[256] = {
  91. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  92. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  93. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  94. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  95. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  96. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  97. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  98. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  99. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  100. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  101. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  102. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  103. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  104. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  105. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  106. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  107. };
  108. static const unsigned char classic_add_chroma[256] = {
  109. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  110. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  111. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  112. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  113. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  114. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  115. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  116. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  117. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  118. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  119. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  120. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  121. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  122. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  123. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  124. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  125. };
  126. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  127. int i;
  128. if(w<32){
  129. for(i=0; i<w; i++){
  130. const int temp= src[i];
  131. dst[i]= temp - left;
  132. left= temp;
  133. }
  134. return left;
  135. }else{
  136. for(i=0; i<16; i++){
  137. const int temp= src[i];
  138. dst[i]= temp - left;
  139. left= temp;
  140. }
  141. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  142. return src[w-1];
  143. }
  144. }
  145. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  146. int i;
  147. int r,g,b,a;
  148. r= *red;
  149. g= *green;
  150. b= *blue;
  151. a= *alpha;
  152. for(i=0; i<FFMIN(w,4); i++){
  153. const int rt= src[i*4+R];
  154. const int gt= src[i*4+G];
  155. const int bt= src[i*4+B];
  156. const int at= src[i*4+A];
  157. dst[i*4+R]= rt - r;
  158. dst[i*4+G]= gt - g;
  159. dst[i*4+B]= bt - b;
  160. dst[i*4+A]= at - a;
  161. r = rt;
  162. g = gt;
  163. b = bt;
  164. a = at;
  165. }
  166. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  167. *red= src[(w-1)*4+R];
  168. *green= src[(w-1)*4+G];
  169. *blue= src[(w-1)*4+B];
  170. *alpha= src[(w-1)*4+A];
  171. }
  172. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  173. int i;
  174. int r,g,b;
  175. r= *red;
  176. g= *green;
  177. b= *blue;
  178. for(i=0; i<FFMIN(w,16); i++){
  179. const int rt= src[i*3+0];
  180. const int gt= src[i*3+1];
  181. const int bt= src[i*3+2];
  182. dst[i*3+0]= rt - r;
  183. dst[i*3+1]= gt - g;
  184. dst[i*3+2]= bt - b;
  185. r = rt;
  186. g = gt;
  187. b = bt;
  188. }
  189. s->dsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48);
  190. *red= src[(w-1)*3+0];
  191. *green= src[(w-1)*3+1];
  192. *blue= src[(w-1)*3+2];
  193. }
  194. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  195. int i, val, repeat;
  196. for(i=0; i<256;){
  197. repeat= get_bits(gb, 3);
  198. val = get_bits(gb, 5);
  199. if(repeat==0)
  200. repeat= get_bits(gb, 8);
  201. //printf("%d %d\n", val, repeat);
  202. if(i+repeat > 256 || get_bits_left(gb) < 0) {
  203. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  204. return -1;
  205. }
  206. while (repeat--)
  207. dst[i++] = val;
  208. }
  209. return 0;
  210. }
  211. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  212. int len, index;
  213. uint32_t bits=0;
  214. for(len=32; len>0; len--){
  215. for(index=0; index<256; index++){
  216. if(len_table[index]==len)
  217. dst[index]= bits++;
  218. }
  219. if(bits & 1){
  220. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  221. return -1;
  222. }
  223. bits >>= 1;
  224. }
  225. return 0;
  226. }
  227. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  228. typedef struct {
  229. uint64_t val;
  230. int name;
  231. } HeapElem;
  232. static void heap_sift(HeapElem *h, int root, int size)
  233. {
  234. while(root*2+1 < size) {
  235. int child = root*2+1;
  236. if(child < size-1 && h[child].val > h[child+1].val)
  237. child++;
  238. if(h[root].val > h[child].val) {
  239. FFSWAP(HeapElem, h[root], h[child]);
  240. root = child;
  241. } else
  242. break;
  243. }
  244. }
  245. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  246. HeapElem h[256];
  247. int up[2*256];
  248. int len[2*256];
  249. int offset, i, next;
  250. int size = 256;
  251. for(offset=1; ; offset<<=1){
  252. for(i=0; i<size; i++){
  253. h[i].name = i;
  254. h[i].val = (stats[i] << 8) + offset;
  255. }
  256. for(i=size/2-1; i>=0; i--)
  257. heap_sift(h, i, size);
  258. for(next=size; next<size*2-1; next++){
  259. // merge the two smallest entries, and put it back in the heap
  260. uint64_t min1v = h[0].val;
  261. up[h[0].name] = next;
  262. h[0].val = INT64_MAX;
  263. heap_sift(h, 0, size);
  264. up[h[0].name] = next;
  265. h[0].name = next;
  266. h[0].val += min1v;
  267. heap_sift(h, 0, size);
  268. }
  269. len[2*size-2] = 0;
  270. for(i=2*size-3; i>=size; i--)
  271. len[i] = len[up[i]] + 1;
  272. for(i=0; i<size; i++) {
  273. dst[i] = len[up[i]] + 1;
  274. if(dst[i] >= 32) break;
  275. }
  276. if(i==size) break;
  277. }
  278. }
  279. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  280. static void generate_joint_tables(HYuvContext *s){
  281. uint16_t symbols[1<<VLC_BITS];
  282. uint16_t bits[1<<VLC_BITS];
  283. uint8_t len[1<<VLC_BITS];
  284. if(s->bitstream_bpp < 24){
  285. int p, i, y, u;
  286. for(p=0; p<3; p++){
  287. for(i=y=0; y<256; y++){
  288. int len0 = s->len[0][y];
  289. int limit = VLC_BITS - len0;
  290. if(limit <= 0)
  291. continue;
  292. for(u=0; u<256; u++){
  293. int len1 = s->len[p][u];
  294. if(len1 > limit)
  295. continue;
  296. len[i] = len0 + len1;
  297. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  298. symbols[i] = (y<<8) + u;
  299. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  300. i++;
  301. }
  302. }
  303. ff_free_vlc(&s->vlc[3+p]);
  304. ff_init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  305. }
  306. }else{
  307. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  308. int i, b, g, r, code;
  309. int p0 = s->decorrelate;
  310. int p1 = !s->decorrelate;
  311. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  312. // cover all the combinations that fit in 11 bits total, and it doesn't
  313. // matter if we miss a few rare codes.
  314. for(i=0, g=-16; g<16; g++){
  315. int len0 = s->len[p0][g&255];
  316. int limit0 = VLC_BITS - len0;
  317. if(limit0 < 2)
  318. continue;
  319. for(b=-16; b<16; b++){
  320. int len1 = s->len[p1][b&255];
  321. int limit1 = limit0 - len1;
  322. if(limit1 < 1)
  323. continue;
  324. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  325. for(r=-16; r<16; r++){
  326. int len2 = s->len[2][r&255];
  327. if(len2 > limit1)
  328. continue;
  329. len[i] = len0 + len1 + len2;
  330. bits[i] = (code << len2) + s->bits[2][r&255];
  331. if(s->decorrelate){
  332. map[i][G] = g;
  333. map[i][B] = g+b;
  334. map[i][R] = g+r;
  335. }else{
  336. map[i][B] = g;
  337. map[i][G] = b;
  338. map[i][R] = r;
  339. }
  340. i++;
  341. }
  342. }
  343. }
  344. ff_free_vlc(&s->vlc[3]);
  345. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  346. }
  347. }
  348. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  349. GetBitContext gb;
  350. int i;
  351. init_get_bits(&gb, src, length*8);
  352. for(i=0; i<3; i++){
  353. if(read_len_table(s->len[i], &gb)<0)
  354. return -1;
  355. if(generate_bits_table(s->bits[i], s->len[i])<0){
  356. return -1;
  357. }
  358. ff_free_vlc(&s->vlc[i]);
  359. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  360. }
  361. generate_joint_tables(s);
  362. return (get_bits_count(&gb)+7)/8;
  363. }
  364. static int read_old_huffman_tables(HYuvContext *s){
  365. #if 1
  366. GetBitContext gb;
  367. int i;
  368. init_get_bits(&gb, classic_shift_luma, (sizeof(classic_shift_luma)-8)*8);
  369. if(read_len_table(s->len[0], &gb)<0)
  370. return -1;
  371. init_get_bits(&gb, classic_shift_chroma, (sizeof(classic_shift_chroma)-8)*8);
  372. if(read_len_table(s->len[1], &gb)<0)
  373. return -1;
  374. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  375. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  376. if(s->bitstream_bpp >= 24){
  377. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  378. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  379. }
  380. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  381. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  382. for(i=0; i<3; i++){
  383. ff_free_vlc(&s->vlc[i]);
  384. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  385. }
  386. generate_joint_tables(s);
  387. return 0;
  388. #else
  389. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  390. return -1;
  391. #endif
  392. }
  393. static av_cold void alloc_temp(HYuvContext *s){
  394. int i;
  395. if(s->bitstream_bpp<24){
  396. for(i=0; i<3; i++){
  397. s->temp[i]= av_malloc(s->width + 16);
  398. }
  399. }else{
  400. s->temp[0]= av_mallocz(4*s->width + 16);
  401. }
  402. }
  403. static av_cold int common_init(AVCodecContext *avctx){
  404. HYuvContext *s = avctx->priv_data;
  405. s->avctx= avctx;
  406. s->flags= avctx->flags;
  407. ff_dsputil_init(&s->dsp, avctx);
  408. s->width= avctx->width;
  409. s->height= avctx->height;
  410. assert(s->width>0 && s->height>0);
  411. return 0;
  412. }
  413. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  414. static av_cold int decode_init(AVCodecContext *avctx)
  415. {
  416. HYuvContext *s = avctx->priv_data;
  417. common_init(avctx);
  418. memset(s->vlc, 0, 3*sizeof(VLC));
  419. avctx->coded_frame= &s->picture;
  420. avcodec_get_frame_defaults(&s->picture);
  421. s->interlaced= s->height > 288;
  422. s->bgr32=1;
  423. //if(avctx->extradata)
  424. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  425. if(avctx->extradata_size){
  426. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  427. s->version=1; // do such files exist at all?
  428. else
  429. s->version=2;
  430. }else
  431. s->version=0;
  432. if(s->version==2){
  433. int method, interlace;
  434. if (avctx->extradata_size < 4)
  435. return -1;
  436. method= ((uint8_t*)avctx->extradata)[0];
  437. s->decorrelate= method&64 ? 1 : 0;
  438. s->predictor= method&63;
  439. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  440. if(s->bitstream_bpp==0)
  441. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  442. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  443. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  444. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  445. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  446. return -1;
  447. }else{
  448. switch(avctx->bits_per_coded_sample&7){
  449. case 1:
  450. s->predictor= LEFT;
  451. s->decorrelate= 0;
  452. break;
  453. case 2:
  454. s->predictor= LEFT;
  455. s->decorrelate= 1;
  456. break;
  457. case 3:
  458. s->predictor= PLANE;
  459. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  460. break;
  461. case 4:
  462. s->predictor= MEDIAN;
  463. s->decorrelate= 0;
  464. break;
  465. default:
  466. s->predictor= LEFT; //OLD
  467. s->decorrelate= 0;
  468. break;
  469. }
  470. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  471. s->context= 0;
  472. if(read_old_huffman_tables(s) < 0)
  473. return -1;
  474. }
  475. switch(s->bitstream_bpp){
  476. case 12:
  477. avctx->pix_fmt = PIX_FMT_YUV420P;
  478. break;
  479. case 16:
  480. if(s->yuy2){
  481. avctx->pix_fmt = PIX_FMT_YUYV422;
  482. }else{
  483. avctx->pix_fmt = PIX_FMT_YUV422P;
  484. }
  485. break;
  486. case 24:
  487. case 32:
  488. if(s->bgr32){
  489. avctx->pix_fmt = PIX_FMT_RGB32;
  490. }else{
  491. avctx->pix_fmt = PIX_FMT_BGR24;
  492. }
  493. break;
  494. default:
  495. return AVERROR_INVALIDDATA;
  496. }
  497. alloc_temp(s);
  498. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  499. return 0;
  500. }
  501. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  502. {
  503. HYuvContext *s = avctx->priv_data;
  504. int i;
  505. avctx->coded_frame= &s->picture;
  506. alloc_temp(s);
  507. for (i = 0; i < 6; i++)
  508. s->vlc[i].table = NULL;
  509. if(s->version==2){
  510. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  511. return -1;
  512. }else{
  513. if(read_old_huffman_tables(s) < 0)
  514. return -1;
  515. }
  516. return 0;
  517. }
  518. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  519. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  520. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  521. int i;
  522. int index= 0;
  523. for(i=0; i<256;){
  524. int val= len[i];
  525. int repeat=0;
  526. for(; i<256 && len[i]==val && repeat<255; i++)
  527. repeat++;
  528. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  529. if(repeat>7){
  530. buf[index++]= val;
  531. buf[index++]= repeat;
  532. }else{
  533. buf[index++]= val | (repeat<<5);
  534. }
  535. }
  536. return index;
  537. }
  538. static av_cold int encode_init(AVCodecContext *avctx)
  539. {
  540. HYuvContext *s = avctx->priv_data;
  541. int i, j;
  542. common_init(avctx);
  543. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  544. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  545. s->version=2;
  546. avctx->coded_frame= &s->picture;
  547. switch(avctx->pix_fmt){
  548. case PIX_FMT_YUV420P:
  549. s->bitstream_bpp= 12;
  550. break;
  551. case PIX_FMT_YUV422P:
  552. s->bitstream_bpp= 16;
  553. break;
  554. case PIX_FMT_RGB32:
  555. s->bitstream_bpp= 32;
  556. break;
  557. case PIX_FMT_RGB24:
  558. s->bitstream_bpp= 24;
  559. break;
  560. default:
  561. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  562. return -1;
  563. }
  564. avctx->bits_per_coded_sample= s->bitstream_bpp;
  565. s->decorrelate= s->bitstream_bpp >= 24;
  566. s->predictor= avctx->prediction_method;
  567. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  568. if(avctx->context_model==1){
  569. s->context= avctx->context_model;
  570. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  571. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  572. return -1;
  573. }
  574. }else s->context= 0;
  575. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  576. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  577. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  578. return -1;
  579. }
  580. if(avctx->context_model){
  581. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  582. return -1;
  583. }
  584. if(s->interlaced != ( s->height > 288 ))
  585. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  586. }
  587. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  588. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  589. return -1;
  590. }
  591. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  592. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  593. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  594. if(s->context)
  595. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  596. ((uint8_t*)avctx->extradata)[3]= 0;
  597. s->avctx->extradata_size= 4;
  598. if(avctx->stats_in){
  599. char *p= avctx->stats_in;
  600. for(i=0; i<3; i++)
  601. for(j=0; j<256; j++)
  602. s->stats[i][j]= 1;
  603. for(;;){
  604. for(i=0; i<3; i++){
  605. char *next;
  606. for(j=0; j<256; j++){
  607. s->stats[i][j]+= strtol(p, &next, 0);
  608. if(next==p) return -1;
  609. p=next;
  610. }
  611. }
  612. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  613. }
  614. }else{
  615. for(i=0; i<3; i++)
  616. for(j=0; j<256; j++){
  617. int d= FFMIN(j, 256-j);
  618. s->stats[i][j]= 100000000/(d+1);
  619. }
  620. }
  621. for(i=0; i<3; i++){
  622. generate_len_table(s->len[i], s->stats[i]);
  623. if(generate_bits_table(s->bits[i], s->len[i])<0){
  624. return -1;
  625. }
  626. s->avctx->extradata_size+=
  627. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  628. }
  629. if(s->context){
  630. for(i=0; i<3; i++){
  631. int pels = s->width*s->height / (i?40:10);
  632. for(j=0; j<256; j++){
  633. int d= FFMIN(j, 256-j);
  634. s->stats[i][j]= pels/(d+1);
  635. }
  636. }
  637. }else{
  638. for(i=0; i<3; i++)
  639. for(j=0; j<256; j++)
  640. s->stats[i][j]= 0;
  641. }
  642. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  643. alloc_temp(s);
  644. s->picture_number=0;
  645. return 0;
  646. }
  647. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  648. /* TODO instead of restarting the read when the code isn't in the first level
  649. * of the joint table, jump into the 2nd level of the individual table. */
  650. #define READ_2PIX(dst0, dst1, plane1){\
  651. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  652. if(code != 0xffff){\
  653. dst0 = code>>8;\
  654. dst1 = code;\
  655. }else{\
  656. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  657. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  658. }\
  659. }
  660. static void decode_422_bitstream(HYuvContext *s, int count){
  661. int i;
  662. count/=2;
  663. if(count >= (get_bits_left(&s->gb))/(31*4)){
  664. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  665. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  666. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  667. }
  668. }else{
  669. for(i=0; i<count; i++){
  670. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  671. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  672. }
  673. }
  674. }
  675. static void decode_gray_bitstream(HYuvContext *s, int count){
  676. int i;
  677. count/=2;
  678. if(count >= (get_bits_left(&s->gb))/(31*2)){
  679. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  680. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  681. }
  682. }else{
  683. for(i=0; i<count; i++){
  684. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  685. }
  686. }
  687. }
  688. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  689. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  690. int i;
  691. const uint8_t *y = s->temp[0] + offset;
  692. const uint8_t *u = s->temp[1] + offset/2;
  693. const uint8_t *v = s->temp[2] + offset/2;
  694. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  695. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  696. return -1;
  697. }
  698. #define LOAD4\
  699. int y0 = y[2*i];\
  700. int y1 = y[2*i+1];\
  701. int u0 = u[i];\
  702. int v0 = v[i];
  703. count/=2;
  704. if(s->flags&CODEC_FLAG_PASS1){
  705. for(i=0; i<count; i++){
  706. LOAD4;
  707. s->stats[0][y0]++;
  708. s->stats[1][u0]++;
  709. s->stats[0][y1]++;
  710. s->stats[2][v0]++;
  711. }
  712. }
  713. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  714. return 0;
  715. if(s->context){
  716. for(i=0; i<count; i++){
  717. LOAD4;
  718. s->stats[0][y0]++;
  719. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  720. s->stats[1][u0]++;
  721. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  722. s->stats[0][y1]++;
  723. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  724. s->stats[2][v0]++;
  725. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  726. }
  727. }else{
  728. for(i=0; i<count; i++){
  729. LOAD4;
  730. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  731. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  732. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  733. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  734. }
  735. }
  736. return 0;
  737. }
  738. static int encode_gray_bitstream(HYuvContext *s, int count){
  739. int i;
  740. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  741. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  742. return -1;
  743. }
  744. #define LOAD2\
  745. int y0 = s->temp[0][2*i];\
  746. int y1 = s->temp[0][2*i+1];
  747. #define STAT2\
  748. s->stats[0][y0]++;\
  749. s->stats[0][y1]++;
  750. #define WRITE2\
  751. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  752. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  753. count/=2;
  754. if(s->flags&CODEC_FLAG_PASS1){
  755. for(i=0; i<count; i++){
  756. LOAD2;
  757. STAT2;
  758. }
  759. }
  760. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  761. return 0;
  762. if(s->context){
  763. for(i=0; i<count; i++){
  764. LOAD2;
  765. STAT2;
  766. WRITE2;
  767. }
  768. }else{
  769. for(i=0; i<count; i++){
  770. LOAD2;
  771. WRITE2;
  772. }
  773. }
  774. return 0;
  775. }
  776. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  777. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  778. int i;
  779. for(i=0; i<count; i++){
  780. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  781. if(code != -1){
  782. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  783. }else if(decorrelate){
  784. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  785. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  786. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  787. }else{
  788. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  789. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  790. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  791. }
  792. if(alpha)
  793. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  794. }
  795. }
  796. static void decode_bgr_bitstream(HYuvContext *s, int count){
  797. if(s->decorrelate){
  798. if(s->bitstream_bpp==24)
  799. decode_bgr_1(s, count, 1, 0);
  800. else
  801. decode_bgr_1(s, count, 1, 1);
  802. }else{
  803. if(s->bitstream_bpp==24)
  804. decode_bgr_1(s, count, 0, 0);
  805. else
  806. decode_bgr_1(s, count, 0, 1);
  807. }
  808. }
  809. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){
  810. int i;
  811. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){
  812. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  813. return -1;
  814. }
  815. #define LOAD3\
  816. int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\
  817. int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\
  818. int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\
  819. int a= s->temp[0][planes*i+A];
  820. #define STAT3\
  821. s->stats[0][b]++;\
  822. s->stats[1][g]++;\
  823. s->stats[2][r]++;\
  824. if(planes==4) s->stats[2][a]++;
  825. #define WRITE3\
  826. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  827. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  828. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  829. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  830. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  831. for(i=0; i<count; i++){
  832. LOAD3;
  833. STAT3;
  834. }
  835. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  836. for(i=0; i<count; i++){
  837. LOAD3;
  838. STAT3;
  839. WRITE3;
  840. }
  841. }else{
  842. for(i=0; i<count; i++){
  843. LOAD3;
  844. WRITE3;
  845. }
  846. }
  847. return 0;
  848. }
  849. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  850. static void draw_slice(HYuvContext *s, int y){
  851. int h, cy, i;
  852. int offset[AV_NUM_DATA_POINTERS];
  853. if(s->avctx->draw_horiz_band==NULL)
  854. return;
  855. h= y - s->last_slice_end;
  856. y -= h;
  857. if(s->bitstream_bpp==12){
  858. cy= y>>1;
  859. }else{
  860. cy= y;
  861. }
  862. offset[0] = s->picture.linesize[0]*y;
  863. offset[1] = s->picture.linesize[1]*cy;
  864. offset[2] = s->picture.linesize[2]*cy;
  865. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  866. offset[i] = 0;
  867. emms_c();
  868. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  869. s->last_slice_end= y + h;
  870. }
  871. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  872. const uint8_t *buf = avpkt->data;
  873. int buf_size = avpkt->size;
  874. HYuvContext *s = avctx->priv_data;
  875. const int width= s->width;
  876. const int width2= s->width>>1;
  877. const int height= s->height;
  878. int fake_ystride, fake_ustride, fake_vstride;
  879. AVFrame * const p= &s->picture;
  880. int table_size= 0;
  881. AVFrame *picture = data;
  882. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  883. if (!s->bitstream_buffer)
  884. return AVERROR(ENOMEM);
  885. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  886. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  887. if(p->data[0])
  888. ff_thread_release_buffer(avctx, p);
  889. p->reference= 0;
  890. if(ff_thread_get_buffer(avctx, p) < 0){
  891. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  892. return -1;
  893. }
  894. if(s->context){
  895. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  896. if(table_size < 0)
  897. return -1;
  898. }
  899. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  900. return -1;
  901. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  902. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  903. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  904. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  905. s->last_slice_end= 0;
  906. if(s->bitstream_bpp<24){
  907. int y, cy;
  908. int lefty, leftu, leftv;
  909. int lefttopy, lefttopu, lefttopv;
  910. if(s->yuy2){
  911. p->data[0][3]= get_bits(&s->gb, 8);
  912. p->data[0][2]= get_bits(&s->gb, 8);
  913. p->data[0][1]= get_bits(&s->gb, 8);
  914. p->data[0][0]= get_bits(&s->gb, 8);
  915. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  916. return -1;
  917. }else{
  918. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  919. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  920. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  921. p->data[0][0]= get_bits(&s->gb, 8);
  922. switch(s->predictor){
  923. case LEFT:
  924. case PLANE:
  925. decode_422_bitstream(s, width-2);
  926. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  927. if(!(s->flags&CODEC_FLAG_GRAY)){
  928. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  929. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  930. }
  931. for(cy=y=1; y<s->height; y++,cy++){
  932. uint8_t *ydst, *udst, *vdst;
  933. if(s->bitstream_bpp==12){
  934. decode_gray_bitstream(s, width);
  935. ydst= p->data[0] + p->linesize[0]*y;
  936. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  937. if(s->predictor == PLANE){
  938. if(y>s->interlaced)
  939. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  940. }
  941. y++;
  942. if(y>=s->height) break;
  943. }
  944. draw_slice(s, y);
  945. ydst= p->data[0] + p->linesize[0]*y;
  946. udst= p->data[1] + p->linesize[1]*cy;
  947. vdst= p->data[2] + p->linesize[2]*cy;
  948. decode_422_bitstream(s, width);
  949. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  950. if(!(s->flags&CODEC_FLAG_GRAY)){
  951. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  952. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  953. }
  954. if(s->predictor == PLANE){
  955. if(cy>s->interlaced){
  956. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  957. if(!(s->flags&CODEC_FLAG_GRAY)){
  958. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  959. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  960. }
  961. }
  962. }
  963. }
  964. draw_slice(s, height);
  965. break;
  966. case MEDIAN:
  967. /* first line except first 2 pixels is left predicted */
  968. decode_422_bitstream(s, width-2);
  969. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  970. if(!(s->flags&CODEC_FLAG_GRAY)){
  971. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  972. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  973. }
  974. cy=y=1;
  975. /* second line is left predicted for interlaced case */
  976. if(s->interlaced){
  977. decode_422_bitstream(s, width);
  978. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  979. if(!(s->flags&CODEC_FLAG_GRAY)){
  980. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  981. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  982. }
  983. y++; cy++;
  984. }
  985. /* next 4 pixels are left predicted too */
  986. decode_422_bitstream(s, 4);
  987. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  988. if(!(s->flags&CODEC_FLAG_GRAY)){
  989. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  990. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  991. }
  992. /* next line except the first 4 pixels is median predicted */
  993. lefttopy= p->data[0][3];
  994. decode_422_bitstream(s, width-4);
  995. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  996. if(!(s->flags&CODEC_FLAG_GRAY)){
  997. lefttopu= p->data[1][1];
  998. lefttopv= p->data[2][1];
  999. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  1000. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  1001. }
  1002. y++; cy++;
  1003. for(; y<height; y++,cy++){
  1004. uint8_t *ydst, *udst, *vdst;
  1005. if(s->bitstream_bpp==12){
  1006. while(2*cy > y){
  1007. decode_gray_bitstream(s, width);
  1008. ydst= p->data[0] + p->linesize[0]*y;
  1009. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1010. y++;
  1011. }
  1012. if(y>=height) break;
  1013. }
  1014. draw_slice(s, y);
  1015. decode_422_bitstream(s, width);
  1016. ydst= p->data[0] + p->linesize[0]*y;
  1017. udst= p->data[1] + p->linesize[1]*cy;
  1018. vdst= p->data[2] + p->linesize[2]*cy;
  1019. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1020. if(!(s->flags&CODEC_FLAG_GRAY)){
  1021. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1022. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1023. }
  1024. }
  1025. draw_slice(s, height);
  1026. break;
  1027. }
  1028. }
  1029. }else{
  1030. int y;
  1031. int leftr, leftg, leftb, lefta;
  1032. const int last_line= (height-1)*p->linesize[0];
  1033. if(s->bitstream_bpp==32){
  1034. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1035. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1036. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1037. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1038. }else{
  1039. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1040. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1041. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1042. lefta= p->data[0][last_line+A]= 255;
  1043. skip_bits(&s->gb, 8);
  1044. }
  1045. if(s->bgr32){
  1046. switch(s->predictor){
  1047. case LEFT:
  1048. case PLANE:
  1049. decode_bgr_bitstream(s, width-1);
  1050. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1051. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1052. decode_bgr_bitstream(s, width);
  1053. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1054. if(s->predictor == PLANE){
  1055. if(s->bitstream_bpp!=32) lefta=0;
  1056. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1057. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1058. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1059. }
  1060. }
  1061. }
  1062. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1063. break;
  1064. default:
  1065. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1066. }
  1067. }else{
  1068. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1069. return -1;
  1070. }
  1071. }
  1072. emms_c();
  1073. *picture= *p;
  1074. *data_size = sizeof(AVFrame);
  1075. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1076. }
  1077. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1078. static int common_end(HYuvContext *s){
  1079. int i;
  1080. for(i=0; i<3; i++){
  1081. av_freep(&s->temp[i]);
  1082. }
  1083. return 0;
  1084. }
  1085. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1086. static av_cold int decode_end(AVCodecContext *avctx)
  1087. {
  1088. HYuvContext *s = avctx->priv_data;
  1089. int i;
  1090. if (s->picture.data[0])
  1091. avctx->release_buffer(avctx, &s->picture);
  1092. common_end(s);
  1093. av_freep(&s->bitstream_buffer);
  1094. for(i=0; i<6; i++){
  1095. ff_free_vlc(&s->vlc[i]);
  1096. }
  1097. return 0;
  1098. }
  1099. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1100. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1101. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1102. const AVFrame *pict, int *got_packet)
  1103. {
  1104. HYuvContext *s = avctx->priv_data;
  1105. const int width= s->width;
  1106. const int width2= s->width>>1;
  1107. const int height= s->height;
  1108. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1109. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1110. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1111. AVFrame * const p= &s->picture;
  1112. int i, j, size = 0, ret;
  1113. if (!pkt->data &&
  1114. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  1115. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  1116. return ret;
  1117. }
  1118. *p = *pict;
  1119. p->pict_type= AV_PICTURE_TYPE_I;
  1120. p->key_frame= 1;
  1121. if(s->context){
  1122. for(i=0; i<3; i++){
  1123. generate_len_table(s->len[i], s->stats[i]);
  1124. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1125. return -1;
  1126. size += store_table(s, s->len[i], &pkt->data[size]);
  1127. }
  1128. for(i=0; i<3; i++)
  1129. for(j=0; j<256; j++)
  1130. s->stats[i][j] >>= 1;
  1131. }
  1132. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1133. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1134. int lefty, leftu, leftv, y, cy;
  1135. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1136. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1137. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1138. put_bits(&s->pb, 8, p->data[0][0]);
  1139. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1140. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1141. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1142. encode_422_bitstream(s, 2, width-2);
  1143. if(s->predictor==MEDIAN){
  1144. int lefttopy, lefttopu, lefttopv;
  1145. cy=y=1;
  1146. if(s->interlaced){
  1147. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1148. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1149. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1150. encode_422_bitstream(s, 0, width);
  1151. y++; cy++;
  1152. }
  1153. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1154. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1155. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1156. encode_422_bitstream(s, 0, 4);
  1157. lefttopy= p->data[0][3];
  1158. lefttopu= p->data[1][1];
  1159. lefttopv= p->data[2][1];
  1160. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1161. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1162. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1163. encode_422_bitstream(s, 0, width-4);
  1164. y++; cy++;
  1165. for(; y<height; y++,cy++){
  1166. uint8_t *ydst, *udst, *vdst;
  1167. if(s->bitstream_bpp==12){
  1168. while(2*cy > y){
  1169. ydst= p->data[0] + p->linesize[0]*y;
  1170. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1171. encode_gray_bitstream(s, width);
  1172. y++;
  1173. }
  1174. if(y>=height) break;
  1175. }
  1176. ydst= p->data[0] + p->linesize[0]*y;
  1177. udst= p->data[1] + p->linesize[1]*cy;
  1178. vdst= p->data[2] + p->linesize[2]*cy;
  1179. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1180. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1181. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1182. encode_422_bitstream(s, 0, width);
  1183. }
  1184. }else{
  1185. for(cy=y=1; y<height; y++,cy++){
  1186. uint8_t *ydst, *udst, *vdst;
  1187. /* encode a luma only line & y++ */
  1188. if(s->bitstream_bpp==12){
  1189. ydst= p->data[0] + p->linesize[0]*y;
  1190. if(s->predictor == PLANE && s->interlaced < y){
  1191. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1192. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1193. }else{
  1194. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1195. }
  1196. encode_gray_bitstream(s, width);
  1197. y++;
  1198. if(y>=height) break;
  1199. }
  1200. ydst= p->data[0] + p->linesize[0]*y;
  1201. udst= p->data[1] + p->linesize[1]*cy;
  1202. vdst= p->data[2] + p->linesize[2]*cy;
  1203. if(s->predictor == PLANE && s->interlaced < cy){
  1204. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1205. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1206. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1207. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1208. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1209. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1210. }else{
  1211. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1212. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1213. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1214. }
  1215. encode_422_bitstream(s, 0, width);
  1216. }
  1217. }
  1218. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1219. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1220. const int stride = -p->linesize[0];
  1221. const int fake_stride = -fake_ystride;
  1222. int y;
  1223. int leftr, leftg, leftb, lefta;
  1224. put_bits(&s->pb, 8, lefta= data[A]);
  1225. put_bits(&s->pb, 8, leftr= data[R]);
  1226. put_bits(&s->pb, 8, leftg= data[G]);
  1227. put_bits(&s->pb, 8, leftb= data[B]);
  1228. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1229. encode_bgra_bitstream(s, width-1, 4);
  1230. for(y=1; y<s->height; y++){
  1231. uint8_t *dst = data + y*stride;
  1232. if(s->predictor == PLANE && s->interlaced < y){
  1233. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1234. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1235. }else{
  1236. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1237. }
  1238. encode_bgra_bitstream(s, width, 4);
  1239. }
  1240. }else if(avctx->pix_fmt == PIX_FMT_RGB24){
  1241. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1242. const int stride = -p->linesize[0];
  1243. const int fake_stride = -fake_ystride;
  1244. int y;
  1245. int leftr, leftg, leftb;
  1246. put_bits(&s->pb, 8, leftr= data[0]);
  1247. put_bits(&s->pb, 8, leftg= data[1]);
  1248. put_bits(&s->pb, 8, leftb= data[2]);
  1249. put_bits(&s->pb, 8, 0);
  1250. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1251. encode_bgra_bitstream(s, width-1, 3);
  1252. for(y=1; y<s->height; y++){
  1253. uint8_t *dst = data + y*stride;
  1254. if(s->predictor == PLANE && s->interlaced < y){
  1255. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1256. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1257. }else{
  1258. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1259. }
  1260. encode_bgra_bitstream(s, width, 3);
  1261. }
  1262. }else{
  1263. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1264. }
  1265. emms_c();
  1266. size+= (put_bits_count(&s->pb)+31)/8;
  1267. put_bits(&s->pb, 16, 0);
  1268. put_bits(&s->pb, 15, 0);
  1269. size/= 4;
  1270. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1271. int j;
  1272. char *p= avctx->stats_out;
  1273. char *end= p + 1024*30;
  1274. for(i=0; i<3; i++){
  1275. for(j=0; j<256; j++){
  1276. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1277. p+= strlen(p);
  1278. s->stats[i][j]= 0;
  1279. }
  1280. snprintf(p, end-p, "\n");
  1281. p++;
  1282. }
  1283. } else
  1284. avctx->stats_out[0] = '\0';
  1285. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1286. flush_put_bits(&s->pb);
  1287. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1288. }
  1289. s->picture_number++;
  1290. pkt->size = size*4;
  1291. pkt->flags |= AV_PKT_FLAG_KEY;
  1292. *got_packet = 1;
  1293. return 0;
  1294. }
  1295. static av_cold int encode_end(AVCodecContext *avctx)
  1296. {
  1297. HYuvContext *s = avctx->priv_data;
  1298. common_end(s);
  1299. av_freep(&avctx->extradata);
  1300. av_freep(&avctx->stats_out);
  1301. return 0;
  1302. }
  1303. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1304. #if CONFIG_HUFFYUV_DECODER
  1305. AVCodec ff_huffyuv_decoder = {
  1306. .name = "huffyuv",
  1307. .type = AVMEDIA_TYPE_VIDEO,
  1308. .id = CODEC_ID_HUFFYUV,
  1309. .priv_data_size = sizeof(HYuvContext),
  1310. .init = decode_init,
  1311. .close = decode_end,
  1312. .decode = decode_frame,
  1313. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1314. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1315. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1316. };
  1317. #endif
  1318. #if CONFIG_FFVHUFF_DECODER
  1319. AVCodec ff_ffvhuff_decoder = {
  1320. .name = "ffvhuff",
  1321. .type = AVMEDIA_TYPE_VIDEO,
  1322. .id = CODEC_ID_FFVHUFF,
  1323. .priv_data_size = sizeof(HYuvContext),
  1324. .init = decode_init,
  1325. .close = decode_end,
  1326. .decode = decode_frame,
  1327. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1328. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1329. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1330. };
  1331. #endif
  1332. #if CONFIG_HUFFYUV_ENCODER
  1333. AVCodec ff_huffyuv_encoder = {
  1334. .name = "huffyuv",
  1335. .type = AVMEDIA_TYPE_VIDEO,
  1336. .id = CODEC_ID_HUFFYUV,
  1337. .priv_data_size = sizeof(HYuvContext),
  1338. .init = encode_init,
  1339. .encode2 = encode_frame,
  1340. .close = encode_end,
  1341. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1342. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1343. };
  1344. #endif
  1345. #if CONFIG_FFVHUFF_ENCODER
  1346. AVCodec ff_ffvhuff_encoder = {
  1347. .name = "ffvhuff",
  1348. .type = AVMEDIA_TYPE_VIDEO,
  1349. .id = CODEC_ID_FFVHUFF,
  1350. .priv_data_size = sizeof(HYuvContext),
  1351. .init = encode_init,
  1352. .encode2 = encode_frame,
  1353. .close = encode_end,
  1354. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1355. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1356. };
  1357. #endif