You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1970 lines
73KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/common.h"
  28. #include "libavutil/intmath.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/audioconvert.h"
  31. #include "avcodec.h"
  32. #include "dsputil.h"
  33. #include "fft.h"
  34. #include "get_bits.h"
  35. #include "put_bits.h"
  36. #include "dcadata.h"
  37. #include "dcahuff.h"
  38. #include "dca.h"
  39. #include "dca_parser.h"
  40. #include "synth_filter.h"
  41. #include "dcadsp.h"
  42. #include "fmtconvert.h"
  43. #if ARCH_ARM
  44. # include "arm/dca.h"
  45. #endif
  46. //#define TRACE
  47. #define DCA_PRIM_CHANNELS_MAX (7)
  48. #define DCA_SUBBANDS (32)
  49. #define DCA_ABITS_MAX (32) /* Should be 28 */
  50. #define DCA_SUBSUBFRAMES_MAX (4)
  51. #define DCA_SUBFRAMES_MAX (16)
  52. #define DCA_BLOCKS_MAX (16)
  53. #define DCA_LFE_MAX (3)
  54. enum DCAMode {
  55. DCA_MONO = 0,
  56. DCA_CHANNEL,
  57. DCA_STEREO,
  58. DCA_STEREO_SUMDIFF,
  59. DCA_STEREO_TOTAL,
  60. DCA_3F,
  61. DCA_2F1R,
  62. DCA_3F1R,
  63. DCA_2F2R,
  64. DCA_3F2R,
  65. DCA_4F2R
  66. };
  67. /* these are unconfirmed but should be mostly correct */
  68. enum DCAExSSSpeakerMask {
  69. DCA_EXSS_FRONT_CENTER = 0x0001,
  70. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  71. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  72. DCA_EXSS_LFE = 0x0008,
  73. DCA_EXSS_REAR_CENTER = 0x0010,
  74. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  75. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  76. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  77. DCA_EXSS_OVERHEAD = 0x0100,
  78. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  79. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  80. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  81. DCA_EXSS_LFE2 = 0x1000,
  82. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  83. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  84. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  85. };
  86. enum DCAExtensionMask {
  87. DCA_EXT_CORE = 0x001, ///< core in core substream
  88. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  89. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  90. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  91. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  92. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  93. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  94. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  95. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  96. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  97. };
  98. /* -1 are reserved or unknown */
  99. static const int dca_ext_audio_descr_mask[] = {
  100. DCA_EXT_XCH,
  101. -1,
  102. DCA_EXT_X96,
  103. DCA_EXT_XCH | DCA_EXT_X96,
  104. -1,
  105. -1,
  106. DCA_EXT_XXCH,
  107. -1,
  108. };
  109. /* extensions that reside in core substream */
  110. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  111. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  112. * Some compromises have been made for special configurations. Most configurations
  113. * are never used so complete accuracy is not needed.
  114. *
  115. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  116. * S -> side, when both rear and back are configured move one of them to the side channel
  117. * OV -> center back
  118. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  119. */
  120. static const uint64_t dca_core_channel_layout[] = {
  121. AV_CH_FRONT_CENTER, ///< 1, A
  122. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  123. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  124. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  125. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  126. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  127. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  128. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  129. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  130. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  131. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  132. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  133. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  134. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  135. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  136. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  137. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  138. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  139. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  140. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  141. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  142. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  143. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  144. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  145. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  146. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  147. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  148. };
  149. static const int8_t dca_lfe_index[] = {
  150. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  151. };
  152. static const int8_t dca_channel_reorder_lfe[][9] = {
  153. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  154. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  155. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  156. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  157. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  158. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  159. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  160. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  161. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  162. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  163. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  164. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  165. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  166. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  167. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  168. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  169. };
  170. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  171. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  172. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  173. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  174. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  175. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  176. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  177. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  178. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  179. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  180. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  181. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  182. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  183. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  184. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  185. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  186. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  187. };
  188. static const int8_t dca_channel_reorder_nolfe[][9] = {
  189. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  190. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  191. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  192. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  193. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  194. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  195. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  196. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  197. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  198. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  199. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  200. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  201. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  202. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  203. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  204. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  205. };
  206. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  207. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  208. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  209. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  210. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  211. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  212. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  213. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  214. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  215. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  216. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  217. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  218. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  219. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  220. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  221. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  222. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  223. };
  224. #define DCA_DOLBY 101 /* FIXME */
  225. #define DCA_CHANNEL_BITS 6
  226. #define DCA_CHANNEL_MASK 0x3F
  227. #define DCA_LFE 0x80
  228. #define HEADER_SIZE 14
  229. #define DCA_MAX_FRAME_SIZE 16384
  230. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  231. #define DCA_BUFFER_PADDING_SIZE 1024
  232. /** Bit allocation */
  233. typedef struct {
  234. int offset; ///< code values offset
  235. int maxbits[8]; ///< max bits in VLC
  236. int wrap; ///< wrap for get_vlc2()
  237. VLC vlc[8]; ///< actual codes
  238. } BitAlloc;
  239. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  240. static BitAlloc dca_tmode; ///< transition mode VLCs
  241. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  242. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  243. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  244. int idx)
  245. {
  246. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  247. ba->offset;
  248. }
  249. typedef struct {
  250. AVCodecContext *avctx;
  251. AVFrame frame;
  252. /* Frame header */
  253. int frame_type; ///< type of the current frame
  254. int samples_deficit; ///< deficit sample count
  255. int crc_present; ///< crc is present in the bitstream
  256. int sample_blocks; ///< number of PCM sample blocks
  257. int frame_size; ///< primary frame byte size
  258. int amode; ///< audio channels arrangement
  259. int sample_rate; ///< audio sampling rate
  260. int bit_rate; ///< transmission bit rate
  261. int bit_rate_index; ///< transmission bit rate index
  262. int downmix; ///< embedded downmix enabled
  263. int dynrange; ///< embedded dynamic range flag
  264. int timestamp; ///< embedded time stamp flag
  265. int aux_data; ///< auxiliary data flag
  266. int hdcd; ///< source material is mastered in HDCD
  267. int ext_descr; ///< extension audio descriptor flag
  268. int ext_coding; ///< extended coding flag
  269. int aspf; ///< audio sync word insertion flag
  270. int lfe; ///< low frequency effects flag
  271. int predictor_history; ///< predictor history flag
  272. int header_crc; ///< header crc check bytes
  273. int multirate_inter; ///< multirate interpolator switch
  274. int version; ///< encoder software revision
  275. int copy_history; ///< copy history
  276. int source_pcm_res; ///< source pcm resolution
  277. int front_sum; ///< front sum/difference flag
  278. int surround_sum; ///< surround sum/difference flag
  279. int dialog_norm; ///< dialog normalisation parameter
  280. /* Primary audio coding header */
  281. int subframes; ///< number of subframes
  282. int total_channels; ///< number of channels including extensions
  283. int prim_channels; ///< number of primary audio channels
  284. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  285. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  286. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  287. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  288. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  289. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  290. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  291. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  292. /* Primary audio coding side information */
  293. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  294. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  295. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  296. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  297. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  298. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  299. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  300. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  301. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  302. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  303. int dynrange_coef; ///< dynamic range coefficient
  304. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  305. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  306. int lfe_scale_factor;
  307. /* Subband samples history (for ADPCM) */
  308. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  309. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  310. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  311. int hist_index[DCA_PRIM_CHANNELS_MAX];
  312. DECLARE_ALIGNED(32, float, raXin)[32];
  313. int output; ///< type of output
  314. float scale_bias; ///< output scale
  315. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  316. DECLARE_ALIGNED(32, float, samples)[(DCA_PRIM_CHANNELS_MAX + 1) * 256];
  317. const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  318. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  319. int dca_buffer_size; ///< how much data is in the dca_buffer
  320. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  321. GetBitContext gb;
  322. /* Current position in DCA frame */
  323. int current_subframe;
  324. int current_subsubframe;
  325. int core_ext_mask; ///< present extensions in the core substream
  326. /* XCh extension information */
  327. int xch_present; ///< XCh extension present and valid
  328. int xch_base_channel; ///< index of first (only) channel containing XCH data
  329. /* ExSS header parser */
  330. int static_fields; ///< static fields present
  331. int mix_metadata; ///< mixing metadata present
  332. int num_mix_configs; ///< number of mix out configurations
  333. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  334. int profile;
  335. int debug_flag; ///< used for suppressing repeated error messages output
  336. DSPContext dsp;
  337. FFTContext imdct;
  338. SynthFilterContext synth;
  339. DCADSPContext dcadsp;
  340. FmtConvertContext fmt_conv;
  341. } DCAContext;
  342. static const uint16_t dca_vlc_offs[] = {
  343. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  344. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  345. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  346. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  347. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  348. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  349. };
  350. static av_cold void dca_init_vlcs(void)
  351. {
  352. static int vlcs_initialized = 0;
  353. int i, j, c = 14;
  354. static VLC_TYPE dca_table[23622][2];
  355. if (vlcs_initialized)
  356. return;
  357. dca_bitalloc_index.offset = 1;
  358. dca_bitalloc_index.wrap = 2;
  359. for (i = 0; i < 5; i++) {
  360. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  361. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  362. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  363. bitalloc_12_bits[i], 1, 1,
  364. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  365. }
  366. dca_scalefactor.offset = -64;
  367. dca_scalefactor.wrap = 2;
  368. for (i = 0; i < 5; i++) {
  369. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  370. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  371. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  372. scales_bits[i], 1, 1,
  373. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  374. }
  375. dca_tmode.offset = 0;
  376. dca_tmode.wrap = 1;
  377. for (i = 0; i < 4; i++) {
  378. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  379. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  380. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  381. tmode_bits[i], 1, 1,
  382. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  383. }
  384. for (i = 0; i < 10; i++)
  385. for (j = 0; j < 7; j++) {
  386. if (!bitalloc_codes[i][j])
  387. break;
  388. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  389. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  390. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  391. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  392. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  393. bitalloc_sizes[i],
  394. bitalloc_bits[i][j], 1, 1,
  395. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  396. c++;
  397. }
  398. vlcs_initialized = 1;
  399. }
  400. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  401. {
  402. while (len--)
  403. *dst++ = get_bits(gb, bits);
  404. }
  405. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
  406. {
  407. int i, j;
  408. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  409. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  410. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  411. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  412. s->prim_channels = s->total_channels;
  413. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  414. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  415. for (i = base_channel; i < s->prim_channels; i++) {
  416. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  417. if (s->subband_activity[i] > DCA_SUBBANDS)
  418. s->subband_activity[i] = DCA_SUBBANDS;
  419. }
  420. for (i = base_channel; i < s->prim_channels; i++) {
  421. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  422. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  423. s->vq_start_subband[i] = DCA_SUBBANDS;
  424. }
  425. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  426. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  427. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  428. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  429. /* Get codebooks quantization indexes */
  430. if (!base_channel)
  431. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  432. for (j = 1; j < 11; j++)
  433. for (i = base_channel; i < s->prim_channels; i++)
  434. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  435. /* Get scale factor adjustment */
  436. for (j = 0; j < 11; j++)
  437. for (i = base_channel; i < s->prim_channels; i++)
  438. s->scalefactor_adj[i][j] = 1;
  439. for (j = 1; j < 11; j++)
  440. for (i = base_channel; i < s->prim_channels; i++)
  441. if (s->quant_index_huffman[i][j] < thr[j])
  442. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  443. if (s->crc_present) {
  444. /* Audio header CRC check */
  445. get_bits(&s->gb, 16);
  446. }
  447. s->current_subframe = 0;
  448. s->current_subsubframe = 0;
  449. #ifdef TRACE
  450. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  451. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  452. for (i = base_channel; i < s->prim_channels; i++) {
  453. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  454. s->subband_activity[i]);
  455. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  456. s->vq_start_subband[i]);
  457. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  458. s->joint_intensity[i]);
  459. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  460. s->transient_huffman[i]);
  461. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  462. s->scalefactor_huffman[i]);
  463. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  464. s->bitalloc_huffman[i]);
  465. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  466. for (j = 0; j < 11; j++)
  467. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  468. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  469. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  470. for (j = 0; j < 11; j++)
  471. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  472. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  473. }
  474. #endif
  475. return 0;
  476. }
  477. static int dca_parse_frame_header(DCAContext *s)
  478. {
  479. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  480. /* Sync code */
  481. skip_bits_long(&s->gb, 32);
  482. /* Frame header */
  483. s->frame_type = get_bits(&s->gb, 1);
  484. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  485. s->crc_present = get_bits(&s->gb, 1);
  486. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  487. s->frame_size = get_bits(&s->gb, 14) + 1;
  488. if (s->frame_size < 95)
  489. return AVERROR_INVALIDDATA;
  490. s->amode = get_bits(&s->gb, 6);
  491. s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
  492. if (!s->sample_rate)
  493. return AVERROR_INVALIDDATA;
  494. s->bit_rate_index = get_bits(&s->gb, 5);
  495. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  496. if (!s->bit_rate)
  497. return AVERROR_INVALIDDATA;
  498. s->downmix = get_bits(&s->gb, 1);
  499. s->dynrange = get_bits(&s->gb, 1);
  500. s->timestamp = get_bits(&s->gb, 1);
  501. s->aux_data = get_bits(&s->gb, 1);
  502. s->hdcd = get_bits(&s->gb, 1);
  503. s->ext_descr = get_bits(&s->gb, 3);
  504. s->ext_coding = get_bits(&s->gb, 1);
  505. s->aspf = get_bits(&s->gb, 1);
  506. s->lfe = get_bits(&s->gb, 2);
  507. s->predictor_history = get_bits(&s->gb, 1);
  508. /* TODO: check CRC */
  509. if (s->crc_present)
  510. s->header_crc = get_bits(&s->gb, 16);
  511. s->multirate_inter = get_bits(&s->gb, 1);
  512. s->version = get_bits(&s->gb, 4);
  513. s->copy_history = get_bits(&s->gb, 2);
  514. s->source_pcm_res = get_bits(&s->gb, 3);
  515. s->front_sum = get_bits(&s->gb, 1);
  516. s->surround_sum = get_bits(&s->gb, 1);
  517. s->dialog_norm = get_bits(&s->gb, 4);
  518. /* FIXME: channels mixing levels */
  519. s->output = s->amode;
  520. if (s->lfe)
  521. s->output |= DCA_LFE;
  522. #ifdef TRACE
  523. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  524. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  525. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  526. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  527. s->sample_blocks, s->sample_blocks * 32);
  528. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  529. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  530. s->amode, dca_channels[s->amode]);
  531. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  532. s->sample_rate);
  533. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  534. s->bit_rate);
  535. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  536. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  537. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  538. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  539. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  540. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  541. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  542. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  543. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  544. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  545. s->predictor_history);
  546. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  547. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  548. s->multirate_inter);
  549. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  550. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  551. av_log(s->avctx, AV_LOG_DEBUG,
  552. "source pcm resolution: %i (%i bits/sample)\n",
  553. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  554. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  555. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  556. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  557. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  558. #endif
  559. /* Primary audio coding header */
  560. s->subframes = get_bits(&s->gb, 4) + 1;
  561. return dca_parse_audio_coding_header(s, 0);
  562. }
  563. static inline int get_scale(GetBitContext *gb, int level, int value)
  564. {
  565. if (level < 5) {
  566. /* huffman encoded */
  567. value += get_bitalloc(gb, &dca_scalefactor, level);
  568. } else if (level < 8)
  569. value = get_bits(gb, level + 1);
  570. return value;
  571. }
  572. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  573. {
  574. /* Primary audio coding side information */
  575. int j, k;
  576. if (get_bits_left(&s->gb) < 0)
  577. return AVERROR_INVALIDDATA;
  578. if (!base_channel) {
  579. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  580. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  581. }
  582. for (j = base_channel; j < s->prim_channels; j++) {
  583. for (k = 0; k < s->subband_activity[j]; k++)
  584. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  585. }
  586. /* Get prediction codebook */
  587. for (j = base_channel; j < s->prim_channels; j++) {
  588. for (k = 0; k < s->subband_activity[j]; k++) {
  589. if (s->prediction_mode[j][k] > 0) {
  590. /* (Prediction coefficient VQ address) */
  591. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  592. }
  593. }
  594. }
  595. /* Bit allocation index */
  596. for (j = base_channel; j < s->prim_channels; j++) {
  597. for (k = 0; k < s->vq_start_subband[j]; k++) {
  598. if (s->bitalloc_huffman[j] == 6)
  599. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  600. else if (s->bitalloc_huffman[j] == 5)
  601. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  602. else if (s->bitalloc_huffman[j] == 7) {
  603. av_log(s->avctx, AV_LOG_ERROR,
  604. "Invalid bit allocation index\n");
  605. return AVERROR_INVALIDDATA;
  606. } else {
  607. s->bitalloc[j][k] =
  608. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  609. }
  610. if (s->bitalloc[j][k] > 26) {
  611. // av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index [%i][%i] too big (%i)\n",
  612. // j, k, s->bitalloc[j][k]);
  613. return AVERROR_INVALIDDATA;
  614. }
  615. }
  616. }
  617. /* Transition mode */
  618. for (j = base_channel; j < s->prim_channels; j++) {
  619. for (k = 0; k < s->subband_activity[j]; k++) {
  620. s->transition_mode[j][k] = 0;
  621. if (s->subsubframes[s->current_subframe] > 1 &&
  622. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  623. s->transition_mode[j][k] =
  624. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  625. }
  626. }
  627. }
  628. if (get_bits_left(&s->gb) < 0)
  629. return AVERROR_INVALIDDATA;
  630. for (j = base_channel; j < s->prim_channels; j++) {
  631. const uint32_t *scale_table;
  632. unsigned int scale_max;
  633. int scale_sum;
  634. memset(s->scale_factor[j], 0,
  635. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  636. if (s->scalefactor_huffman[j] == 6) {
  637. scale_table = scale_factor_quant7;
  638. scale_max = 127;
  639. } else {
  640. scale_table = scale_factor_quant6;
  641. scale_max = 63;
  642. }
  643. /* When huffman coded, only the difference is encoded */
  644. scale_sum = 0;
  645. for (k = 0; k < s->subband_activity[j]; k++) {
  646. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  647. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  648. if (scale_sum > scale_max) {
  649. av_log(s->avctx, AV_LOG_ERROR, "scale_sum out of range\n");
  650. return AVERROR_INVALIDDATA;
  651. }
  652. s->scale_factor[j][k][0] = scale_table[scale_sum];
  653. }
  654. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  655. /* Get second scale factor */
  656. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  657. if (scale_sum > scale_max) {
  658. av_log(s->avctx, AV_LOG_ERROR, "scale_sum out of range\n");
  659. return AVERROR_INVALIDDATA;
  660. }
  661. s->scale_factor[j][k][1] = scale_table[scale_sum];
  662. }
  663. }
  664. }
  665. /* Joint subband scale factor codebook select */
  666. for (j = base_channel; j < s->prim_channels; j++) {
  667. /* Transmitted only if joint subband coding enabled */
  668. if (s->joint_intensity[j] > 0)
  669. s->joint_huff[j] = get_bits(&s->gb, 3);
  670. }
  671. if (get_bits_left(&s->gb) < 0)
  672. return AVERROR_INVALIDDATA;
  673. /* Scale factors for joint subband coding */
  674. for (j = base_channel; j < s->prim_channels; j++) {
  675. int source_channel;
  676. /* Transmitted only if joint subband coding enabled */
  677. if (s->joint_intensity[j] > 0) {
  678. int scale = 0;
  679. source_channel = s->joint_intensity[j] - 1;
  680. /* When huffman coded, only the difference is encoded
  681. * (is this valid as well for joint scales ???) */
  682. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  683. scale = get_scale(&s->gb, s->joint_huff[j], 0);
  684. scale += 64; /* bias */
  685. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  686. }
  687. if (!(s->debug_flag & 0x02)) {
  688. av_log(s->avctx, AV_LOG_DEBUG,
  689. "Joint stereo coding not supported\n");
  690. s->debug_flag |= 0x02;
  691. }
  692. }
  693. }
  694. /* Stereo downmix coefficients */
  695. if (!base_channel && s->prim_channels > 2) {
  696. if (s->downmix) {
  697. for (j = base_channel; j < s->prim_channels; j++) {
  698. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  699. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  700. }
  701. } else {
  702. int am = s->amode & DCA_CHANNEL_MASK;
  703. if (am < 16) {
  704. for (j = base_channel; j < s->prim_channels; j++) {
  705. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  706. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  707. }
  708. } else {
  709. av_log(s->avctx, AV_LOG_WARNING, "amode > 15 default downmix_coef unsupported\n");
  710. }
  711. }
  712. }
  713. /* Dynamic range coefficient */
  714. if (!base_channel && s->dynrange)
  715. s->dynrange_coef = get_bits(&s->gb, 8);
  716. /* Side information CRC check word */
  717. if (s->crc_present) {
  718. get_bits(&s->gb, 16);
  719. }
  720. /*
  721. * Primary audio data arrays
  722. */
  723. /* VQ encoded high frequency subbands */
  724. for (j = base_channel; j < s->prim_channels; j++)
  725. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  726. /* 1 vector -> 32 samples */
  727. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  728. /* Low frequency effect data */
  729. if (!base_channel && s->lfe) {
  730. int quant7;
  731. /* LFE samples */
  732. int lfe_samples = 2 * s->lfe * (4 + block_index);
  733. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  734. float lfe_scale;
  735. for (j = lfe_samples; j < lfe_end_sample; j++) {
  736. /* Signed 8 bits int */
  737. s->lfe_data[j] = get_sbits(&s->gb, 8);
  738. }
  739. /* Scale factor index */
  740. quant7 = get_bits(&s->gb, 8);
  741. if (quant7 > 127) {
  742. av_log_ask_for_sample(s->avctx, "LFEScaleIndex larger than 127\n");
  743. return AVERROR_INVALIDDATA;
  744. }
  745. s->lfe_scale_factor = scale_factor_quant7[quant7];
  746. /* Quantization step size * scale factor */
  747. lfe_scale = 0.035 * s->lfe_scale_factor;
  748. for (j = lfe_samples; j < lfe_end_sample; j++)
  749. s->lfe_data[j] *= lfe_scale;
  750. }
  751. #ifdef TRACE
  752. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  753. s->subsubframes[s->current_subframe]);
  754. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  755. s->partial_samples[s->current_subframe]);
  756. for (j = base_channel; j < s->prim_channels; j++) {
  757. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  758. for (k = 0; k < s->subband_activity[j]; k++)
  759. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  760. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  761. }
  762. for (j = base_channel; j < s->prim_channels; j++) {
  763. for (k = 0; k < s->subband_activity[j]; k++)
  764. av_log(s->avctx, AV_LOG_DEBUG,
  765. "prediction coefs: %f, %f, %f, %f\n",
  766. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  767. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  768. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  769. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  770. }
  771. for (j = base_channel; j < s->prim_channels; j++) {
  772. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  773. for (k = 0; k < s->vq_start_subband[j]; k++)
  774. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  775. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  776. }
  777. for (j = base_channel; j < s->prim_channels; j++) {
  778. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  779. for (k = 0; k < s->subband_activity[j]; k++)
  780. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  781. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  782. }
  783. for (j = base_channel; j < s->prim_channels; j++) {
  784. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  785. for (k = 0; k < s->subband_activity[j]; k++) {
  786. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  787. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  788. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  789. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  790. }
  791. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  792. }
  793. for (j = base_channel; j < s->prim_channels; j++) {
  794. if (s->joint_intensity[j] > 0) {
  795. int source_channel = s->joint_intensity[j] - 1;
  796. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  797. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  798. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  799. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  800. }
  801. }
  802. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  803. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  804. for (j = 0; j < s->prim_channels; j++) {
  805. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
  806. dca_downmix_coeffs[s->downmix_coef[j][0]]);
  807. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
  808. dca_downmix_coeffs[s->downmix_coef[j][1]]);
  809. }
  810. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  811. }
  812. for (j = base_channel; j < s->prim_channels; j++)
  813. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  814. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  815. if (!base_channel && s->lfe) {
  816. int lfe_samples = 2 * s->lfe * (4 + block_index);
  817. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  818. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  819. for (j = lfe_samples; j < lfe_end_sample; j++)
  820. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  821. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  822. }
  823. #endif
  824. return 0;
  825. }
  826. static void qmf_32_subbands(DCAContext *s, int chans,
  827. float samples_in[32][8], float *samples_out,
  828. float scale)
  829. {
  830. const float *prCoeff;
  831. int i;
  832. int sb_act = s->subband_activity[chans];
  833. int subindex;
  834. scale *= sqrt(1 / 8.0);
  835. /* Select filter */
  836. if (!s->multirate_inter) /* Non-perfect reconstruction */
  837. prCoeff = fir_32bands_nonperfect;
  838. else /* Perfect reconstruction */
  839. prCoeff = fir_32bands_perfect;
  840. for (i = sb_act; i < 32; i++)
  841. s->raXin[i] = 0.0;
  842. /* Reconstructed channel sample index */
  843. for (subindex = 0; subindex < 8; subindex++) {
  844. /* Load in one sample from each subband and clear inactive subbands */
  845. for (i = 0; i < sb_act; i++) {
  846. unsigned sign = (i - 1) & 2;
  847. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  848. AV_WN32A(&s->raXin[i], v);
  849. }
  850. s->synth.synth_filter_float(&s->imdct,
  851. s->subband_fir_hist[chans],
  852. &s->hist_index[chans],
  853. s->subband_fir_noidea[chans], prCoeff,
  854. samples_out, s->raXin, scale);
  855. samples_out += 32;
  856. }
  857. }
  858. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  859. int num_deci_sample, float *samples_in,
  860. float *samples_out, float scale)
  861. {
  862. /* samples_in: An array holding decimated samples.
  863. * Samples in current subframe starts from samples_in[0],
  864. * while samples_in[-1], samples_in[-2], ..., stores samples
  865. * from last subframe as history.
  866. *
  867. * samples_out: An array holding interpolated samples
  868. */
  869. int decifactor;
  870. const float *prCoeff;
  871. int deciindex;
  872. /* Select decimation filter */
  873. if (decimation_select == 1) {
  874. decifactor = 64;
  875. prCoeff = lfe_fir_128;
  876. } else {
  877. decifactor = 32;
  878. prCoeff = lfe_fir_64;
  879. }
  880. /* Interpolation */
  881. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  882. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
  883. samples_in++;
  884. samples_out += 2 * decifactor;
  885. }
  886. }
  887. /* downmixing routines */
  888. #define MIX_REAR1(samples, si1, rs, coef) \
  889. samples[i] += samples[si1] * coef[rs][0]; \
  890. samples[i+256] += samples[si1] * coef[rs][1];
  891. #define MIX_REAR2(samples, si1, si2, rs, coef) \
  892. samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs + 1][0]; \
  893. samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs + 1][1];
  894. #define MIX_FRONT3(samples, coef) \
  895. t = samples[i + c]; \
  896. u = samples[i + l]; \
  897. v = samples[i + r]; \
  898. samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  899. samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  900. #define DOWNMIX_TO_STEREO(op1, op2) \
  901. for (i = 0; i < 256; i++) { \
  902. op1 \
  903. op2 \
  904. }
  905. static void dca_downmix(float *samples, int srcfmt,
  906. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  907. const int8_t *channel_mapping)
  908. {
  909. int c, l, r, sl, sr, s;
  910. int i;
  911. float t, u, v;
  912. float coef[DCA_PRIM_CHANNELS_MAX][2];
  913. for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
  914. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  915. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  916. }
  917. switch (srcfmt) {
  918. case DCA_MONO:
  919. case DCA_CHANNEL:
  920. case DCA_STEREO_TOTAL:
  921. case DCA_STEREO_SUMDIFF:
  922. case DCA_4F2R:
  923. av_log(NULL, 0, "Not implemented!\n");
  924. break;
  925. case DCA_STEREO:
  926. break;
  927. case DCA_3F:
  928. c = channel_mapping[0] * 256;
  929. l = channel_mapping[1] * 256;
  930. r = channel_mapping[2] * 256;
  931. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  932. break;
  933. case DCA_2F1R:
  934. s = channel_mapping[2] * 256;
  935. DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef), );
  936. break;
  937. case DCA_3F1R:
  938. c = channel_mapping[0] * 256;
  939. l = channel_mapping[1] * 256;
  940. r = channel_mapping[2] * 256;
  941. s = channel_mapping[3] * 256;
  942. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  943. MIX_REAR1(samples, i + s, 3, coef));
  944. break;
  945. case DCA_2F2R:
  946. sl = channel_mapping[2] * 256;
  947. sr = channel_mapping[3] * 256;
  948. DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef), );
  949. break;
  950. case DCA_3F2R:
  951. c = channel_mapping[0] * 256;
  952. l = channel_mapping[1] * 256;
  953. r = channel_mapping[2] * 256;
  954. sl = channel_mapping[3] * 256;
  955. sr = channel_mapping[4] * 256;
  956. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  957. MIX_REAR2(samples, i + sl, i + sr, 3, coef));
  958. break;
  959. }
  960. }
  961. #ifndef decode_blockcodes
  962. /* Very compact version of the block code decoder that does not use table
  963. * look-up but is slightly slower */
  964. static int decode_blockcode(int code, int levels, int *values)
  965. {
  966. int i;
  967. int offset = (levels - 1) >> 1;
  968. for (i = 0; i < 4; i++) {
  969. int div = FASTDIV(code, levels);
  970. values[i] = code - offset - div * levels;
  971. code = div;
  972. }
  973. return code;
  974. }
  975. static int decode_blockcodes(int code1, int code2, int levels, int *values)
  976. {
  977. return decode_blockcode(code1, levels, values) |
  978. decode_blockcode(code2, levels, values + 4);
  979. }
  980. #endif
  981. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  982. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  983. #ifndef int8x8_fmul_int32
  984. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  985. {
  986. float fscale = scale / 16.0;
  987. int i;
  988. for (i = 0; i < 8; i++)
  989. dst[i] = src[i] * fscale;
  990. }
  991. #endif
  992. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  993. {
  994. int k, l;
  995. int subsubframe = s->current_subsubframe;
  996. const float *quant_step_table;
  997. /* FIXME */
  998. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  999. LOCAL_ALIGNED_16(int, block, [8]);
  1000. /*
  1001. * Audio data
  1002. */
  1003. /* Select quantization step size table */
  1004. if (s->bit_rate_index == 0x1f)
  1005. quant_step_table = lossless_quant_d;
  1006. else
  1007. quant_step_table = lossy_quant_d;
  1008. for (k = base_channel; k < s->prim_channels; k++) {
  1009. if (get_bits_left(&s->gb) < 0)
  1010. return AVERROR_INVALIDDATA;
  1011. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1012. int m;
  1013. /* Select the mid-tread linear quantizer */
  1014. int abits = s->bitalloc[k][l];
  1015. float quant_step_size = quant_step_table[abits];
  1016. /*
  1017. * Determine quantization index code book and its type
  1018. */
  1019. /* Select quantization index code book */
  1020. int sel = s->quant_index_huffman[k][abits];
  1021. /*
  1022. * Extract bits from the bit stream
  1023. */
  1024. if (!abits) {
  1025. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  1026. } else {
  1027. /* Deal with transients */
  1028. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1029. float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
  1030. s->scalefactor_adj[k][sel];
  1031. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1032. if (abits <= 7) {
  1033. /* Block code */
  1034. int block_code1, block_code2, size, levels, err;
  1035. size = abits_sizes[abits - 1];
  1036. levels = abits_levels[abits - 1];
  1037. block_code1 = get_bits(&s->gb, size);
  1038. block_code2 = get_bits(&s->gb, size);
  1039. err = decode_blockcodes(block_code1, block_code2,
  1040. levels, block);
  1041. if (err) {
  1042. av_log(s->avctx, AV_LOG_ERROR,
  1043. "ERROR: block code look-up failed\n");
  1044. return AVERROR_INVALIDDATA;
  1045. }
  1046. } else {
  1047. /* no coding */
  1048. for (m = 0; m < 8; m++)
  1049. block[m] = get_sbits(&s->gb, abits - 3);
  1050. }
  1051. } else {
  1052. /* Huffman coded */
  1053. for (m = 0; m < 8; m++)
  1054. block[m] = get_bitalloc(&s->gb,
  1055. &dca_smpl_bitalloc[abits], sel);
  1056. }
  1057. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1058. block, rscale, 8);
  1059. }
  1060. /*
  1061. * Inverse ADPCM if in prediction mode
  1062. */
  1063. if (s->prediction_mode[k][l]) {
  1064. int n;
  1065. for (m = 0; m < 8; m++) {
  1066. for (n = 1; n <= 4; n++)
  1067. if (m >= n)
  1068. subband_samples[k][l][m] +=
  1069. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1070. subband_samples[k][l][m - n] / 8192);
  1071. else if (s->predictor_history)
  1072. subband_samples[k][l][m] +=
  1073. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1074. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1075. }
  1076. }
  1077. }
  1078. /*
  1079. * Decode VQ encoded high frequencies
  1080. */
  1081. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1082. /* 1 vector -> 32 samples but we only need the 8 samples
  1083. * for this subsubframe. */
  1084. int hfvq = s->high_freq_vq[k][l];
  1085. if (!s->debug_flag & 0x01) {
  1086. av_log(s->avctx, AV_LOG_DEBUG,
  1087. "Stream with high frequencies VQ coding\n");
  1088. s->debug_flag |= 0x01;
  1089. }
  1090. int8x8_fmul_int32(subband_samples[k][l],
  1091. &high_freq_vq[hfvq][subsubframe * 8],
  1092. s->scale_factor[k][l][0]);
  1093. }
  1094. }
  1095. /* Check for DSYNC after subsubframe */
  1096. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1097. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1098. #ifdef TRACE
  1099. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1100. #endif
  1101. } else {
  1102. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1103. }
  1104. }
  1105. /* Backup predictor history for adpcm */
  1106. for (k = base_channel; k < s->prim_channels; k++)
  1107. for (l = 0; l < s->vq_start_subband[k]; l++)
  1108. memcpy(s->subband_samples_hist[k][l],
  1109. &subband_samples[k][l][4],
  1110. 4 * sizeof(subband_samples[0][0][0]));
  1111. return 0;
  1112. }
  1113. static int dca_filter_channels(DCAContext *s, int block_index)
  1114. {
  1115. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1116. int k;
  1117. /* 32 subbands QMF */
  1118. for (k = 0; k < s->prim_channels; k++) {
  1119. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1120. 0, 8388608.0, 8388608.0 };*/
  1121. qmf_32_subbands(s, k, subband_samples[k],
  1122. &s->samples[256 * s->channel_order_tab[k]],
  1123. M_SQRT1_2 * s->scale_bias /* pcm_to_double[s->source_pcm_res] */);
  1124. }
  1125. /* Down mixing */
  1126. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1127. dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
  1128. }
  1129. /* Generate LFE samples for this subsubframe FIXME!!! */
  1130. if (s->output & DCA_LFE) {
  1131. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1132. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1133. &s->samples[256 * dca_lfe_index[s->amode]],
  1134. (1.0 / 256.0) * s->scale_bias);
  1135. /* Outputs 20bits pcm samples */
  1136. }
  1137. return 0;
  1138. }
  1139. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1140. {
  1141. int aux_data_count = 0, i;
  1142. /*
  1143. * Unpack optional information
  1144. */
  1145. /* presumably optional information only appears in the core? */
  1146. if (!base_channel) {
  1147. if (s->timestamp)
  1148. skip_bits_long(&s->gb, 32);
  1149. if (s->aux_data)
  1150. aux_data_count = get_bits(&s->gb, 6);
  1151. for (i = 0; i < aux_data_count; i++)
  1152. get_bits(&s->gb, 8);
  1153. if (s->crc_present && (s->downmix || s->dynrange))
  1154. get_bits(&s->gb, 16);
  1155. }
  1156. return 0;
  1157. }
  1158. /**
  1159. * Decode a dca frame block
  1160. *
  1161. * @param s pointer to the DCAContext
  1162. */
  1163. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1164. {
  1165. int ret;
  1166. /* Sanity check */
  1167. if (s->current_subframe >= s->subframes) {
  1168. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1169. s->current_subframe, s->subframes);
  1170. return AVERROR_INVALIDDATA;
  1171. }
  1172. if (!s->current_subsubframe) {
  1173. #ifdef TRACE
  1174. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1175. #endif
  1176. /* Read subframe header */
  1177. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1178. return ret;
  1179. }
  1180. /* Read subsubframe */
  1181. #ifdef TRACE
  1182. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1183. #endif
  1184. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1185. return ret;
  1186. /* Update state */
  1187. s->current_subsubframe++;
  1188. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1189. s->current_subsubframe = 0;
  1190. s->current_subframe++;
  1191. }
  1192. if (s->current_subframe >= s->subframes) {
  1193. #ifdef TRACE
  1194. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1195. #endif
  1196. /* Read subframe footer */
  1197. if ((ret = dca_subframe_footer(s, base_channel)))
  1198. return ret;
  1199. }
  1200. return 0;
  1201. }
  1202. /**
  1203. * Return the number of channels in an ExSS speaker mask (HD)
  1204. */
  1205. static int dca_exss_mask2count(int mask)
  1206. {
  1207. /* count bits that mean speaker pairs twice */
  1208. return av_popcount(mask) +
  1209. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1210. DCA_EXSS_FRONT_LEFT_RIGHT |
  1211. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1212. DCA_EXSS_WIDE_LEFT_RIGHT |
  1213. DCA_EXSS_SIDE_LEFT_RIGHT |
  1214. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1215. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1216. DCA_EXSS_REAR_LEFT_RIGHT |
  1217. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1218. }
  1219. /**
  1220. * Skip mixing coefficients of a single mix out configuration (HD)
  1221. */
  1222. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1223. {
  1224. int i;
  1225. for (i = 0; i < channels; i++) {
  1226. int mix_map_mask = get_bits(gb, out_ch);
  1227. int num_coeffs = av_popcount(mix_map_mask);
  1228. skip_bits_long(gb, num_coeffs * 6);
  1229. }
  1230. }
  1231. /**
  1232. * Parse extension substream asset header (HD)
  1233. */
  1234. static int dca_exss_parse_asset_header(DCAContext *s)
  1235. {
  1236. int header_pos = get_bits_count(&s->gb);
  1237. int header_size;
  1238. int channels = 0;
  1239. int embedded_stereo = 0;
  1240. int embedded_6ch = 0;
  1241. int drc_code_present;
  1242. int av_uninit(extensions_mask);
  1243. int i, j;
  1244. if (get_bits_left(&s->gb) < 16)
  1245. return -1;
  1246. /* We will parse just enough to get to the extensions bitmask with which
  1247. * we can set the profile value. */
  1248. header_size = get_bits(&s->gb, 9) + 1;
  1249. skip_bits(&s->gb, 3); // asset index
  1250. if (s->static_fields) {
  1251. if (get_bits1(&s->gb))
  1252. skip_bits(&s->gb, 4); // asset type descriptor
  1253. if (get_bits1(&s->gb))
  1254. skip_bits_long(&s->gb, 24); // language descriptor
  1255. if (get_bits1(&s->gb)) {
  1256. /* How can one fit 1024 bytes of text here if the maximum value
  1257. * for the asset header size field above was 512 bytes? */
  1258. int text_length = get_bits(&s->gb, 10) + 1;
  1259. if (get_bits_left(&s->gb) < text_length * 8)
  1260. return -1;
  1261. skip_bits_long(&s->gb, text_length * 8); // info text
  1262. }
  1263. skip_bits(&s->gb, 5); // bit resolution - 1
  1264. skip_bits(&s->gb, 4); // max sample rate code
  1265. channels = get_bits(&s->gb, 8) + 1;
  1266. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1267. int spkr_remap_sets;
  1268. int spkr_mask_size = 16;
  1269. int num_spkrs[7];
  1270. if (channels > 2)
  1271. embedded_stereo = get_bits1(&s->gb);
  1272. if (channels > 6)
  1273. embedded_6ch = get_bits1(&s->gb);
  1274. if (get_bits1(&s->gb)) {
  1275. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1276. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1277. }
  1278. spkr_remap_sets = get_bits(&s->gb, 3);
  1279. for (i = 0; i < spkr_remap_sets; i++) {
  1280. /* std layout mask for each remap set */
  1281. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1282. }
  1283. for (i = 0; i < spkr_remap_sets; i++) {
  1284. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1285. if (get_bits_left(&s->gb) < 0)
  1286. return -1;
  1287. for (j = 0; j < num_spkrs[i]; j++) {
  1288. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1289. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1290. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1291. }
  1292. }
  1293. } else {
  1294. skip_bits(&s->gb, 3); // representation type
  1295. }
  1296. }
  1297. drc_code_present = get_bits1(&s->gb);
  1298. if (drc_code_present)
  1299. get_bits(&s->gb, 8); // drc code
  1300. if (get_bits1(&s->gb))
  1301. skip_bits(&s->gb, 5); // dialog normalization code
  1302. if (drc_code_present && embedded_stereo)
  1303. get_bits(&s->gb, 8); // drc stereo code
  1304. if (s->mix_metadata && get_bits1(&s->gb)) {
  1305. skip_bits(&s->gb, 1); // external mix
  1306. skip_bits(&s->gb, 6); // post mix gain code
  1307. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1308. skip_bits(&s->gb, 3); // drc limit
  1309. else
  1310. skip_bits(&s->gb, 8); // custom drc code
  1311. if (get_bits1(&s->gb)) // channel specific scaling
  1312. for (i = 0; i < s->num_mix_configs; i++)
  1313. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1314. else
  1315. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1316. for (i = 0; i < s->num_mix_configs; i++) {
  1317. if (get_bits_left(&s->gb) < 0)
  1318. return -1;
  1319. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1320. if (embedded_6ch)
  1321. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1322. if (embedded_stereo)
  1323. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1324. }
  1325. }
  1326. switch (get_bits(&s->gb, 2)) {
  1327. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1328. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1329. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1330. case 3: extensions_mask = 0; /* aux coding */ break;
  1331. }
  1332. /* not parsed further, we were only interested in the extensions mask */
  1333. if (get_bits_left(&s->gb) < 0)
  1334. return -1;
  1335. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1336. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1337. return -1;
  1338. }
  1339. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1340. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1341. s->profile = FF_PROFILE_DTS_HD_MA;
  1342. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1343. DCA_EXT_EXSS_XXCH))
  1344. s->profile = FF_PROFILE_DTS_HD_HRA;
  1345. if (!(extensions_mask & DCA_EXT_CORE))
  1346. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1347. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1348. av_log(s->avctx, AV_LOG_WARNING,
  1349. "DTS extensions detection mismatch (%d, %d)\n",
  1350. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1351. return 0;
  1352. }
  1353. /**
  1354. * Parse extension substream header (HD)
  1355. */
  1356. static void dca_exss_parse_header(DCAContext *s)
  1357. {
  1358. int ss_index;
  1359. int blownup;
  1360. int num_audiop = 1;
  1361. int num_assets = 1;
  1362. int active_ss_mask[8];
  1363. int i, j;
  1364. if (get_bits_left(&s->gb) < 52)
  1365. return;
  1366. skip_bits(&s->gb, 8); // user data
  1367. ss_index = get_bits(&s->gb, 2);
  1368. blownup = get_bits1(&s->gb);
  1369. skip_bits(&s->gb, 8 + 4 * blownup); // header_size
  1370. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1371. s->static_fields = get_bits1(&s->gb);
  1372. if (s->static_fields) {
  1373. skip_bits(&s->gb, 2); // reference clock code
  1374. skip_bits(&s->gb, 3); // frame duration code
  1375. if (get_bits1(&s->gb))
  1376. skip_bits_long(&s->gb, 36); // timestamp
  1377. /* a single stream can contain multiple audio assets that can be
  1378. * combined to form multiple audio presentations */
  1379. num_audiop = get_bits(&s->gb, 3) + 1;
  1380. if (num_audiop > 1) {
  1381. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1382. /* ignore such streams for now */
  1383. return;
  1384. }
  1385. num_assets = get_bits(&s->gb, 3) + 1;
  1386. if (num_assets > 1) {
  1387. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1388. /* ignore such streams for now */
  1389. return;
  1390. }
  1391. for (i = 0; i < num_audiop; i++)
  1392. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1393. for (i = 0; i < num_audiop; i++)
  1394. for (j = 0; j <= ss_index; j++)
  1395. if (active_ss_mask[i] & (1 << j))
  1396. skip_bits(&s->gb, 8); // active asset mask
  1397. s->mix_metadata = get_bits1(&s->gb);
  1398. if (s->mix_metadata) {
  1399. int mix_out_mask_size;
  1400. skip_bits(&s->gb, 2); // adjustment level
  1401. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1402. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1403. for (i = 0; i < s->num_mix_configs; i++) {
  1404. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1405. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1406. }
  1407. }
  1408. }
  1409. for (i = 0; i < num_assets; i++)
  1410. skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
  1411. for (i = 0; i < num_assets; i++) {
  1412. if (dca_exss_parse_asset_header(s))
  1413. return;
  1414. }
  1415. /* not parsed further, we were only interested in the extensions mask
  1416. * from the asset header */
  1417. }
  1418. /**
  1419. * Main frame decoding function
  1420. * FIXME add arguments
  1421. */
  1422. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1423. int *got_frame_ptr, AVPacket *avpkt)
  1424. {
  1425. const uint8_t *buf = avpkt->data;
  1426. int buf_size = avpkt->size;
  1427. int lfe_samples;
  1428. int num_core_channels = 0;
  1429. int i, ret;
  1430. float *samples_flt;
  1431. int16_t *samples_s16;
  1432. DCAContext *s = avctx->priv_data;
  1433. int channels;
  1434. int core_ss_end;
  1435. s->xch_present = 0;
  1436. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1437. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1438. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1439. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1440. return AVERROR_INVALIDDATA;
  1441. }
  1442. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1443. if ((ret = dca_parse_frame_header(s)) < 0) {
  1444. //seems like the frame is corrupt, try with the next one
  1445. return ret;
  1446. }
  1447. //set AVCodec values with parsed data
  1448. avctx->sample_rate = s->sample_rate;
  1449. avctx->bit_rate = s->bit_rate;
  1450. s->profile = FF_PROFILE_DTS;
  1451. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1452. if ((ret = dca_decode_block(s, 0, i))) {
  1453. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1454. return ret;
  1455. }
  1456. }
  1457. /* record number of core channels incase less than max channels are requested */
  1458. num_core_channels = s->prim_channels;
  1459. if (s->ext_coding)
  1460. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1461. else
  1462. s->core_ext_mask = 0;
  1463. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1464. /* only scan for extensions if ext_descr was unknown or indicated a
  1465. * supported XCh extension */
  1466. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  1467. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1468. * extensions scan can fill it up */
  1469. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1470. /* extensions start at 32-bit boundaries into bitstream */
  1471. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1472. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1473. uint32_t bits = get_bits_long(&s->gb, 32);
  1474. switch (bits) {
  1475. case 0x5a5a5a5a: {
  1476. int ext_amode, xch_fsize;
  1477. s->xch_base_channel = s->prim_channels;
  1478. /* validate sync word using XCHFSIZE field */
  1479. xch_fsize = show_bits(&s->gb, 10);
  1480. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1481. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1482. continue;
  1483. /* skip length-to-end-of-frame field for the moment */
  1484. skip_bits(&s->gb, 10);
  1485. s->core_ext_mask |= DCA_EXT_XCH;
  1486. /* extension amode(number of channels in extension) should be 1 */
  1487. /* AFAIK XCh is not used for more channels */
  1488. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1489. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1490. " supported!\n", ext_amode);
  1491. continue;
  1492. }
  1493. /* much like core primary audio coding header */
  1494. dca_parse_audio_coding_header(s, s->xch_base_channel);
  1495. for (i = 0; i < (s->sample_blocks / 8); i++)
  1496. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1497. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1498. continue;
  1499. }
  1500. s->xch_present = 1;
  1501. break;
  1502. }
  1503. case 0x47004a03:
  1504. /* XXCh: extended channels */
  1505. /* usually found either in core or HD part in DTS-HD HRA streams,
  1506. * but not in DTS-ES which contains XCh extensions instead */
  1507. s->core_ext_mask |= DCA_EXT_XXCH;
  1508. break;
  1509. case 0x1d95f262: {
  1510. int fsize96 = show_bits(&s->gb, 12) + 1;
  1511. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1512. continue;
  1513. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1514. get_bits_count(&s->gb));
  1515. skip_bits(&s->gb, 12);
  1516. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1517. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1518. s->core_ext_mask |= DCA_EXT_X96;
  1519. break;
  1520. }
  1521. }
  1522. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1523. }
  1524. } else {
  1525. /* no supported extensions, skip the rest of the core substream */
  1526. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1527. }
  1528. if (s->core_ext_mask & DCA_EXT_X96)
  1529. s->profile = FF_PROFILE_DTS_96_24;
  1530. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1531. s->profile = FF_PROFILE_DTS_ES;
  1532. /* check for ExSS (HD part) */
  1533. if (s->dca_buffer_size - s->frame_size > 32 &&
  1534. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1535. dca_exss_parse_header(s);
  1536. avctx->profile = s->profile;
  1537. channels = s->prim_channels + !!s->lfe;
  1538. if (s->amode < 16) {
  1539. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1540. if (s->xch_present && (!avctx->request_channels ||
  1541. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1542. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1543. if (s->lfe) {
  1544. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1545. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1546. } else {
  1547. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1548. }
  1549. } else {
  1550. channels = num_core_channels + !!s->lfe;
  1551. s->xch_present = 0; /* disable further xch processing */
  1552. if (s->lfe) {
  1553. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1554. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1555. } else
  1556. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1557. }
  1558. if (channels > !!s->lfe &&
  1559. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1560. return AVERROR_INVALIDDATA;
  1561. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1562. channels = 2;
  1563. s->output = DCA_STEREO;
  1564. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1565. }
  1566. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1567. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1568. s->channel_order_tab = dca_channel_order_native;
  1569. }
  1570. } else {
  1571. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
  1572. return AVERROR_INVALIDDATA;
  1573. }
  1574. if (avctx->channels != channels) {
  1575. if (avctx->channels)
  1576. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1577. avctx->channels = channels;
  1578. }
  1579. /* get output buffer */
  1580. s->frame.nb_samples = 256 * (s->sample_blocks / 8);
  1581. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  1582. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1583. return ret;
  1584. }
  1585. samples_flt = (float *) s->frame.data[0];
  1586. samples_s16 = (int16_t *) s->frame.data[0];
  1587. /* filter to get final output */
  1588. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1589. dca_filter_channels(s, i);
  1590. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1591. /* channel from SL & SR to remove matrixed back-channel signal */
  1592. if ((s->source_pcm_res & 1) && s->xch_present) {
  1593. float *back_chan = s->samples + s->channel_order_tab[s->xch_base_channel] * 256;
  1594. float *lt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
  1595. float *rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
  1596. s->dsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1597. s->dsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1598. }
  1599. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
  1600. s->fmt_conv.float_interleave(samples_flt, s->samples_chanptr, 256,
  1601. channels);
  1602. samples_flt += 256 * channels;
  1603. } else {
  1604. s->fmt_conv.float_to_int16_interleave(samples_s16,
  1605. s->samples_chanptr, 256,
  1606. channels);
  1607. samples_s16 += 256 * channels;
  1608. }
  1609. }
  1610. /* update lfe history */
  1611. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1612. for (i = 0; i < 2 * s->lfe * 4; i++)
  1613. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1614. *got_frame_ptr = 1;
  1615. *(AVFrame *) data = s->frame;
  1616. return buf_size;
  1617. }
  1618. /**
  1619. * DCA initialization
  1620. *
  1621. * @param avctx pointer to the AVCodecContext
  1622. */
  1623. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1624. {
  1625. DCAContext *s = avctx->priv_data;
  1626. int i;
  1627. s->avctx = avctx;
  1628. dca_init_vlcs();
  1629. ff_dsputil_init(&s->dsp, avctx);
  1630. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1631. ff_synth_filter_init(&s->synth);
  1632. ff_dcadsp_init(&s->dcadsp);
  1633. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1634. for (i = 0; i < DCA_PRIM_CHANNELS_MAX + 1; i++)
  1635. s->samples_chanptr[i] = s->samples + i * 256;
  1636. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  1637. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1638. s->scale_bias = 1.0 / 32768.0;
  1639. } else {
  1640. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1641. s->scale_bias = 1.0;
  1642. }
  1643. /* allow downmixing to stereo */
  1644. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  1645. avctx->request_channels == 2) {
  1646. avctx->channels = avctx->request_channels;
  1647. }
  1648. avcodec_get_frame_defaults(&s->frame);
  1649. avctx->coded_frame = &s->frame;
  1650. return 0;
  1651. }
  1652. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1653. {
  1654. DCAContext *s = avctx->priv_data;
  1655. ff_mdct_end(&s->imdct);
  1656. return 0;
  1657. }
  1658. static const AVProfile profiles[] = {
  1659. { FF_PROFILE_DTS, "DTS" },
  1660. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1661. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1662. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1663. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1664. { FF_PROFILE_UNKNOWN },
  1665. };
  1666. AVCodec ff_dca_decoder = {
  1667. .name = "dca",
  1668. .type = AVMEDIA_TYPE_AUDIO,
  1669. .id = CODEC_ID_DTS,
  1670. .priv_data_size = sizeof(DCAContext),
  1671. .init = dca_decode_init,
  1672. .decode = dca_decode_frame,
  1673. .close = dca_decode_end,
  1674. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1675. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1676. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
  1677. AV_SAMPLE_FMT_S16,
  1678. AV_SAMPLE_FMT_NONE },
  1679. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1680. };