You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

765 lines
36KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... loop filter
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 loop filter.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/intreadwrite.h"
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264.h"
  32. #include "mathops.h"
  33. #include "rectangle.h"
  34. //#undef NDEBUG
  35. #include <assert.h>
  36. /* Deblocking filter (p153) */
  37. static const uint8_t alpha_table[52*3] = {
  38. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  39. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  41. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  43. 0, 0, 0, 0, 0, 0, 4, 4, 5, 6,
  44. 7, 8, 9, 10, 12, 13, 15, 17, 20, 22,
  45. 25, 28, 32, 36, 40, 45, 50, 56, 63, 71,
  46. 80, 90,101,113,127,144,162,182,203,226,
  47. 255,255,
  48. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  49. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  50. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  51. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  52. };
  53. static const uint8_t beta_table[52*3] = {
  54. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  55. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  56. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  57. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  59. 0, 0, 0, 0, 0, 0, 2, 2, 2, 3,
  60. 3, 3, 3, 4, 4, 4, 6, 6, 7, 7,
  61. 8, 8, 9, 9, 10, 10, 11, 11, 12, 12,
  62. 13, 13, 14, 14, 15, 15, 16, 16, 17, 17,
  63. 18, 18,
  64. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  65. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  66. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  67. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  68. };
  69. static const uint8_t tc0_table[52*3][4] = {
  70. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  71. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  72. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  73. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  74. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  75. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  76. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  77. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  78. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  79. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  80. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  81. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 1 },
  82. {-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 1, 1 }, {-1, 0, 1, 1 }, {-1, 1, 1, 1 },
  83. {-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 },
  84. {-1, 1, 1, 2 }, {-1, 1, 2, 3 }, {-1, 1, 2, 3 }, {-1, 2, 2, 3 }, {-1, 2, 2, 4 }, {-1, 2, 3, 4 },
  85. {-1, 2, 3, 4 }, {-1, 3, 3, 5 }, {-1, 3, 4, 6 }, {-1, 3, 4, 6 }, {-1, 4, 5, 7 }, {-1, 4, 5, 8 },
  86. {-1, 4, 6, 9 }, {-1, 5, 7,10 }, {-1, 6, 8,11 }, {-1, 6, 8,13 }, {-1, 7,10,14 }, {-1, 8,11,16 },
  87. {-1, 9,12,18 }, {-1,10,13,20 }, {-1,11,15,23 }, {-1,13,17,25 },
  88. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  89. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  90. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  91. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  92. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  93. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  94. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  95. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  96. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  97. };
  98. static void av_always_inline filter_mb_edgev( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h) {
  99. const int bit_depth = h->sps.bit_depth_luma;
  100. const int qp_bd_offset = 6*(bit_depth-8);
  101. const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  102. const int alpha = alpha_table[index_a] << (bit_depth-8);
  103. const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  104. if (alpha ==0 || beta == 0) return;
  105. if( bS[0] < 4 ) {
  106. int8_t tc[4];
  107. tc[0] = tc0_table[index_a][bS[0]] << (bit_depth-8);
  108. tc[1] = tc0_table[index_a][bS[1]] << (bit_depth-8);
  109. tc[2] = tc0_table[index_a][bS[2]] << (bit_depth-8);
  110. tc[3] = tc0_table[index_a][bS[3]] << (bit_depth-8);
  111. h->h264dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  112. } else {
  113. h->h264dsp.h264_h_loop_filter_luma_intra(pix, stride, alpha, beta);
  114. }
  115. }
  116. static void av_always_inline filter_mb_edgecv( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  117. const int bit_depth = h->sps.bit_depth_luma;
  118. const int qp_bd_offset = 6*(bit_depth-8);
  119. const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  120. const int alpha = alpha_table[index_a] << (bit_depth-8);
  121. const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  122. if (alpha ==0 || beta == 0) return;
  123. if( bS[0] < 4 ) {
  124. int8_t tc[4];
  125. tc[0] = (tc0_table[index_a][bS[0]] << (bit_depth-8))+1;
  126. tc[1] = (tc0_table[index_a][bS[1]] << (bit_depth-8))+1;
  127. tc[2] = (tc0_table[index_a][bS[2]] << (bit_depth-8))+1;
  128. tc[3] = (tc0_table[index_a][bS[3]] << (bit_depth-8))+1;
  129. h->h264dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  130. } else {
  131. h->h264dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  132. }
  133. }
  134. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int bsi, int qp ) {
  135. int i;
  136. const int bit_depth = h->sps.bit_depth_luma;
  137. const int qp_bd_offset = 6*(bit_depth-8);
  138. int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  139. int alpha = alpha_table[index_a] << (bit_depth-8);
  140. int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  141. for( i = 0; i < 8; i++, pix += stride) {
  142. const int bS_index = (i >> 1) * bsi;
  143. if( bS[bS_index] == 0 ) {
  144. continue;
  145. }
  146. if( bS[bS_index] < 4 ) {
  147. const int tc0 = tc0_table[index_a][bS[bS_index]] << (bit_depth-8);
  148. const int p0 = pix[-1];
  149. const int p1 = pix[-2];
  150. const int p2 = pix[-3];
  151. const int q0 = pix[0];
  152. const int q1 = pix[1];
  153. const int q2 = pix[2];
  154. if( FFABS( p0 - q0 ) < alpha &&
  155. FFABS( p1 - p0 ) < beta &&
  156. FFABS( q1 - q0 ) < beta ) {
  157. int tc = tc0;
  158. int i_delta;
  159. if( FFABS( p2 - p0 ) < beta ) {
  160. if(tc0)
  161. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  162. tc++;
  163. }
  164. if( FFABS( q2 - q0 ) < beta ) {
  165. if(tc0)
  166. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  167. tc++;
  168. }
  169. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  170. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  171. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  172. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  173. }
  174. }else{
  175. const int p0 = pix[-1];
  176. const int p1 = pix[-2];
  177. const int p2 = pix[-3];
  178. const int q0 = pix[0];
  179. const int q1 = pix[1];
  180. const int q2 = pix[2];
  181. if( FFABS( p0 - q0 ) < alpha &&
  182. FFABS( p1 - p0 ) < beta &&
  183. FFABS( q1 - q0 ) < beta ) {
  184. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  185. if( FFABS( p2 - p0 ) < beta)
  186. {
  187. const int p3 = pix[-4];
  188. /* p0', p1', p2' */
  189. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  190. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  191. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  192. } else {
  193. /* p0' */
  194. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  195. }
  196. if( FFABS( q2 - q0 ) < beta)
  197. {
  198. const int q3 = pix[3];
  199. /* q0', q1', q2' */
  200. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  201. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  202. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  203. } else {
  204. /* q0' */
  205. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  206. }
  207. }else{
  208. /* p0', q0' */
  209. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  210. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  211. }
  212. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  213. }
  214. }
  215. }
  216. }
  217. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int bsi, int qp ) {
  218. int i;
  219. const int bit_depth = h->sps.bit_depth_luma;
  220. const int qp_bd_offset = 6*(bit_depth-8);
  221. int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  222. int alpha = alpha_table[index_a] << (bit_depth-8);
  223. int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  224. for( i = 0; i < 4; i++, pix += stride) {
  225. const int bS_index = i*bsi;
  226. if( bS[bS_index] == 0 ) {
  227. continue;
  228. }
  229. if( bS[bS_index] < 4 ) {
  230. const int tc = (tc0_table[index_a][bS[bS_index]] << (bit_depth-8)) + 1;
  231. const int p0 = pix[-1];
  232. const int p1 = pix[-2];
  233. const int q0 = pix[0];
  234. const int q1 = pix[1];
  235. if( FFABS( p0 - q0 ) < alpha &&
  236. FFABS( p1 - p0 ) < beta &&
  237. FFABS( q1 - q0 ) < beta ) {
  238. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  239. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  240. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  241. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  242. }
  243. }else{
  244. const int p0 = pix[-1];
  245. const int p1 = pix[-2];
  246. const int q0 = pix[0];
  247. const int q1 = pix[1];
  248. if( FFABS( p0 - q0 ) < alpha &&
  249. FFABS( p1 - p0 ) < beta &&
  250. FFABS( q1 - q0 ) < beta ) {
  251. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  252. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  253. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  254. }
  255. }
  256. }
  257. }
  258. static void av_always_inline filter_mb_edgeh( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  259. const int bit_depth = h->sps.bit_depth_luma;
  260. const int qp_bd_offset = 6*(bit_depth-8);
  261. const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  262. const int alpha = alpha_table[index_a] << (bit_depth-8);
  263. const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  264. if (alpha ==0 || beta == 0) return;
  265. if( bS[0] < 4 ) {
  266. int8_t tc[4];
  267. tc[0] = tc0_table[index_a][bS[0]] << (bit_depth-8);
  268. tc[1] = tc0_table[index_a][bS[1]] << (bit_depth-8);
  269. tc[2] = tc0_table[index_a][bS[2]] << (bit_depth-8);
  270. tc[3] = tc0_table[index_a][bS[3]] << (bit_depth-8);
  271. h->h264dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  272. } else {
  273. h->h264dsp.h264_v_loop_filter_luma_intra(pix, stride, alpha, beta);
  274. }
  275. }
  276. static void av_always_inline filter_mb_edgech( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  277. const int bit_depth = h->sps.bit_depth_luma;
  278. const int qp_bd_offset = 6*(bit_depth-8);
  279. const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
  280. const int alpha = alpha_table[index_a] << (bit_depth-8);
  281. const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset] << (bit_depth-8);
  282. if (alpha ==0 || beta == 0) return;
  283. if( bS[0] < 4 ) {
  284. int8_t tc[4];
  285. tc[0] = (tc0_table[index_a][bS[0]] << (bit_depth-8))+1;
  286. tc[1] = (tc0_table[index_a][bS[1]] << (bit_depth-8))+1;
  287. tc[2] = (tc0_table[index_a][bS[2]] << (bit_depth-8))+1;
  288. tc[3] = (tc0_table[index_a][bS[3]] << (bit_depth-8))+1;
  289. h->h264dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  290. } else {
  291. h->h264dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  292. }
  293. }
  294. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  295. MpegEncContext * const s = &h->s;
  296. int mb_xy;
  297. int mb_type, left_type;
  298. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  299. mb_xy = h->mb_xy;
  300. if(!h->top_type || !h->h264dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff) {
  301. ff_h264_filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  302. return;
  303. }
  304. assert(!FRAME_MBAFF);
  305. left_type= h->left_type[0];
  306. mb_type = s->current_picture.mb_type[mb_xy];
  307. qp = s->current_picture.qscale_table[mb_xy];
  308. qp0 = s->current_picture.qscale_table[mb_xy-1];
  309. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  310. qpc = get_chroma_qp( h, 0, qp );
  311. qpc0 = get_chroma_qp( h, 0, qp0 );
  312. qpc1 = get_chroma_qp( h, 0, qp1 );
  313. qp0 = (qp + qp0 + 1) >> 1;
  314. qp1 = (qp + qp1 + 1) >> 1;
  315. qpc0 = (qpc + qpc0 + 1) >> 1;
  316. qpc1 = (qpc + qpc1 + 1) >> 1;
  317. qp_thresh = 15+52 - h->slice_alpha_c0_offset;
  318. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  319. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  320. return;
  321. if( IS_INTRA(mb_type) ) {
  322. int16_t bS4[4] = {4,4,4,4};
  323. int16_t bS3[4] = {3,3,3,3};
  324. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  325. if(left_type)
  326. filter_mb_edgev( &img_y[4*0], linesize, bS4, qp0, h);
  327. if( IS_8x8DCT(mb_type) ) {
  328. filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
  329. filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
  330. filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
  331. } else {
  332. filter_mb_edgev( &img_y[4*1], linesize, bS3, qp, h);
  333. filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
  334. filter_mb_edgev( &img_y[4*3], linesize, bS3, qp, h);
  335. filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
  336. filter_mb_edgeh( &img_y[4*1*linesize], linesize, bS3, qp, h);
  337. filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
  338. filter_mb_edgeh( &img_y[4*3*linesize], linesize, bS3, qp, h);
  339. }
  340. if(left_type){
  341. filter_mb_edgecv( &img_cb[2*0], uvlinesize, bS4, qpc0, h);
  342. filter_mb_edgecv( &img_cr[2*0], uvlinesize, bS4, qpc0, h);
  343. }
  344. filter_mb_edgecv( &img_cb[2*2], uvlinesize, bS3, qpc, h);
  345. filter_mb_edgecv( &img_cr[2*2], uvlinesize, bS3, qpc, h);
  346. filter_mb_edgech( &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
  347. filter_mb_edgech( &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
  348. filter_mb_edgech( &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
  349. filter_mb_edgech( &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
  350. return;
  351. } else {
  352. LOCAL_ALIGNED_8(int16_t, bS, [2], [4][4]);
  353. int edges;
  354. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  355. edges = 4;
  356. AV_WN64A(bS[0][0], 0x0002000200020002ULL);
  357. AV_WN64A(bS[0][2], 0x0002000200020002ULL);
  358. AV_WN64A(bS[1][0], 0x0002000200020002ULL);
  359. AV_WN64A(bS[1][2], 0x0002000200020002ULL);
  360. } else {
  361. int mask_edge1 = (3*(((5*mb_type)>>5)&1)) | (mb_type>>4); //(mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : (mb_type & MB_TYPE_16x8) ? 1 : 0;
  362. int mask_edge0 = 3*((mask_edge1>>1) & ((5*left_type)>>5)&1); // (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) && (h->left_type[0] & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : 0;
  363. int step = 1+(mb_type>>24); //IS_8x8DCT(mb_type) ? 2 : 1;
  364. edges = 4 - 3*((mb_type>>3) & !(h->cbp & 15)); //(mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  365. h->h264dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  366. h->list_count==2, edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  367. }
  368. if( IS_INTRA(left_type) )
  369. AV_WN64A(bS[0][0], 0x0004000400040004ULL);
  370. if( IS_INTRA(h->top_type) )
  371. AV_WN64A(bS[1][0], FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL);
  372. #define FILTER(hv,dir,edge)\
  373. if(AV_RN64A(bS[dir][edge])) { \
  374. filter_mb_edge##hv( &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir, h );\
  375. if(!(edge&1)) {\
  376. filter_mb_edgec##hv( &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
  377. filter_mb_edgec##hv( &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
  378. }\
  379. }
  380. if(left_type)
  381. FILTER(v,0,0);
  382. if( edges == 1 ) {
  383. FILTER(h,1,0);
  384. } else if( IS_8x8DCT(mb_type) ) {
  385. FILTER(v,0,2);
  386. FILTER(h,1,0);
  387. FILTER(h,1,2);
  388. } else {
  389. FILTER(v,0,1);
  390. FILTER(v,0,2);
  391. FILTER(v,0,3);
  392. FILTER(h,1,0);
  393. FILTER(h,1,1);
  394. FILTER(h,1,2);
  395. FILTER(h,1,3);
  396. }
  397. #undef FILTER
  398. }
  399. }
  400. static int check_mv(H264Context *h, long b_idx, long bn_idx, int mvy_limit){
  401. int v;
  402. v= h->ref_cache[0][b_idx] != h->ref_cache[0][bn_idx];
  403. if(!v && h->ref_cache[0][b_idx]!=-1)
  404. v= h->mv_cache[0][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
  405. FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
  406. if(h->list_count==2){
  407. if(!v)
  408. v = h->ref_cache[1][b_idx] != h->ref_cache[1][bn_idx] |
  409. h->mv_cache[1][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
  410. FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit;
  411. if(v){
  412. if(h->ref_cache[0][b_idx] != h->ref_cache[1][bn_idx] |
  413. h->ref_cache[1][b_idx] != h->ref_cache[0][bn_idx])
  414. return 1;
  415. return
  416. h->mv_cache[0][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
  417. FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit |
  418. h->mv_cache[1][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
  419. FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
  420. }
  421. }
  422. return v;
  423. }
  424. static av_always_inline void filter_mb_dir(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int mb_xy, int mb_type, int mvy_limit, int first_vertical_edge_done, int dir) {
  425. MpegEncContext * const s = &h->s;
  426. int edge;
  427. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  428. const int mbm_type = dir == 0 ? h->left_type[0] : h->top_type;
  429. // how often to recheck mv-based bS when iterating between edges
  430. static const uint8_t mask_edge_tab[2][8]={{0,3,3,3,1,1,1,1},
  431. {0,3,1,1,3,3,3,3}};
  432. const int mask_edge = mask_edge_tab[dir][(mb_type>>3)&7];
  433. const int edges = mask_edge== 3 && !(h->cbp&15) ? 1 : 4;
  434. // how often to recheck mv-based bS when iterating along each edge
  435. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  436. if(mbm_type && !first_vertical_edge_done){
  437. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0)
  438. && IS_INTERLACED(mbm_type&~mb_type)
  439. ) {
  440. // This is a special case in the norm where the filtering must
  441. // be done twice (one each of the field) even if we are in a
  442. // frame macroblock.
  443. //
  444. unsigned int tmp_linesize = 2 * linesize;
  445. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  446. int mbn_xy = mb_xy - 2 * s->mb_stride;
  447. int j;
  448. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  449. DECLARE_ALIGNED(8, int16_t, bS)[4];
  450. int qp;
  451. if( IS_INTRA(mb_type|s->current_picture.mb_type[mbn_xy]) ) {
  452. AV_WN64A(bS, 0x0003000300030003ULL);
  453. } else {
  454. if(!CABAC && IS_8x8DCT(s->current_picture.mb_type[mbn_xy])){
  455. bS[0]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+0]);
  456. bS[1]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+1]);
  457. bS[2]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+2]);
  458. bS[3]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+3]);
  459. }else{
  460. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy] + 4+3*8;
  461. int i;
  462. for( i = 0; i < 4; i++ ) {
  463. bS[i] = 1 + !!(h->non_zero_count_cache[scan8[0]+i] | mbn_nnz[i]);
  464. }
  465. }
  466. }
  467. // Do not use s->qscale as luma quantizer because it has not the same
  468. // value in IPCM macroblocks.
  469. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  470. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  471. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  472. filter_mb_edgeh( &img_y[j*linesize], tmp_linesize, bS, qp, h );
  473. filter_mb_edgech( &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  474. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
  475. filter_mb_edgech( &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  476. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
  477. }
  478. }else{
  479. DECLARE_ALIGNED(8, int16_t, bS)[4];
  480. int qp;
  481. if( IS_INTRA(mb_type|mbm_type)) {
  482. AV_WN64A(bS, 0x0003000300030003ULL);
  483. if ( (!IS_INTERLACED(mb_type|mbm_type))
  484. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  485. )
  486. AV_WN64A(bS, 0x0004000400040004ULL);
  487. } else {
  488. int i;
  489. int mv_done;
  490. if( dir && FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbm_type)) {
  491. AV_WN64A(bS, 0x0001000100010001ULL);
  492. mv_done = 1;
  493. }
  494. else if( mask_par0 && ((mbm_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  495. int b_idx= 8 + 4;
  496. int bn_idx= b_idx - (dir ? 8:1);
  497. bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, 8 + 4, bn_idx, mvy_limit);
  498. mv_done = 1;
  499. }
  500. else
  501. mv_done = 0;
  502. for( i = 0; i < 4; i++ ) {
  503. int x = dir == 0 ? 0 : i;
  504. int y = dir == 0 ? i : 0;
  505. int b_idx= 8 + 4 + x + 8*y;
  506. int bn_idx= b_idx - (dir ? 8:1);
  507. if( h->non_zero_count_cache[b_idx] |
  508. h->non_zero_count_cache[bn_idx] ) {
  509. bS[i] = 2;
  510. }
  511. else if(!mv_done)
  512. {
  513. bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
  514. }
  515. }
  516. }
  517. /* Filter edge */
  518. // Do not use s->qscale as luma quantizer because it has not the same
  519. // value in IPCM macroblocks.
  520. if(bS[0]+bS[1]+bS[2]+bS[3]){
  521. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbm_xy] + 1 ) >> 1;
  522. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
  523. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  524. //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  525. if( dir == 0 ) {
  526. filter_mb_edgev( &img_y[0], linesize, bS, qp, h );
  527. {
  528. int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  529. filter_mb_edgecv( &img_cb[0], uvlinesize, bS, qp, h);
  530. if(h->pps.chroma_qp_diff)
  531. qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  532. filter_mb_edgecv( &img_cr[0], uvlinesize, bS, qp, h);
  533. }
  534. } else {
  535. filter_mb_edgeh( &img_y[0], linesize, bS, qp, h );
  536. {
  537. int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  538. filter_mb_edgech( &img_cb[0], uvlinesize, bS, qp, h);
  539. if(h->pps.chroma_qp_diff)
  540. qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  541. filter_mb_edgech( &img_cr[0], uvlinesize, bS, qp, h);
  542. }
  543. }
  544. }
  545. }
  546. }
  547. /* Calculate bS */
  548. for( edge = 1; edge < edges; edge++ ) {
  549. DECLARE_ALIGNED(8, int16_t, bS)[4];
  550. int qp;
  551. if( IS_8x8DCT(mb_type & (edge<<24)) ) // (edge&1) && IS_8x8DCT(mb_type)
  552. continue;
  553. if( IS_INTRA(mb_type)) {
  554. AV_WN64A(bS, 0x0003000300030003ULL);
  555. } else {
  556. int i;
  557. int mv_done;
  558. if( edge & mask_edge ) {
  559. AV_ZERO64(bS);
  560. mv_done = 1;
  561. }
  562. else if( mask_par0 ) {
  563. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  564. int bn_idx= b_idx - (dir ? 8:1);
  565. bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, b_idx, bn_idx, mvy_limit);
  566. mv_done = 1;
  567. }
  568. else
  569. mv_done = 0;
  570. for( i = 0; i < 4; i++ ) {
  571. int x = dir == 0 ? edge : i;
  572. int y = dir == 0 ? i : edge;
  573. int b_idx= 8 + 4 + x + 8*y;
  574. int bn_idx= b_idx - (dir ? 8:1);
  575. if( h->non_zero_count_cache[b_idx] |
  576. h->non_zero_count_cache[bn_idx] ) {
  577. bS[i] = 2;
  578. }
  579. else if(!mv_done)
  580. {
  581. bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
  582. }
  583. }
  584. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  585. continue;
  586. }
  587. /* Filter edge */
  588. // Do not use s->qscale as luma quantizer because it has not the same
  589. // value in IPCM macroblocks.
  590. qp = s->current_picture.qscale_table[mb_xy];
  591. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
  592. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  593. //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  594. if( dir == 0 ) {
  595. filter_mb_edgev( &img_y[4*edge<<h->pixel_shift], linesize, bS, qp, h );
  596. if( (edge&1) == 0 ) {
  597. filter_mb_edgecv( &img_cb[2*edge<<h->pixel_shift], uvlinesize, bS, h->chroma_qp[0], h);
  598. filter_mb_edgecv( &img_cr[2*edge<<h->pixel_shift], uvlinesize, bS, h->chroma_qp[1], h);
  599. }
  600. } else {
  601. filter_mb_edgeh( &img_y[4*edge*linesize], linesize, bS, qp, h );
  602. if( (edge&1) == 0 ) {
  603. filter_mb_edgech( &img_cb[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[0], h);
  604. filter_mb_edgech( &img_cr[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[1], h);
  605. }
  606. }
  607. }
  608. }
  609. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  610. MpegEncContext * const s = &h->s;
  611. const int mb_xy= mb_x + mb_y*s->mb_stride;
  612. const int mb_type = s->current_picture.mb_type[mb_xy];
  613. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  614. int first_vertical_edge_done = 0;
  615. av_unused int dir;
  616. if (FRAME_MBAFF
  617. // and current and left pair do not have the same interlaced type
  618. && IS_INTERLACED(mb_type^h->left_type[0])
  619. // and left mb is in available to us
  620. && h->left_type[0]) {
  621. /* First vertical edge is different in MBAFF frames
  622. * There are 8 different bS to compute and 2 different Qp
  623. */
  624. DECLARE_ALIGNED(8, int16_t, bS)[8];
  625. int qp[2];
  626. int bqp[2];
  627. int rqp[2];
  628. int mb_qp, mbn0_qp, mbn1_qp;
  629. int i;
  630. first_vertical_edge_done = 1;
  631. if( IS_INTRA(mb_type) ) {
  632. AV_WN64A(&bS[0], 0x0004000400040004ULL);
  633. AV_WN64A(&bS[4], 0x0004000400040004ULL);
  634. } else {
  635. static const uint8_t offset[2][2][8]={
  636. {
  637. {7+8*0, 7+8*0, 7+8*0, 7+8*0, 7+8*1, 7+8*1, 7+8*1, 7+8*1},
  638. {7+8*2, 7+8*2, 7+8*2, 7+8*2, 7+8*3, 7+8*3, 7+8*3, 7+8*3},
  639. },{
  640. {7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
  641. {7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
  642. }
  643. };
  644. const uint8_t *off= offset[MB_FIELD][mb_y&1];
  645. for( i = 0; i < 8; i++ ) {
  646. int j= MB_FIELD ? i>>2 : i&1;
  647. int mbn_xy = h->left_mb_xy[j];
  648. int mbn_type= h->left_type[j];
  649. if( IS_INTRA( mbn_type ) )
  650. bS[i] = 4;
  651. else{
  652. bS[i] = 1 + !!(h->non_zero_count_cache[12+8*(i>>1)] |
  653. ((!h->pps.cabac && IS_8x8DCT(mbn_type)) ?
  654. (h->cbp_table[mbn_xy] & ((MB_FIELD ? (i&2) : (mb_y&1)) ? 8 : 2))
  655. :
  656. h->non_zero_count[mbn_xy][ off[i] ]));
  657. }
  658. }
  659. }
  660. mb_qp = s->current_picture.qscale_table[mb_xy];
  661. mbn0_qp = s->current_picture.qscale_table[h->left_mb_xy[0]];
  662. mbn1_qp = s->current_picture.qscale_table[h->left_mb_xy[1]];
  663. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  664. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  665. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  666. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  667. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  668. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  669. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  670. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  671. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  672. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  673. /* Filter edge */
  674. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  675. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  676. if(MB_FIELD){
  677. filter_mb_mbaff_edgev ( h, img_y , linesize, bS , 1, qp [0] );
  678. filter_mb_mbaff_edgev ( h, img_y + 8* linesize, linesize, bS+4, 1, qp [1] );
  679. filter_mb_mbaff_edgecv( h, img_cb, uvlinesize, bS , 1, bqp[0] );
  680. filter_mb_mbaff_edgecv( h, img_cb + 4*uvlinesize, uvlinesize, bS+4, 1, bqp[1] );
  681. filter_mb_mbaff_edgecv( h, img_cr, uvlinesize, bS , 1, rqp[0] );
  682. filter_mb_mbaff_edgecv( h, img_cr + 4*uvlinesize, uvlinesize, bS+4, 1, rqp[1] );
  683. }else{
  684. filter_mb_mbaff_edgev ( h, img_y , 2* linesize, bS , 2, qp [0] );
  685. filter_mb_mbaff_edgev ( h, img_y + linesize, 2* linesize, bS+1, 2, qp [1] );
  686. filter_mb_mbaff_edgecv( h, img_cb, 2*uvlinesize, bS , 2, bqp[0] );
  687. filter_mb_mbaff_edgecv( h, img_cb + uvlinesize, 2*uvlinesize, bS+1, 2, bqp[1] );
  688. filter_mb_mbaff_edgecv( h, img_cr, 2*uvlinesize, bS , 2, rqp[0] );
  689. filter_mb_mbaff_edgecv( h, img_cr + uvlinesize, 2*uvlinesize, bS+1, 2, rqp[1] );
  690. }
  691. }
  692. #if CONFIG_SMALL
  693. for( dir = 0; dir < 2; dir++ )
  694. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, dir ? 0 : first_vertical_edge_done, dir);
  695. #else
  696. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, first_vertical_edge_done, 0);
  697. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, 0, 1);
  698. #endif
  699. }