You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

980 lines
29KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bytestream.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #define TM2_ESCAPE 0x80000000
  30. #define TM2_DELTAS 64
  31. /* Huffman-coded streams of different types of blocks */
  32. enum TM2_STREAMS{ TM2_C_HI = 0, TM2_C_LO, TM2_L_HI, TM2_L_LO,
  33. TM2_UPD, TM2_MOT, TM2_TYPE, TM2_NUM_STREAMS};
  34. /* Block types */
  35. enum TM2_BLOCKS{ TM2_HI_RES = 0, TM2_MED_RES, TM2_LOW_RES, TM2_NULL_RES,
  36. TM2_UPDATE, TM2_STILL, TM2_MOTION};
  37. typedef struct TM2Context{
  38. AVCodecContext *avctx;
  39. AVFrame pic;
  40. GetBitContext gb;
  41. DSPContext dsp;
  42. uint8_t *buffer;
  43. int buffer_size;
  44. /* TM2 streams */
  45. int *tokens[TM2_NUM_STREAMS];
  46. int tok_lens[TM2_NUM_STREAMS];
  47. int tok_ptrs[TM2_NUM_STREAMS];
  48. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  49. /* for blocks decoding */
  50. int D[4];
  51. int CD[4];
  52. int *last;
  53. int *clast;
  54. /* data for current and previous frame */
  55. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  56. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  57. int y_stride, uv_stride;
  58. int cur;
  59. } TM2Context;
  60. /**
  61. * Huffman codes for each of streams
  62. */
  63. typedef struct TM2Codes{
  64. VLC vlc; ///< table for FFmpeg bitstream reader
  65. int bits;
  66. int *recode; ///< table for converting from code indexes to values
  67. int length;
  68. } TM2Codes;
  69. /**
  70. * structure for gathering Huffman codes information
  71. */
  72. typedef struct TM2Huff{
  73. int val_bits; ///< length of literal
  74. int max_bits; ///< maximum length of code
  75. int min_bits; ///< minimum length of code
  76. int nodes; ///< total number of nodes in tree
  77. int num; ///< current number filled
  78. int max_num; ///< total number of codes
  79. int *nums; ///< literals
  80. uint32_t *bits; ///< codes
  81. int *lens; ///< codelengths
  82. } TM2Huff;
  83. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  84. {
  85. if(length > huff->max_bits) {
  86. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n", huff->max_bits);
  87. return -1;
  88. }
  89. if(!get_bits1(&ctx->gb)) { /* literal */
  90. if (length == 0) {
  91. length = 1;
  92. }
  93. if(huff->num >= huff->max_num) {
  94. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  95. return -1;
  96. }
  97. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  98. huff->bits[huff->num] = prefix;
  99. huff->lens[huff->num] = length;
  100. huff->num++;
  101. return 0;
  102. } else { /* non-terminal node */
  103. if(tm2_read_tree(ctx, prefix << 1, length + 1, huff) == -1)
  104. return -1;
  105. if(tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff) == -1)
  106. return -1;
  107. }
  108. return 0;
  109. }
  110. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  111. {
  112. TM2Huff huff;
  113. int res = 0;
  114. huff.val_bits = get_bits(&ctx->gb, 5);
  115. huff.max_bits = get_bits(&ctx->gb, 5);
  116. huff.min_bits = get_bits(&ctx->gb, 5);
  117. huff.nodes = get_bits_long(&ctx->gb, 17);
  118. huff.num = 0;
  119. /* check for correct codes parameters */
  120. if((huff.val_bits < 1) || (huff.val_bits > 32) ||
  121. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  122. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal length: %i, max code length: %i\n",
  123. huff.val_bits, huff.max_bits);
  124. return -1;
  125. }
  126. if((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  127. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree nodes: %i\n", huff.nodes);
  128. return -1;
  129. }
  130. /* one-node tree */
  131. if(huff.max_bits == 0)
  132. huff.max_bits = 1;
  133. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  134. huff.max_num = (huff.nodes + 1) >> 1;
  135. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  136. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  137. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  138. if(tm2_read_tree(ctx, 0, 0, &huff) == -1)
  139. res = -1;
  140. if(huff.num != huff.max_num) {
  141. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  142. huff.num, huff.max_num);
  143. res = -1;
  144. }
  145. /* convert codes to vlc_table */
  146. if(res != -1) {
  147. int i;
  148. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  149. huff.lens, sizeof(int), sizeof(int),
  150. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  151. if(res < 0) {
  152. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  153. res = -1;
  154. } else
  155. res = 0;
  156. if(res != -1) {
  157. code->bits = huff.max_bits;
  158. code->length = huff.max_num;
  159. code->recode = av_malloc(code->length * sizeof(int));
  160. for(i = 0; i < code->length; i++)
  161. code->recode[i] = huff.nums[i];
  162. }
  163. }
  164. /* free allocated memory */
  165. av_free(huff.nums);
  166. av_free(huff.bits);
  167. av_free(huff.lens);
  168. return res;
  169. }
  170. static void tm2_free_codes(TM2Codes *code)
  171. {
  172. av_free(code->recode);
  173. if(code->vlc.table)
  174. ff_free_vlc(&code->vlc);
  175. }
  176. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  177. {
  178. int val;
  179. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  180. return code->recode[val];
  181. }
  182. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  183. {
  184. uint32_t magic;
  185. const uint8_t *obuf;
  186. obuf = buf;
  187. magic = AV_RL32(buf);
  188. buf += 4;
  189. if(magic == 0x00000100) { /* old header */
  190. av_log_missing_feature(ctx->avctx, "TM2 old header", 1);
  191. return 40;
  192. } else if(magic == 0x00000101) { /* new header */
  193. return 40;
  194. } else {
  195. av_log (ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08X\n", magic);
  196. return -1;
  197. }
  198. }
  199. static int tm2_read_deltas(TM2Context *ctx, int stream_id) {
  200. int d, mb;
  201. int i, v;
  202. d = get_bits(&ctx->gb, 9);
  203. mb = get_bits(&ctx->gb, 5);
  204. if((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  205. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  206. return -1;
  207. }
  208. for(i = 0; i < d; i++) {
  209. v = get_bits_long(&ctx->gb, mb);
  210. if(v & (1 << (mb - 1)))
  211. ctx->deltas[stream_id][i] = v - (1 << mb);
  212. else
  213. ctx->deltas[stream_id][i] = v;
  214. }
  215. for(; i < TM2_DELTAS; i++)
  216. ctx->deltas[stream_id][i] = 0;
  217. return 0;
  218. }
  219. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  220. {
  221. int i;
  222. int skip = 0;
  223. int len, toks, pos;
  224. TM2Codes codes;
  225. GetByteContext gb;
  226. if (buf_size < 4) {
  227. av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n");
  228. return AVERROR_INVALIDDATA;
  229. }
  230. /* get stream length in dwords */
  231. bytestream2_init(&gb, buf, buf_size);
  232. len = bytestream2_get_be32(&gb);
  233. skip = len * 4 + 4;
  234. if(len == 0)
  235. return 4;
  236. if (len >= INT_MAX/4-1 || len < 0 || skip > buf_size) {
  237. av_log(ctx->avctx, AV_LOG_ERROR, "invalid stream size\n");
  238. return AVERROR_INVALIDDATA;
  239. }
  240. toks = bytestream2_get_be32(&gb);
  241. if(toks & 1) {
  242. len = bytestream2_get_be32(&gb);
  243. if(len == TM2_ESCAPE) {
  244. len = bytestream2_get_be32(&gb);
  245. }
  246. if(len > 0) {
  247. pos = bytestream2_tell(&gb);
  248. if (skip <= pos)
  249. return AVERROR_INVALIDDATA;
  250. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  251. if(tm2_read_deltas(ctx, stream_id) == -1)
  252. return AVERROR_INVALIDDATA;
  253. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  254. }
  255. }
  256. /* skip unused fields */
  257. len = bytestream2_get_be32(&gb);
  258. if(len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  259. bytestream2_skip(&gb, 8); /* unused by decoder */
  260. } else {
  261. bytestream2_skip(&gb, 4); /* unused by decoder */
  262. }
  263. pos = bytestream2_tell(&gb);
  264. if (skip <= pos)
  265. return AVERROR_INVALIDDATA;
  266. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  267. if(tm2_build_huff_table(ctx, &codes) == -1)
  268. return AVERROR_INVALIDDATA;
  269. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  270. toks >>= 1;
  271. /* check if we have sane number of tokens */
  272. if((toks < 0) || (toks > 0xFFFFFF)){
  273. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  274. tm2_free_codes(&codes);
  275. return AVERROR_INVALIDDATA;
  276. }
  277. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  278. ctx->tok_lens[stream_id] = toks;
  279. len = bytestream2_get_be32(&gb);
  280. if(len > 0) {
  281. pos = bytestream2_tell(&gb);
  282. if (skip <= pos)
  283. return AVERROR_INVALIDDATA;
  284. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  285. for(i = 0; i < toks; i++) {
  286. if (get_bits_left(&ctx->gb) <= 0) {
  287. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  288. return AVERROR_INVALIDDATA;
  289. }
  290. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  291. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  292. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  293. ctx->tokens[stream_id][i], stream_id, i);
  294. return AVERROR_INVALIDDATA;
  295. }
  296. }
  297. } else {
  298. for(i = 0; i < toks; i++) {
  299. ctx->tokens[stream_id][i] = codes.recode[0];
  300. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  301. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  302. ctx->tokens[stream_id][i], stream_id, i);
  303. return AVERROR_INVALIDDATA;
  304. }
  305. }
  306. }
  307. tm2_free_codes(&codes);
  308. return skip;
  309. }
  310. static inline int GET_TOK(TM2Context *ctx,int type) {
  311. if(ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  312. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  313. return 0;
  314. }
  315. if(type <= TM2_MOT) {
  316. if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) {
  317. av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]);
  318. return 0;
  319. }
  320. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  321. }
  322. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  323. }
  324. /* blocks decoding routines */
  325. /* common Y, U, V pointers initialisation */
  326. #define TM2_INIT_POINTERS() \
  327. int *last, *clast; \
  328. int *Y, *U, *V;\
  329. int Ystride, Ustride, Vstride;\
  330. \
  331. Ystride = ctx->y_stride;\
  332. Vstride = ctx->uv_stride;\
  333. Ustride = ctx->uv_stride;\
  334. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  335. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  336. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  337. last = ctx->last + bx * 4;\
  338. clast = ctx->clast + bx * 4;
  339. #define TM2_INIT_POINTERS_2() \
  340. int *Yo, *Uo, *Vo;\
  341. int oYstride, oUstride, oVstride;\
  342. \
  343. TM2_INIT_POINTERS();\
  344. oYstride = Ystride;\
  345. oVstride = Vstride;\
  346. oUstride = Ustride;\
  347. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  348. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  349. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  350. /* recalculate last and delta values for next blocks */
  351. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  352. CD[0] = CHR[1] - last[1];\
  353. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  354. last[0] = (int)CHR[stride + 0];\
  355. last[1] = (int)CHR[stride + 1];}
  356. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  357. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  358. {
  359. int ct, d;
  360. int i, j;
  361. for(j = 0; j < 4; j++){
  362. ct = ctx->D[j];
  363. for(i = 0; i < 4; i++){
  364. d = deltas[i + j * 4];
  365. ct += d;
  366. last[i] += ct;
  367. Y[i] = av_clip_uint8(last[i]);
  368. }
  369. Y += stride;
  370. ctx->D[j] = ct;
  371. }
  372. }
  373. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  374. {
  375. int i, j;
  376. for(j = 0; j < 2; j++){
  377. for(i = 0; i < 2; i++){
  378. CD[j] += deltas[i + j * 2];
  379. last[i] += CD[j];
  380. data[i] = last[i];
  381. }
  382. data += stride;
  383. }
  384. }
  385. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  386. {
  387. int t;
  388. int l;
  389. int prev;
  390. if(bx > 0)
  391. prev = clast[-3];
  392. else
  393. prev = 0;
  394. t = (CD[0] + CD[1]) >> 1;
  395. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  396. CD[1] = CD[0] + CD[1] - t;
  397. CD[0] = t;
  398. clast[0] = l;
  399. tm2_high_chroma(data, stride, clast, CD, deltas);
  400. }
  401. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  402. {
  403. int i;
  404. int deltas[16];
  405. TM2_INIT_POINTERS();
  406. /* hi-res chroma */
  407. for(i = 0; i < 4; i++) {
  408. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  409. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  410. }
  411. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  412. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  413. /* hi-res luma */
  414. for(i = 0; i < 16; i++)
  415. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  416. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  417. }
  418. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  419. {
  420. int i;
  421. int deltas[16];
  422. TM2_INIT_POINTERS();
  423. /* low-res chroma */
  424. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  425. deltas[1] = deltas[2] = deltas[3] = 0;
  426. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  427. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  428. deltas[1] = deltas[2] = deltas[3] = 0;
  429. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  430. /* hi-res luma */
  431. for(i = 0; i < 16; i++)
  432. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  433. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  434. }
  435. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  436. {
  437. int i;
  438. int t1, t2;
  439. int deltas[16];
  440. TM2_INIT_POINTERS();
  441. /* low-res chroma */
  442. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  443. deltas[1] = deltas[2] = deltas[3] = 0;
  444. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  445. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  446. deltas[1] = deltas[2] = deltas[3] = 0;
  447. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  448. /* low-res luma */
  449. for(i = 0; i < 16; i++)
  450. deltas[i] = 0;
  451. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  452. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  453. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  454. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  455. if(bx > 0)
  456. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  457. else
  458. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  459. last[2] = (last[1] + last[3]) >> 1;
  460. t1 = ctx->D[0] + ctx->D[1];
  461. ctx->D[0] = t1 >> 1;
  462. ctx->D[1] = t1 - (t1 >> 1);
  463. t2 = ctx->D[2] + ctx->D[3];
  464. ctx->D[2] = t2 >> 1;
  465. ctx->D[3] = t2 - (t2 >> 1);
  466. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  467. }
  468. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  469. {
  470. int i;
  471. int ct;
  472. int left, right, diff;
  473. int deltas[16];
  474. TM2_INIT_POINTERS();
  475. /* null chroma */
  476. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  477. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  478. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  479. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  480. /* null luma */
  481. for(i = 0; i < 16; i++)
  482. deltas[i] = 0;
  483. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  484. if(bx > 0)
  485. left = last[-1] - ct;
  486. else
  487. left = 0;
  488. right = last[3];
  489. diff = right - left;
  490. last[0] = left + (diff >> 2);
  491. last[1] = left + (diff >> 1);
  492. last[2] = right - (diff >> 2);
  493. last[3] = right;
  494. {
  495. int tp = left;
  496. ctx->D[0] = (tp + (ct >> 2)) - left;
  497. left += ctx->D[0];
  498. ctx->D[1] = (tp + (ct >> 1)) - left;
  499. left += ctx->D[1];
  500. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  501. left += ctx->D[2];
  502. ctx->D[3] = (tp + ct) - left;
  503. }
  504. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  505. }
  506. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  507. {
  508. int i, j;
  509. TM2_INIT_POINTERS_2();
  510. /* update chroma */
  511. for(j = 0; j < 2; j++){
  512. for(i = 0; i < 2; i++){
  513. U[i] = Uo[i];
  514. V[i] = Vo[i];
  515. }
  516. U += Ustride; V += Vstride;
  517. Uo += oUstride; Vo += oVstride;
  518. }
  519. U -= Ustride * 2;
  520. V -= Vstride * 2;
  521. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  522. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  523. /* update deltas */
  524. ctx->D[0] = Yo[3] - last[3];
  525. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  526. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  527. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  528. for(j = 0; j < 4; j++){
  529. for(i = 0; i < 4; i++){
  530. Y[i] = Yo[i];
  531. last[i] = Yo[i];
  532. }
  533. Y += Ystride;
  534. Yo += oYstride;
  535. }
  536. }
  537. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  538. {
  539. int i, j;
  540. int d;
  541. TM2_INIT_POINTERS_2();
  542. /* update chroma */
  543. for(j = 0; j < 2; j++){
  544. for(i = 0; i < 2; i++){
  545. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  546. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  547. }
  548. U += Ustride; V += Vstride;
  549. Uo += oUstride; Vo += oVstride;
  550. }
  551. U -= Ustride * 2;
  552. V -= Vstride * 2;
  553. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  554. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  555. /* update deltas */
  556. ctx->D[0] = Yo[3] - last[3];
  557. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  558. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  559. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  560. for(j = 0; j < 4; j++){
  561. d = last[3];
  562. for(i = 0; i < 4; i++){
  563. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  564. last[i] = Y[i];
  565. }
  566. ctx->D[j] = last[3] - d;
  567. Y += Ystride;
  568. Yo += oYstride;
  569. }
  570. }
  571. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  572. {
  573. int i, j;
  574. int mx, my;
  575. TM2_INIT_POINTERS_2();
  576. mx = GET_TOK(ctx, TM2_MOT);
  577. my = GET_TOK(ctx, TM2_MOT);
  578. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  579. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  580. if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) {
  581. av_log(0,0, "MV out of picture\n");
  582. return;
  583. }
  584. Yo += my * oYstride + mx;
  585. Uo += (my >> 1) * oUstride + (mx >> 1);
  586. Vo += (my >> 1) * oVstride + (mx >> 1);
  587. /* copy chroma */
  588. for(j = 0; j < 2; j++){
  589. for(i = 0; i < 2; i++){
  590. U[i] = Uo[i];
  591. V[i] = Vo[i];
  592. }
  593. U += Ustride; V += Vstride;
  594. Uo += oUstride; Vo += oVstride;
  595. }
  596. U -= Ustride * 2;
  597. V -= Vstride * 2;
  598. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  599. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  600. /* copy luma */
  601. for(j = 0; j < 4; j++){
  602. for(i = 0; i < 4; i++){
  603. Y[i] = Yo[i];
  604. }
  605. Y += Ystride;
  606. Yo += oYstride;
  607. }
  608. /* calculate deltas */
  609. Y -= Ystride * 4;
  610. ctx->D[0] = Y[3] - last[3];
  611. ctx->D[1] = Y[3 + Ystride] - Y[3];
  612. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  613. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  614. for(i = 0; i < 4; i++)
  615. last[i] = Y[i + Ystride * 3];
  616. }
  617. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  618. {
  619. int i, j;
  620. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  621. int type;
  622. int keyframe = 1;
  623. int *Y, *U, *V;
  624. uint8_t *dst;
  625. for(i = 0; i < TM2_NUM_STREAMS; i++)
  626. ctx->tok_ptrs[i] = 0;
  627. if (ctx->tok_lens[TM2_TYPE]<bw*bh){
  628. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  629. return -1;
  630. }
  631. memset(ctx->last, 0, 4 * bw * sizeof(int));
  632. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  633. for(j = 0; j < bh; j++) {
  634. memset(ctx->D, 0, 4 * sizeof(int));
  635. memset(ctx->CD, 0, 4 * sizeof(int));
  636. for(i = 0; i < bw; i++) {
  637. type = GET_TOK(ctx, TM2_TYPE);
  638. switch(type) {
  639. case TM2_HI_RES:
  640. tm2_hi_res_block(ctx, p, i, j);
  641. break;
  642. case TM2_MED_RES:
  643. tm2_med_res_block(ctx, p, i, j);
  644. break;
  645. case TM2_LOW_RES:
  646. tm2_low_res_block(ctx, p, i, j);
  647. break;
  648. case TM2_NULL_RES:
  649. tm2_null_res_block(ctx, p, i, j);
  650. break;
  651. case TM2_UPDATE:
  652. tm2_update_block(ctx, p, i, j);
  653. keyframe = 0;
  654. break;
  655. case TM2_STILL:
  656. tm2_still_block(ctx, p, i, j);
  657. keyframe = 0;
  658. break;
  659. case TM2_MOTION:
  660. tm2_motion_block(ctx, p, i, j);
  661. keyframe = 0;
  662. break;
  663. default:
  664. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  665. }
  666. }
  667. }
  668. /* copy data from our buffer to AVFrame */
  669. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  670. U = (ctx->cur?ctx->U2:ctx->U1);
  671. V = (ctx->cur?ctx->V2:ctx->V1);
  672. dst = p->data[0];
  673. for(j = 0; j < h; j++){
  674. for(i = 0; i < w; i++){
  675. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  676. dst[3*i+0] = av_clip_uint8(y + v);
  677. dst[3*i+1] = av_clip_uint8(y);
  678. dst[3*i+2] = av_clip_uint8(y + u);
  679. }
  680. /* horizontal edge extension */
  681. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  682. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  683. /* vertical edge extension */
  684. if (j == 0) {
  685. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  686. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  687. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  688. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  689. } else if (j == h - 1) {
  690. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  691. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  692. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  693. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  694. }
  695. Y += ctx->y_stride;
  696. if (j & 1) {
  697. /* horizontal edge extension */
  698. U[-2] = U[-1] = U[0];
  699. V[-2] = V[-1] = V[0];
  700. U[cw + 1] = U[cw] = U[cw - 1];
  701. V[cw + 1] = V[cw] = V[cw - 1];
  702. /* vertical edge extension */
  703. if (j == 1) {
  704. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  705. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  706. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  707. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  708. } else if (j == h - 1) {
  709. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  710. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  711. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  712. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  713. }
  714. U += ctx->uv_stride;
  715. V += ctx->uv_stride;
  716. }
  717. dst += p->linesize[0];
  718. }
  719. return keyframe;
  720. }
  721. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  722. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  723. };
  724. static int decode_frame(AVCodecContext *avctx,
  725. void *data, int *data_size,
  726. AVPacket *avpkt)
  727. {
  728. const uint8_t *buf = avpkt->data;
  729. int buf_size = avpkt->size & ~3;
  730. TM2Context * const l = avctx->priv_data;
  731. AVFrame * const p = &l->pic;
  732. int i, ret, skip, t;
  733. av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
  734. if(!l->buffer){
  735. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  736. return AVERROR(ENOMEM);
  737. }
  738. p->reference = 3;
  739. p->buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
  740. if((ret = avctx->reget_buffer(avctx, p)) < 0){
  741. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  742. return ret;
  743. }
  744. l->dsp.bswap_buf((uint32_t*)l->buffer, (const uint32_t*)buf, buf_size >> 2);
  745. skip = tm2_read_header(l, l->buffer);
  746. if(skip == -1){
  747. return AVERROR_INVALIDDATA;
  748. }
  749. for(i = 0; i < TM2_NUM_STREAMS; i++){
  750. if (skip >= buf_size) {
  751. av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n");
  752. return AVERROR_INVALIDDATA;
  753. }
  754. t = tm2_read_stream(l, l->buffer + skip, tm2_stream_order[i], buf_size - skip);
  755. if(t < 0){
  756. return t;
  757. }
  758. skip += t;
  759. }
  760. p->key_frame = tm2_decode_blocks(l, p);
  761. if(p->key_frame)
  762. p->pict_type = AV_PICTURE_TYPE_I;
  763. else
  764. p->pict_type = AV_PICTURE_TYPE_P;
  765. l->cur = !l->cur;
  766. *data_size = sizeof(AVFrame);
  767. *(AVFrame*)data = l->pic;
  768. return buf_size;
  769. }
  770. static av_cold int decode_init(AVCodecContext *avctx){
  771. TM2Context * const l = avctx->priv_data;
  772. int i, w = avctx->width, h = avctx->height;
  773. if((avctx->width & 3) || (avctx->height & 3)){
  774. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  775. return AVERROR_INVALIDDATA;
  776. }
  777. l->avctx = avctx;
  778. l->pic.data[0]=NULL;
  779. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  780. avcodec_get_frame_defaults(&l->pic);
  781. ff_dsputil_init(&l->dsp, avctx);
  782. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  783. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  784. for(i = 0; i < TM2_NUM_STREAMS; i++) {
  785. l->tokens[i] = NULL;
  786. l->tok_lens[i] = 0;
  787. }
  788. w += 8;
  789. h += 8;
  790. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  791. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  792. l->y_stride = w;
  793. w = (w + 1) >> 1;
  794. h = (h + 1) >> 1;
  795. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  796. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  797. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  798. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  799. l->uv_stride = w;
  800. l->cur = 0;
  801. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  802. !l->V1_base || !l->U2_base || !l->V2_base ||
  803. !l->last || !l->clast) {
  804. av_freep(l->Y1_base);
  805. av_freep(l->Y2_base);
  806. av_freep(l->U1_base);
  807. av_freep(l->U2_base);
  808. av_freep(l->V1_base);
  809. av_freep(l->V2_base);
  810. av_freep(l->last);
  811. av_freep(l->clast);
  812. return AVERROR(ENOMEM);
  813. }
  814. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  815. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  816. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  817. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  818. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  819. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  820. return 0;
  821. }
  822. static av_cold int decode_end(AVCodecContext *avctx){
  823. TM2Context * const l = avctx->priv_data;
  824. AVFrame *pic = &l->pic;
  825. int i;
  826. av_free(l->last);
  827. av_free(l->clast);
  828. for(i = 0; i < TM2_NUM_STREAMS; i++)
  829. av_free(l->tokens[i]);
  830. if(l->Y1){
  831. av_free(l->Y1_base);
  832. av_free(l->U1_base);
  833. av_free(l->V1_base);
  834. av_free(l->Y2_base);
  835. av_free(l->U2_base);
  836. av_free(l->V2_base);
  837. }
  838. av_freep(&l->buffer);
  839. l->buffer_size = 0;
  840. if (pic->data[0])
  841. avctx->release_buffer(avctx, pic);
  842. return 0;
  843. }
  844. AVCodec ff_truemotion2_decoder = {
  845. .name = "truemotion2",
  846. .type = AVMEDIA_TYPE_VIDEO,
  847. .id = AV_CODEC_ID_TRUEMOTION2,
  848. .priv_data_size = sizeof(TM2Context),
  849. .init = decode_init,
  850. .close = decode_end,
  851. .decode = decode_frame,
  852. .capabilities = CODEC_CAP_DR1,
  853. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  854. };