You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1275 lines
47KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/common.h"
  26. #include "libavutil/lfg.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "lsp.h"
  30. #include "celp_filters.h"
  31. #include "celp_math.h"
  32. #include "acelp_filters.h"
  33. #include "acelp_vectors.h"
  34. #include "acelp_pitch_delay.h"
  35. #define AMR_USE_16BIT_TABLES
  36. #include "amr.h"
  37. #include "amrwbdata.h"
  38. #include "mips/amrwbdec_mips.h"
  39. typedef struct {
  40. AVFrame avframe; ///< AVFrame for decoded samples
  41. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  42. enum Mode fr_cur_mode; ///< mode index of current frame
  43. uint8_t fr_quality; ///< frame quality index (FQI)
  44. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  45. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  46. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  47. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  48. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  49. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  50. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  51. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  52. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  53. float *excitation; ///< points to current excitation in excitation_buf[]
  54. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  55. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  56. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  57. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  58. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  59. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  60. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  61. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  62. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  63. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  64. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  65. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  66. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  67. float demph_mem[1]; ///< previous value in the de-emphasis filter
  68. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  69. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  70. AVLFG prng; ///< random number generator for white noise excitation
  71. uint8_t first_frame; ///< flag active during decoding of the first frame
  72. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  73. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  74. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  75. CELPMContext celpm_ctx; ///< context for fixed point math operations
  76. } AMRWBContext;
  77. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  78. {
  79. AMRWBContext *ctx = avctx->priv_data;
  80. int i;
  81. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  82. av_lfg_init(&ctx->prng, 1);
  83. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  84. ctx->first_frame = 1;
  85. for (i = 0; i < LP_ORDER; i++)
  86. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  87. for (i = 0; i < 4; i++)
  88. ctx->prediction_error[i] = MIN_ENERGY;
  89. avcodec_get_frame_defaults(&ctx->avframe);
  90. avctx->coded_frame = &ctx->avframe;
  91. ff_acelp_filter_init(&ctx->acelpf_ctx);
  92. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  93. ff_celp_filter_init(&ctx->celpf_ctx);
  94. ff_celp_math_init(&ctx->celpm_ctx);
  95. return 0;
  96. }
  97. /**
  98. * Decode the frame header in the "MIME/storage" format. This format
  99. * is simpler and does not carry the auxiliary frame information.
  100. *
  101. * @param[in] ctx The Context
  102. * @param[in] buf Pointer to the input buffer
  103. *
  104. * @return The decoded header length in bytes
  105. */
  106. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  107. {
  108. /* Decode frame header (1st octet) */
  109. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  110. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  111. return 1;
  112. }
  113. /**
  114. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  115. *
  116. * @param[in] ind Array of 5 indexes
  117. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  118. *
  119. */
  120. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  121. {
  122. int i;
  123. for (i = 0; i < 9; i++)
  124. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  125. for (i = 0; i < 7; i++)
  126. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  127. for (i = 0; i < 5; i++)
  128. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  129. for (i = 0; i < 4; i++)
  130. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  131. for (i = 0; i < 7; i++)
  132. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  133. }
  134. /**
  135. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  136. *
  137. * @param[in] ind Array of 7 indexes
  138. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  139. *
  140. */
  141. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  142. {
  143. int i;
  144. for (i = 0; i < 9; i++)
  145. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 7; i++)
  147. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 3; i++)
  151. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  152. for (i = 0; i < 3; i++)
  153. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  154. for (i = 0; i < 3; i++)
  155. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  156. for (i = 0; i < 4; i++)
  157. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  158. }
  159. /**
  160. * Apply mean and past ISF values using the prediction factor.
  161. * Updates past ISF vector.
  162. *
  163. * @param[in,out] isf_q Current quantized ISF
  164. * @param[in,out] isf_past Past quantized ISF
  165. *
  166. */
  167. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  168. {
  169. int i;
  170. float tmp;
  171. for (i = 0; i < LP_ORDER; i++) {
  172. tmp = isf_q[i];
  173. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  174. isf_q[i] += PRED_FACTOR * isf_past[i];
  175. isf_past[i] = tmp;
  176. }
  177. }
  178. /**
  179. * Interpolate the fourth ISP vector from current and past frames
  180. * to obtain an ISP vector for each subframe.
  181. *
  182. * @param[in,out] isp_q ISPs for each subframe
  183. * @param[in] isp4_past Past ISP for subframe 4
  184. */
  185. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  186. {
  187. int i, k;
  188. for (k = 0; k < 3; k++) {
  189. float c = isfp_inter[k];
  190. for (i = 0; i < LP_ORDER; i++)
  191. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  192. }
  193. }
  194. /**
  195. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  196. * Calculate integer lag and fractional lag always using 1/4 resolution.
  197. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  198. *
  199. * @param[out] lag_int Decoded integer pitch lag
  200. * @param[out] lag_frac Decoded fractional pitch lag
  201. * @param[in] pitch_index Adaptive codebook pitch index
  202. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  203. * @param[in] subframe Current subframe index (0 to 3)
  204. */
  205. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  206. uint8_t *base_lag_int, int subframe)
  207. {
  208. if (subframe == 0 || subframe == 2) {
  209. if (pitch_index < 376) {
  210. *lag_int = (pitch_index + 137) >> 2;
  211. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  212. } else if (pitch_index < 440) {
  213. *lag_int = (pitch_index + 257 - 376) >> 1;
  214. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  215. /* the actual resolution is 1/2 but expressed as 1/4 */
  216. } else {
  217. *lag_int = pitch_index - 280;
  218. *lag_frac = 0;
  219. }
  220. /* minimum lag for next subframe */
  221. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  222. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  223. // XXX: the spec states clearly that *base_lag_int should be
  224. // the nearest integer to *lag_int (minus 8), but the ref code
  225. // actually always uses its floor, I'm following the latter
  226. } else {
  227. *lag_int = (pitch_index + 1) >> 2;
  228. *lag_frac = pitch_index - (*lag_int << 2);
  229. *lag_int += *base_lag_int;
  230. }
  231. }
  232. /**
  233. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  234. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  235. * relative index is used for all subframes except the first.
  236. */
  237. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  238. uint8_t *base_lag_int, int subframe, enum Mode mode)
  239. {
  240. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  241. if (pitch_index < 116) {
  242. *lag_int = (pitch_index + 69) >> 1;
  243. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  244. } else {
  245. *lag_int = pitch_index - 24;
  246. *lag_frac = 0;
  247. }
  248. // XXX: same problem as before
  249. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  250. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  251. } else {
  252. *lag_int = (pitch_index + 1) >> 1;
  253. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  254. *lag_int += *base_lag_int;
  255. }
  256. }
  257. /**
  258. * Find the pitch vector by interpolating the past excitation at the
  259. * pitch delay, which is obtained in this function.
  260. *
  261. * @param[in,out] ctx The context
  262. * @param[in] amr_subframe Current subframe data
  263. * @param[in] subframe Current subframe index (0 to 3)
  264. */
  265. static void decode_pitch_vector(AMRWBContext *ctx,
  266. const AMRWBSubFrame *amr_subframe,
  267. const int subframe)
  268. {
  269. int pitch_lag_int, pitch_lag_frac;
  270. int i;
  271. float *exc = ctx->excitation;
  272. enum Mode mode = ctx->fr_cur_mode;
  273. if (mode <= MODE_8k85) {
  274. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  275. &ctx->base_pitch_lag, subframe, mode);
  276. } else
  277. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  278. &ctx->base_pitch_lag, subframe);
  279. ctx->pitch_lag_int = pitch_lag_int;
  280. pitch_lag_int += pitch_lag_frac > 0;
  281. /* Calculate the pitch vector by interpolating the past excitation at the
  282. pitch lag using a hamming windowed sinc function */
  283. ctx->acelpf_ctx.acelp_interpolatef(exc,
  284. exc + 1 - pitch_lag_int,
  285. ac_inter, 4,
  286. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  287. LP_ORDER, AMRWB_SFR_SIZE + 1);
  288. /* Check which pitch signal path should be used
  289. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  290. if (amr_subframe->ltp) {
  291. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  292. } else {
  293. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  294. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  295. 0.18 * exc[i + 1];
  296. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  297. }
  298. }
  299. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  300. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  301. /** Get the bit at specified position */
  302. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  303. /**
  304. * The next six functions decode_[i]p_track decode exactly i pulses
  305. * positions and amplitudes (-1 or 1) in a subframe track using
  306. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  307. *
  308. * The results are given in out[], in which a negative number means
  309. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  310. *
  311. * @param[out] out Output buffer (writes i elements)
  312. * @param[in] code Pulse index (no. of bits varies, see below)
  313. * @param[in] m (log2) Number of potential positions
  314. * @param[in] off Offset for decoded positions
  315. */
  316. static inline void decode_1p_track(int *out, int code, int m, int off)
  317. {
  318. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  319. out[0] = BIT_POS(code, m) ? -pos : pos;
  320. }
  321. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  322. {
  323. int pos0 = BIT_STR(code, m, m) + off;
  324. int pos1 = BIT_STR(code, 0, m) + off;
  325. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  326. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  327. out[1] = pos0 > pos1 ? -out[1] : out[1];
  328. }
  329. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  330. {
  331. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  332. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  333. m - 1, off + half_2p);
  334. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  335. }
  336. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  337. {
  338. int half_4p, subhalf_2p;
  339. int b_offset = 1 << (m - 1);
  340. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  341. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  342. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  343. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  344. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  345. m - 2, off + half_4p + subhalf_2p);
  346. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  347. m - 1, off + half_4p);
  348. break;
  349. case 1: /* 1 pulse in A, 3 pulses in B */
  350. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  351. m - 1, off);
  352. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  353. m - 1, off + b_offset);
  354. break;
  355. case 2: /* 2 pulses in each half */
  356. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  357. m - 1, off);
  358. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  359. m - 1, off + b_offset);
  360. break;
  361. case 3: /* 3 pulses in A, 1 pulse in B */
  362. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  363. m - 1, off);
  364. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  365. m - 1, off + b_offset);
  366. break;
  367. }
  368. }
  369. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  370. {
  371. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  372. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  373. m - 1, off + half_3p);
  374. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  375. }
  376. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  377. {
  378. int b_offset = 1 << (m - 1);
  379. /* which half has more pulses in cases 0 to 2 */
  380. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  381. int half_other = b_offset - half_more;
  382. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  383. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  384. decode_1p_track(out, BIT_STR(code, 0, m),
  385. m - 1, off + half_more);
  386. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  387. m - 1, off + half_more);
  388. break;
  389. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  390. decode_1p_track(out, BIT_STR(code, 0, m),
  391. m - 1, off + half_other);
  392. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  393. m - 1, off + half_more);
  394. break;
  395. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  396. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  397. m - 1, off + half_other);
  398. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  399. m - 1, off + half_more);
  400. break;
  401. case 3: /* 3 pulses in A, 3 pulses in B */
  402. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  403. m - 1, off);
  404. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  405. m - 1, off + b_offset);
  406. break;
  407. }
  408. }
  409. /**
  410. * Decode the algebraic codebook index to pulse positions and signs,
  411. * then construct the algebraic codebook vector.
  412. *
  413. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  414. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  415. * @param[in] pulse_lo LSBs part of the pulse index array
  416. * @param[in] mode Mode of the current frame
  417. */
  418. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  419. const uint16_t *pulse_lo, const enum Mode mode)
  420. {
  421. /* sig_pos stores for each track the decoded pulse position indexes
  422. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  423. int sig_pos[4][6];
  424. int spacing = (mode == MODE_6k60) ? 2 : 4;
  425. int i, j;
  426. switch (mode) {
  427. case MODE_6k60:
  428. for (i = 0; i < 2; i++)
  429. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  430. break;
  431. case MODE_8k85:
  432. for (i = 0; i < 4; i++)
  433. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  434. break;
  435. case MODE_12k65:
  436. for (i = 0; i < 4; i++)
  437. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  438. break;
  439. case MODE_14k25:
  440. for (i = 0; i < 2; i++)
  441. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  442. for (i = 2; i < 4; i++)
  443. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  444. break;
  445. case MODE_15k85:
  446. for (i = 0; i < 4; i++)
  447. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  448. break;
  449. case MODE_18k25:
  450. for (i = 0; i < 4; i++)
  451. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  452. ((int) pulse_hi[i] << 14), 4, 1);
  453. break;
  454. case MODE_19k85:
  455. for (i = 0; i < 2; i++)
  456. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  457. ((int) pulse_hi[i] << 10), 4, 1);
  458. for (i = 2; i < 4; i++)
  459. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  460. ((int) pulse_hi[i] << 14), 4, 1);
  461. break;
  462. case MODE_23k05:
  463. case MODE_23k85:
  464. for (i = 0; i < 4; i++)
  465. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  466. ((int) pulse_hi[i] << 11), 4, 1);
  467. break;
  468. }
  469. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  470. for (i = 0; i < 4; i++)
  471. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  472. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  473. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  474. }
  475. }
  476. /**
  477. * Decode pitch gain and fixed gain correction factor.
  478. *
  479. * @param[in] vq_gain Vector-quantized index for gains
  480. * @param[in] mode Mode of the current frame
  481. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  482. * @param[out] pitch_gain Decoded pitch gain
  483. */
  484. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  485. float *fixed_gain_factor, float *pitch_gain)
  486. {
  487. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  488. qua_gain_7b[vq_gain]);
  489. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  490. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  491. }
  492. /**
  493. * Apply pitch sharpening filters to the fixed codebook vector.
  494. *
  495. * @param[in] ctx The context
  496. * @param[in,out] fixed_vector Fixed codebook excitation
  497. */
  498. // XXX: Spec states this procedure should be applied when the pitch
  499. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  500. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  501. {
  502. int i;
  503. /* Tilt part */
  504. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  505. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  506. /* Periodicity enhancement part */
  507. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  508. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  509. }
  510. /**
  511. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  512. *
  513. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  514. * @param[in] p_gain, f_gain Pitch and fixed gains
  515. * @param[in] ctx The context
  516. */
  517. // XXX: There is something wrong with the precision here! The magnitudes
  518. // of the energies are not correct. Please check the reference code carefully
  519. static float voice_factor(float *p_vector, float p_gain,
  520. float *f_vector, float f_gain,
  521. CELPMContext *ctx)
  522. {
  523. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  524. AMRWB_SFR_SIZE) *
  525. p_gain * p_gain;
  526. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  527. AMRWB_SFR_SIZE) *
  528. f_gain * f_gain;
  529. return (p_ener - f_ener) / (p_ener + f_ener);
  530. }
  531. /**
  532. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  533. * also known as "adaptive phase dispersion".
  534. *
  535. * @param[in] ctx The context
  536. * @param[in,out] fixed_vector Unfiltered fixed vector
  537. * @param[out] buf Space for modified vector if necessary
  538. *
  539. * @return The potentially overwritten filtered fixed vector address
  540. */
  541. static float *anti_sparseness(AMRWBContext *ctx,
  542. float *fixed_vector, float *buf)
  543. {
  544. int ir_filter_nr;
  545. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  546. return fixed_vector;
  547. if (ctx->pitch_gain[0] < 0.6) {
  548. ir_filter_nr = 0; // strong filtering
  549. } else if (ctx->pitch_gain[0] < 0.9) {
  550. ir_filter_nr = 1; // medium filtering
  551. } else
  552. ir_filter_nr = 2; // no filtering
  553. /* detect 'onset' */
  554. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  555. if (ir_filter_nr < 2)
  556. ir_filter_nr++;
  557. } else {
  558. int i, count = 0;
  559. for (i = 0; i < 6; i++)
  560. if (ctx->pitch_gain[i] < 0.6)
  561. count++;
  562. if (count > 2)
  563. ir_filter_nr = 0;
  564. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  565. ir_filter_nr--;
  566. }
  567. /* update ir filter strength history */
  568. ctx->prev_ir_filter_nr = ir_filter_nr;
  569. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  570. if (ir_filter_nr < 2) {
  571. int i;
  572. const float *coef = ir_filters_lookup[ir_filter_nr];
  573. /* Circular convolution code in the reference
  574. * decoder was modified to avoid using one
  575. * extra array. The filtered vector is given by:
  576. *
  577. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  578. */
  579. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  580. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  581. if (fixed_vector[i])
  582. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  583. AMRWB_SFR_SIZE);
  584. fixed_vector = buf;
  585. }
  586. return fixed_vector;
  587. }
  588. /**
  589. * Calculate a stability factor {teta} based on distance between
  590. * current and past isf. A value of 1 shows maximum signal stability.
  591. */
  592. static float stability_factor(const float *isf, const float *isf_past)
  593. {
  594. int i;
  595. float acc = 0.0;
  596. for (i = 0; i < LP_ORDER - 1; i++)
  597. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  598. // XXX: This part is not so clear from the reference code
  599. // the result is more accurate changing the "/ 256" to "* 512"
  600. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  601. }
  602. /**
  603. * Apply a non-linear fixed gain smoothing in order to reduce
  604. * fluctuation in the energy of excitation.
  605. *
  606. * @param[in] fixed_gain Unsmoothed fixed gain
  607. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  608. * @param[in] voice_fac Frame voicing factor
  609. * @param[in] stab_fac Frame stability factor
  610. *
  611. * @return The smoothed gain
  612. */
  613. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  614. float voice_fac, float stab_fac)
  615. {
  616. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  617. float g0;
  618. // XXX: the following fixed-point constants used to in(de)crement
  619. // gain by 1.5dB were taken from the reference code, maybe it could
  620. // be simpler
  621. if (fixed_gain < *prev_tr_gain) {
  622. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  623. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  624. } else
  625. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  626. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  627. *prev_tr_gain = g0; // update next frame threshold
  628. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  629. }
  630. /**
  631. * Filter the fixed_vector to emphasize the higher frequencies.
  632. *
  633. * @param[in,out] fixed_vector Fixed codebook vector
  634. * @param[in] voice_fac Frame voicing factor
  635. */
  636. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  637. {
  638. int i;
  639. float cpe = 0.125 * (1 + voice_fac);
  640. float last = fixed_vector[0]; // holds c(i - 1)
  641. fixed_vector[0] -= cpe * fixed_vector[1];
  642. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  643. float cur = fixed_vector[i];
  644. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  645. last = cur;
  646. }
  647. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  648. }
  649. /**
  650. * Conduct 16th order linear predictive coding synthesis from excitation.
  651. *
  652. * @param[in] ctx Pointer to the AMRWBContext
  653. * @param[in] lpc Pointer to the LPC coefficients
  654. * @param[out] excitation Buffer for synthesis final excitation
  655. * @param[in] fixed_gain Fixed codebook gain for synthesis
  656. * @param[in] fixed_vector Algebraic codebook vector
  657. * @param[in,out] samples Pointer to the output samples and memory
  658. */
  659. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  660. float fixed_gain, const float *fixed_vector,
  661. float *samples)
  662. {
  663. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  664. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  665. /* emphasize pitch vector contribution in low bitrate modes */
  666. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  667. int i;
  668. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  669. AMRWB_SFR_SIZE);
  670. // XXX: Weird part in both ref code and spec. A unknown parameter
  671. // {beta} seems to be identical to the current pitch gain
  672. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  673. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  674. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  675. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  676. energy, AMRWB_SFR_SIZE);
  677. }
  678. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  679. AMRWB_SFR_SIZE, LP_ORDER);
  680. }
  681. /**
  682. * Apply to synthesis a de-emphasis filter of the form:
  683. * H(z) = 1 / (1 - m * z^-1)
  684. *
  685. * @param[out] out Output buffer
  686. * @param[in] in Input samples array with in[-1]
  687. * @param[in] m Filter coefficient
  688. * @param[in,out] mem State from last filtering
  689. */
  690. static void de_emphasis(float *out, float *in, float m, float mem[1])
  691. {
  692. int i;
  693. out[0] = in[0] + m * mem[0];
  694. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  695. out[i] = in[i] + out[i - 1] * m;
  696. mem[0] = out[AMRWB_SFR_SIZE - 1];
  697. }
  698. /**
  699. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  700. * a FIR interpolation filter. Uses past data from before *in address.
  701. *
  702. * @param[out] out Buffer for interpolated signal
  703. * @param[in] in Current signal data (length 0.8*o_size)
  704. * @param[in] o_size Output signal length
  705. * @param[in] ctx The context
  706. */
  707. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  708. {
  709. const float *in0 = in - UPS_FIR_SIZE + 1;
  710. int i, j, k;
  711. int int_part = 0, frac_part;
  712. i = 0;
  713. for (j = 0; j < o_size / 5; j++) {
  714. out[i] = in[int_part];
  715. frac_part = 4;
  716. i++;
  717. for (k = 1; k < 5; k++) {
  718. out[i] = ctx->dot_productf(in0 + int_part,
  719. upsample_fir[4 - frac_part],
  720. UPS_MEM_SIZE);
  721. int_part++;
  722. frac_part--;
  723. i++;
  724. }
  725. }
  726. }
  727. /**
  728. * Calculate the high-band gain based on encoded index (23k85 mode) or
  729. * on the low-band speech signal and the Voice Activity Detection flag.
  730. *
  731. * @param[in] ctx The context
  732. * @param[in] synth LB speech synthesis at 12.8k
  733. * @param[in] hb_idx Gain index for mode 23k85 only
  734. * @param[in] vad VAD flag for the frame
  735. */
  736. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  737. uint16_t hb_idx, uint8_t vad)
  738. {
  739. int wsp = (vad > 0);
  740. float tilt;
  741. if (ctx->fr_cur_mode == MODE_23k85)
  742. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  743. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  744. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  745. /* return gain bounded by [0.1, 1.0] */
  746. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  747. }
  748. /**
  749. * Generate the high-band excitation with the same energy from the lower
  750. * one and scaled by the given gain.
  751. *
  752. * @param[in] ctx The context
  753. * @param[out] hb_exc Buffer for the excitation
  754. * @param[in] synth_exc Low-band excitation used for synthesis
  755. * @param[in] hb_gain Wanted excitation gain
  756. */
  757. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  758. const float *synth_exc, float hb_gain)
  759. {
  760. int i;
  761. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  762. /* Generate a white-noise excitation */
  763. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  764. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  765. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  766. energy * hb_gain * hb_gain,
  767. AMRWB_SFR_SIZE_16k);
  768. }
  769. /**
  770. * Calculate the auto-correlation for the ISF difference vector.
  771. */
  772. static float auto_correlation(float *diff_isf, float mean, int lag)
  773. {
  774. int i;
  775. float sum = 0.0;
  776. for (i = 7; i < LP_ORDER - 2; i++) {
  777. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  778. sum += prod * prod;
  779. }
  780. return sum;
  781. }
  782. /**
  783. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  784. * used at mode 6k60 LP filter for the high frequency band.
  785. *
  786. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  787. * values on input
  788. */
  789. static void extrapolate_isf(float isf[LP_ORDER_16k])
  790. {
  791. float diff_isf[LP_ORDER - 2], diff_mean;
  792. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  793. float corr_lag[3];
  794. float est, scale;
  795. int i, i_max_corr;
  796. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  797. /* Calculate the difference vector */
  798. for (i = 0; i < LP_ORDER - 2; i++)
  799. diff_isf[i] = isf[i + 1] - isf[i];
  800. diff_mean = 0.0;
  801. for (i = 2; i < LP_ORDER - 2; i++)
  802. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  803. /* Find which is the maximum autocorrelation */
  804. i_max_corr = 0;
  805. for (i = 0; i < 3; i++) {
  806. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  807. if (corr_lag[i] > corr_lag[i_max_corr])
  808. i_max_corr = i;
  809. }
  810. i_max_corr++;
  811. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  812. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  813. - isf[i - 2 - i_max_corr];
  814. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  815. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  816. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  817. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  818. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  819. diff_hi[i] = scale * (isf[i] - isf[i - 1]);
  820. /* Stability insurance */
  821. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  822. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  823. if (diff_hi[i] > diff_hi[i - 1]) {
  824. diff_hi[i - 1] = 5.0 - diff_hi[i];
  825. } else
  826. diff_hi[i] = 5.0 - diff_hi[i - 1];
  827. }
  828. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  829. isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  830. /* Scale the ISF vector for 16000 Hz */
  831. for (i = 0; i < LP_ORDER_16k - 1; i++)
  832. isf[i] *= 0.8;
  833. }
  834. /**
  835. * Spectral expand the LP coefficients using the equation:
  836. * y[i] = x[i] * (gamma ** i)
  837. *
  838. * @param[out] out Output buffer (may use input array)
  839. * @param[in] lpc LP coefficients array
  840. * @param[in] gamma Weighting factor
  841. * @param[in] size LP array size
  842. */
  843. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  844. {
  845. int i;
  846. float fac = gamma;
  847. for (i = 0; i < size; i++) {
  848. out[i] = lpc[i] * fac;
  849. fac *= gamma;
  850. }
  851. }
  852. /**
  853. * Conduct 20th order linear predictive coding synthesis for the high
  854. * frequency band excitation at 16kHz.
  855. *
  856. * @param[in] ctx The context
  857. * @param[in] subframe Current subframe index (0 to 3)
  858. * @param[in,out] samples Pointer to the output speech samples
  859. * @param[in] exc Generated white-noise scaled excitation
  860. * @param[in] isf Current frame isf vector
  861. * @param[in] isf_past Past frame final isf vector
  862. */
  863. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  864. const float *exc, const float *isf, const float *isf_past)
  865. {
  866. float hb_lpc[LP_ORDER_16k];
  867. enum Mode mode = ctx->fr_cur_mode;
  868. if (mode == MODE_6k60) {
  869. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  870. double e_isp[LP_ORDER_16k];
  871. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  872. 1.0 - isfp_inter[subframe], LP_ORDER);
  873. extrapolate_isf(e_isf);
  874. e_isf[LP_ORDER_16k - 1] *= 2.0;
  875. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  876. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  877. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  878. } else {
  879. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  880. }
  881. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  882. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  883. }
  884. /**
  885. * Apply a 15th order filter to high-band samples.
  886. * The filter characteristic depends on the given coefficients.
  887. *
  888. * @param[out] out Buffer for filtered output
  889. * @param[in] fir_coef Filter coefficients
  890. * @param[in,out] mem State from last filtering (updated)
  891. * @param[in] in Input speech data (high-band)
  892. *
  893. * @remark It is safe to pass the same array in in and out parameters
  894. */
  895. #ifndef hb_fir_filter
  896. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  897. float mem[HB_FIR_SIZE], const float *in)
  898. {
  899. int i, j;
  900. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  901. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  902. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  903. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  904. out[i] = 0.0;
  905. for (j = 0; j <= HB_FIR_SIZE; j++)
  906. out[i] += data[i + j] * fir_coef[j];
  907. }
  908. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  909. }
  910. #endif /* hb_fir_filter */
  911. /**
  912. * Update context state before the next subframe.
  913. */
  914. static void update_sub_state(AMRWBContext *ctx)
  915. {
  916. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  917. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  918. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  919. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  920. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  921. LP_ORDER * sizeof(float));
  922. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  923. UPS_MEM_SIZE * sizeof(float));
  924. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  925. LP_ORDER_16k * sizeof(float));
  926. }
  927. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  928. int *got_frame_ptr, AVPacket *avpkt)
  929. {
  930. AMRWBContext *ctx = avctx->priv_data;
  931. AMRWBFrame *cf = &ctx->frame;
  932. const uint8_t *buf = avpkt->data;
  933. int buf_size = avpkt->size;
  934. int expected_fr_size, header_size;
  935. float *buf_out;
  936. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  937. float fixed_gain_factor; // fixed gain correction factor (gamma)
  938. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  939. float synth_fixed_gain; // the fixed gain that synthesis should use
  940. float voice_fac, stab_fac; // parameters used for gain smoothing
  941. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  942. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  943. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  944. float hb_gain;
  945. int sub, i, ret;
  946. /* get output buffer */
  947. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  948. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  949. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  950. return ret;
  951. }
  952. buf_out = (float *)ctx->avframe.data[0];
  953. header_size = decode_mime_header(ctx, buf);
  954. if (ctx->fr_cur_mode > MODE_SID) {
  955. av_log(avctx, AV_LOG_ERROR,
  956. "Invalid mode %d\n", ctx->fr_cur_mode);
  957. return AVERROR_INVALIDDATA;
  958. }
  959. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  960. if (buf_size < expected_fr_size) {
  961. av_log(avctx, AV_LOG_ERROR,
  962. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  963. *got_frame_ptr = 0;
  964. return AVERROR_INVALIDDATA;
  965. }
  966. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  967. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  968. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  969. av_log_missing_feature(avctx, "SID mode", 1);
  970. return -1;
  971. }
  972. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  973. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  974. /* Decode the quantized ISF vector */
  975. if (ctx->fr_cur_mode == MODE_6k60) {
  976. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  977. } else {
  978. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  979. }
  980. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  981. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  982. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  983. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  984. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  985. /* Generate a ISP vector for each subframe */
  986. if (ctx->first_frame) {
  987. ctx->first_frame = 0;
  988. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  989. }
  990. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  991. for (sub = 0; sub < 4; sub++)
  992. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  993. for (sub = 0; sub < 4; sub++) {
  994. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  995. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  996. /* Decode adaptive codebook (pitch vector) */
  997. decode_pitch_vector(ctx, cur_subframe, sub);
  998. /* Decode innovative codebook (fixed vector) */
  999. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  1000. cur_subframe->pul_il, ctx->fr_cur_mode);
  1001. pitch_sharpening(ctx, ctx->fixed_vector);
  1002. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1003. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1004. ctx->fixed_gain[0] =
  1005. ff_amr_set_fixed_gain(fixed_gain_factor,
  1006. ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
  1007. ctx->fixed_vector,
  1008. AMRWB_SFR_SIZE) /
  1009. AMRWB_SFR_SIZE,
  1010. ctx->prediction_error,
  1011. ENERGY_MEAN, energy_pred_fac);
  1012. /* Calculate voice factor and store tilt for next subframe */
  1013. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1014. ctx->fixed_vector, ctx->fixed_gain[0],
  1015. &ctx->celpm_ctx);
  1016. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1017. /* Construct current excitation */
  1018. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1019. ctx->excitation[i] *= ctx->pitch_gain[0];
  1020. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1021. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1022. }
  1023. /* Post-processing of excitation elements */
  1024. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1025. voice_fac, stab_fac);
  1026. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1027. spare_vector);
  1028. pitch_enhancer(synth_fixed_vector, voice_fac);
  1029. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1030. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1031. /* Synthesis speech post-processing */
  1032. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1033. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1034. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1035. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1036. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1037. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1038. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1039. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1040. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1041. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1042. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1043. hb_gain = find_hb_gain(ctx, hb_samples,
  1044. cur_subframe->hb_gain, cf->vad);
  1045. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1046. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1047. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1048. /* High-band post-processing filters */
  1049. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1050. &ctx->samples_hb[LP_ORDER_16k]);
  1051. if (ctx->fr_cur_mode == MODE_23k85)
  1052. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1053. hb_samples);
  1054. /* Add the low and high frequency bands */
  1055. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1056. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1057. /* Update buffers and history */
  1058. update_sub_state(ctx);
  1059. }
  1060. /* update state for next frame */
  1061. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1062. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1063. *got_frame_ptr = 1;
  1064. *(AVFrame *)data = ctx->avframe;
  1065. return expected_fr_size;
  1066. }
  1067. AVCodec ff_amrwb_decoder = {
  1068. .name = "amrwb",
  1069. .type = AVMEDIA_TYPE_AUDIO,
  1070. .id = AV_CODEC_ID_AMR_WB,
  1071. .priv_data_size = sizeof(AMRWBContext),
  1072. .init = amrwb_decode_init,
  1073. .decode = amrwb_decode_frame,
  1074. .capabilities = CODEC_CAP_DR1,
  1075. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1076. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1077. AV_SAMPLE_FMT_NONE },
  1078. };