You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4809 lines
137KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @c man end FILTERGRAPH DESCRIPTION
  156. @chapter Audio Filters
  157. @c man begin AUDIO FILTERS
  158. When you configure your FFmpeg build, you can disable any of the
  159. existing filters using @code{--disable-filters}.
  160. The configure output will show the audio filters included in your
  161. build.
  162. Below is a description of the currently available audio filters.
  163. @section aconvert
  164. Convert the input audio format to the specified formats.
  165. The filter accepts a string of the form:
  166. "@var{sample_format}:@var{channel_layout}".
  167. @var{sample_format} specifies the sample format, and can be a string or the
  168. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  169. suffix for a planar sample format.
  170. @var{channel_layout} specifies the channel layout, and can be a string
  171. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  172. The special parameter "auto", signifies that the filter will
  173. automatically select the output format depending on the output filter.
  174. Some examples follow.
  175. @itemize
  176. @item
  177. Convert input to float, planar, stereo:
  178. @example
  179. aconvert=fltp:stereo
  180. @end example
  181. @item
  182. Convert input to unsigned 8-bit, automatically select out channel layout:
  183. @example
  184. aconvert=u8:auto
  185. @end example
  186. @end itemize
  187. @section aformat
  188. Convert the input audio to one of the specified formats. The framework will
  189. negotiate the most appropriate format to minimize conversions.
  190. The filter accepts the following named parameters:
  191. @table @option
  192. @item sample_fmts
  193. A comma-separated list of requested sample formats.
  194. @item sample_rates
  195. A comma-separated list of requested sample rates.
  196. @item channel_layouts
  197. A comma-separated list of requested channel layouts.
  198. @end table
  199. If a parameter is omitted, all values are allowed.
  200. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  201. @example
  202. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  203. @end example
  204. @section amerge
  205. Merge two or more audio streams into a single multi-channel stream.
  206. The filter accepts the following named options:
  207. @table @option
  208. @item inputs
  209. Set the number of inputs. Default is 2.
  210. @end table
  211. If the channel layouts of the inputs are disjoint, and therefore compatible,
  212. the channel layout of the output will be set accordingly and the channels
  213. will be reordered as necessary. If the channel layouts of the inputs are not
  214. disjoint, the output will have all the channels of the first input then all
  215. the channels of the second input, in that order, and the channel layout of
  216. the output will be the default value corresponding to the total number of
  217. channels.
  218. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  219. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  220. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  221. first input, b1 is the first channel of the second input).
  222. On the other hand, if both input are in stereo, the output channels will be
  223. in the default order: a1, a2, b1, b2, and the channel layout will be
  224. arbitrarily set to 4.0, which may or may not be the expected value.
  225. All inputs must have the same sample rate, and format.
  226. If inputs do not have the same duration, the output will stop with the
  227. shortest.
  228. Example: merge two mono files into a stereo stream:
  229. @example
  230. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  231. @end example
  232. Example: multiple merges:
  233. @example
  234. ffmpeg -f lavfi -i "
  235. amovie=input.mkv:si=0 [a0];
  236. amovie=input.mkv:si=1 [a1];
  237. amovie=input.mkv:si=2 [a2];
  238. amovie=input.mkv:si=3 [a3];
  239. amovie=input.mkv:si=4 [a4];
  240. amovie=input.mkv:si=5 [a5];
  241. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  242. @end example
  243. @section amix
  244. Mixes multiple audio inputs into a single output.
  245. For example
  246. @example
  247. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  248. @end example
  249. will mix 3 input audio streams to a single output with the same duration as the
  250. first input and a dropout transition time of 3 seconds.
  251. The filter accepts the following named parameters:
  252. @table @option
  253. @item inputs
  254. Number of inputs. If unspecified, it defaults to 2.
  255. @item duration
  256. How to determine the end-of-stream.
  257. @table @option
  258. @item longest
  259. Duration of longest input. (default)
  260. @item shortest
  261. Duration of shortest input.
  262. @item first
  263. Duration of first input.
  264. @end table
  265. @item dropout_transition
  266. Transition time, in seconds, for volume renormalization when an input
  267. stream ends. The default value is 2 seconds.
  268. @end table
  269. @section anull
  270. Pass the audio source unchanged to the output.
  271. @section aresample
  272. Resample the input audio to the specified sample rate.
  273. The filter accepts exactly one parameter, the output sample rate. If not
  274. specified then the filter will automatically convert between its input
  275. and output sample rates.
  276. For example, to resample the input audio to 44100Hz:
  277. @example
  278. aresample=44100
  279. @end example
  280. @section asetnsamples
  281. Set the number of samples per each output audio frame.
  282. The last output packet may contain a different number of samples, as
  283. the filter will flush all the remaining samples when the input audio
  284. signal its end.
  285. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  286. separated by ":".
  287. @table @option
  288. @item nb_out_samples, n
  289. Set the number of frames per each output audio frame. The number is
  290. intended as the number of samples @emph{per each channel}.
  291. Default value is 1024.
  292. @item pad, p
  293. If set to 1, the filter will pad the last audio frame with zeroes, so
  294. that the last frame will contain the same number of samples as the
  295. previous ones. Default value is 1.
  296. @end table
  297. For example, to set the number of per-frame samples to 1234 and
  298. disable padding for the last frame, use:
  299. @example
  300. asetnsamples=n=1234:p=0
  301. @end example
  302. @section ashowinfo
  303. Show a line containing various information for each input audio frame.
  304. The input audio is not modified.
  305. The shown line contains a sequence of key/value pairs of the form
  306. @var{key}:@var{value}.
  307. A description of each shown parameter follows:
  308. @table @option
  309. @item n
  310. sequential number of the input frame, starting from 0
  311. @item pts
  312. presentation TimeStamp of the input frame, expressed as a number of
  313. time base units. The time base unit depends on the filter input pad, and
  314. is usually 1/@var{sample_rate}.
  315. @item pts_time
  316. presentation TimeStamp of the input frame, expressed as a number of
  317. seconds
  318. @item pos
  319. position of the frame in the input stream, -1 if this information in
  320. unavailable and/or meaningless (for example in case of synthetic audio)
  321. @item fmt
  322. sample format name
  323. @item chlayout
  324. channel layout description
  325. @item nb_samples
  326. number of samples (per each channel) contained in the filtered frame
  327. @item rate
  328. sample rate for the audio frame
  329. @item checksum
  330. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  331. @item plane_checksum
  332. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  333. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  334. @var{c6} @var{c7}]"
  335. @end table
  336. @section asplit
  337. Split input audio into several identical outputs.
  338. The filter accepts a single parameter which specifies the number of outputs. If
  339. unspecified, it defaults to 2.
  340. For example:
  341. @example
  342. [in] asplit [out0][out1]
  343. @end example
  344. will create two separate outputs from the same input.
  345. To create 3 or more outputs, you need to specify the number of
  346. outputs, like in:
  347. @example
  348. [in] asplit=3 [out0][out1][out2]
  349. @end example
  350. @example
  351. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  352. @end example
  353. will create 5 copies of the input audio.
  354. @section astreamsync
  355. Forward two audio streams and control the order the buffers are forwarded.
  356. The argument to the filter is an expression deciding which stream should be
  357. forwarded next: if the result is negative, the first stream is forwarded; if
  358. the result is positive or zero, the second stream is forwarded. It can use
  359. the following variables:
  360. @table @var
  361. @item b1 b2
  362. number of buffers forwarded so far on each stream
  363. @item s1 s2
  364. number of samples forwarded so far on each stream
  365. @item t1 t2
  366. current timestamp of each stream
  367. @end table
  368. The default value is @code{t1-t2}, which means to always forward the stream
  369. that has a smaller timestamp.
  370. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  371. input, while avoiding too much of a desynchronization:
  372. @example
  373. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  374. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  375. [a2] [b2] amerge
  376. @end example
  377. @section atempo
  378. Adjust audio tempo.
  379. The filter accepts exactly one parameter, the audio tempo. If not
  380. specified then the filter will assume nominal 1.0 tempo. Tempo must
  381. be in the [0.5, 2.0] range.
  382. For example, to slow down audio to 80% tempo:
  383. @example
  384. atempo=0.8
  385. @end example
  386. For example, to speed up audio to 125% tempo:
  387. @example
  388. atempo=1.25
  389. @end example
  390. @section earwax
  391. Make audio easier to listen to on headphones.
  392. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  393. so that when listened to on headphones the stereo image is moved from
  394. inside your head (standard for headphones) to outside and in front of
  395. the listener (standard for speakers).
  396. Ported from SoX.
  397. @section pan
  398. Mix channels with specific gain levels. The filter accepts the output
  399. channel layout followed by a set of channels definitions.
  400. This filter is also designed to remap efficiently the channels of an audio
  401. stream.
  402. The filter accepts parameters of the form:
  403. "@var{l}:@var{outdef}:@var{outdef}:..."
  404. @table @option
  405. @item l
  406. output channel layout or number of channels
  407. @item outdef
  408. output channel specification, of the form:
  409. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  410. @item out_name
  411. output channel to define, either a channel name (FL, FR, etc.) or a channel
  412. number (c0, c1, etc.)
  413. @item gain
  414. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  415. @item in_name
  416. input channel to use, see out_name for details; it is not possible to mix
  417. named and numbered input channels
  418. @end table
  419. If the `=' in a channel specification is replaced by `<', then the gains for
  420. that specification will be renormalized so that the total is 1, thus
  421. avoiding clipping noise.
  422. @subsection Mixing examples
  423. For example, if you want to down-mix from stereo to mono, but with a bigger
  424. factor for the left channel:
  425. @example
  426. pan=1:c0=0.9*c0+0.1*c1
  427. @end example
  428. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  429. 7-channels surround:
  430. @example
  431. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  432. @end example
  433. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  434. that should be preferred (see "-ac" option) unless you have very specific
  435. needs.
  436. @subsection Remapping examples
  437. The channel remapping will be effective if, and only if:
  438. @itemize
  439. @item gain coefficients are zeroes or ones,
  440. @item only one input per channel output,
  441. @end itemize
  442. If all these conditions are satisfied, the filter will notify the user ("Pure
  443. channel mapping detected"), and use an optimized and lossless method to do the
  444. remapping.
  445. For example, if you have a 5.1 source and want a stereo audio stream by
  446. dropping the extra channels:
  447. @example
  448. pan="stereo: c0=FL : c1=FR"
  449. @end example
  450. Given the same source, you can also switch front left and front right channels
  451. and keep the input channel layout:
  452. @example
  453. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  454. @end example
  455. If the input is a stereo audio stream, you can mute the front left channel (and
  456. still keep the stereo channel layout) with:
  457. @example
  458. pan="stereo:c1=c1"
  459. @end example
  460. Still with a stereo audio stream input, you can copy the right channel in both
  461. front left and right:
  462. @example
  463. pan="stereo: c0=FR : c1=FR"
  464. @end example
  465. @section silencedetect
  466. Detect silence in an audio stream.
  467. This filter logs a message when it detects that the input audio volume is less
  468. or equal to a noise tolerance value for a duration greater or equal to the
  469. minimum detected noise duration.
  470. The printed times and duration are expressed in seconds.
  471. @table @option
  472. @item duration, d
  473. Set silence duration until notification (default is 2 seconds).
  474. @item noise, n
  475. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  476. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  477. @end table
  478. Detect 5 seconds of silence with -50dB noise tolerance:
  479. @example
  480. silencedetect=n=-50dB:d=5
  481. @end example
  482. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  483. tolerance in @file{silence.mp3}:
  484. @example
  485. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  486. @end example
  487. @section volume
  488. Adjust the input audio volume.
  489. The filter accepts exactly one parameter @var{vol}, which expresses
  490. how the audio volume will be increased or decreased.
  491. Output values are clipped to the maximum value.
  492. If @var{vol} is expressed as a decimal number, the output audio
  493. volume is given by the relation:
  494. @example
  495. @var{output_volume} = @var{vol} * @var{input_volume}
  496. @end example
  497. If @var{vol} is expressed as a decimal number followed by the string
  498. "dB", the value represents the requested change in decibels of the
  499. input audio power, and the output audio volume is given by the
  500. relation:
  501. @example
  502. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  503. @end example
  504. Otherwise @var{vol} is considered an expression and its evaluated
  505. value is used for computing the output audio volume according to the
  506. first relation.
  507. Default value for @var{vol} is 1.0.
  508. @subsection Examples
  509. @itemize
  510. @item
  511. Half the input audio volume:
  512. @example
  513. volume=0.5
  514. @end example
  515. The above example is equivalent to:
  516. @example
  517. volume=1/2
  518. @end example
  519. @item
  520. Decrease input audio power by 12 decibels:
  521. @example
  522. volume=-12dB
  523. @end example
  524. @end itemize
  525. @section volumedetect
  526. Detect the volume of the input video.
  527. The filter has no parameters. The input is not modified. Statistics about
  528. the volume will be printed in the log when the input stream end is reached.
  529. In particular it will show the mean volume (root mean square), maximum
  530. volume (on a per-sample basis), and the beginning of an histogram of the
  531. registered volume values (from the maximum value to a cumulated 1/1000 of
  532. the samples).
  533. All volumes are in decibels relative to the maximum PCM value.
  534. Here is an excerpt of the output:
  535. @example
  536. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  537. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  538. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  539. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  540. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  541. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  542. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  543. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  544. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  545. @end example
  546. It means that:
  547. @itemize
  548. @item
  549. The mean square energy is approximately -27 dB, or 10^-2.7.
  550. @item
  551. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  552. @item
  553. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  554. @end itemize
  555. In other words, raising the volume by +4 dB does not cause any clipping,
  556. raising it by +5 dB causes clipping for 6 samples, etc.
  557. @section asyncts
  558. Synchronize audio data with timestamps by squeezing/stretching it and/or
  559. dropping samples/adding silence when needed.
  560. The filter accepts the following named parameters:
  561. @table @option
  562. @item compensate
  563. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  564. by default. When disabled, time gaps are covered with silence.
  565. @item min_delta
  566. Minimum difference between timestamps and audio data (in seconds) to trigger
  567. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  568. this filter, try setting this parameter to 0.
  569. @item max_comp
  570. Maximum compensation in samples per second. Relevant only with compensate=1.
  571. Default value 500.
  572. @item first_pts
  573. Assume the first pts should be this value.
  574. This allows for padding/trimming at the start of stream. By default, no
  575. assumption is made about the first frame's expected pts, so no padding or
  576. trimming is done. For example, this could be set to 0 to pad the beginning with
  577. silence if an audio stream starts after the video stream.
  578. @end table
  579. @section channelsplit
  580. Split each channel in input audio stream into a separate output stream.
  581. This filter accepts the following named parameters:
  582. @table @option
  583. @item channel_layout
  584. Channel layout of the input stream. Default is "stereo".
  585. @end table
  586. For example, assuming a stereo input MP3 file
  587. @example
  588. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  589. @end example
  590. will create an output Matroska file with two audio streams, one containing only
  591. the left channel and the other the right channel.
  592. To split a 5.1 WAV file into per-channel files
  593. @example
  594. ffmpeg -i in.wav -filter_complex
  595. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  596. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  597. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  598. side_right.wav
  599. @end example
  600. @section channelmap
  601. Remap input channels to new locations.
  602. This filter accepts the following named parameters:
  603. @table @option
  604. @item channel_layout
  605. Channel layout of the output stream.
  606. @item map
  607. Map channels from input to output. The argument is a comma-separated list of
  608. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  609. @var{in_channel} form. @var{in_channel} can be either the name of the input
  610. channel (e.g. FL for front left) or its index in the input channel layout.
  611. @var{out_channel} is the name of the output channel or its index in the output
  612. channel layout. If @var{out_channel} is not given then it is implicitly an
  613. index, starting with zero and increasing by one for each mapping.
  614. @end table
  615. If no mapping is present, the filter will implicitly map input channels to
  616. output channels preserving index.
  617. For example, assuming a 5.1+downmix input MOV file
  618. @example
  619. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  620. @end example
  621. will create an output WAV file tagged as stereo from the downmix channels of
  622. the input.
  623. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  624. @example
  625. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  626. @end example
  627. @section join
  628. Join multiple input streams into one multi-channel stream.
  629. The filter accepts the following named parameters:
  630. @table @option
  631. @item inputs
  632. Number of input streams. Defaults to 2.
  633. @item channel_layout
  634. Desired output channel layout. Defaults to stereo.
  635. @item map
  636. Map channels from inputs to output. The argument is a comma-separated list of
  637. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  638. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  639. can be either the name of the input channel (e.g. FL for front left) or its
  640. index in the specified input stream. @var{out_channel} is the name of the output
  641. channel.
  642. @end table
  643. The filter will attempt to guess the mappings when those are not specified
  644. explicitly. It does so by first trying to find an unused matching input channel
  645. and if that fails it picks the first unused input channel.
  646. E.g. to join 3 inputs (with properly set channel layouts)
  647. @example
  648. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  649. @end example
  650. To build a 5.1 output from 6 single-channel streams:
  651. @example
  652. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  653. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  654. out
  655. @end example
  656. @section resample
  657. Convert the audio sample format, sample rate and channel layout. This filter is
  658. not meant to be used directly.
  659. @c man end AUDIO FILTERS
  660. @chapter Audio Sources
  661. @c man begin AUDIO SOURCES
  662. Below is a description of the currently available audio sources.
  663. @section abuffer
  664. Buffer audio frames, and make them available to the filter chain.
  665. This source is mainly intended for a programmatic use, in particular
  666. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  667. It accepts the following mandatory parameters:
  668. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  669. @table @option
  670. @item sample_rate
  671. The sample rate of the incoming audio buffers.
  672. @item sample_fmt
  673. The sample format of the incoming audio buffers.
  674. Either a sample format name or its corresponging integer representation from
  675. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  676. @item channel_layout
  677. The channel layout of the incoming audio buffers.
  678. Either a channel layout name from channel_layout_map in
  679. @file{libavutil/audioconvert.c} or its corresponding integer representation
  680. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  681. @end table
  682. For example:
  683. @example
  684. abuffer=44100:s16p:stereo
  685. @end example
  686. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  687. Since the sample format with name "s16p" corresponds to the number
  688. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  689. equivalent to:
  690. @example
  691. abuffer=44100:6:0x3
  692. @end example
  693. @section aevalsrc
  694. Generate an audio signal specified by an expression.
  695. This source accepts in input one or more expressions (one for each
  696. channel), which are evaluated and used to generate a corresponding
  697. audio signal.
  698. It accepts the syntax: @var{exprs}[::@var{options}].
  699. @var{exprs} is a list of expressions separated by ":", one for each
  700. separate channel. In case the @var{channel_layout} is not
  701. specified, the selected channel layout depends on the number of
  702. provided expressions.
  703. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  704. separated by ":".
  705. The description of the accepted options follows.
  706. @table @option
  707. @item channel_layout, c
  708. Set the channel layout. The number of channels in the specified layout
  709. must be equal to the number of specified expressions.
  710. @item duration, d
  711. Set the minimum duration of the sourced audio. See the function
  712. @code{av_parse_time()} for the accepted format.
  713. Note that the resulting duration may be greater than the specified
  714. duration, as the generated audio is always cut at the end of a
  715. complete frame.
  716. If not specified, or the expressed duration is negative, the audio is
  717. supposed to be generated forever.
  718. @item nb_samples, n
  719. Set the number of samples per channel per each output frame,
  720. default to 1024.
  721. @item sample_rate, s
  722. Specify the sample rate, default to 44100.
  723. @end table
  724. Each expression in @var{exprs} can contain the following constants:
  725. @table @option
  726. @item n
  727. number of the evaluated sample, starting from 0
  728. @item t
  729. time of the evaluated sample expressed in seconds, starting from 0
  730. @item s
  731. sample rate
  732. @end table
  733. @subsection Examples
  734. @itemize
  735. @item
  736. Generate silence:
  737. @example
  738. aevalsrc=0
  739. @end example
  740. @item
  741. Generate a sin signal with frequency of 440 Hz, set sample rate to
  742. 8000 Hz:
  743. @example
  744. aevalsrc="sin(440*2*PI*t)::s=8000"
  745. @end example
  746. @item
  747. Generate a two channels signal, specify the channel layout (Front
  748. Center + Back Center) explicitly:
  749. @example
  750. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  751. @end example
  752. @item
  753. Generate white noise:
  754. @example
  755. aevalsrc="-2+random(0)"
  756. @end example
  757. @item
  758. Generate an amplitude modulated signal:
  759. @example
  760. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  761. @end example
  762. @item
  763. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  764. @example
  765. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  766. @end example
  767. @end itemize
  768. @section anullsrc
  769. Null audio source, return unprocessed audio frames. It is mainly useful
  770. as a template and to be employed in analysis / debugging tools, or as
  771. the source for filters which ignore the input data (for example the sox
  772. synth filter).
  773. It accepts an optional sequence of @var{key}=@var{value} pairs,
  774. separated by ":".
  775. The description of the accepted options follows.
  776. @table @option
  777. @item sample_rate, s
  778. Specify the sample rate, and defaults to 44100.
  779. @item channel_layout, cl
  780. Specify the channel layout, and can be either an integer or a string
  781. representing a channel layout. The default value of @var{channel_layout}
  782. is "stereo".
  783. Check the channel_layout_map definition in
  784. @file{libavcodec/audioconvert.c} for the mapping between strings and
  785. channel layout values.
  786. @item nb_samples, n
  787. Set the number of samples per requested frames.
  788. @end table
  789. Follow some examples:
  790. @example
  791. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  792. anullsrc=r=48000:cl=4
  793. # same as
  794. anullsrc=r=48000:cl=mono
  795. @end example
  796. @section abuffer
  797. Buffer audio frames, and make them available to the filter chain.
  798. This source is not intended to be part of user-supplied graph descriptions but
  799. for insertion by calling programs through the interface defined in
  800. @file{libavfilter/buffersrc.h}.
  801. It accepts the following named parameters:
  802. @table @option
  803. @item time_base
  804. Timebase which will be used for timestamps of submitted frames. It must be
  805. either a floating-point number or in @var{numerator}/@var{denominator} form.
  806. @item sample_rate
  807. Audio sample rate.
  808. @item sample_fmt
  809. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  810. @item channel_layout
  811. Channel layout of the audio data, in the form that can be accepted by
  812. @code{av_get_channel_layout()}.
  813. @end table
  814. All the parameters need to be explicitly defined.
  815. @section flite
  816. Synthesize a voice utterance using the libflite library.
  817. To enable compilation of this filter you need to configure FFmpeg with
  818. @code{--enable-libflite}.
  819. Note that the flite library is not thread-safe.
  820. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  821. separated by ":".
  822. The description of the accepted parameters follows.
  823. @table @option
  824. @item list_voices
  825. If set to 1, list the names of the available voices and exit
  826. immediately. Default value is 0.
  827. @item nb_samples, n
  828. Set the maximum number of samples per frame. Default value is 512.
  829. @item textfile
  830. Set the filename containing the text to speak.
  831. @item text
  832. Set the text to speak.
  833. @item voice, v
  834. Set the voice to use for the speech synthesis. Default value is
  835. @code{kal}. See also the @var{list_voices} option.
  836. @end table
  837. @subsection Examples
  838. @itemize
  839. @item
  840. Read from file @file{speech.txt}, and synthetize the text using the
  841. standard flite voice:
  842. @example
  843. flite=textfile=speech.txt
  844. @end example
  845. @item
  846. Read the specified text selecting the @code{slt} voice:
  847. @example
  848. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  849. @end example
  850. @item
  851. Make @file{ffplay} speech the specified text, using @code{flite} and
  852. the @code{lavfi} device:
  853. @example
  854. ffplay -f lavfi flite='No more be grieved for which that thou hast done.'
  855. @end example
  856. @end itemize
  857. For more information about libflite, check:
  858. @url{http://www.speech.cs.cmu.edu/flite/}
  859. @c man end AUDIO SOURCES
  860. @chapter Audio Sinks
  861. @c man begin AUDIO SINKS
  862. Below is a description of the currently available audio sinks.
  863. @section abuffersink
  864. Buffer audio frames, and make them available to the end of filter chain.
  865. This sink is mainly intended for programmatic use, in particular
  866. through the interface defined in @file{libavfilter/buffersink.h}.
  867. It requires a pointer to an AVABufferSinkContext structure, which
  868. defines the incoming buffers' formats, to be passed as the opaque
  869. parameter to @code{avfilter_init_filter} for initialization.
  870. @section anullsink
  871. Null audio sink, do absolutely nothing with the input audio. It is
  872. mainly useful as a template and to be employed in analysis / debugging
  873. tools.
  874. @section abuffersink
  875. This sink is intended for programmatic use. Frames that arrive on this sink can
  876. be retrieved by the calling program using the interface defined in
  877. @file{libavfilter/buffersink.h}.
  878. This filter accepts no parameters.
  879. @c man end AUDIO SINKS
  880. @chapter Video Filters
  881. @c man begin VIDEO FILTERS
  882. When you configure your FFmpeg build, you can disable any of the
  883. existing filters using @code{--disable-filters}.
  884. The configure output will show the video filters included in your
  885. build.
  886. Below is a description of the currently available video filters.
  887. @section alphaextract
  888. Extract the alpha component from the input as a grayscale video. This
  889. is especially useful with the @var{alphamerge} filter.
  890. @section alphamerge
  891. Add or replace the alpha component of the primary input with the
  892. grayscale value of a second input. This is intended for use with
  893. @var{alphaextract} to allow the transmission or storage of frame
  894. sequences that have alpha in a format that doesn't support an alpha
  895. channel.
  896. For example, to reconstruct full frames from a normal YUV-encoded video
  897. and a separate video created with @var{alphaextract}, you might use:
  898. @example
  899. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  900. @end example
  901. Since this filter is designed for reconstruction, it operates on frame
  902. sequences without considering timestamps, and terminates when either
  903. input reaches end of stream. This will cause problems if your encoding
  904. pipeline drops frames. If you're trying to apply an image as an
  905. overlay to a video stream, consider the @var{overlay} filter instead.
  906. @section ass
  907. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  908. using the libass library.
  909. To enable compilation of this filter you need to configure FFmpeg with
  910. @code{--enable-libass}.
  911. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  912. where @var{ass_filename} is the filename of the ASS file to read, and
  913. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  914. separated by ":".
  915. A description of the accepted options follows.
  916. @table @option
  917. @item original_size
  918. Specifies the size of the original video, the video for which the ASS file
  919. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  920. necessary to correctly scale the fonts if the aspect ratio has been changed.
  921. @end table
  922. For example, to render the file @file{sub.ass} on top of the input
  923. video, use the command:
  924. @example
  925. ass=sub.ass
  926. @end example
  927. @section bbox
  928. Compute the bounding box for the non-black pixels in the input frame
  929. luminance plane.
  930. This filter computes the bounding box containing all the pixels with a
  931. luminance value greater than the minimum allowed value.
  932. The parameters describing the bounding box are printed on the filter
  933. log.
  934. @section blackdetect
  935. Detect video intervals that are (almost) completely black. Can be
  936. useful to detect chapter transitions, commercials, or invalid
  937. recordings. Output lines contains the time for the start, end and
  938. duration of the detected black interval expressed in seconds.
  939. In order to display the output lines, you need to set the loglevel at
  940. least to the AV_LOG_INFO value.
  941. This filter accepts a list of options in the form of
  942. @var{key}=@var{value} pairs separated by ":". A description of the
  943. accepted options follows.
  944. @table @option
  945. @item black_min_duration, d
  946. Set the minimum detected black duration expressed in seconds. It must
  947. be a non-negative floating point number.
  948. Default value is 2.0.
  949. @item picture_black_ratio_th, pic_th
  950. Set the threshold for considering a picture "black".
  951. Express the minimum value for the ratio:
  952. @example
  953. @var{nb_black_pixels} / @var{nb_pixels}
  954. @end example
  955. for which a picture is considered black.
  956. Default value is 0.98.
  957. @item pixel_black_th, pix_th
  958. Set the threshold for considering a pixel "black".
  959. The threshold expresses the maximum pixel luminance value for which a
  960. pixel is considered "black". The provided value is scaled according to
  961. the following equation:
  962. @example
  963. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  964. @end example
  965. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  966. the input video format, the range is [0-255] for YUV full-range
  967. formats and [16-235] for YUV non full-range formats.
  968. Default value is 0.10.
  969. @end table
  970. The following example sets the maximum pixel threshold to the minimum
  971. value, and detects only black intervals of 2 or more seconds:
  972. @example
  973. blackdetect=d=2:pix_th=0.00
  974. @end example
  975. @section blackframe
  976. Detect frames that are (almost) completely black. Can be useful to
  977. detect chapter transitions or commercials. Output lines consist of
  978. the frame number of the detected frame, the percentage of blackness,
  979. the position in the file if known or -1 and the timestamp in seconds.
  980. In order to display the output lines, you need to set the loglevel at
  981. least to the AV_LOG_INFO value.
  982. The filter accepts the syntax:
  983. @example
  984. blackframe[=@var{amount}:[@var{threshold}]]
  985. @end example
  986. @var{amount} is the percentage of the pixels that have to be below the
  987. threshold, and defaults to 98.
  988. @var{threshold} is the threshold below which a pixel value is
  989. considered black, and defaults to 32.
  990. @section boxblur
  991. Apply boxblur algorithm to the input video.
  992. This filter accepts the parameters:
  993. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  994. Chroma and alpha parameters are optional, if not specified they default
  995. to the corresponding values set for @var{luma_radius} and
  996. @var{luma_power}.
  997. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  998. the radius in pixels of the box used for blurring the corresponding
  999. input plane. They are expressions, and can contain the following
  1000. constants:
  1001. @table @option
  1002. @item w, h
  1003. the input width and height in pixels
  1004. @item cw, ch
  1005. the input chroma image width and height in pixels
  1006. @item hsub, vsub
  1007. horizontal and vertical chroma subsample values. For example for the
  1008. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1009. @end table
  1010. The radius must be a non-negative number, and must not be greater than
  1011. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1012. and of @code{min(cw,ch)/2} for the chroma planes.
  1013. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1014. how many times the boxblur filter is applied to the corresponding
  1015. plane.
  1016. Some examples follow:
  1017. @itemize
  1018. @item
  1019. Apply a boxblur filter with luma, chroma, and alpha radius
  1020. set to 2:
  1021. @example
  1022. boxblur=2:1
  1023. @end example
  1024. @item
  1025. Set luma radius to 2, alpha and chroma radius to 0
  1026. @example
  1027. boxblur=2:1:0:0:0:0
  1028. @end example
  1029. @item
  1030. Set luma and chroma radius to a fraction of the video dimension
  1031. @example
  1032. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1033. @end example
  1034. @end itemize
  1035. @section colormatrix
  1036. The colormatrix filter allows conversion between any of the following color
  1037. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1038. and FCC (@var{fcc}).
  1039. The syntax of the parameters is @var{source}:@var{destination}:
  1040. @example
  1041. colormatrix=bt601:smpte240m
  1042. @end example
  1043. @section copy
  1044. Copy the input source unchanged to the output. Mainly useful for
  1045. testing purposes.
  1046. @section crop
  1047. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1048. The @var{keep_aspect} parameter is optional, if specified and set to a
  1049. non-zero value will force the output display aspect ratio to be the
  1050. same of the input, by changing the output sample aspect ratio.
  1051. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1052. expressions containing the following constants:
  1053. @table @option
  1054. @item x, y
  1055. the computed values for @var{x} and @var{y}. They are evaluated for
  1056. each new frame.
  1057. @item in_w, in_h
  1058. the input width and height
  1059. @item iw, ih
  1060. same as @var{in_w} and @var{in_h}
  1061. @item out_w, out_h
  1062. the output (cropped) width and height
  1063. @item ow, oh
  1064. same as @var{out_w} and @var{out_h}
  1065. @item a
  1066. same as @var{iw} / @var{ih}
  1067. @item sar
  1068. input sample aspect ratio
  1069. @item dar
  1070. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1071. @item hsub, vsub
  1072. horizontal and vertical chroma subsample values. For example for the
  1073. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1074. @item n
  1075. the number of input frame, starting from 0
  1076. @item pos
  1077. the position in the file of the input frame, NAN if unknown
  1078. @item t
  1079. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1080. @end table
  1081. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1082. the width and height of the output (cropped) video. They are
  1083. evaluated just at the configuration of the filter.
  1084. The default value of @var{out_w} is "in_w", and the default value of
  1085. @var{out_h} is "in_h".
  1086. The expression for @var{out_w} may depend on the value of @var{out_h},
  1087. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1088. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1089. evaluated after @var{out_w} and @var{out_h}.
  1090. The @var{x} and @var{y} parameters specify the expressions for the
  1091. position of the top-left corner of the output (non-cropped) area. They
  1092. are evaluated for each frame. If the evaluated value is not valid, it
  1093. is approximated to the nearest valid value.
  1094. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1095. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1096. the center of the input image.
  1097. The expression for @var{x} may depend on @var{y}, and the expression
  1098. for @var{y} may depend on @var{x}.
  1099. Follow some examples:
  1100. @example
  1101. # crop the central input area with size 100x100
  1102. crop=100:100
  1103. # crop the central input area with size 2/3 of the input video
  1104. "crop=2/3*in_w:2/3*in_h"
  1105. # crop the input video central square
  1106. crop=in_h
  1107. # delimit the rectangle with the top-left corner placed at position
  1108. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1109. # corner of the input image.
  1110. crop=in_w-100:in_h-100:100:100
  1111. # crop 10 pixels from the left and right borders, and 20 pixels from
  1112. # the top and bottom borders
  1113. "crop=in_w-2*10:in_h-2*20"
  1114. # keep only the bottom right quarter of the input image
  1115. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1116. # crop height for getting Greek harmony
  1117. "crop=in_w:1/PHI*in_w"
  1118. # trembling effect
  1119. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1120. # erratic camera effect depending on timestamp
  1121. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1122. # set x depending on the value of y
  1123. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1124. @end example
  1125. @section cropdetect
  1126. Auto-detect crop size.
  1127. Calculate necessary cropping parameters and prints the recommended
  1128. parameters through the logging system. The detected dimensions
  1129. correspond to the non-black area of the input video.
  1130. It accepts the syntax:
  1131. @example
  1132. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1133. @end example
  1134. @table @option
  1135. @item limit
  1136. Threshold, which can be optionally specified from nothing (0) to
  1137. everything (255), defaults to 24.
  1138. @item round
  1139. Value which the width/height should be divisible by, defaults to
  1140. 16. The offset is automatically adjusted to center the video. Use 2 to
  1141. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1142. encoding to most video codecs.
  1143. @item reset
  1144. Counter that determines after how many frames cropdetect will reset
  1145. the previously detected largest video area and start over to detect
  1146. the current optimal crop area. Defaults to 0.
  1147. This can be useful when channel logos distort the video area. 0
  1148. indicates never reset and return the largest area encountered during
  1149. playback.
  1150. @end table
  1151. @section decimate
  1152. This filter drops frames that do not differ greatly from the previous
  1153. frame in order to reduce framerate. The main use of this filter is
  1154. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1155. it could in theory be used for fixing movies that were
  1156. inverse-telecined incorrectly.
  1157. It accepts the following parameters:
  1158. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1159. @table @option
  1160. @item max
  1161. Set the maximum number of consecutive frames which can be dropped (if
  1162. positive), or the minimum interval between dropped frames (if
  1163. negative). If the value is 0, the frame is dropped unregarding the
  1164. number of previous sequentially dropped frames.
  1165. Default value is 0.
  1166. @item hi, lo, frac
  1167. Set the dropping threshold values.
  1168. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1169. represent actual pixel value differences, so a threshold of 64
  1170. corresponds to 1 unit of difference for each pixel, or the same spread
  1171. out differently over the block.
  1172. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1173. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1174. meaning the whole image) differ by more than a threshold of @var{lo}.
  1175. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1176. 64*5, and default value for @var{frac} is 0.33.
  1177. @end table
  1178. @section delogo
  1179. Suppress a TV station logo by a simple interpolation of the surrounding
  1180. pixels. Just set a rectangle covering the logo and watch it disappear
  1181. (and sometimes something even uglier appear - your mileage may vary).
  1182. The filter accepts parameters as a string of the form
  1183. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1184. @var{key}=@var{value} pairs, separated by ":".
  1185. The description of the accepted parameters follows.
  1186. @table @option
  1187. @item x, y
  1188. Specify the top left corner coordinates of the logo. They must be
  1189. specified.
  1190. @item w, h
  1191. Specify the width and height of the logo to clear. They must be
  1192. specified.
  1193. @item band, t
  1194. Specify the thickness of the fuzzy edge of the rectangle (added to
  1195. @var{w} and @var{h}). The default value is 4.
  1196. @item show
  1197. When set to 1, a green rectangle is drawn on the screen to simplify
  1198. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1199. @var{band} is set to 4. The default value is 0.
  1200. @end table
  1201. Some examples follow.
  1202. @itemize
  1203. @item
  1204. Set a rectangle covering the area with top left corner coordinates 0,0
  1205. and size 100x77, setting a band of size 10:
  1206. @example
  1207. delogo=0:0:100:77:10
  1208. @end example
  1209. @item
  1210. As the previous example, but use named options:
  1211. @example
  1212. delogo=x=0:y=0:w=100:h=77:band=10
  1213. @end example
  1214. @end itemize
  1215. @section deshake
  1216. Attempt to fix small changes in horizontal and/or vertical shift. This
  1217. filter helps remove camera shake from hand-holding a camera, bumping a
  1218. tripod, moving on a vehicle, etc.
  1219. The filter accepts parameters as a string of the form
  1220. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1221. A description of the accepted parameters follows.
  1222. @table @option
  1223. @item x, y, w, h
  1224. Specify a rectangular area where to limit the search for motion
  1225. vectors.
  1226. If desired the search for motion vectors can be limited to a
  1227. rectangular area of the frame defined by its top left corner, width
  1228. and height. These parameters have the same meaning as the drawbox
  1229. filter which can be used to visualise the position of the bounding
  1230. box.
  1231. This is useful when simultaneous movement of subjects within the frame
  1232. might be confused for camera motion by the motion vector search.
  1233. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1234. then the full frame is used. This allows later options to be set
  1235. without specifying the bounding box for the motion vector search.
  1236. Default - search the whole frame.
  1237. @item rx, ry
  1238. Specify the maximum extent of movement in x and y directions in the
  1239. range 0-64 pixels. Default 16.
  1240. @item edge
  1241. Specify how to generate pixels to fill blanks at the edge of the
  1242. frame. An integer from 0 to 3 as follows:
  1243. @table @option
  1244. @item 0
  1245. Fill zeroes at blank locations
  1246. @item 1
  1247. Original image at blank locations
  1248. @item 2
  1249. Extruded edge value at blank locations
  1250. @item 3
  1251. Mirrored edge at blank locations
  1252. @end table
  1253. The default setting is mirror edge at blank locations.
  1254. @item blocksize
  1255. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1256. default 8.
  1257. @item contrast
  1258. Specify the contrast threshold for blocks. Only blocks with more than
  1259. the specified contrast (difference between darkest and lightest
  1260. pixels) will be considered. Range 1-255, default 125.
  1261. @item search
  1262. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1263. search. Default - exhaustive search.
  1264. @item filename
  1265. If set then a detailed log of the motion search is written to the
  1266. specified file.
  1267. @end table
  1268. @section drawbox
  1269. Draw a colored box on the input image.
  1270. It accepts the syntax:
  1271. @example
  1272. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1273. @end example
  1274. @table @option
  1275. @item x, y
  1276. Specify the top left corner coordinates of the box. Default to 0.
  1277. @item width, height
  1278. Specify the width and height of the box, if 0 they are interpreted as
  1279. the input width and height. Default to 0.
  1280. @item color
  1281. Specify the color of the box to write, it can be the name of a color
  1282. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1283. @end table
  1284. Follow some examples:
  1285. @example
  1286. # draw a black box around the edge of the input image
  1287. drawbox
  1288. # draw a box with color red and an opacity of 50%
  1289. drawbox=10:20:200:60:red@@0.5"
  1290. @end example
  1291. @section drawtext
  1292. Draw text string or text from specified file on top of video using the
  1293. libfreetype library.
  1294. To enable compilation of this filter you need to configure FFmpeg with
  1295. @code{--enable-libfreetype}.
  1296. The filter also recognizes strftime() sequences in the provided text
  1297. and expands them accordingly. Check the documentation of strftime().
  1298. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1299. separated by ":".
  1300. The description of the accepted parameters follows.
  1301. @table @option
  1302. @item box
  1303. Used to draw a box around text using background color.
  1304. Value should be either 1 (enable) or 0 (disable).
  1305. The default value of @var{box} is 0.
  1306. @item boxcolor
  1307. The color to be used for drawing box around text.
  1308. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1309. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1310. The default value of @var{boxcolor} is "white".
  1311. @item draw
  1312. Set an expression which specifies if the text should be drawn. If the
  1313. expression evaluates to 0, the text is not drawn. This is useful for
  1314. specifying that the text should be drawn only when specific conditions
  1315. are met.
  1316. Default value is "1".
  1317. See below for the list of accepted constants and functions.
  1318. @item fix_bounds
  1319. If true, check and fix text coords to avoid clipping.
  1320. @item fontcolor
  1321. The color to be used for drawing fonts.
  1322. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1323. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1324. The default value of @var{fontcolor} is "black".
  1325. @item fontfile
  1326. The font file to be used for drawing text. Path must be included.
  1327. This parameter is mandatory.
  1328. @item fontsize
  1329. The font size to be used for drawing text.
  1330. The default value of @var{fontsize} is 16.
  1331. @item ft_load_flags
  1332. Flags to be used for loading the fonts.
  1333. The flags map the corresponding flags supported by libfreetype, and are
  1334. a combination of the following values:
  1335. @table @var
  1336. @item default
  1337. @item no_scale
  1338. @item no_hinting
  1339. @item render
  1340. @item no_bitmap
  1341. @item vertical_layout
  1342. @item force_autohint
  1343. @item crop_bitmap
  1344. @item pedantic
  1345. @item ignore_global_advance_width
  1346. @item no_recurse
  1347. @item ignore_transform
  1348. @item monochrome
  1349. @item linear_design
  1350. @item no_autohint
  1351. @item end table
  1352. @end table
  1353. Default value is "render".
  1354. For more information consult the documentation for the FT_LOAD_*
  1355. libfreetype flags.
  1356. @item shadowcolor
  1357. The color to be used for drawing a shadow behind the drawn text. It
  1358. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1359. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1360. The default value of @var{shadowcolor} is "black".
  1361. @item shadowx, shadowy
  1362. The x and y offsets for the text shadow position with respect to the
  1363. position of the text. They can be either positive or negative
  1364. values. Default value for both is "0".
  1365. @item tabsize
  1366. The size in number of spaces to use for rendering the tab.
  1367. Default value is 4.
  1368. @item timecode
  1369. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1370. format. It can be used with or without text parameter. @var{timecode_rate}
  1371. option must be specified.
  1372. @item timecode_rate, rate, r
  1373. Set the timecode frame rate (timecode only).
  1374. @item text
  1375. The text string to be drawn. The text must be a sequence of UTF-8
  1376. encoded characters.
  1377. This parameter is mandatory if no file is specified with the parameter
  1378. @var{textfile}.
  1379. @item textfile
  1380. A text file containing text to be drawn. The text must be a sequence
  1381. of UTF-8 encoded characters.
  1382. This parameter is mandatory if no text string is specified with the
  1383. parameter @var{text}.
  1384. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1385. @item x, y
  1386. The expressions which specify the offsets where text will be drawn
  1387. within the video frame. They are relative to the top/left border of the
  1388. output image.
  1389. The default value of @var{x} and @var{y} is "0".
  1390. See below for the list of accepted constants and functions.
  1391. @end table
  1392. The parameters for @var{x} and @var{y} are expressions containing the
  1393. following constants and functions:
  1394. @table @option
  1395. @item dar
  1396. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1397. @item hsub, vsub
  1398. horizontal and vertical chroma subsample values. For example for the
  1399. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1400. @item line_h, lh
  1401. the height of each text line
  1402. @item main_h, h, H
  1403. the input height
  1404. @item main_w, w, W
  1405. the input width
  1406. @item max_glyph_a, ascent
  1407. the maximum distance from the baseline to the highest/upper grid
  1408. coordinate used to place a glyph outline point, for all the rendered
  1409. glyphs.
  1410. It is a positive value, due to the grid's orientation with the Y axis
  1411. upwards.
  1412. @item max_glyph_d, descent
  1413. the maximum distance from the baseline to the lowest grid coordinate
  1414. used to place a glyph outline point, for all the rendered glyphs.
  1415. This is a negative value, due to the grid's orientation, with the Y axis
  1416. upwards.
  1417. @item max_glyph_h
  1418. maximum glyph height, that is the maximum height for all the glyphs
  1419. contained in the rendered text, it is equivalent to @var{ascent} -
  1420. @var{descent}.
  1421. @item max_glyph_w
  1422. maximum glyph width, that is the maximum width for all the glyphs
  1423. contained in the rendered text
  1424. @item n
  1425. the number of input frame, starting from 0
  1426. @item rand(min, max)
  1427. return a random number included between @var{min} and @var{max}
  1428. @item sar
  1429. input sample aspect ratio
  1430. @item t
  1431. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1432. @item text_h, th
  1433. the height of the rendered text
  1434. @item text_w, tw
  1435. the width of the rendered text
  1436. @item x, y
  1437. the x and y offset coordinates where the text is drawn.
  1438. These parameters allow the @var{x} and @var{y} expressions to refer
  1439. each other, so you can for example specify @code{y=x/dar}.
  1440. @end table
  1441. If libavfilter was built with @code{--enable-fontconfig}, then
  1442. @option{fontfile} can be a fontconfig pattern or omitted.
  1443. Some examples follow.
  1444. @itemize
  1445. @item
  1446. Draw "Test Text" with font FreeSerif, using the default values for the
  1447. optional parameters.
  1448. @example
  1449. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1450. @end example
  1451. @item
  1452. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1453. and y=50 (counting from the top-left corner of the screen), text is
  1454. yellow with a red box around it. Both the text and the box have an
  1455. opacity of 20%.
  1456. @example
  1457. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1458. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1459. @end example
  1460. Note that the double quotes are not necessary if spaces are not used
  1461. within the parameter list.
  1462. @item
  1463. Show the text at the center of the video frame:
  1464. @example
  1465. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1466. @end example
  1467. @item
  1468. Show a text line sliding from right to left in the last row of the video
  1469. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1470. with no newlines.
  1471. @example
  1472. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1473. @end example
  1474. @item
  1475. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1476. @example
  1477. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1478. @end example
  1479. @item
  1480. Draw a single green letter "g", at the center of the input video.
  1481. The glyph baseline is placed at half screen height.
  1482. @example
  1483. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1484. @end example
  1485. @item
  1486. Show text for 1 second every 3 seconds:
  1487. @example
  1488. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1489. @end example
  1490. @item
  1491. Use fontconfig to set the font. Note that the colons need to be escaped.
  1492. @example
  1493. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1494. @end example
  1495. @end itemize
  1496. For more information about libfreetype, check:
  1497. @url{http://www.freetype.org/}.
  1498. For more information about fontconfig, check:
  1499. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1500. @section edgedetect
  1501. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1502. This filter accepts the following optional named parameters:
  1503. @table @option
  1504. @item low, high
  1505. Set low and high threshold values used by the Canny thresholding
  1506. algorithm.
  1507. The high threshold selects the "strong" edge pixels, which are then
  1508. connected through 8-connectivity with the "weak" edge pixels selected
  1509. by the low threshold.
  1510. @var{low} and @var{high} threshold values must be choosen in the range
  1511. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1512. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1513. is @code{50/255}.
  1514. @end table
  1515. Example:
  1516. @example
  1517. edgedetect=low=0.1:high=0.4
  1518. @end example
  1519. @section fade
  1520. Apply fade-in/out effect to input video.
  1521. It accepts the parameters:
  1522. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1523. @var{type} specifies if the effect type, can be either "in" for
  1524. fade-in, or "out" for a fade-out effect.
  1525. @var{start_frame} specifies the number of the start frame for starting
  1526. to apply the fade effect.
  1527. @var{nb_frames} specifies the number of frames for which the fade
  1528. effect has to last. At the end of the fade-in effect the output video
  1529. will have the same intensity as the input video, at the end of the
  1530. fade-out transition the output video will be completely black.
  1531. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1532. separated by ":". The description of the accepted options follows.
  1533. @table @option
  1534. @item type, t
  1535. See @var{type}.
  1536. @item start_frame, s
  1537. See @var{start_frame}.
  1538. @item nb_frames, n
  1539. See @var{nb_frames}.
  1540. @item alpha
  1541. If set to 1, fade only alpha channel, if one exists on the input.
  1542. Default value is 0.
  1543. @end table
  1544. A few usage examples follow, usable too as test scenarios.
  1545. @example
  1546. # fade in first 30 frames of video
  1547. fade=in:0:30
  1548. # fade out last 45 frames of a 200-frame video
  1549. fade=out:155:45
  1550. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1551. fade=in:0:25, fade=out:975:25
  1552. # make first 5 frames black, then fade in from frame 5-24
  1553. fade=in:5:20
  1554. # fade in alpha over first 25 frames of video
  1555. fade=in:0:25:alpha=1
  1556. @end example
  1557. @section fieldorder
  1558. Transform the field order of the input video.
  1559. It accepts one parameter which specifies the required field order that
  1560. the input interlaced video will be transformed to. The parameter can
  1561. assume one of the following values:
  1562. @table @option
  1563. @item 0 or bff
  1564. output bottom field first
  1565. @item 1 or tff
  1566. output top field first
  1567. @end table
  1568. Default value is "tff".
  1569. Transformation is achieved by shifting the picture content up or down
  1570. by one line, and filling the remaining line with appropriate picture content.
  1571. This method is consistent with most broadcast field order converters.
  1572. If the input video is not flagged as being interlaced, or it is already
  1573. flagged as being of the required output field order then this filter does
  1574. not alter the incoming video.
  1575. This filter is very useful when converting to or from PAL DV material,
  1576. which is bottom field first.
  1577. For example:
  1578. @example
  1579. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1580. @end example
  1581. @section fifo
  1582. Buffer input images and send them when they are requested.
  1583. This filter is mainly useful when auto-inserted by the libavfilter
  1584. framework.
  1585. The filter does not take parameters.
  1586. @section format
  1587. Convert the input video to one of the specified pixel formats.
  1588. Libavfilter will try to pick one that is supported for the input to
  1589. the next filter.
  1590. The filter accepts a list of pixel format names, separated by ":",
  1591. for example "yuv420p:monow:rgb24".
  1592. Some examples follow:
  1593. @example
  1594. # convert the input video to the format "yuv420p"
  1595. format=yuv420p
  1596. # convert the input video to any of the formats in the list
  1597. format=yuv420p:yuv444p:yuv410p
  1598. @end example
  1599. @section fps
  1600. Convert the video to specified constant framerate by duplicating or dropping
  1601. frames as necessary.
  1602. This filter accepts the following named parameters:
  1603. @table @option
  1604. @item fps
  1605. Desired output framerate.
  1606. @end table
  1607. @section framestep
  1608. Select one frame every N.
  1609. This filter accepts in input a string representing a positive
  1610. integer. Default argument is @code{1}.
  1611. @anchor{frei0r}
  1612. @section frei0r
  1613. Apply a frei0r effect to the input video.
  1614. To enable compilation of this filter you need to install the frei0r
  1615. header and configure FFmpeg with @code{--enable-frei0r}.
  1616. The filter supports the syntax:
  1617. @example
  1618. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1619. @end example
  1620. @var{filter_name} is the name to the frei0r effect to load. If the
  1621. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1622. is searched in each one of the directories specified by the colon
  1623. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1624. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1625. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1626. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1627. for the frei0r effect.
  1628. A frei0r effect parameter can be a boolean (whose values are specified
  1629. with "y" and "n"), a double, a color (specified by the syntax
  1630. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1631. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1632. description), a position (specified by the syntax @var{X}/@var{Y},
  1633. @var{X} and @var{Y} being float numbers) and a string.
  1634. The number and kind of parameters depend on the loaded effect. If an
  1635. effect parameter is not specified the default value is set.
  1636. Some examples follow:
  1637. @itemize
  1638. @item
  1639. Apply the distort0r effect, set the first two double parameters:
  1640. @example
  1641. frei0r=distort0r:0.5:0.01
  1642. @end example
  1643. @item
  1644. Apply the colordistance effect, takes a color as first parameter:
  1645. @example
  1646. frei0r=colordistance:0.2/0.3/0.4
  1647. frei0r=colordistance:violet
  1648. frei0r=colordistance:0x112233
  1649. @end example
  1650. @item
  1651. Apply the perspective effect, specify the top left and top right image
  1652. positions:
  1653. @example
  1654. frei0r=perspective:0.2/0.2:0.8/0.2
  1655. @end example
  1656. @end itemize
  1657. For more information see:
  1658. @url{http://frei0r.dyne.org}
  1659. @section gradfun
  1660. Fix the banding artifacts that are sometimes introduced into nearly flat
  1661. regions by truncation to 8bit color depth.
  1662. Interpolate the gradients that should go where the bands are, and
  1663. dither them.
  1664. This filter is designed for playback only. Do not use it prior to
  1665. lossy compression, because compression tends to lose the dither and
  1666. bring back the bands.
  1667. The filter takes two optional parameters, separated by ':':
  1668. @var{strength}:@var{radius}
  1669. @var{strength} is the maximum amount by which the filter will change
  1670. any one pixel. Also the threshold for detecting nearly flat
  1671. regions. Acceptable values range from .51 to 255, default value is
  1672. 1.2, out-of-range values will be clipped to the valid range.
  1673. @var{radius} is the neighborhood to fit the gradient to. A larger
  1674. radius makes for smoother gradients, but also prevents the filter from
  1675. modifying the pixels near detailed regions. Acceptable values are
  1676. 8-32, default value is 16, out-of-range values will be clipped to the
  1677. valid range.
  1678. @example
  1679. # default parameters
  1680. gradfun=1.2:16
  1681. # omitting radius
  1682. gradfun=1.2
  1683. @end example
  1684. @section hflip
  1685. Flip the input video horizontally.
  1686. For example to horizontally flip the input video with @command{ffmpeg}:
  1687. @example
  1688. ffmpeg -i in.avi -vf "hflip" out.avi
  1689. @end example
  1690. @section hqdn3d
  1691. High precision/quality 3d denoise filter. This filter aims to reduce
  1692. image noise producing smooth images and making still images really
  1693. still. It should enhance compressibility.
  1694. It accepts the following optional parameters:
  1695. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1696. @table @option
  1697. @item luma_spatial
  1698. a non-negative float number which specifies spatial luma strength,
  1699. defaults to 4.0
  1700. @item chroma_spatial
  1701. a non-negative float number which specifies spatial chroma strength,
  1702. defaults to 3.0*@var{luma_spatial}/4.0
  1703. @item luma_tmp
  1704. a float number which specifies luma temporal strength, defaults to
  1705. 6.0*@var{luma_spatial}/4.0
  1706. @item chroma_tmp
  1707. a float number which specifies chroma temporal strength, defaults to
  1708. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1709. @end table
  1710. @section hue
  1711. Modify the hue and/or the saturation of the input.
  1712. This filter accepts the following optional named options:
  1713. @table @option
  1714. @item h
  1715. Specify the hue angle as a number of degrees. It accepts a float
  1716. number or an expression, and defaults to 0.0.
  1717. @item H
  1718. Specify the hue angle as a number of degrees. It accepts a float
  1719. number or an expression, and defaults to 0.0.
  1720. @item s
  1721. Specify the saturation in the [-10,10] range. It accepts a float number and
  1722. defaults to 1.0.
  1723. @end table
  1724. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1725. following constants:
  1726. @table @option
  1727. @item n
  1728. frame count of the input frame starting from 0
  1729. @item pts
  1730. presentation timestamp of the input frame expressed in time base units
  1731. @item r
  1732. frame rate of the input video, NAN if the input frame rate is unknown
  1733. @item t
  1734. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1735. @item tb
  1736. time base of the input video
  1737. @end table
  1738. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1739. In this case @var{hue} is expressed in degrees.
  1740. Some examples follow:
  1741. @itemize
  1742. @item
  1743. Set the hue to 90 degrees and the saturation to 1.0:
  1744. @example
  1745. hue=h=90:s=1
  1746. @end example
  1747. @item
  1748. Same command but expressing the hue in radians:
  1749. @example
  1750. hue=H=PI/2:s=1
  1751. @end example
  1752. @item
  1753. Same command without named options, hue must be expressed in degrees:
  1754. @example
  1755. hue=90:1
  1756. @end example
  1757. @item
  1758. Note that "h:s" syntax does not support expressions for the values of
  1759. h and s, so the following example will issue an error:
  1760. @example
  1761. hue=PI/2:1
  1762. @end example
  1763. @item
  1764. Rotate hue and make the saturation swing between 0
  1765. and 2 over a period of 1 second:
  1766. @example
  1767. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1768. @end example
  1769. @item
  1770. Apply a 3 seconds saturation fade-in effect starting at 0:
  1771. @example
  1772. hue="s=min(t/3\,1)"
  1773. @end example
  1774. The general fade-in expression can be written as:
  1775. @example
  1776. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1777. @end example
  1778. @item
  1779. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1780. @example
  1781. hue="s=max(0\, min(1\, (8-t)/3))"
  1782. @end example
  1783. The general fade-out expression can be written as:
  1784. @example
  1785. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1786. @end example
  1787. @end itemize
  1788. @subsection Commands
  1789. This filter supports the following command:
  1790. @table @option
  1791. @item reinit
  1792. Modify the hue and/or the saturation of the input video.
  1793. The command accepts the same named options and syntax than when calling the
  1794. filter from the command-line.
  1795. If a parameter is omitted, it is kept at its current value.
  1796. @end table
  1797. @section idet
  1798. Interlaceing detect filter. This filter tries to detect if the input is
  1799. interlaced or progressive. Top or bottom field first.
  1800. @section lut, lutrgb, lutyuv
  1801. Compute a look-up table for binding each pixel component input value
  1802. to an output value, and apply it to input video.
  1803. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1804. to an RGB input video.
  1805. These filters accept in input a ":"-separated list of options, which
  1806. specify the expressions used for computing the lookup table for the
  1807. corresponding pixel component values.
  1808. The @var{lut} filter requires either YUV or RGB pixel formats in
  1809. input, and accepts the options:
  1810. @table @option
  1811. @item @var{c0} (first pixel component)
  1812. @item @var{c1} (second pixel component)
  1813. @item @var{c2} (third pixel component)
  1814. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1815. @end table
  1816. The exact component associated to each option depends on the format in
  1817. input.
  1818. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1819. accepts the options:
  1820. @table @option
  1821. @item @var{r} (red component)
  1822. @item @var{g} (green component)
  1823. @item @var{b} (blue component)
  1824. @item @var{a} (alpha component)
  1825. @end table
  1826. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1827. accepts the options:
  1828. @table @option
  1829. @item @var{y} (Y/luminance component)
  1830. @item @var{u} (U/Cb component)
  1831. @item @var{v} (V/Cr component)
  1832. @item @var{a} (alpha component)
  1833. @end table
  1834. The expressions can contain the following constants and functions:
  1835. @table @option
  1836. @item w, h
  1837. the input width and height
  1838. @item val
  1839. input value for the pixel component
  1840. @item clipval
  1841. the input value clipped in the @var{minval}-@var{maxval} range
  1842. @item maxval
  1843. maximum value for the pixel component
  1844. @item minval
  1845. minimum value for the pixel component
  1846. @item negval
  1847. the negated value for the pixel component value clipped in the
  1848. @var{minval}-@var{maxval} range , it corresponds to the expression
  1849. "maxval-clipval+minval"
  1850. @item clip(val)
  1851. the computed value in @var{val} clipped in the
  1852. @var{minval}-@var{maxval} range
  1853. @item gammaval(gamma)
  1854. the computed gamma correction value of the pixel component value
  1855. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1856. expression
  1857. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1858. @end table
  1859. All expressions default to "val".
  1860. Some examples follow:
  1861. @example
  1862. # negate input video
  1863. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1864. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1865. # the above is the same as
  1866. lutrgb="r=negval:g=negval:b=negval"
  1867. lutyuv="y=negval:u=negval:v=negval"
  1868. # negate luminance
  1869. lutyuv=y=negval
  1870. # remove chroma components, turns the video into a graytone image
  1871. lutyuv="u=128:v=128"
  1872. # apply a luma burning effect
  1873. lutyuv="y=2*val"
  1874. # remove green and blue components
  1875. lutrgb="g=0:b=0"
  1876. # set a constant alpha channel value on input
  1877. format=rgba,lutrgb=a="maxval-minval/2"
  1878. # correct luminance gamma by a 0.5 factor
  1879. lutyuv=y=gammaval(0.5)
  1880. @end example
  1881. @section mp
  1882. Apply an MPlayer filter to the input video.
  1883. This filter provides a wrapper around most of the filters of
  1884. MPlayer/MEncoder.
  1885. This wrapper is considered experimental. Some of the wrapped filters
  1886. may not work properly and we may drop support for them, as they will
  1887. be implemented natively into FFmpeg. Thus you should avoid
  1888. depending on them when writing portable scripts.
  1889. The filters accepts the parameters:
  1890. @var{filter_name}[:=]@var{filter_params}
  1891. @var{filter_name} is the name of a supported MPlayer filter,
  1892. @var{filter_params} is a string containing the parameters accepted by
  1893. the named filter.
  1894. The list of the currently supported filters follows:
  1895. @table @var
  1896. @item denoise3d
  1897. @item detc
  1898. @item dint
  1899. @item divtc
  1900. @item down3dright
  1901. @item dsize
  1902. @item eq2
  1903. @item eq
  1904. @item field
  1905. @item fil
  1906. @item fixpts
  1907. @item fspp
  1908. @item geq
  1909. @item harddup
  1910. @item hqdn3d
  1911. @item il
  1912. @item ilpack
  1913. @item ivtc
  1914. @item kerndeint
  1915. @item mcdeint
  1916. @item noise
  1917. @item ow
  1918. @item palette
  1919. @item perspective
  1920. @item phase
  1921. @item pp7
  1922. @item pullup
  1923. @item qp
  1924. @item rectangle
  1925. @item sab
  1926. @item softpulldown
  1927. @item softskip
  1928. @item spp
  1929. @item telecine
  1930. @item tile
  1931. @item tinterlace
  1932. @item unsharp
  1933. @item uspp
  1934. @item yuvcsp
  1935. @item yvu9
  1936. @end table
  1937. The parameter syntax and behavior for the listed filters are the same
  1938. of the corresponding MPlayer filters. For detailed instructions check
  1939. the "VIDEO FILTERS" section in the MPlayer manual.
  1940. Some examples follow:
  1941. @itemize
  1942. @item
  1943. Adjust gamma, brightness, contrast:
  1944. @example
  1945. mp=eq2=1.0:2:0.5
  1946. @end example
  1947. @item
  1948. Add temporal noise to input video:
  1949. @example
  1950. mp=noise=20t
  1951. @end example
  1952. @end itemize
  1953. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1954. @section negate
  1955. Negate input video.
  1956. This filter accepts an integer in input, if non-zero it negates the
  1957. alpha component (if available). The default value in input is 0.
  1958. @section noformat
  1959. Force libavfilter not to use any of the specified pixel formats for the
  1960. input to the next filter.
  1961. The filter accepts a list of pixel format names, separated by ":",
  1962. for example "yuv420p:monow:rgb24".
  1963. Some examples follow:
  1964. @example
  1965. # force libavfilter to use a format different from "yuv420p" for the
  1966. # input to the vflip filter
  1967. noformat=yuv420p,vflip
  1968. # convert the input video to any of the formats not contained in the list
  1969. noformat=yuv420p:yuv444p:yuv410p
  1970. @end example
  1971. @section null
  1972. Pass the video source unchanged to the output.
  1973. @section ocv
  1974. Apply video transform using libopencv.
  1975. To enable this filter install libopencv library and headers and
  1976. configure FFmpeg with @code{--enable-libopencv}.
  1977. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1978. @var{filter_name} is the name of the libopencv filter to apply.
  1979. @var{filter_params} specifies the parameters to pass to the libopencv
  1980. filter. If not specified the default values are assumed.
  1981. Refer to the official libopencv documentation for more precise
  1982. information:
  1983. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1984. Follows the list of supported libopencv filters.
  1985. @anchor{dilate}
  1986. @subsection dilate
  1987. Dilate an image by using a specific structuring element.
  1988. This filter corresponds to the libopencv function @code{cvDilate}.
  1989. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1990. @var{struct_el} represents a structuring element, and has the syntax:
  1991. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1992. @var{cols} and @var{rows} represent the number of columns and rows of
  1993. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1994. point, and @var{shape} the shape for the structuring element, and
  1995. can be one of the values "rect", "cross", "ellipse", "custom".
  1996. If the value for @var{shape} is "custom", it must be followed by a
  1997. string of the form "=@var{filename}". The file with name
  1998. @var{filename} is assumed to represent a binary image, with each
  1999. printable character corresponding to a bright pixel. When a custom
  2000. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2001. or columns and rows of the read file are assumed instead.
  2002. The default value for @var{struct_el} is "3x3+0x0/rect".
  2003. @var{nb_iterations} specifies the number of times the transform is
  2004. applied to the image, and defaults to 1.
  2005. Follow some example:
  2006. @example
  2007. # use the default values
  2008. ocv=dilate
  2009. # dilate using a structuring element with a 5x5 cross, iterate two times
  2010. ocv=dilate=5x5+2x2/cross:2
  2011. # read the shape from the file diamond.shape, iterate two times
  2012. # the file diamond.shape may contain a pattern of characters like this:
  2013. # *
  2014. # ***
  2015. # *****
  2016. # ***
  2017. # *
  2018. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2019. ocv=0x0+2x2/custom=diamond.shape:2
  2020. @end example
  2021. @subsection erode
  2022. Erode an image by using a specific structuring element.
  2023. This filter corresponds to the libopencv function @code{cvErode}.
  2024. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2025. with the same syntax and semantics as the @ref{dilate} filter.
  2026. @subsection smooth
  2027. Smooth the input video.
  2028. The filter takes the following parameters:
  2029. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2030. @var{type} is the type of smooth filter to apply, and can be one of
  2031. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2032. "bilateral". The default value is "gaussian".
  2033. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2034. parameters whose meanings depend on smooth type. @var{param1} and
  2035. @var{param2} accept integer positive values or 0, @var{param3} and
  2036. @var{param4} accept float values.
  2037. The default value for @var{param1} is 3, the default value for the
  2038. other parameters is 0.
  2039. These parameters correspond to the parameters assigned to the
  2040. libopencv function @code{cvSmooth}.
  2041. @anchor{overlay}
  2042. @section overlay
  2043. Overlay one video on top of another.
  2044. It takes two inputs and one output, the first input is the "main"
  2045. video on which the second input is overlayed.
  2046. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2047. @var{x} is the x coordinate of the overlayed video on the main video,
  2048. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2049. the following parameters:
  2050. @table @option
  2051. @item main_w, main_h
  2052. main input width and height
  2053. @item W, H
  2054. same as @var{main_w} and @var{main_h}
  2055. @item overlay_w, overlay_h
  2056. overlay input width and height
  2057. @item w, h
  2058. same as @var{overlay_w} and @var{overlay_h}
  2059. @end table
  2060. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2061. separated by ":".
  2062. The description of the accepted options follows.
  2063. @table @option
  2064. @item rgb
  2065. If set to 1, force the filter to accept inputs in the RGB
  2066. color space. Default value is 0.
  2067. @end table
  2068. Be aware that frames are taken from each input video in timestamp
  2069. order, hence, if their initial timestamps differ, it is a a good idea
  2070. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2071. have them begin in the same zero timestamp, as it does the example for
  2072. the @var{movie} filter.
  2073. Follow some examples:
  2074. @example
  2075. # draw the overlay at 10 pixels from the bottom right
  2076. # corner of the main video.
  2077. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2078. # insert a transparent PNG logo in the bottom left corner of the input
  2079. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2080. # insert 2 different transparent PNG logos (second logo on bottom
  2081. # right corner):
  2082. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2083. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2084. # add a transparent color layer on top of the main video,
  2085. # WxH specifies the size of the main input to the overlay filter
  2086. color=red@.3:WxH [over]; [in][over] overlay [out]
  2087. # play an original video and a filtered version (here with the deshake filter)
  2088. # side by side
  2089. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2090. # the previous example is the same as:
  2091. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2092. @end example
  2093. You can chain together more overlays but the efficiency of such
  2094. approach is yet to be tested.
  2095. @section pad
  2096. Add paddings to the input image, and places the original input at the
  2097. given coordinates @var{x}, @var{y}.
  2098. It accepts the following parameters:
  2099. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2100. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2101. expressions containing the following constants:
  2102. @table @option
  2103. @item in_w, in_h
  2104. the input video width and height
  2105. @item iw, ih
  2106. same as @var{in_w} and @var{in_h}
  2107. @item out_w, out_h
  2108. the output width and height, that is the size of the padded area as
  2109. specified by the @var{width} and @var{height} expressions
  2110. @item ow, oh
  2111. same as @var{out_w} and @var{out_h}
  2112. @item x, y
  2113. x and y offsets as specified by the @var{x} and @var{y}
  2114. expressions, or NAN if not yet specified
  2115. @item a
  2116. same as @var{iw} / @var{ih}
  2117. @item sar
  2118. input sample aspect ratio
  2119. @item dar
  2120. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2121. @item hsub, vsub
  2122. horizontal and vertical chroma subsample values. For example for the
  2123. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2124. @end table
  2125. Follows the description of the accepted parameters.
  2126. @table @option
  2127. @item width, height
  2128. Specify the size of the output image with the paddings added. If the
  2129. value for @var{width} or @var{height} is 0, the corresponding input size
  2130. is used for the output.
  2131. The @var{width} expression can reference the value set by the
  2132. @var{height} expression, and vice versa.
  2133. The default value of @var{width} and @var{height} is 0.
  2134. @item x, y
  2135. Specify the offsets where to place the input image in the padded area
  2136. with respect to the top/left border of the output image.
  2137. The @var{x} expression can reference the value set by the @var{y}
  2138. expression, and vice versa.
  2139. The default value of @var{x} and @var{y} is 0.
  2140. @item color
  2141. Specify the color of the padded area, it can be the name of a color
  2142. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2143. The default value of @var{color} is "black".
  2144. @end table
  2145. @section Examples
  2146. @itemize
  2147. @item
  2148. Add paddings with color "violet" to the input video. Output video
  2149. size is 640x480, the top-left corner of the input video is placed at
  2150. column 0, row 40:
  2151. @example
  2152. pad=640:480:0:40:violet
  2153. @end example
  2154. @item
  2155. Pad the input to get an output with dimensions increased by 3/2,
  2156. and put the input video at the center of the padded area:
  2157. @example
  2158. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2159. @end example
  2160. @item
  2161. Pad the input to get a squared output with size equal to the maximum
  2162. value between the input width and height, and put the input video at
  2163. the center of the padded area:
  2164. @example
  2165. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2166. @end example
  2167. @item
  2168. Pad the input to get a final w/h ratio of 16:9:
  2169. @example
  2170. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2171. @end example
  2172. @item
  2173. In case of anamorphic video, in order to set the output display aspect
  2174. correctly, it is necessary to use @var{sar} in the expression,
  2175. according to the relation:
  2176. @example
  2177. (ih * X / ih) * sar = output_dar
  2178. X = output_dar / sar
  2179. @end example
  2180. Thus the previous example needs to be modified to:
  2181. @example
  2182. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2183. @end example
  2184. @item
  2185. Double output size and put the input video in the bottom-right
  2186. corner of the output padded area:
  2187. @example
  2188. pad="2*iw:2*ih:ow-iw:oh-ih"
  2189. @end example
  2190. @end itemize
  2191. @section pixdesctest
  2192. Pixel format descriptor test filter, mainly useful for internal
  2193. testing. The output video should be equal to the input video.
  2194. For example:
  2195. @example
  2196. format=monow, pixdesctest
  2197. @end example
  2198. can be used to test the monowhite pixel format descriptor definition.
  2199. @section removelogo
  2200. Suppress a TV station logo, using an image file to determine which
  2201. pixels comprise the logo. It works by filling in the pixels that
  2202. comprise the logo with neighboring pixels.
  2203. This filter requires one argument which specifies the filter bitmap
  2204. file, which can be any image format supported by libavformat. The
  2205. width and height of the image file must match those of the video
  2206. stream being processed.
  2207. Pixels in the provided bitmap image with a value of zero are not
  2208. considered part of the logo, non-zero pixels are considered part of
  2209. the logo. If you use white (255) for the logo and black (0) for the
  2210. rest, you will be safe. For making the filter bitmap, it is
  2211. recommended to take a screen capture of a black frame with the logo
  2212. visible, and then using a threshold filter followed by the erode
  2213. filter once or twice.
  2214. If needed, little splotches can be fixed manually. Remember that if
  2215. logo pixels are not covered, the filter quality will be much
  2216. reduced. Marking too many pixels as part of the logo does not hurt as
  2217. much, but it will increase the amount of blurring needed to cover over
  2218. the image and will destroy more information than necessary, and extra
  2219. pixels will slow things down on a large logo.
  2220. @section scale
  2221. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2222. The scale filter forces the output display aspect ratio to be the same
  2223. of the input, by changing the output sample aspect ratio.
  2224. The parameters @var{width} and @var{height} are expressions containing
  2225. the following constants:
  2226. @table @option
  2227. @item in_w, in_h
  2228. the input width and height
  2229. @item iw, ih
  2230. same as @var{in_w} and @var{in_h}
  2231. @item out_w, out_h
  2232. the output (cropped) width and height
  2233. @item ow, oh
  2234. same as @var{out_w} and @var{out_h}
  2235. @item a
  2236. same as @var{iw} / @var{ih}
  2237. @item sar
  2238. input sample aspect ratio
  2239. @item dar
  2240. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2241. @item hsub, vsub
  2242. horizontal and vertical chroma subsample values. For example for the
  2243. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2244. @end table
  2245. If the input image format is different from the format requested by
  2246. the next filter, the scale filter will convert the input to the
  2247. requested format.
  2248. If the value for @var{width} or @var{height} is 0, the respective input
  2249. size is used for the output.
  2250. If the value for @var{width} or @var{height} is -1, the scale filter will
  2251. use, for the respective output size, a value that maintains the aspect
  2252. ratio of the input image.
  2253. The default value of @var{width} and @var{height} is 0.
  2254. Valid values for the optional parameter @var{interl} are:
  2255. @table @option
  2256. @item 1
  2257. force interlaced aware scaling
  2258. @item -1
  2259. select interlaced aware scaling depending on whether the source frames
  2260. are flagged as interlaced or not
  2261. @end table
  2262. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2263. Some examples follow:
  2264. @example
  2265. # scale the input video to a size of 200x100.
  2266. scale=200:100
  2267. # scale the input to 2x
  2268. scale=2*iw:2*ih
  2269. # the above is the same as
  2270. scale=2*in_w:2*in_h
  2271. # scale the input to 2x with forced interlaced scaling
  2272. scale=2*iw:2*ih:interl=1
  2273. # scale the input to half size
  2274. scale=iw/2:ih/2
  2275. # increase the width, and set the height to the same size
  2276. scale=3/2*iw:ow
  2277. # seek for Greek harmony
  2278. scale=iw:1/PHI*iw
  2279. scale=ih*PHI:ih
  2280. # increase the height, and set the width to 3/2 of the height
  2281. scale=3/2*oh:3/5*ih
  2282. # increase the size, but make the size a multiple of the chroma
  2283. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2284. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2285. scale='min(500\, iw*3/2):-1'
  2286. @end example
  2287. @section select
  2288. Select frames to pass in output.
  2289. It accepts in input an expression, which is evaluated for each input
  2290. frame. If the expression is evaluated to a non-zero value, the frame
  2291. is selected and passed to the output, otherwise it is discarded.
  2292. The expression can contain the following constants:
  2293. @table @option
  2294. @item n
  2295. the sequential number of the filtered frame, starting from 0
  2296. @item selected_n
  2297. the sequential number of the selected frame, starting from 0
  2298. @item prev_selected_n
  2299. the sequential number of the last selected frame, NAN if undefined
  2300. @item TB
  2301. timebase of the input timestamps
  2302. @item pts
  2303. the PTS (Presentation TimeStamp) of the filtered video frame,
  2304. expressed in @var{TB} units, NAN if undefined
  2305. @item t
  2306. the PTS (Presentation TimeStamp) of the filtered video frame,
  2307. expressed in seconds, NAN if undefined
  2308. @item prev_pts
  2309. the PTS of the previously filtered video frame, NAN if undefined
  2310. @item prev_selected_pts
  2311. the PTS of the last previously filtered video frame, NAN if undefined
  2312. @item prev_selected_t
  2313. the PTS of the last previously selected video frame, NAN if undefined
  2314. @item start_pts
  2315. the PTS of the first video frame in the video, NAN if undefined
  2316. @item start_t
  2317. the time of the first video frame in the video, NAN if undefined
  2318. @item pict_type
  2319. the type of the filtered frame, can assume one of the following
  2320. values:
  2321. @table @option
  2322. @item I
  2323. @item P
  2324. @item B
  2325. @item S
  2326. @item SI
  2327. @item SP
  2328. @item BI
  2329. @end table
  2330. @item interlace_type
  2331. the frame interlace type, can assume one of the following values:
  2332. @table @option
  2333. @item PROGRESSIVE
  2334. the frame is progressive (not interlaced)
  2335. @item TOPFIRST
  2336. the frame is top-field-first
  2337. @item BOTTOMFIRST
  2338. the frame is bottom-field-first
  2339. @end table
  2340. @item key
  2341. 1 if the filtered frame is a key-frame, 0 otherwise
  2342. @item pos
  2343. the position in the file of the filtered frame, -1 if the information
  2344. is not available (e.g. for synthetic video)
  2345. @item scene
  2346. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2347. probability for the current frame to introduce a new scene, while a higher
  2348. value means the current frame is more likely to be one (see the example below)
  2349. @end table
  2350. The default value of the select expression is "1".
  2351. Some examples follow:
  2352. @example
  2353. # select all frames in input
  2354. select
  2355. # the above is the same as:
  2356. select=1
  2357. # skip all frames:
  2358. select=0
  2359. # select only I-frames
  2360. select='eq(pict_type\,I)'
  2361. # select one frame every 100
  2362. select='not(mod(n\,100))'
  2363. # select only frames contained in the 10-20 time interval
  2364. select='gte(t\,10)*lte(t\,20)'
  2365. # select only I frames contained in the 10-20 time interval
  2366. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2367. # select frames with a minimum distance of 10 seconds
  2368. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2369. @end example
  2370. Complete example to create a mosaic of the first scenes:
  2371. @example
  2372. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2373. @end example
  2374. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2375. choice.
  2376. @section setdar, setsar
  2377. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2378. output video.
  2379. This is done by changing the specified Sample (aka Pixel) Aspect
  2380. Ratio, according to the following equation:
  2381. @example
  2382. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2383. @end example
  2384. Keep in mind that the @code{setdar} filter does not modify the pixel
  2385. dimensions of the video frame. Also the display aspect ratio set by
  2386. this filter may be changed by later filters in the filterchain,
  2387. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2388. applied.
  2389. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2390. the filter output video.
  2391. Note that as a consequence of the application of this filter, the
  2392. output display aspect ratio will change according to the equation
  2393. above.
  2394. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2395. filter may be changed by later filters in the filterchain, e.g. if
  2396. another "setsar" or a "setdar" filter is applied.
  2397. The @code{setdar} and @code{setsar} filters accept a parameter string
  2398. which represents the wanted aspect ratio. The parameter can
  2399. be a floating point number string, an expression, or a string of the form
  2400. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2401. and denominator of the aspect ratio. If the parameter is not
  2402. specified, it is assumed the value "0:1".
  2403. For example to change the display aspect ratio to 16:9, specify:
  2404. @example
  2405. setdar=16:9
  2406. @end example
  2407. The example above is equivalent to:
  2408. @example
  2409. setdar=1.77777
  2410. @end example
  2411. To change the sample aspect ratio to 10:11, specify:
  2412. @example
  2413. setsar=10:11
  2414. @end example
  2415. @section setfield
  2416. Force field for the output video frame.
  2417. The @code{setfield} filter marks the interlace type field for the
  2418. output frames. It does not change the input frame, but only sets the
  2419. corresponding property, which affects how the frame is treated by
  2420. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2421. It accepts a string parameter, which can assume the following values:
  2422. @table @samp
  2423. @item auto
  2424. Keep the same field property.
  2425. @item bff
  2426. Mark the frame as bottom-field-first.
  2427. @item tff
  2428. Mark the frame as top-field-first.
  2429. @item prog
  2430. Mark the frame as progressive.
  2431. @end table
  2432. @section showinfo
  2433. Show a line containing various information for each input video frame.
  2434. The input video is not modified.
  2435. The shown line contains a sequence of key/value pairs of the form
  2436. @var{key}:@var{value}.
  2437. A description of each shown parameter follows:
  2438. @table @option
  2439. @item n
  2440. sequential number of the input frame, starting from 0
  2441. @item pts
  2442. Presentation TimeStamp of the input frame, expressed as a number of
  2443. time base units. The time base unit depends on the filter input pad.
  2444. @item pts_time
  2445. Presentation TimeStamp of the input frame, expressed as a number of
  2446. seconds
  2447. @item pos
  2448. position of the frame in the input stream, -1 if this information in
  2449. unavailable and/or meaningless (for example in case of synthetic video)
  2450. @item fmt
  2451. pixel format name
  2452. @item sar
  2453. sample aspect ratio of the input frame, expressed in the form
  2454. @var{num}/@var{den}
  2455. @item s
  2456. size of the input frame, expressed in the form
  2457. @var{width}x@var{height}
  2458. @item i
  2459. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2460. for bottom field first)
  2461. @item iskey
  2462. 1 if the frame is a key frame, 0 otherwise
  2463. @item type
  2464. picture type of the input frame ("I" for an I-frame, "P" for a
  2465. P-frame, "B" for a B-frame, "?" for unknown type).
  2466. Check also the documentation of the @code{AVPictureType} enum and of
  2467. the @code{av_get_picture_type_char} function defined in
  2468. @file{libavutil/avutil.h}.
  2469. @item checksum
  2470. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2471. @item plane_checksum
  2472. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2473. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2474. @end table
  2475. @section slicify
  2476. Pass the images of input video on to next video filter as multiple
  2477. slices.
  2478. @example
  2479. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2480. @end example
  2481. The filter accepts the slice height as parameter. If the parameter is
  2482. not specified it will use the default value of 16.
  2483. Adding this in the beginning of filter chains should make filtering
  2484. faster due to better use of the memory cache.
  2485. @section smartblur
  2486. Blur the input video without impacting the outlines.
  2487. The filter accepts the following parameters:
  2488. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2489. Parameters prefixed by @var{luma} indicate that they work on the
  2490. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2491. refer to the chrominance of the pixels.
  2492. If the chroma parameters are not set, the luma parameters are used for
  2493. either the luminance and the chrominance of the pixels.
  2494. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2495. range [0.1,5.0] that specifies the variance of the gaussian filter
  2496. used to blur the image (slower if larger).
  2497. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2498. the range [-1.0,1.0] that configures the blurring. A value included in
  2499. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2500. will sharpen the image.
  2501. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2502. the range [-30,30] that is used as a coefficient to determine whether
  2503. a pixel should be blurred or not. A value of 0 will filter all the
  2504. image, a value included in [0,30] will filter flat areas and a value
  2505. included in [-30,0] will filter edges.
  2506. @section split
  2507. Split input video into several identical outputs.
  2508. The filter accepts a single parameter which specifies the number of outputs. If
  2509. unspecified, it defaults to 2.
  2510. For example
  2511. @example
  2512. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2513. @end example
  2514. will create 5 copies of the input video.
  2515. For example:
  2516. @example
  2517. [in] split [splitout1][splitout2];
  2518. [splitout1] crop=100:100:0:0 [cropout];
  2519. [splitout2] pad=200:200:100:100 [padout];
  2520. @end example
  2521. will create two separate outputs from the same input, one cropped and
  2522. one padded.
  2523. @section super2xsai
  2524. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2525. Interpolate) pixel art scaling algorithm.
  2526. Useful for enlarging pixel art images without reducing sharpness.
  2527. @section swapuv
  2528. Swap U & V plane.
  2529. @section thumbnail
  2530. Select the most representative frame in a given sequence of consecutive frames.
  2531. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2532. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2533. the next batch of @var{N} frames until the end.
  2534. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2535. value will result in a higher memory usage, so a high value is not recommended.
  2536. The following example extract one picture each 50 frames:
  2537. @example
  2538. thumbnail=50
  2539. @end example
  2540. Complete example of a thumbnail creation with @command{ffmpeg}:
  2541. @example
  2542. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2543. @end example
  2544. @section tile
  2545. Tile several successive frames together.
  2546. It accepts as argument the tile size (i.e. the number of lines and columns)
  2547. in the form "@var{w}x@var{h}".
  2548. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2549. nokey}) in a movie:
  2550. @example
  2551. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2552. @end example
  2553. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2554. duplicating each output frame to accomodate the originally detected frame
  2555. rate.
  2556. @section tinterlace
  2557. Perform various types of temporal field interlacing.
  2558. Frames are counted starting from 1, so the first input frame is
  2559. considered odd.
  2560. This filter accepts a single parameter specifying the mode. Available
  2561. modes are:
  2562. @table @samp
  2563. @item merge, 0
  2564. Move odd frames into the upper field, even into the lower field,
  2565. generating a double height frame at half framerate.
  2566. @item drop_odd, 1
  2567. Only output even frames, odd frames are dropped, generating a frame with
  2568. unchanged height at half framerate.
  2569. @item drop_even, 2
  2570. Only output odd frames, even frames are dropped, generating a frame with
  2571. unchanged height at half framerate.
  2572. @item pad, 3
  2573. Expand each frame to full height, but pad alternate lines with black,
  2574. generating a frame with double height at the same input framerate.
  2575. @item interleave_top, 4
  2576. Interleave the upper field from odd frames with the lower field from
  2577. even frames, generating a frame with unchanged height at half framerate.
  2578. @item interleave_bottom, 5
  2579. Interleave the lower field from odd frames with the upper field from
  2580. even frames, generating a frame with unchanged height at half framerate.
  2581. @item interlacex2, 6
  2582. Double frame rate with unchanged height. Frames are inserted each
  2583. containing the second temporal field from the previous input frame and
  2584. the first temporal field from the next input frame. This mode relies on
  2585. the top_field_first flag. Useful for interlaced video displays with no
  2586. field synchronisation.
  2587. @end table
  2588. Numeric values are deprecated but are accepted for backward
  2589. compatibility reasons.
  2590. Default mode is @code{merge}.
  2591. @section transpose
  2592. Transpose rows with columns in the input video and optionally flip it.
  2593. This filter accepts the following named parameters:
  2594. @table @option
  2595. @item dir
  2596. Specify the transposition direction. Can assume the following values:
  2597. @table @samp
  2598. @item 0, 4
  2599. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2600. @example
  2601. L.R L.l
  2602. . . -> . .
  2603. l.r R.r
  2604. @end example
  2605. @item 1, 5
  2606. Rotate by 90 degrees clockwise, that is:
  2607. @example
  2608. L.R l.L
  2609. . . -> . .
  2610. l.r r.R
  2611. @end example
  2612. @item 2, 6
  2613. Rotate by 90 degrees counterclockwise, that is:
  2614. @example
  2615. L.R R.r
  2616. . . -> . .
  2617. l.r L.l
  2618. @end example
  2619. @item 3, 7
  2620. Rotate by 90 degrees clockwise and vertically flip, that is:
  2621. @example
  2622. L.R r.R
  2623. . . -> . .
  2624. l.r l.L
  2625. @end example
  2626. @end table
  2627. For values between 4-7, the transposition is only done if the input
  2628. video geometry is portrait and not landscape. These values are
  2629. deprecated, the @code{passthrough} option should be used instead.
  2630. @item passthrough
  2631. Do not apply the transposition if the input geometry matches the one
  2632. specified by the specified value. It accepts the following values:
  2633. @table @samp
  2634. @item none
  2635. Always apply transposition.
  2636. @item portrait
  2637. Preserve portrait geometry (when @var{height} >= @var{width}).
  2638. @item landscape
  2639. Preserve landscape geometry (when @var{width} >= @var{height}).
  2640. @end table
  2641. Default value is @code{none}.
  2642. @end table
  2643. @section unsharp
  2644. Sharpen or blur the input video.
  2645. It accepts the following parameters:
  2646. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2647. Negative values for the amount will blur the input video, while positive
  2648. values will sharpen. All parameters are optional and default to the
  2649. equivalent of the string '5:5:1.0:5:5:0.0'.
  2650. @table @option
  2651. @item luma_msize_x
  2652. Set the luma matrix horizontal size. It can be an integer between 3
  2653. and 13, default value is 5.
  2654. @item luma_msize_y
  2655. Set the luma matrix vertical size. It can be an integer between 3
  2656. and 13, default value is 5.
  2657. @item luma_amount
  2658. Set the luma effect strength. It can be a float number between -2.0
  2659. and 5.0, default value is 1.0.
  2660. @item chroma_msize_x
  2661. Set the chroma matrix horizontal size. It can be an integer between 3
  2662. and 13, default value is 5.
  2663. @item chroma_msize_y
  2664. Set the chroma matrix vertical size. It can be an integer between 3
  2665. and 13, default value is 5.
  2666. @item chroma_amount
  2667. Set the chroma effect strength. It can be a float number between -2.0
  2668. and 5.0, default value is 0.0.
  2669. @end table
  2670. @example
  2671. # Strong luma sharpen effect parameters
  2672. unsharp=7:7:2.5
  2673. # Strong blur of both luma and chroma parameters
  2674. unsharp=7:7:-2:7:7:-2
  2675. # Use the default values with @command{ffmpeg}
  2676. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2677. @end example
  2678. @section vflip
  2679. Flip the input video vertically.
  2680. @example
  2681. ffmpeg -i in.avi -vf "vflip" out.avi
  2682. @end example
  2683. @section yadif
  2684. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2685. filter").
  2686. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2687. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2688. following values:
  2689. @table @option
  2690. @item 0
  2691. output 1 frame for each frame
  2692. @item 1
  2693. output 1 frame for each field
  2694. @item 2
  2695. like 0 but skips spatial interlacing check
  2696. @item 3
  2697. like 1 but skips spatial interlacing check
  2698. @end table
  2699. Default value is 0.
  2700. @var{parity} specifies the picture field parity assumed for the input
  2701. interlaced video, accepts one of the following values:
  2702. @table @option
  2703. @item 0
  2704. assume top field first
  2705. @item 1
  2706. assume bottom field first
  2707. @item -1
  2708. enable automatic detection
  2709. @end table
  2710. Default value is -1.
  2711. If interlacing is unknown or decoder does not export this information,
  2712. top field first will be assumed.
  2713. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2714. and only deinterlace frames marked as interlaced
  2715. @table @option
  2716. @item 0
  2717. deinterlace all frames
  2718. @item 1
  2719. only deinterlace frames marked as interlaced
  2720. @end table
  2721. Default value is 0.
  2722. @c man end VIDEO FILTERS
  2723. @chapter Video Sources
  2724. @c man begin VIDEO SOURCES
  2725. Below is a description of the currently available video sources.
  2726. @section buffer
  2727. Buffer video frames, and make them available to the filter chain.
  2728. This source is mainly intended for a programmatic use, in particular
  2729. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2730. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2731. separated by ":". A description of the accepted options follows.
  2732. @table @option
  2733. @item video_size
  2734. Specify the size (width and height) of the buffered video frames.
  2735. @item pix_fmt
  2736. A string representing the pixel format of the buffered video frames.
  2737. It may be a number corresponding to a pixel format, or a pixel format
  2738. name.
  2739. @item time_base
  2740. Specify the timebase assumed by the timestamps of the buffered frames.
  2741. @item time_base
  2742. Specify the frame rate expected for the video stream.
  2743. @item pixel_aspect
  2744. Specify the sample aspect ratio assumed by the video frames.
  2745. @item sws_param
  2746. Specify the optional parameters to be used for the scale filter which
  2747. is automatically inserted when an input change is detected in the
  2748. input size or format.
  2749. @end table
  2750. For example:
  2751. @example
  2752. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2753. @end example
  2754. will instruct the source to accept video frames with size 320x240 and
  2755. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2756. square pixels (1:1 sample aspect ratio).
  2757. Since the pixel format with name "yuv410p" corresponds to the number 6
  2758. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  2759. this example corresponds to:
  2760. @example
  2761. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2762. @end example
  2763. Alternatively, the options can be specified as a flat string, but this
  2764. syntax is deprecated:
  2765. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2766. @section cellauto
  2767. Create a pattern generated by an elementary cellular automaton.
  2768. The initial state of the cellular automaton can be defined through the
  2769. @option{filename}, and @option{pattern} options. If such options are
  2770. not specified an initial state is created randomly.
  2771. At each new frame a new row in the video is filled with the result of
  2772. the cellular automaton next generation. The behavior when the whole
  2773. frame is filled is defined by the @option{scroll} option.
  2774. This source accepts a list of options in the form of
  2775. @var{key}=@var{value} pairs separated by ":". A description of the
  2776. accepted options follows.
  2777. @table @option
  2778. @item filename, f
  2779. Read the initial cellular automaton state, i.e. the starting row, from
  2780. the specified file.
  2781. In the file, each non-whitespace character is considered an alive
  2782. cell, a newline will terminate the row, and further characters in the
  2783. file will be ignored.
  2784. @item pattern, p
  2785. Read the initial cellular automaton state, i.e. the starting row, from
  2786. the specified string.
  2787. Each non-whitespace character in the string is considered an alive
  2788. cell, a newline will terminate the row, and further characters in the
  2789. string will be ignored.
  2790. @item rate, r
  2791. Set the video rate, that is the number of frames generated per second.
  2792. Default is 25.
  2793. @item random_fill_ratio, ratio
  2794. Set the random fill ratio for the initial cellular automaton row. It
  2795. is a floating point number value ranging from 0 to 1, defaults to
  2796. 1/PHI.
  2797. This option is ignored when a file or a pattern is specified.
  2798. @item random_seed, seed
  2799. Set the seed for filling randomly the initial row, must be an integer
  2800. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2801. set to -1, the filter will try to use a good random seed on a best
  2802. effort basis.
  2803. @item rule
  2804. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2805. Default value is 110.
  2806. @item size, s
  2807. Set the size of the output video.
  2808. If @option{filename} or @option{pattern} is specified, the size is set
  2809. by default to the width of the specified initial state row, and the
  2810. height is set to @var{width} * PHI.
  2811. If @option{size} is set, it must contain the width of the specified
  2812. pattern string, and the specified pattern will be centered in the
  2813. larger row.
  2814. If a filename or a pattern string is not specified, the size value
  2815. defaults to "320x518" (used for a randomly generated initial state).
  2816. @item scroll
  2817. If set to 1, scroll the output upward when all the rows in the output
  2818. have been already filled. If set to 0, the new generated row will be
  2819. written over the top row just after the bottom row is filled.
  2820. Defaults to 1.
  2821. @item start_full, full
  2822. If set to 1, completely fill the output with generated rows before
  2823. outputting the first frame.
  2824. This is the default behavior, for disabling set the value to 0.
  2825. @item stitch
  2826. If set to 1, stitch the left and right row edges together.
  2827. This is the default behavior, for disabling set the value to 0.
  2828. @end table
  2829. @subsection Examples
  2830. @itemize
  2831. @item
  2832. Read the initial state from @file{pattern}, and specify an output of
  2833. size 200x400.
  2834. @example
  2835. cellauto=f=pattern:s=200x400
  2836. @end example
  2837. @item
  2838. Generate a random initial row with a width of 200 cells, with a fill
  2839. ratio of 2/3:
  2840. @example
  2841. cellauto=ratio=2/3:s=200x200
  2842. @end example
  2843. @item
  2844. Create a pattern generated by rule 18 starting by a single alive cell
  2845. centered on an initial row with width 100:
  2846. @example
  2847. cellauto=p=@@:s=100x400:full=0:rule=18
  2848. @end example
  2849. @item
  2850. Specify a more elaborated initial pattern:
  2851. @example
  2852. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2853. @end example
  2854. @end itemize
  2855. @section mandelbrot
  2856. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2857. point specified with @var{start_x} and @var{start_y}.
  2858. This source accepts a list of options in the form of
  2859. @var{key}=@var{value} pairs separated by ":". A description of the
  2860. accepted options follows.
  2861. @table @option
  2862. @item end_pts
  2863. Set the terminal pts value. Default value is 400.
  2864. @item end_scale
  2865. Set the terminal scale value.
  2866. Must be a floating point value. Default value is 0.3.
  2867. @item inner
  2868. Set the inner coloring mode, that is the algorithm used to draw the
  2869. Mandelbrot fractal internal region.
  2870. It shall assume one of the following values:
  2871. @table @option
  2872. @item black
  2873. Set black mode.
  2874. @item convergence
  2875. Show time until convergence.
  2876. @item mincol
  2877. Set color based on point closest to the origin of the iterations.
  2878. @item period
  2879. Set period mode.
  2880. @end table
  2881. Default value is @var{mincol}.
  2882. @item bailout
  2883. Set the bailout value. Default value is 10.0.
  2884. @item maxiter
  2885. Set the maximum of iterations performed by the rendering
  2886. algorithm. Default value is 7189.
  2887. @item outer
  2888. Set outer coloring mode.
  2889. It shall assume one of following values:
  2890. @table @option
  2891. @item iteration_count
  2892. Set iteration cound mode.
  2893. @item normalized_iteration_count
  2894. set normalized iteration count mode.
  2895. @end table
  2896. Default value is @var{normalized_iteration_count}.
  2897. @item rate, r
  2898. Set frame rate, expressed as number of frames per second. Default
  2899. value is "25".
  2900. @item size, s
  2901. Set frame size. Default value is "640x480".
  2902. @item start_scale
  2903. Set the initial scale value. Default value is 3.0.
  2904. @item start_x
  2905. Set the initial x position. Must be a floating point value between
  2906. -100 and 100. Default value is -0.743643887037158704752191506114774.
  2907. @item start_y
  2908. Set the initial y position. Must be a floating point value between
  2909. -100 and 100. Default value is -0.131825904205311970493132056385139.
  2910. @end table
  2911. @section mptestsrc
  2912. Generate various test patterns, as generated by the MPlayer test filter.
  2913. The size of the generated video is fixed, and is 256x256.
  2914. This source is useful in particular for testing encoding features.
  2915. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2916. separated by ":". The description of the accepted options follows.
  2917. @table @option
  2918. @item rate, r
  2919. Specify the frame rate of the sourced video, as the number of frames
  2920. generated per second. It has to be a string in the format
  2921. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2922. number or a valid video frame rate abbreviation. The default value is
  2923. "25".
  2924. @item duration, d
  2925. Set the video duration of the sourced video. The accepted syntax is:
  2926. @example
  2927. [-]HH:MM:SS[.m...]
  2928. [-]S+[.m...]
  2929. @end example
  2930. See also the function @code{av_parse_time()}.
  2931. If not specified, or the expressed duration is negative, the video is
  2932. supposed to be generated forever.
  2933. @item test, t
  2934. Set the number or the name of the test to perform. Supported tests are:
  2935. @table @option
  2936. @item dc_luma
  2937. @item dc_chroma
  2938. @item freq_luma
  2939. @item freq_chroma
  2940. @item amp_luma
  2941. @item amp_chroma
  2942. @item cbp
  2943. @item mv
  2944. @item ring1
  2945. @item ring2
  2946. @item all
  2947. @end table
  2948. Default value is "all", which will cycle through the list of all tests.
  2949. @end table
  2950. For example the following:
  2951. @example
  2952. testsrc=t=dc_luma
  2953. @end example
  2954. will generate a "dc_luma" test pattern.
  2955. @section frei0r_src
  2956. Provide a frei0r source.
  2957. To enable compilation of this filter you need to install the frei0r
  2958. header and configure FFmpeg with @code{--enable-frei0r}.
  2959. The source supports the syntax:
  2960. @example
  2961. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2962. @end example
  2963. @var{size} is the size of the video to generate, may be a string of the
  2964. form @var{width}x@var{height} or a frame size abbreviation.
  2965. @var{rate} is the rate of the video to generate, may be a string of
  2966. the form @var{num}/@var{den} or a frame rate abbreviation.
  2967. @var{src_name} is the name to the frei0r source to load. For more
  2968. information regarding frei0r and how to set the parameters read the
  2969. section @ref{frei0r} in the description of the video filters.
  2970. For example, to generate a frei0r partik0l source with size 200x200
  2971. and frame rate 10 which is overlayed on the overlay filter main input:
  2972. @example
  2973. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2974. @end example
  2975. @section life
  2976. Generate a life pattern.
  2977. This source is based on a generalization of John Conway's life game.
  2978. The sourced input represents a life grid, each pixel represents a cell
  2979. which can be in one of two possible states, alive or dead. Every cell
  2980. interacts with its eight neighbours, which are the cells that are
  2981. horizontally, vertically, or diagonally adjacent.
  2982. At each interaction the grid evolves according to the adopted rule,
  2983. which specifies the number of neighbor alive cells which will make a
  2984. cell stay alive or born. The @option{rule} option allows to specify
  2985. the rule to adopt.
  2986. This source accepts a list of options in the form of
  2987. @var{key}=@var{value} pairs separated by ":". A description of the
  2988. accepted options follows.
  2989. @table @option
  2990. @item filename, f
  2991. Set the file from which to read the initial grid state. In the file,
  2992. each non-whitespace character is considered an alive cell, and newline
  2993. is used to delimit the end of each row.
  2994. If this option is not specified, the initial grid is generated
  2995. randomly.
  2996. @item rate, r
  2997. Set the video rate, that is the number of frames generated per second.
  2998. Default is 25.
  2999. @item random_fill_ratio, ratio
  3000. Set the random fill ratio for the initial random grid. It is a
  3001. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3002. It is ignored when a file is specified.
  3003. @item random_seed, seed
  3004. Set the seed for filling the initial random grid, must be an integer
  3005. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3006. set to -1, the filter will try to use a good random seed on a best
  3007. effort basis.
  3008. @item rule
  3009. Set the life rule.
  3010. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3011. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3012. @var{NS} specifies the number of alive neighbor cells which make a
  3013. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3014. which make a dead cell to become alive (i.e. to "born").
  3015. "s" and "b" can be used in place of "S" and "B", respectively.
  3016. Alternatively a rule can be specified by an 18-bits integer. The 9
  3017. high order bits are used to encode the next cell state if it is alive
  3018. for each number of neighbor alive cells, the low order bits specify
  3019. the rule for "borning" new cells. Higher order bits encode for an
  3020. higher number of neighbor cells.
  3021. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3022. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3023. Default value is "S23/B3", which is the original Conway's game of life
  3024. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3025. cells, and will born a new cell if there are three alive cells around
  3026. a dead cell.
  3027. @item size, s
  3028. Set the size of the output video.
  3029. If @option{filename} is specified, the size is set by default to the
  3030. same size of the input file. If @option{size} is set, it must contain
  3031. the size specified in the input file, and the initial grid defined in
  3032. that file is centered in the larger resulting area.
  3033. If a filename is not specified, the size value defaults to "320x240"
  3034. (used for a randomly generated initial grid).
  3035. @item stitch
  3036. If set to 1, stitch the left and right grid edges together, and the
  3037. top and bottom edges also. Defaults to 1.
  3038. @item mold
  3039. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3040. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3041. value from 0 to 255.
  3042. @item life_color
  3043. Set the color of living (or new born) cells.
  3044. @item death_color
  3045. Set the color of dead cells. If @option{mold} is set, this is the first color
  3046. used to represent a dead cell.
  3047. @item mold_color
  3048. Set mold color, for definitely dead and moldy cells.
  3049. @end table
  3050. @subsection Examples
  3051. @itemize
  3052. @item
  3053. Read a grid from @file{pattern}, and center it on a grid of size
  3054. 300x300 pixels:
  3055. @example
  3056. life=f=pattern:s=300x300
  3057. @end example
  3058. @item
  3059. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3060. @example
  3061. life=ratio=2/3:s=200x200
  3062. @end example
  3063. @item
  3064. Specify a custom rule for evolving a randomly generated grid:
  3065. @example
  3066. life=rule=S14/B34
  3067. @end example
  3068. @item
  3069. Full example with slow death effect (mold) using @command{ffplay}:
  3070. @example
  3071. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3072. @end example
  3073. @end itemize
  3074. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3075. The @code{color} source provides an uniformly colored input.
  3076. The @code{nullsrc} source returns unprocessed video frames. It is
  3077. mainly useful to be employed in analysis / debugging tools, or as the
  3078. source for filters which ignore the input data.
  3079. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3080. detecting RGB vs BGR issues. You should see a red, green and blue
  3081. stripe from top to bottom.
  3082. The @code{smptebars} source generates a color bars pattern, based on
  3083. the SMPTE Engineering Guideline EG 1-1990.
  3084. The @code{testsrc} source generates a test video pattern, showing a
  3085. color pattern, a scrolling gradient and a timestamp. This is mainly
  3086. intended for testing purposes.
  3087. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3088. separated by ":". The description of the accepted options follows.
  3089. @table @option
  3090. @item color, c
  3091. Specify the color of the source, only used in the @code{color}
  3092. source. It can be the name of a color (case insensitive match) or a
  3093. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3094. default value is "black".
  3095. @item size, s
  3096. Specify the size of the sourced video, it may be a string of the form
  3097. @var{width}x@var{height}, or the name of a size abbreviation. The
  3098. default value is "320x240".
  3099. @item rate, r
  3100. Specify the frame rate of the sourced video, as the number of frames
  3101. generated per second. It has to be a string in the format
  3102. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3103. number or a valid video frame rate abbreviation. The default value is
  3104. "25".
  3105. @item sar
  3106. Set the sample aspect ratio of the sourced video.
  3107. @item duration, d
  3108. Set the video duration of the sourced video. The accepted syntax is:
  3109. @example
  3110. [-]HH[:MM[:SS[.m...]]]
  3111. [-]S+[.m...]
  3112. @end example
  3113. See also the function @code{av_parse_time()}.
  3114. If not specified, or the expressed duration is negative, the video is
  3115. supposed to be generated forever.
  3116. @item decimals, n
  3117. Set the number of decimals to show in the timestamp, only used in the
  3118. @code{testsrc} source.
  3119. The displayed timestamp value will correspond to the original
  3120. timestamp value multiplied by the power of 10 of the specified
  3121. value. Default value is 0.
  3122. @end table
  3123. For example the following:
  3124. @example
  3125. testsrc=duration=5.3:size=qcif:rate=10
  3126. @end example
  3127. will generate a video with a duration of 5.3 seconds, with size
  3128. 176x144 and a frame rate of 10 frames per second.
  3129. The following graph description will generate a red source
  3130. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3131. frames per second.
  3132. @example
  3133. color=c=red@@0.2:s=qcif:r=10
  3134. @end example
  3135. If the input content is to be ignored, @code{nullsrc} can be used. The
  3136. following command generates noise in the luminance plane by employing
  3137. the @code{mp=geq} filter:
  3138. @example
  3139. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3140. @end example
  3141. @c man end VIDEO SOURCES
  3142. @chapter Video Sinks
  3143. @c man begin VIDEO SINKS
  3144. Below is a description of the currently available video sinks.
  3145. @section buffersink
  3146. Buffer video frames, and make them available to the end of the filter
  3147. graph.
  3148. This sink is mainly intended for a programmatic use, in particular
  3149. through the interface defined in @file{libavfilter/buffersink.h}.
  3150. It does not require a string parameter in input, but you need to
  3151. specify a pointer to a list of supported pixel formats terminated by
  3152. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3153. when initializing this sink.
  3154. @section nullsink
  3155. Null video sink, do absolutely nothing with the input video. It is
  3156. mainly useful as a template and to be employed in analysis / debugging
  3157. tools.
  3158. @c man end VIDEO SINKS
  3159. @chapter Multimedia Filters
  3160. @c man begin MULTIMEDIA FILTERS
  3161. Below is a description of the currently available multimedia filters.
  3162. @section asendcmd, sendcmd
  3163. Send commands to filters in the filtergraph.
  3164. These filters read commands to be sent to other filters in the
  3165. filtergraph.
  3166. @code{asendcmd} must be inserted between two audio filters,
  3167. @code{sendcmd} must be inserted between two video filters, but apart
  3168. from that they act the same way.
  3169. The specification of commands can be provided in the filter arguments
  3170. with the @var{commands} option, or in a file specified by the
  3171. @var{filename} option.
  3172. These filters accept the following options:
  3173. @table @option
  3174. @item commands, c
  3175. Set the commands to be read and sent to the other filters.
  3176. @item filename, f
  3177. Set the filename of the commands to be read and sent to the other
  3178. filters.
  3179. @end table
  3180. @subsection Commands syntax
  3181. A commands description consists of a sequence of interval
  3182. specifications, comprising a list of commands to be executed when a
  3183. particular event related to that interval occurs. The occurring event
  3184. is typically the current frame time entering or leaving a given time
  3185. interval.
  3186. An interval is specified by the following syntax:
  3187. @example
  3188. @var{START}[-@var{END}] @var{COMMANDS};
  3189. @end example
  3190. The time interval is specified by the @var{START} and @var{END} times.
  3191. @var{END} is optional and defaults to the maximum time.
  3192. The current frame time is considered within the specified interval if
  3193. it is included in the interval [@var{START}, @var{END}), that is when
  3194. the time is greater or equal to @var{START} and is lesser than
  3195. @var{END}.
  3196. @var{COMMANDS} consists of a sequence of one or more command
  3197. specifications, separated by ",", relating to that interval. The
  3198. syntax of a command specification is given by:
  3199. @example
  3200. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3201. @end example
  3202. @var{FLAGS} is optional and specifies the type of events relating to
  3203. the time interval which enable sending the specified command, and must
  3204. be a non-null sequence of identifier flags separated by "+" or "|" and
  3205. enclosed between "[" and "]".
  3206. The following flags are recognized:
  3207. @table @option
  3208. @item enter
  3209. The command is sent when the current frame timestamp enters the
  3210. specified interval. In other words, the command is sent when the
  3211. previous frame timestamp was not in the given interval, and the
  3212. current is.
  3213. @item leave
  3214. The command is sent when the current frame timestamp leaves the
  3215. specified interval. In other words, the command is sent when the
  3216. previous frame timestamp was in the given interval, and the
  3217. current is not.
  3218. @end table
  3219. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3220. assumed.
  3221. @var{TARGET} specifies the target of the command, usually the name of
  3222. the filter class or a specific filter instance name.
  3223. @var{COMMAND} specifies the name of the command for the target filter.
  3224. @var{ARG} is optional and specifies the optional list of argument for
  3225. the given @var{COMMAND}.
  3226. Between one interval specification and another, whitespaces, or
  3227. sequences of characters starting with @code{#} until the end of line,
  3228. are ignored and can be used to annotate comments.
  3229. A simplified BNF description of the commands specification syntax
  3230. follows:
  3231. @example
  3232. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3233. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3234. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3235. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3236. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3237. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3238. @end example
  3239. @subsection Examples
  3240. @itemize
  3241. @item
  3242. Specify audio tempo change at second 4:
  3243. @example
  3244. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3245. @end example
  3246. @item
  3247. Specify a list of drawtext and hue commands in a file.
  3248. @example
  3249. # show text in the interval 5-10
  3250. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3251. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3252. # desaturate the image in the interval 15-20
  3253. 15.0-20.0 [enter] hue reinit s=0,
  3254. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3255. [leave] hue reinit s=1,
  3256. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3257. # apply an exponential saturation fade-out effect, starting from time 25
  3258. 25 [enter] hue s=exp(t-25)
  3259. @end example
  3260. A filtergraph allowing to read and process the above command list
  3261. stored in a file @file{test.cmd}, can be specified with:
  3262. @example
  3263. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3264. @end example
  3265. @end itemize
  3266. @section asetpts, setpts
  3267. Change the PTS (presentation timestamp) of the input frames.
  3268. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3269. Accept in input an expression evaluated through the eval API, which
  3270. can contain the following constants:
  3271. @table @option
  3272. @item FRAME_RATE
  3273. frame rate, only defined for constant frame-rate video
  3274. @item PTS
  3275. the presentation timestamp in input
  3276. @item N
  3277. the count of the input frame, starting from 0.
  3278. @item NB_CONSUMED_SAMPLES
  3279. the number of consumed samples, not including the current frame (only
  3280. audio)
  3281. @item NB_SAMPLES
  3282. the number of samples in the current frame (only audio)
  3283. @item SAMPLE_RATE
  3284. audio sample rate
  3285. @item STARTPTS
  3286. the PTS of the first frame
  3287. @item STARTT
  3288. the time in seconds of the first frame
  3289. @item INTERLACED
  3290. tell if the current frame is interlaced
  3291. @item T
  3292. the time in seconds of the current frame
  3293. @item TB
  3294. the time base
  3295. @item POS
  3296. original position in the file of the frame, or undefined if undefined
  3297. for the current frame
  3298. @item PREV_INPTS
  3299. previous input PTS
  3300. @item PREV_INT
  3301. previous input time in seconds
  3302. @item PREV_OUTPTS
  3303. previous output PTS
  3304. @item PREV_OUTT
  3305. previous output time in seconds
  3306. @end table
  3307. @subsection Examples
  3308. @itemize
  3309. @item
  3310. Start counting PTS from zero
  3311. @example
  3312. setpts=PTS-STARTPTS
  3313. @end example
  3314. @item
  3315. Apply fast motion effect:
  3316. @example
  3317. setpts=0.5*PTS
  3318. @end example
  3319. @item
  3320. Apply slow motion effect:
  3321. @example
  3322. setpts=2.0*PTS
  3323. @end example
  3324. @item
  3325. Set fixed rate of 25 frames per second:
  3326. @example
  3327. setpts=N/(25*TB)
  3328. @end example
  3329. @item
  3330. Set fixed rate 25 fps with some jitter:
  3331. @example
  3332. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3333. @end example
  3334. @item
  3335. Apply an offset of 10 seconds to the input PTS:
  3336. @example
  3337. setpts=PTS+10/TB
  3338. @end example
  3339. @end itemize
  3340. @section ebur128
  3341. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3342. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3343. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3344. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3345. The filter also has a video output (see the @var{video} option) with a real
  3346. time graph to observe the loudness evolution. The graphic contains the logged
  3347. message mentioned above, so it is not printed anymore when this option is set,
  3348. unless the verbose logging is set. The main graphing area contains the
  3349. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3350. the momentary loudness (400 milliseconds).
  3351. More information about the Loudness Recommendation EBU R128 on
  3352. @url{http://tech.ebu.ch/loudness}.
  3353. The filter accepts the following named parameters:
  3354. @table @option
  3355. @item video
  3356. Activate the video output. The audio stream is passed unchanged whether this
  3357. option is set or no. The video stream will be the first output stream if
  3358. activated. Default is @code{0}.
  3359. @item size
  3360. Set the video size. This option is for video only. Default and minimum
  3361. resolution is @code{640x480}.
  3362. @item meter
  3363. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3364. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3365. other integer value between this range is allowed.
  3366. @end table
  3367. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3368. @example
  3369. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3370. @end example
  3371. Run an analysis with @command{ffmpeg}:
  3372. @example
  3373. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3374. @end example
  3375. @section settb, asettb
  3376. Set the timebase to use for the output frames timestamps.
  3377. It is mainly useful for testing timebase configuration.
  3378. It accepts in input an arithmetic expression representing a rational.
  3379. The expression can contain the constants "AVTB" (the
  3380. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3381. audio only).
  3382. The default value for the input is "intb".
  3383. @subsection Examples
  3384. @itemize
  3385. @item
  3386. Set the timebase to 1/25:
  3387. @example
  3388. settb=1/25
  3389. @end example
  3390. @item
  3391. Set the timebase to 1/10:
  3392. @example
  3393. settb=0.1
  3394. @end example
  3395. @item
  3396. Set the timebase to 1001/1000:
  3397. @example
  3398. settb=1+0.001
  3399. @end example
  3400. @item
  3401. Set the timebase to 2*intb:
  3402. @example
  3403. settb=2*intb
  3404. @end example
  3405. @item
  3406. Set the default timebase value:
  3407. @example
  3408. settb=AVTB
  3409. @end example
  3410. @end itemize
  3411. @section concat
  3412. Concatenate audio and video streams, joining them together one after the
  3413. other.
  3414. The filter works on segments of synchronized video and audio streams. All
  3415. segments must have the same number of streams of each type, and that will
  3416. also be the number of streams at output.
  3417. The filter accepts the following named parameters:
  3418. @table @option
  3419. @item n
  3420. Set the number of segments. Default is 2.
  3421. @item v
  3422. Set the number of output video streams, that is also the number of video
  3423. streams in each segment. Default is 1.
  3424. @item a
  3425. Set the number of output audio streams, that is also the number of video
  3426. streams in each segment. Default is 0.
  3427. @end table
  3428. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3429. @var{a} audio outputs.
  3430. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3431. segment, in the same order as the outputs, then the inputs for the second
  3432. segment, etc.
  3433. Related streams do not always have exactly the same duration, for various
  3434. reasons including codec frame size or sloppy authoring. For that reason,
  3435. related synchronized streams (e.g. a video and its audio track) should be
  3436. concatenated at once. The concat filter will use the duration of the longest
  3437. stream in each segment (except the last one), and if necessary pad shorter
  3438. audio streams with silence.
  3439. For this filter to work correctly, all segments must start at timestamp 0.
  3440. All corresponding streams must have the same parameters in all segments; the
  3441. filtering system will automatically select a common pixel format for video
  3442. streams, and a common sample format, sample rate and channel layout for
  3443. audio streams, but other settings, such as resolution, must be converted
  3444. explicitly by the user.
  3445. Different frame rates are acceptable but will result in variable frame rate
  3446. at output; be sure to configure the output file to handle it.
  3447. Examples:
  3448. @itemize
  3449. @item
  3450. Concatenate an opening, an episode and an ending, all in bilingual version
  3451. (video in stream 0, audio in streams 1 and 2):
  3452. @example
  3453. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3454. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3455. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3456. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3457. @end example
  3458. @item
  3459. Concatenate two parts, handling audio and video separately, using the
  3460. (a)movie sources, and adjusting the resolution:
  3461. @example
  3462. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3463. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3464. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3465. @end example
  3466. Note that a desync will happen at the stitch if the audio and video streams
  3467. do not have exactly the same duration in the first file.
  3468. @end itemize
  3469. @section showspectrum
  3470. Convert input audio to a video output, representing the audio frequency
  3471. spectrum.
  3472. The filter accepts the following named parameters:
  3473. @table @option
  3474. @item size, s
  3475. Specify the video size for the output. Default value is @code{640x480}.
  3476. @end table
  3477. The usage is very similar to the showwaves filter; see the examples in that
  3478. section.
  3479. @section showwaves
  3480. Convert input audio to a video output, representing the samples waves.
  3481. The filter accepts the following named parameters:
  3482. @table @option
  3483. @item n
  3484. Set the number of samples which are printed on the same column. A
  3485. larger value will decrease the frame rate. Must be a positive
  3486. integer. This option can be set only if the value for @var{rate}
  3487. is not explicitly specified.
  3488. @item rate, r
  3489. Set the (approximate) output frame rate. This is done by setting the
  3490. option @var{n}. Default value is "25".
  3491. @item size, s
  3492. Specify the video size for the output. Default value is "600x240".
  3493. @end table
  3494. Some examples follow.
  3495. @itemize
  3496. @item
  3497. Output the input file audio and the corresponding video representation
  3498. at the same time:
  3499. @example
  3500. amovie=a.mp3,asplit[out0],showwaves[out1]
  3501. @end example
  3502. @item
  3503. Create a synthetic signal and show it with showwaves, forcing a
  3504. framerate of 30 frames per second:
  3505. @example
  3506. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3507. @end example
  3508. @end itemize
  3509. @c man end MULTIMEDIA FILTERS
  3510. @chapter Multimedia Sources
  3511. @c man begin MULTIMEDIA SOURCES
  3512. Below is a description of the currently available multimedia sources.
  3513. @section amovie
  3514. This is the same as @ref{src_movie} source, except it selects an audio
  3515. stream by default.
  3516. @anchor{src_movie}
  3517. @section movie
  3518. Read audio and/or video stream(s) from a movie container.
  3519. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3520. @var{movie_name} is the name of the resource to read (not necessarily
  3521. a file but also a device or a stream accessed through some protocol),
  3522. and @var{options} is an optional sequence of @var{key}=@var{value}
  3523. pairs, separated by ":".
  3524. The description of the accepted options follows.
  3525. @table @option
  3526. @item format_name, f
  3527. Specifies the format assumed for the movie to read, and can be either
  3528. the name of a container or an input device. If not specified the
  3529. format is guessed from @var{movie_name} or by probing.
  3530. @item seek_point, sp
  3531. Specifies the seek point in seconds, the frames will be output
  3532. starting from this seek point, the parameter is evaluated with
  3533. @code{av_strtod} so the numerical value may be suffixed by an IS
  3534. postfix. Default value is "0".
  3535. @item streams, s
  3536. Specifies the streams to read. Several streams can be specified, separated
  3537. by "+". The source will then have as many outputs, in the same order. The
  3538. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3539. names, "dv" and "da" specify respectively the default (best suited) video
  3540. and audio stream. Default is "dv", or "da" if the filter is called as
  3541. "amovie".
  3542. @item stream_index, si
  3543. Specifies the index of the video stream to read. If the value is -1,
  3544. the best suited video stream will be automatically selected. Default
  3545. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3546. audio instead of video.
  3547. @item loop
  3548. Specifies how many times to read the stream in sequence.
  3549. If the value is less than 1, the stream will be read again and again.
  3550. Default value is "1".
  3551. Note that when the movie is looped the source timestamps are not
  3552. changed, so it will generate non monotonically increasing timestamps.
  3553. @end table
  3554. This filter allows to overlay a second video on top of main input of
  3555. a filtergraph as shown in this graph:
  3556. @example
  3557. input -----------> deltapts0 --> overlay --> output
  3558. ^
  3559. |
  3560. movie --> scale--> deltapts1 -------+
  3561. @end example
  3562. Some examples follow.
  3563. @itemize
  3564. @item
  3565. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3566. on top of the input labelled as "in":
  3567. @example
  3568. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3569. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3570. @end example
  3571. @item
  3572. Read from a video4linux2 device, and overlay it on top of the input
  3573. labelled as "in":
  3574. @example
  3575. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3576. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3577. @end example
  3578. @item
  3579. Read the first video stream and the audio stream with id 0x81 from
  3580. dvd.vob; the video is connected to the pad named "video" and the audio is
  3581. connected to the pad named "audio":
  3582. @example
  3583. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3584. @end example
  3585. @end itemize
  3586. @c man end MULTIMEDIA SOURCES