You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

649 lines
25KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #include "gcc_fixes.h"
  28. #include "dsputil_ppc.h"
  29. #include "util_altivec.h"
  30. // Swaps two variables (used for altivec registers)
  31. #define SWAP(a,b) \
  32. do { \
  33. __typeof__(a) swap_temp=a; \
  34. a=b; \
  35. b=swap_temp; \
  36. } while (0)
  37. // transposes a matrix consisting of four vectors with four elements each
  38. #define TRANSPOSE4(a,b,c,d) \
  39. do { \
  40. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  41. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  42. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  43. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  44. \
  45. a = vec_mergeh(_trans_ach, _trans_bdh); \
  46. b = vec_mergel(_trans_ach, _trans_bdh); \
  47. c = vec_mergeh(_trans_acl, _trans_bdl); \
  48. d = vec_mergel(_trans_acl, _trans_bdl); \
  49. } while (0)
  50. // Loads a four-byte value (int or float) from the target address
  51. // into every element in the target vector. Only works if the
  52. // target address is four-byte aligned (which should be always).
  53. #define LOAD4(vec, address) \
  54. { \
  55. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  56. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  57. vec = vec_ld(0, _load_addr); \
  58. vec = vec_perm(vec, vec, _perm_vec); \
  59. vec = vec_splat(vec, 0); \
  60. }
  61. #ifdef __APPLE_CC__
  62. #define FOUROF(a) (a)
  63. #else
  64. // slower, for dumb non-apple GCC
  65. #define FOUROF(a) {a,a,a,a}
  66. #endif
  67. int dct_quantize_altivec(MpegEncContext* s,
  68. DCTELEM* data, int n,
  69. int qscale, int* overflow)
  70. {
  71. int lastNonZero;
  72. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  73. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  74. const vector float zero = (const vector float)FOUROF(0.);
  75. // used after quantize step
  76. int oldBaseValue = 0;
  77. // Load the data into the row/alt vectors
  78. {
  79. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  80. data0 = vec_ld(0, data);
  81. data1 = vec_ld(16, data);
  82. data2 = vec_ld(32, data);
  83. data3 = vec_ld(48, data);
  84. data4 = vec_ld(64, data);
  85. data5 = vec_ld(80, data);
  86. data6 = vec_ld(96, data);
  87. data7 = vec_ld(112, data);
  88. // Transpose the data before we start
  89. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  90. // load the data into floating point vectors. We load
  91. // the high half of each row into the main row vectors
  92. // and the low half into the alt vectors.
  93. row0 = vec_ctf(vec_unpackh(data0), 0);
  94. alt0 = vec_ctf(vec_unpackl(data0), 0);
  95. row1 = vec_ctf(vec_unpackh(data1), 0);
  96. alt1 = vec_ctf(vec_unpackl(data1), 0);
  97. row2 = vec_ctf(vec_unpackh(data2), 0);
  98. alt2 = vec_ctf(vec_unpackl(data2), 0);
  99. row3 = vec_ctf(vec_unpackh(data3), 0);
  100. alt3 = vec_ctf(vec_unpackl(data3), 0);
  101. row4 = vec_ctf(vec_unpackh(data4), 0);
  102. alt4 = vec_ctf(vec_unpackl(data4), 0);
  103. row5 = vec_ctf(vec_unpackh(data5), 0);
  104. alt5 = vec_ctf(vec_unpackl(data5), 0);
  105. row6 = vec_ctf(vec_unpackh(data6), 0);
  106. alt6 = vec_ctf(vec_unpackl(data6), 0);
  107. row7 = vec_ctf(vec_unpackh(data7), 0);
  108. alt7 = vec_ctf(vec_unpackl(data7), 0);
  109. }
  110. // The following block could exist as a separate an altivec dct
  111. // function. However, if we put it inline, the DCT data can remain
  112. // in the vector local variables, as floats, which we'll use during the
  113. // quantize step...
  114. {
  115. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  116. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  117. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  118. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  119. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  120. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  121. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  122. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  123. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  124. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  125. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  126. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  127. int whichPass, whichHalf;
  128. for(whichPass = 1; whichPass<=2; whichPass++)
  129. {
  130. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  131. {
  132. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  133. vector float tmp10, tmp11, tmp12, tmp13;
  134. vector float z1, z2, z3, z4, z5;
  135. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  136. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  137. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  138. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  139. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  140. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  141. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  142. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  143. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  144. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  145. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  146. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  147. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  148. row0 = vec_add(tmp10, tmp11);
  149. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  150. row4 = vec_sub(tmp10, tmp11);
  151. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  152. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  153. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  154. // CONST_BITS-PASS1_BITS);
  155. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  156. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  157. // CONST_BITS-PASS1_BITS);
  158. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  159. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  160. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  161. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  162. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  163. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  164. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  165. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  166. z3 = vec_madd(z3, vec_1_961570560, z5);
  167. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  168. z4 = vec_madd(z4, vec_0_390180644, z5);
  169. // The following adds are rolled into the multiplies above
  170. // z3 = vec_add(z3, z5); // z3 += z5;
  171. // z4 = vec_add(z4, z5); // z4 += z5;
  172. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  173. // Wow! It's actually more effecient to roll this multiply
  174. // into the adds below, even thought the multiply gets done twice!
  175. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  176. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  177. // Same with this one...
  178. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  179. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  180. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  181. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  182. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  183. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  184. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  185. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  186. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  187. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  188. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  189. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  190. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  191. // Swap the row values with the alts. If this is the first half,
  192. // this sets up the low values to be acted on in the second half.
  193. // If this is the second half, it puts the high values back in
  194. // the row values where they are expected to be when we're done.
  195. SWAP(row0, alt0);
  196. SWAP(row1, alt1);
  197. SWAP(row2, alt2);
  198. SWAP(row3, alt3);
  199. SWAP(row4, alt4);
  200. SWAP(row5, alt5);
  201. SWAP(row6, alt6);
  202. SWAP(row7, alt7);
  203. }
  204. if (whichPass == 1)
  205. {
  206. // transpose the data for the second pass
  207. // First, block transpose the upper right with lower left.
  208. SWAP(row4, alt0);
  209. SWAP(row5, alt1);
  210. SWAP(row6, alt2);
  211. SWAP(row7, alt3);
  212. // Now, transpose each block of four
  213. TRANSPOSE4(row0, row1, row2, row3);
  214. TRANSPOSE4(row4, row5, row6, row7);
  215. TRANSPOSE4(alt0, alt1, alt2, alt3);
  216. TRANSPOSE4(alt4, alt5, alt6, alt7);
  217. }
  218. }
  219. }
  220. // perform the quantize step, using the floating point data
  221. // still in the row/alt registers
  222. {
  223. const int* biasAddr;
  224. const vector signed int* qmat;
  225. vector float bias, negBias;
  226. if (s->mb_intra)
  227. {
  228. vector signed int baseVector;
  229. // We must cache element 0 in the intra case
  230. // (it needs special handling).
  231. baseVector = vec_cts(vec_splat(row0, 0), 0);
  232. vec_ste(baseVector, 0, &oldBaseValue);
  233. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  234. biasAddr = &(s->intra_quant_bias);
  235. }
  236. else
  237. {
  238. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  239. biasAddr = &(s->inter_quant_bias);
  240. }
  241. // Load the bias vector (We add 0.5 to the bias so that we're
  242. // rounding when we convert to int, instead of flooring.)
  243. {
  244. vector signed int biasInt;
  245. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  246. LOAD4(biasInt, biasAddr);
  247. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  248. negBias = vec_madd(bias, negOneFloat, zero);
  249. }
  250. {
  251. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  252. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  253. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  254. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  255. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  256. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  257. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  258. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  259. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  260. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  261. vec_cmpgt(row0, zero));
  262. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  263. vec_cmpgt(row1, zero));
  264. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  265. vec_cmpgt(row2, zero));
  266. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  267. vec_cmpgt(row3, zero));
  268. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  269. vec_cmpgt(row4, zero));
  270. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  271. vec_cmpgt(row5, zero));
  272. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  273. vec_cmpgt(row6, zero));
  274. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  275. vec_cmpgt(row7, zero));
  276. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  277. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  278. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  279. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  280. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  281. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  282. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  283. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  284. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  285. vec_cmpgt(alt0, zero));
  286. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  287. vec_cmpgt(alt1, zero));
  288. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  289. vec_cmpgt(alt2, zero));
  290. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  291. vec_cmpgt(alt3, zero));
  292. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  293. vec_cmpgt(alt4, zero));
  294. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  295. vec_cmpgt(alt5, zero));
  296. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  297. vec_cmpgt(alt6, zero));
  298. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  299. vec_cmpgt(alt7, zero));
  300. }
  301. }
  302. // Store the data back into the original block
  303. {
  304. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  305. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  306. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  307. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  308. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  309. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  310. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  311. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  312. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  313. {
  314. // Clamp for overflow
  315. vector signed int max_q_int, min_q_int;
  316. vector signed short max_q, min_q;
  317. LOAD4(max_q_int, &(s->max_qcoeff));
  318. LOAD4(min_q_int, &(s->min_qcoeff));
  319. max_q = vec_pack(max_q_int, max_q_int);
  320. min_q = vec_pack(min_q_int, min_q_int);
  321. data0 = vec_max(vec_min(data0, max_q), min_q);
  322. data1 = vec_max(vec_min(data1, max_q), min_q);
  323. data2 = vec_max(vec_min(data2, max_q), min_q);
  324. data4 = vec_max(vec_min(data4, max_q), min_q);
  325. data5 = vec_max(vec_min(data5, max_q), min_q);
  326. data6 = vec_max(vec_min(data6, max_q), min_q);
  327. data7 = vec_max(vec_min(data7, max_q), min_q);
  328. }
  329. {
  330. vector bool char zero_01, zero_23, zero_45, zero_67;
  331. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  332. vector signed char negOne = vec_splat_s8(-1);
  333. vector signed char* scanPtr =
  334. (vector signed char*)(s->intra_scantable.inverse);
  335. signed char lastNonZeroChar;
  336. // Determine the largest non-zero index.
  337. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  338. vec_cmpeq(data1, (vector signed short)zero));
  339. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  340. vec_cmpeq(data3, (vector signed short)zero));
  341. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  342. vec_cmpeq(data5, (vector signed short)zero));
  343. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  344. vec_cmpeq(data7, (vector signed short)zero));
  345. // 64 biggest values
  346. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  347. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  348. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  349. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  350. // 32 largest values
  351. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  352. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  353. // 16 largest values
  354. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  355. // 8 largest values
  356. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  357. vec_mergel(scanIndices_01, negOne));
  358. // 4 largest values
  359. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  360. vec_mergel(scanIndices_01, negOne));
  361. // 2 largest values
  362. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  363. vec_mergel(scanIndices_01, negOne));
  364. // largest value
  365. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  366. vec_mergel(scanIndices_01, negOne));
  367. scanIndices_01 = vec_splat(scanIndices_01, 0);
  368. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  369. lastNonZero = lastNonZeroChar;
  370. // While the data is still in vectors we check for the transpose IDCT permute
  371. // and handle it using the vector unit if we can. This is the permute used
  372. // by the altivec idct, so it is common when using the altivec dct.
  373. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  374. {
  375. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  376. }
  377. vec_st(data0, 0, data);
  378. vec_st(data1, 16, data);
  379. vec_st(data2, 32, data);
  380. vec_st(data3, 48, data);
  381. vec_st(data4, 64, data);
  382. vec_st(data5, 80, data);
  383. vec_st(data6, 96, data);
  384. vec_st(data7, 112, data);
  385. }
  386. }
  387. // special handling of block[0]
  388. if (s->mb_intra)
  389. {
  390. if (!s->h263_aic)
  391. {
  392. if (n < 4)
  393. oldBaseValue /= s->y_dc_scale;
  394. else
  395. oldBaseValue /= s->c_dc_scale;
  396. }
  397. // Divide by 8, rounding the result
  398. data[0] = (oldBaseValue + 4) >> 3;
  399. }
  400. // We handled the transpose permutation above and we don't
  401. // need to permute the "no" permutation case.
  402. if ((lastNonZero > 0) &&
  403. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  404. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
  405. {
  406. ff_block_permute(data, s->dsp.idct_permutation,
  407. s->intra_scantable.scantable, lastNonZero);
  408. }
  409. return lastNonZero;
  410. }
  411. #undef FOUROF
  412. /*
  413. AltiVec version of dct_unquantize_h263
  414. this code assumes `block' is 16 bytes-aligned
  415. */
  416. void dct_unquantize_h263_altivec(MpegEncContext *s,
  417. DCTELEM *block, int n, int qscale)
  418. {
  419. POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
  420. int i, level, qmul, qadd;
  421. int nCoeffs;
  422. assert(s->block_last_index[n]>=0);
  423. POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  424. qadd = (qscale - 1) | 1;
  425. qmul = qscale << 1;
  426. if (s->mb_intra) {
  427. if (!s->h263_aic) {
  428. if (n < 4)
  429. block[0] = block[0] * s->y_dc_scale;
  430. else
  431. block[0] = block[0] * s->c_dc_scale;
  432. }else
  433. qadd = 0;
  434. i = 1;
  435. nCoeffs= 63; //does not always use zigzag table
  436. } else {
  437. i = 0;
  438. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  439. }
  440. {
  441. register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
  442. DECLARE_ALIGNED_16(short, qmul8[]) =
  443. {
  444. qmul, qmul, qmul, qmul,
  445. qmul, qmul, qmul, qmul
  446. };
  447. DECLARE_ALIGNED_16(short, qadd8[]) =
  448. {
  449. qadd, qadd, qadd, qadd,
  450. qadd, qadd, qadd, qadd
  451. };
  452. DECLARE_ALIGNED_16(short, nqadd8[]) =
  453. {
  454. -qadd, -qadd, -qadd, -qadd,
  455. -qadd, -qadd, -qadd, -qadd
  456. };
  457. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  458. register vector bool short blockv_null, blockv_neg;
  459. register short backup_0 = block[0];
  460. register int j = 0;
  461. qmulv = vec_ld(0, qmul8);
  462. qaddv = vec_ld(0, qadd8);
  463. nqaddv = vec_ld(0, nqadd8);
  464. #if 0 // block *is* 16 bytes-aligned, it seems.
  465. // first make sure block[j] is 16 bytes-aligned
  466. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  467. level = block[j];
  468. if (level) {
  469. if (level < 0) {
  470. level = level * qmul - qadd;
  471. } else {
  472. level = level * qmul + qadd;
  473. }
  474. block[j] = level;
  475. }
  476. }
  477. #endif
  478. // vectorize all the 16 bytes-aligned blocks
  479. // of 8 elements
  480. for(; (j + 7) <= nCoeffs ; j+=8)
  481. {
  482. blockv = vec_ld(j << 1, block);
  483. blockv_neg = vec_cmplt(blockv, vczero);
  484. blockv_null = vec_cmpeq(blockv, vczero);
  485. // choose between +qadd or -qadd as the third operand
  486. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  487. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  488. temp1 = vec_mladd(blockv, qmulv, temp1);
  489. // put 0 where block[{i,i+7} used to have 0
  490. blockv = vec_sel(temp1, blockv, blockv_null);
  491. vec_st(blockv, j << 1, block);
  492. }
  493. // if nCoeffs isn't a multiple of 8, finish the job
  494. // using good old scalar units.
  495. // (we could do it using a truncated vector,
  496. // but I'm not sure it's worth the hassle)
  497. for(; j <= nCoeffs ; j++) {
  498. level = block[j];
  499. if (level) {
  500. if (level < 0) {
  501. level = level * qmul - qadd;
  502. } else {
  503. level = level * qmul + qadd;
  504. }
  505. block[j] = level;
  506. }
  507. }
  508. if (i == 1)
  509. { // cheat. this avoid special-casing the first iteration
  510. block[0] = backup_0;
  511. }
  512. }
  513. POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  514. }
  515. extern void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
  516. extern void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
  517. void MPV_common_init_altivec(MpegEncContext *s)
  518. {
  519. if (s->avctx->lowres==0)
  520. {
  521. if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
  522. (s->avctx->idct_algo == FF_IDCT_ALTIVEC))
  523. {
  524. s->dsp.idct_put = idct_put_altivec;
  525. s->dsp.idct_add = idct_add_altivec;
  526. s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
  527. }
  528. }
  529. // Test to make sure that the dct required alignments are met.
  530. if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
  531. (((long)(s->q_inter_matrix) & 0x0f) != 0))
  532. {
  533. av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
  534. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  535. return;
  536. }
  537. if (((long)(s->intra_scantable.inverse) & 0x0f) != 0)
  538. {
  539. av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
  540. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  541. return;
  542. }
  543. if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
  544. (s->avctx->dct_algo == FF_DCT_ALTIVEC))
  545. {
  546. #if 0 /* seems to cause trouble under some circumstances */
  547. s->dct_quantize = dct_quantize_altivec;
  548. #endif
  549. s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
  550. s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
  551. }
  552. }