You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

861 lines
26KB

  1. /*
  2. * Microsoft Screen 2 (aka Windows Media Video V9 Screen) decoder
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * Microsoft Screen 2 (aka Windows Media Video V9 Screen) decoder
  23. */
  24. #include "libavutil/avassert.h"
  25. #include "msmpeg4data.h"
  26. #include "vc1.h"
  27. #include "mss12.h"
  28. #include "mss2dsp.h"
  29. typedef struct MSS2Context {
  30. VC1Context v;
  31. int split_position;
  32. AVFrame pic;
  33. AVFrame last_pic;
  34. MSS12Context c;
  35. MSS2DSPContext dsp;
  36. SliceContext sc[2];
  37. } MSS2Context;
  38. static void arith2_normalise(ArithCoder *c)
  39. {
  40. while ((c->high >> 15) - (c->low >> 15) < 2) {
  41. if ((c->low ^ c->high) & 0x10000) {
  42. c->high ^= 0x8000;
  43. c->value ^= 0x8000;
  44. c->low ^= 0x8000;
  45. }
  46. c->high = c->high << 8 & 0xFFFFFF | 0xFF;
  47. c->value = c->value << 8 & 0xFFFFFF | bytestream2_get_byte(c->gbc.gB);
  48. c->low = c->low << 8 & 0xFFFFFF;
  49. }
  50. }
  51. ARITH_GET_BIT(2)
  52. /* L. Stuiver and A. Moffat: "Piecewise Integer Mapping for Arithmetic Coding."
  53. * In Proc. 8th Data Compression Conference (DCC '98), pp. 3-12, Mar. 1998 */
  54. static int arith2_get_scaled_value(int value, int n, int range)
  55. {
  56. int split = (n << 1) - range;
  57. if (value > split)
  58. return split + (value - split >> 1);
  59. else
  60. return value;
  61. }
  62. static void arith2_rescale_interval(ArithCoder *c, int range,
  63. int low, int high, int n)
  64. {
  65. int split = (n << 1) - range;
  66. if (high > split)
  67. c->high = split + (high - split << 1);
  68. else
  69. c->high = high;
  70. c->high += c->low - 1;
  71. if (low > split)
  72. c->low += split + (low - split << 1);
  73. else
  74. c->low += low;
  75. }
  76. static int arith2_get_number(ArithCoder *c, int n)
  77. {
  78. int range = c->high - c->low + 1;
  79. int scale = av_log2(range) - av_log2(n);
  80. int val;
  81. if (n << scale > range)
  82. scale--;
  83. n <<= scale;
  84. val = arith2_get_scaled_value(c->value - c->low, n, range) >> scale;
  85. arith2_rescale_interval(c, range, val << scale, (val + 1) << scale, n);
  86. arith2_normalise(c);
  87. return val;
  88. }
  89. static int arith2_get_prob(ArithCoder *c, int *probs)
  90. {
  91. int range = c->high - c->low + 1, n = *probs;
  92. int scale = av_log2(range) - av_log2(n);
  93. int i = 0, val;
  94. if (n << scale > range)
  95. scale--;
  96. n <<= scale;
  97. val = arith2_get_scaled_value(c->value - c->low, n, range) >> scale;
  98. while (probs[++i] > val) ;
  99. arith2_rescale_interval(c, range,
  100. probs[i] << scale, probs[i - 1] << scale, n);
  101. return i;
  102. }
  103. ARITH_GET_MODEL_SYM(2)
  104. static int arith2_get_consumed_bytes(ArithCoder *c)
  105. {
  106. int diff = (c->high >> 16) - (c->low >> 16);
  107. int bp = bytestream2_tell(c->gbc.gB) - 3 << 3;
  108. int bits = 1;
  109. while (!(diff & 0x80)) {
  110. bits++;
  111. diff <<= 1;
  112. }
  113. return (bits + bp + 7 >> 3) + ((c->low >> 16) + 1 == c->high >> 16);
  114. }
  115. static void arith2_init(ArithCoder *c, GetByteContext *gB)
  116. {
  117. c->low = 0;
  118. c->high = 0xFFFFFF;
  119. c->value = bytestream2_get_be24(gB);
  120. c->gbc.gB = gB;
  121. c->get_model_sym = arith2_get_model_sym;
  122. c->get_number = arith2_get_number;
  123. }
  124. static int decode_pal_v2(MSS12Context *ctx, const uint8_t *buf, int buf_size)
  125. {
  126. int i, ncol;
  127. uint32_t *pal = ctx->pal + 256 - ctx->free_colours;
  128. if (!ctx->free_colours)
  129. return 0;
  130. ncol = *buf++;
  131. if (buf_size < 2 + ncol * 3)
  132. return -1;
  133. for (i = 0; i < ncol; i++)
  134. *pal++ = AV_RB24(buf + 3 * i);
  135. return 1 + ncol * 3;
  136. }
  137. static int decode_555(GetByteContext *gB, uint16_t *dst, int stride,
  138. int keyframe, int w, int h)
  139. {
  140. int last_symbol = 0, repeat = 0, prev_avail = 0;
  141. if (!keyframe) {
  142. int x, y, endx, endy, t;
  143. #define READ_PAIR(a, b) \
  144. a = bytestream2_get_byte(gB) << 4; \
  145. t = bytestream2_get_byte(gB); \
  146. a |= t >> 4; \
  147. b = (t & 0xF) << 8; \
  148. b |= bytestream2_get_byte(gB); \
  149. READ_PAIR(x, endx)
  150. READ_PAIR(y, endy)
  151. if (endx >= w || endy >= h || x > endx || y > endy)
  152. return -1;
  153. dst += x + stride * y;
  154. w = endx - x + 1;
  155. h = endy - y + 1;
  156. if (y)
  157. prev_avail = 1;
  158. }
  159. do {
  160. uint16_t *p = dst;
  161. do {
  162. if (repeat-- < 1) {
  163. int b = bytestream2_get_byte(gB);
  164. if (b < 128)
  165. last_symbol = b << 8 | bytestream2_get_byte(gB);
  166. else if (b > 129) {
  167. repeat = 0;
  168. while (b-- > 130)
  169. repeat = (repeat << 8) + bytestream2_get_byte(gB) + 1;
  170. if (last_symbol == -2) {
  171. int skip = FFMIN((unsigned)repeat, dst + w - p);
  172. repeat -= skip;
  173. p += skip;
  174. }
  175. } else
  176. last_symbol = 127 - b;
  177. }
  178. if (last_symbol >= 0)
  179. *p = last_symbol;
  180. else if (last_symbol == -1 && prev_avail)
  181. *p = *(p - stride);
  182. } while (++p < dst + w);
  183. dst += stride;
  184. prev_avail = 1;
  185. } while (--h);
  186. return 0;
  187. }
  188. static int decode_rle(GetBitContext *gb, uint8_t *pal_dst, int pal_stride,
  189. uint8_t *rgb_dst, int rgb_stride, uint32_t *pal,
  190. int keyframe, int kf_slipt, int slice, int w, int h)
  191. {
  192. uint8_t bits[270] = { 0 };
  193. uint32_t codes[270];
  194. VLC vlc;
  195. int current_length = 0, read_codes = 0, next_code = 0, current_codes = 0;
  196. int remaining_codes, surplus_codes, i;
  197. const int alphabet_size = 270 - keyframe;
  198. int last_symbol = 0, repeat = 0, prev_avail = 0;
  199. if (!keyframe) {
  200. int x, y, clipw, cliph;
  201. x = get_bits(gb, 12);
  202. y = get_bits(gb, 12);
  203. clipw = get_bits(gb, 12) + 1;
  204. cliph = get_bits(gb, 12) + 1;
  205. if (x + clipw > w || y + cliph > h)
  206. return AVERROR_INVALIDDATA;
  207. pal_dst += pal_stride * y + x;
  208. rgb_dst += rgb_stride * y + x * 3;
  209. w = clipw;
  210. h = cliph;
  211. if (y)
  212. prev_avail = 1;
  213. } else {
  214. if (slice > 0) {
  215. pal_dst += pal_stride * kf_slipt;
  216. rgb_dst += rgb_stride * kf_slipt;
  217. prev_avail = 1;
  218. h -= kf_slipt;
  219. } else
  220. h = kf_slipt;
  221. }
  222. /* read explicit codes */
  223. do {
  224. while (current_codes--) {
  225. int symbol = get_bits(gb, 8);
  226. if (symbol >= 204 - keyframe)
  227. symbol += 14 - keyframe;
  228. else if (symbol > 189)
  229. symbol = get_bits1(gb) + (symbol << 1) - 190;
  230. if (bits[symbol])
  231. return AVERROR_INVALIDDATA;
  232. bits[symbol] = current_length;
  233. codes[symbol] = next_code++;
  234. read_codes++;
  235. }
  236. current_length++;
  237. next_code <<= 1;
  238. remaining_codes = (1 << current_length) - next_code;
  239. current_codes = get_bits(gb, av_ceil_log2(remaining_codes + 1));
  240. if (current_length > 22 || current_codes > remaining_codes)
  241. return AVERROR_INVALIDDATA;
  242. } while (current_codes != remaining_codes);
  243. remaining_codes = alphabet_size - read_codes;
  244. /* determine the minimum length to fit the rest of the alphabet */
  245. while ((surplus_codes = (2 << current_length) -
  246. (next_code << 1) - remaining_codes) < 0) {
  247. current_length++;
  248. next_code <<= 1;
  249. }
  250. /* add the rest of the symbols lexicographically */
  251. for (i = 0; i < alphabet_size; i++)
  252. if (!bits[i]) {
  253. if (surplus_codes-- == 0) {
  254. current_length++;
  255. next_code <<= 1;
  256. }
  257. bits[i] = current_length;
  258. codes[i] = next_code++;
  259. }
  260. if (next_code != 1 << current_length)
  261. return AVERROR_INVALIDDATA;
  262. if (i = init_vlc(&vlc, 9, alphabet_size, bits, 1, 1, codes, 4, 4, 0))
  263. return i;
  264. /* frame decode */
  265. do {
  266. uint8_t *pp = pal_dst;
  267. uint8_t *rp = rgb_dst;
  268. do {
  269. if (repeat-- < 1) {
  270. int b = get_vlc2(gb, vlc.table, 9, 3);
  271. if (b < 256)
  272. last_symbol = b;
  273. else if (b < 268) {
  274. b -= 256;
  275. if (b == 11)
  276. b = get_bits(gb, 4) + 10;
  277. if (!b)
  278. repeat = 0;
  279. else
  280. repeat = get_bits(gb, b);
  281. while (b--)
  282. repeat += 1 << b;
  283. if (last_symbol == -2) {
  284. int skip = FFMIN(repeat, pal_dst + w - pp);
  285. repeat -= skip;
  286. pp += skip;
  287. rp += skip * 3;
  288. }
  289. } else
  290. last_symbol = 267 - b;
  291. }
  292. if (last_symbol >= 0) {
  293. *pp = last_symbol;
  294. AV_WB24(rp, pal[last_symbol]);
  295. } else if (last_symbol == -1 && prev_avail) {
  296. *pp = *(pp - pal_stride);
  297. memcpy(rp, rp - rgb_stride, 3);
  298. }
  299. rp += 3;
  300. } while (++pp < pal_dst + w);
  301. pal_dst += pal_stride;
  302. rgb_dst += rgb_stride;
  303. prev_avail = 1;
  304. } while (--h);
  305. ff_free_vlc(&vlc);
  306. return 0;
  307. }
  308. static int decode_wmv9(AVCodecContext *avctx, const uint8_t *buf, int buf_size,
  309. int x, int y, int w, int h, int wmv9_mask)
  310. {
  311. MSS2Context *ctx = avctx->priv_data;
  312. MSS12Context *c = &ctx->c;
  313. VC1Context *v = avctx->priv_data;
  314. MpegEncContext *s = &v->s;
  315. AVFrame *f;
  316. ff_mpeg_flush(avctx);
  317. if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
  318. int i = ff_find_unused_picture(s, 0);
  319. if (i < 0)
  320. return -1;
  321. s->current_picture_ptr = &s->picture[i];
  322. }
  323. init_get_bits(&s->gb, buf, buf_size * 8);
  324. s->loop_filter = avctx->skip_loop_filter < AVDISCARD_ALL;
  325. if (ff_vc1_parse_frame_header(v, &s->gb) == -1) {
  326. av_log(v->s.avctx, AV_LOG_ERROR, "header error\n");
  327. return AVERROR_INVALIDDATA;
  328. }
  329. if (s->pict_type != AV_PICTURE_TYPE_I) {
  330. av_log(v->s.avctx, AV_LOG_ERROR, "expected I-frame\n");
  331. return AVERROR_INVALIDDATA;
  332. }
  333. avctx->pix_fmt = PIX_FMT_YUV420P;
  334. if (ff_MPV_frame_start(s, avctx) < 0) {
  335. av_log(v->s.avctx, AV_LOG_ERROR, "ff_MPV_frame_start error\n");
  336. avctx->pix_fmt = PIX_FMT_RGB24;
  337. return -1;
  338. }
  339. ff_er_frame_start(s);
  340. v->bits = buf_size * 8;
  341. v->end_mb_x = (w + 15) >> 4;
  342. s->end_mb_y = (h + 15) >> 4;
  343. if (v->respic & 1)
  344. v->end_mb_x = v->end_mb_x + 1 >> 1;
  345. if (v->respic & 2)
  346. s->end_mb_y = s->end_mb_y + 1 >> 1;
  347. ff_vc1_decode_blocks(v);
  348. ff_er_frame_end(s);
  349. ff_MPV_frame_end(s);
  350. f = &s->current_picture.f;
  351. if (v->respic == 3) {
  352. ctx->dsp.upsample_plane(f->data[0], f->linesize[0], w, h);
  353. ctx->dsp.upsample_plane(f->data[1], f->linesize[1], w >> 1, h >> 1);
  354. ctx->dsp.upsample_plane(f->data[2], f->linesize[2], w >> 1, h >> 1);
  355. } else if (v->respic)
  356. av_log_ask_for_sample(v->s.avctx,
  357. "Asymmetric WMV9 rectangle subsampling\n");
  358. av_assert0(f->linesize[1] == f->linesize[2]);
  359. if (wmv9_mask != -1)
  360. ctx->dsp.mss2_blit_wmv9_masked(c->rgb_pic + y * c->rgb_stride + x * 3,
  361. c->rgb_stride, wmv9_mask,
  362. c->pal_pic + y * c->pal_stride + x,
  363. c->pal_stride,
  364. f->data[0], f->linesize[0],
  365. f->data[1], f->data[2], f->linesize[1],
  366. w, h);
  367. else
  368. ctx->dsp.mss2_blit_wmv9(c->rgb_pic + y * c->rgb_stride + x * 3,
  369. c->rgb_stride,
  370. f->data[0], f->linesize[0],
  371. f->data[1], f->data[2], f->linesize[1],
  372. w, h);
  373. avctx->pix_fmt = PIX_FMT_RGB24;
  374. return 0;
  375. }
  376. typedef struct Rectangle {
  377. int coded, x, y, w, h;
  378. } Rectangle;
  379. #define MAX_WMV9_RECTANGLES 20
  380. #define ARITH2_PADDING 2
  381. static int mss2_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  382. AVPacket *avpkt)
  383. {
  384. const uint8_t *buf = avpkt->data;
  385. int buf_size = avpkt->size;
  386. MSS2Context *ctx = avctx->priv_data;
  387. MSS12Context *c = &ctx->c;
  388. GetBitContext gb;
  389. GetByteContext gB;
  390. ArithCoder acoder;
  391. int keyframe, has_wmv9, has_mv, is_rle, is_555, ret;
  392. Rectangle wmv9rects[MAX_WMV9_RECTANGLES], *r;
  393. int used_rects = 0, i, implicit_rect, av_uninit(wmv9_mask);
  394. av_assert0(FF_INPUT_BUFFER_PADDING_SIZE >=
  395. ARITH2_PADDING + (MIN_CACHE_BITS + 7) / 8);
  396. init_get_bits(&gb, buf, buf_size * 8);
  397. if (keyframe = get_bits1(&gb))
  398. skip_bits(&gb, 7);
  399. has_wmv9 = get_bits1(&gb);
  400. has_mv = keyframe ? 0 : get_bits1(&gb);
  401. is_rle = get_bits1(&gb);
  402. is_555 = is_rle && get_bits1(&gb);
  403. if (c->slice_split > 0)
  404. ctx->split_position = c->slice_split;
  405. else if (c->slice_split < 0) {
  406. if (get_bits1(&gb)) {
  407. if (get_bits1(&gb)) {
  408. if (get_bits1(&gb))
  409. ctx->split_position = get_bits(&gb, 16);
  410. else
  411. ctx->split_position = get_bits(&gb, 12);
  412. } else
  413. ctx->split_position = get_bits(&gb, 8) << 4;
  414. } else {
  415. if (keyframe)
  416. ctx->split_position = avctx->height / 2;
  417. }
  418. } else
  419. ctx->split_position = avctx->height;
  420. if (c->slice_split && (ctx->split_position < 1 - is_555 ||
  421. ctx->split_position > avctx->height - 1))
  422. return AVERROR_INVALIDDATA;
  423. align_get_bits(&gb);
  424. buf += get_bits_count(&gb) >> 3;
  425. buf_size -= get_bits_count(&gb) >> 3;
  426. if (buf_size < 1)
  427. return AVERROR_INVALIDDATA;
  428. if (is_555 && (has_wmv9 || has_mv || c->slice_split && ctx->split_position))
  429. return AVERROR_INVALIDDATA;
  430. avctx->pix_fmt = is_555 ? PIX_FMT_RGB555 : PIX_FMT_RGB24;
  431. if (ctx->pic.data[0] && ctx->pic.format != avctx->pix_fmt)
  432. avctx->release_buffer(avctx, &ctx->pic);
  433. if (has_wmv9) {
  434. bytestream2_init(&gB, buf, buf_size + ARITH2_PADDING);
  435. arith2_init(&acoder, &gB);
  436. implicit_rect = !arith2_get_bit(&acoder);
  437. while (arith2_get_bit(&acoder)) {
  438. if (used_rects == MAX_WMV9_RECTANGLES)
  439. return AVERROR_INVALIDDATA;
  440. r = &wmv9rects[used_rects];
  441. if (!used_rects)
  442. r->x = arith2_get_number(&acoder, avctx->width);
  443. else
  444. r->x = arith2_get_number(&acoder, avctx->width -
  445. wmv9rects[used_rects - 1].x) +
  446. wmv9rects[used_rects - 1].x;
  447. r->y = arith2_get_number(&acoder, avctx->height);
  448. r->w = arith2_get_number(&acoder, avctx->width - r->x) + 1;
  449. r->h = arith2_get_number(&acoder, avctx->height - r->y) + 1;
  450. used_rects++;
  451. }
  452. if (implicit_rect && used_rects) {
  453. av_log(avctx, AV_LOG_ERROR, "implicit_rect && used_rects > 0\n");
  454. return AVERROR_INVALIDDATA;
  455. }
  456. if (implicit_rect) {
  457. wmv9rects[0].x = 0;
  458. wmv9rects[0].y = 0;
  459. wmv9rects[0].w = avctx->width;
  460. wmv9rects[0].h = avctx->height;
  461. used_rects = 1;
  462. }
  463. for (i = 0; i < used_rects; i++) {
  464. if (!implicit_rect && arith2_get_bit(&acoder)) {
  465. av_log(avctx, AV_LOG_ERROR, "Unexpected grandchildren\n");
  466. return AVERROR_INVALIDDATA;
  467. }
  468. if (!i) {
  469. wmv9_mask = arith2_get_bit(&acoder) - 1;
  470. if (!wmv9_mask)
  471. wmv9_mask = arith2_get_number(&acoder, 256);
  472. }
  473. wmv9rects[i].coded = arith2_get_number(&acoder, 2);
  474. }
  475. buf += arith2_get_consumed_bytes(&acoder);
  476. buf_size -= arith2_get_consumed_bytes(&acoder);
  477. if (buf_size < 1)
  478. return AVERROR_INVALIDDATA;
  479. }
  480. c->mvX = c->mvY = 0;
  481. if (keyframe && !is_555) {
  482. if ((i = decode_pal_v2(c, buf, buf_size)) < 0)
  483. return AVERROR_INVALIDDATA;
  484. buf += i;
  485. buf_size -= i;
  486. } else if (has_mv) {
  487. buf += 4;
  488. buf_size -= 4;
  489. if (buf_size < 1)
  490. return AVERROR_INVALIDDATA;
  491. c->mvX = AV_RB16(buf - 4) - avctx->width;
  492. c->mvY = AV_RB16(buf - 2) - avctx->height;
  493. }
  494. if (c->mvX < 0 || c->mvY < 0) {
  495. FFSWAP(AVFrame, ctx->pic, ctx->last_pic);
  496. FFSWAP(uint8_t *, c->pal_pic, c->last_pal_pic);
  497. if (ctx->pic.data[0])
  498. avctx->release_buffer(avctx, &ctx->pic);
  499. ctx->pic.reference = 3;
  500. ctx->pic.buffer_hints = FF_BUFFER_HINTS_VALID |
  501. FF_BUFFER_HINTS_READABLE |
  502. FF_BUFFER_HINTS_PRESERVE |
  503. FF_BUFFER_HINTS_REUSABLE;
  504. if ((ret = avctx->get_buffer(avctx, &ctx->pic)) < 0) {
  505. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  506. return ret;
  507. }
  508. if (ctx->last_pic.data[0]) {
  509. av_assert0(ctx->pic.linesize[0] == ctx->last_pic.linesize[0]);
  510. c->last_rgb_pic = ctx->last_pic.data[0] +
  511. ctx->last_pic.linesize[0] * (avctx->height - 1);
  512. } else {
  513. av_log(avctx, AV_LOG_ERROR, "Missing keyframe\n");
  514. return -1;
  515. }
  516. } else {
  517. if (ctx->last_pic.data[0])
  518. avctx->release_buffer(avctx, &ctx->last_pic);
  519. ctx->pic.reference = 3;
  520. ctx->pic.buffer_hints = FF_BUFFER_HINTS_VALID |
  521. FF_BUFFER_HINTS_READABLE |
  522. FF_BUFFER_HINTS_PRESERVE |
  523. FF_BUFFER_HINTS_REUSABLE;
  524. if ((ret = avctx->reget_buffer(avctx, &ctx->pic)) < 0) {
  525. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  526. return ret;
  527. }
  528. c->last_rgb_pic = NULL;
  529. }
  530. c->rgb_pic = ctx->pic.data[0] +
  531. ctx->pic.linesize[0] * (avctx->height - 1);
  532. c->rgb_stride = -ctx->pic.linesize[0];
  533. ctx->pic.key_frame = keyframe;
  534. ctx->pic.pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  535. if (is_555) {
  536. bytestream2_init(&gB, buf, buf_size);
  537. if (decode_555(&gB, (uint16_t *)c->rgb_pic, c->rgb_stride >> 1,
  538. keyframe, avctx->width, avctx->height))
  539. return AVERROR_INVALIDDATA;
  540. buf_size -= bytestream2_tell(&gB);
  541. } else if (is_rle) {
  542. init_get_bits(&gb, buf, buf_size * 8);
  543. if (ret = decode_rle(&gb, c->pal_pic, c->pal_stride,
  544. c->rgb_pic, c->rgb_stride, c->pal, keyframe,
  545. ctx->split_position, 0,
  546. avctx->width, avctx->height))
  547. return ret;
  548. align_get_bits(&gb);
  549. if (c->slice_split)
  550. if (ret = decode_rle(&gb, c->pal_pic, c->pal_stride,
  551. c->rgb_pic, c->rgb_stride, c->pal, keyframe,
  552. ctx->split_position, 1,
  553. avctx->width, avctx->height))
  554. return ret;
  555. align_get_bits(&gb);
  556. buf += get_bits_count(&gb) >> 3;
  557. buf_size -= get_bits_count(&gb) >> 3;
  558. } else {
  559. if (keyframe)
  560. ff_mss12_codec_reset(c);
  561. else if (c->corrupted)
  562. return AVERROR_INVALIDDATA;
  563. bytestream2_init(&gB, buf, buf_size + ARITH2_PADDING);
  564. arith2_init(&acoder, &gB);
  565. c->keyframe = keyframe;
  566. if (c->corrupted = ff_mss12_decode_rect(&c->sc[0], &acoder, 0, 0,
  567. avctx->width,
  568. ctx->split_position))
  569. return AVERROR_INVALIDDATA;
  570. buf += arith2_get_consumed_bytes(&acoder);
  571. buf_size -= arith2_get_consumed_bytes(&acoder);
  572. if (c->slice_split) {
  573. if (buf_size < 1)
  574. return AVERROR_INVALIDDATA;
  575. bytestream2_init(&gB, buf, buf_size + ARITH2_PADDING);
  576. arith2_init(&acoder, &gB);
  577. if (c->corrupted = ff_mss12_decode_rect(&c->sc[1], &acoder, 0,
  578. ctx->split_position,
  579. avctx->width,
  580. avctx->height - ctx->split_position))
  581. return AVERROR_INVALIDDATA;
  582. buf += arith2_get_consumed_bytes(&acoder);
  583. buf_size -= arith2_get_consumed_bytes(&acoder);
  584. }
  585. }
  586. if (has_wmv9) {
  587. for (i = 0; i < used_rects; i++) {
  588. int x = wmv9rects[i].x;
  589. int y = wmv9rects[i].y;
  590. int w = wmv9rects[i].w;
  591. int h = wmv9rects[i].h;
  592. if (wmv9rects[i].coded) {
  593. int WMV9codedFrameSize;
  594. if (buf_size < 4 || !(WMV9codedFrameSize = AV_RL24(buf)))
  595. return AVERROR_INVALIDDATA;
  596. if (ret = decode_wmv9(avctx, buf + 3, buf_size - 3,
  597. x, y, w, h, wmv9_mask))
  598. return ret;
  599. buf += WMV9codedFrameSize + 3;
  600. buf_size -= WMV9codedFrameSize + 3;
  601. } else {
  602. uint8_t *dst = c->rgb_pic + y * c->rgb_stride + x * 3;
  603. if (wmv9_mask != -1) {
  604. ctx->dsp.mss2_gray_fill_masked(dst, c->rgb_stride,
  605. wmv9_mask,
  606. c->pal_pic + y * c->pal_stride + x,
  607. c->pal_stride,
  608. w, h);
  609. } else {
  610. do {
  611. memset(dst, 0x80, w * 3);
  612. dst += c->rgb_stride;
  613. } while (--h);
  614. }
  615. }
  616. }
  617. }
  618. if (buf_size)
  619. av_log(avctx, AV_LOG_WARNING, "buffer not fully consumed\n");
  620. *data_size = sizeof(AVFrame);
  621. *(AVFrame *)data = ctx->pic;
  622. return avpkt->size;
  623. }
  624. static av_cold int wmv9_init(AVCodecContext *avctx)
  625. {
  626. VC1Context *v = avctx->priv_data;
  627. v->s.avctx = avctx;
  628. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  629. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  630. if (avctx->idct_algo == FF_IDCT_AUTO)
  631. avctx->idct_algo = FF_IDCT_WMV2;
  632. if (ff_vc1_init_common(v) < 0)
  633. return -1;
  634. ff_vc1dsp_init(&v->vc1dsp);
  635. v->profile = PROFILE_MAIN;
  636. v->zz_8x4 = ff_wmv2_scantableA;
  637. v->zz_4x8 = ff_wmv2_scantableB;
  638. v->res_y411 = 0;
  639. v->res_sprite = 0;
  640. v->frmrtq_postproc = 7;
  641. v->bitrtq_postproc = 31;
  642. v->res_x8 = 0;
  643. v->multires = 0;
  644. v->res_fasttx = 1;
  645. v->fastuvmc = 0;
  646. v->extended_mv = 0;
  647. v->dquant = 1;
  648. v->vstransform = 1;
  649. v->res_transtab = 0;
  650. v->overlap = 0;
  651. v->s.resync_marker = 0;
  652. v->rangered = 0;
  653. v->s.max_b_frames = avctx->max_b_frames = 0;
  654. v->quantizer_mode = 0;
  655. v->finterpflag = 0;
  656. v->res_rtm_flag = 1;
  657. ff_vc1_init_transposed_scantables(v);
  658. if (ff_msmpeg4_decode_init(avctx) < 0 ||
  659. ff_vc1_decode_init_alloc_tables(v) < 0)
  660. return -1;
  661. /* error concealment */
  662. v->s.me.qpel_put = v->s.dsp.put_qpel_pixels_tab;
  663. v->s.me.qpel_avg = v->s.dsp.avg_qpel_pixels_tab;
  664. return 0;
  665. }
  666. static av_cold int mss2_decode_end(AVCodecContext *avctx)
  667. {
  668. MSS2Context *const ctx = avctx->priv_data;
  669. if (ctx->pic.data[0])
  670. avctx->release_buffer(avctx, &ctx->pic);
  671. if (ctx->last_pic.data[0])
  672. avctx->release_buffer(avctx, &ctx->last_pic);
  673. ff_mss12_decode_end(&ctx->c);
  674. av_freep(&ctx->c.pal_pic);
  675. av_freep(&ctx->c.last_pal_pic);
  676. ff_vc1_decode_end(avctx);
  677. return 0;
  678. }
  679. static av_cold int mss2_decode_init(AVCodecContext *avctx)
  680. {
  681. MSS2Context * const ctx = avctx->priv_data;
  682. MSS12Context *c = &ctx->c;
  683. int ret;
  684. c->avctx = avctx;
  685. avctx->coded_frame = &ctx->pic;
  686. if (ret = ff_mss12_decode_init(c, 1))
  687. return ret;
  688. c->pal_stride = c->mask_stride;
  689. c->pal_pic = av_malloc(c->pal_stride * avctx->height);
  690. c->last_pal_pic = av_malloc(c->pal_stride * avctx->height);
  691. if (!c->pal_pic || !c->last_pal_pic) {
  692. mss2_decode_end(avctx);
  693. return AVERROR(ENOMEM);
  694. }
  695. if (ret = wmv9_init(avctx)) {
  696. mss2_decode_end(avctx);
  697. return ret;
  698. }
  699. ff_mss2dsp_init(&ctx->dsp);
  700. return 0;
  701. }
  702. AVCodec ff_mss2_decoder = {
  703. .name = "mss2",
  704. .type = AVMEDIA_TYPE_VIDEO,
  705. .id = AV_CODEC_ID_MSS2,
  706. .priv_data_size = sizeof(MSS2Context),
  707. .init = mss2_decode_init,
  708. .close = mss2_decode_end,
  709. .decode = mss2_decode_frame,
  710. .capabilities = CODEC_CAP_DR1,
  711. .long_name = NULL_IF_CONFIG_SMALL("MS Windows Media Video V9 Screen"),
  712. };