You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2860 lines
82KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually but i didnt write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #include <inttypes.h>
  53. #include <string.h>
  54. #include <math.h>
  55. #include <stdio.h>
  56. #include <unistd.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #ifdef HAVE_SYS_MMAN_H
  60. #include <sys/mman.h>
  61. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  62. #define MAP_ANONYMOUS MAP_ANON
  63. #endif
  64. #endif
  65. #include "swscale.h"
  66. #include "swscale_internal.h"
  67. #include "x86_cpu.h"
  68. #include "bswap.h"
  69. #include "rgb2rgb.h"
  70. #ifdef USE_FASTMEMCPY
  71. #include "libvo/fastmemcpy.h"
  72. #endif
  73. #undef MOVNTQ
  74. #undef PAVGB
  75. //#undef HAVE_MMX2
  76. //#define HAVE_3DNOW
  77. //#undef HAVE_MMX
  78. //#undef ARCH_X86
  79. //#define WORDS_BIGENDIAN
  80. #define DITHER1XBPP
  81. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  82. #define RET 0xC3 //near return opcode for X86
  83. #ifdef MP_DEBUG
  84. #define ASSERT(x) assert(x);
  85. #else
  86. #define ASSERT(x) ;
  87. #endif
  88. #ifdef M_PI
  89. #define PI M_PI
  90. #else
  91. #define PI 3.14159265358979323846
  92. #endif
  93. #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  94. || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
  95. || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
  96. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
  97. || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
  98. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P)
  99. #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  100. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
  101. || isRGB(x) || isBGR(x)\
  102. || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
  103. || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
  104. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
  105. #define isPacked(x) ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
  106. #define RGB2YUV_SHIFT 16
  107. #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
  108. #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
  109. #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  110. #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
  111. #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
  112. #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
  113. #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
  114. #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  115. #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
  116. extern const int32_t Inverse_Table_6_9[8][4];
  117. /*
  118. NOTES
  119. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  120. TODO
  121. more intelligent missalignment avoidance for the horizontal scaler
  122. write special vertical cubic upscale version
  123. Optimize C code (yv12 / minmax)
  124. add support for packed pixel yuv input & output
  125. add support for Y8 output
  126. optimize bgr24 & bgr32
  127. add BGR4 output support
  128. write special BGR->BGR scaler
  129. */
  130. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  131. static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
  132. static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
  133. static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
  134. static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
  135. static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
  136. static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
  137. static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
  138. static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
  139. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  140. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  141. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  142. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  143. static uint64_t __attribute__((aligned(8))) dither4[2]={
  144. 0x0103010301030103LL,
  145. 0x0200020002000200LL,};
  146. static uint64_t __attribute__((aligned(8))) dither8[2]={
  147. 0x0602060206020602LL,
  148. 0x0004000400040004LL,};
  149. static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
  150. static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
  151. static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
  152. static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
  153. static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
  154. static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
  155. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
  156. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
  157. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
  158. #ifdef FAST_BGR2YV12
  159. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
  160. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
  161. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
  162. #else
  163. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
  164. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
  165. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
  166. #endif /* FAST_BGR2YV12 */
  167. static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
  168. static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
  169. static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
  170. #endif /* defined(ARCH_X86) */
  171. // clipping helper table for C implementations:
  172. static unsigned char clip_table[768];
  173. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  174. extern const uint8_t dither_2x2_4[2][8];
  175. extern const uint8_t dither_2x2_8[2][8];
  176. extern const uint8_t dither_8x8_32[8][8];
  177. extern const uint8_t dither_8x8_73[8][8];
  178. extern const uint8_t dither_8x8_220[8][8];
  179. static const char * sws_context_to_name(void * ptr) {
  180. return "swscaler";
  181. }
  182. static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
  183. char *sws_format_name(enum PixelFormat format)
  184. {
  185. switch (format) {
  186. case PIX_FMT_YUV420P:
  187. return "yuv420p";
  188. case PIX_FMT_YUYV422:
  189. return "yuyv422";
  190. case PIX_FMT_RGB24:
  191. return "rgb24";
  192. case PIX_FMT_BGR24:
  193. return "bgr24";
  194. case PIX_FMT_YUV422P:
  195. return "yuv422p";
  196. case PIX_FMT_YUV444P:
  197. return "yuv444p";
  198. case PIX_FMT_RGB32:
  199. return "rgb32";
  200. case PIX_FMT_YUV410P:
  201. return "yuv410p";
  202. case PIX_FMT_YUV411P:
  203. return "yuv411p";
  204. case PIX_FMT_RGB565:
  205. return "rgb565";
  206. case PIX_FMT_RGB555:
  207. return "rgb555";
  208. case PIX_FMT_GRAY16BE:
  209. return "gray16be";
  210. case PIX_FMT_GRAY16LE:
  211. return "gray16le";
  212. case PIX_FMT_GRAY8:
  213. return "gray8";
  214. case PIX_FMT_MONOWHITE:
  215. return "mono white";
  216. case PIX_FMT_MONOBLACK:
  217. return "mono black";
  218. case PIX_FMT_PAL8:
  219. return "Palette";
  220. case PIX_FMT_YUVJ420P:
  221. return "yuvj420p";
  222. case PIX_FMT_YUVJ422P:
  223. return "yuvj422p";
  224. case PIX_FMT_YUVJ444P:
  225. return "yuvj444p";
  226. case PIX_FMT_XVMC_MPEG2_MC:
  227. return "xvmc_mpeg2_mc";
  228. case PIX_FMT_XVMC_MPEG2_IDCT:
  229. return "xvmc_mpeg2_idct";
  230. case PIX_FMT_UYVY422:
  231. return "uyvy422";
  232. case PIX_FMT_UYYVYY411:
  233. return "uyyvyy411";
  234. case PIX_FMT_RGB32_1:
  235. return "rgb32x";
  236. case PIX_FMT_BGR32_1:
  237. return "bgr32x";
  238. case PIX_FMT_BGR32:
  239. return "bgr32";
  240. case PIX_FMT_BGR565:
  241. return "bgr565";
  242. case PIX_FMT_BGR555:
  243. return "bgr555";
  244. case PIX_FMT_BGR8:
  245. return "bgr8";
  246. case PIX_FMT_BGR4:
  247. return "bgr4";
  248. case PIX_FMT_BGR4_BYTE:
  249. return "bgr4 byte";
  250. case PIX_FMT_RGB8:
  251. return "rgb8";
  252. case PIX_FMT_RGB4:
  253. return "rgb4";
  254. case PIX_FMT_RGB4_BYTE:
  255. return "rgb4 byte";
  256. case PIX_FMT_NV12:
  257. return "nv12";
  258. case PIX_FMT_NV21:
  259. return "nv21";
  260. default:
  261. return "Unknown format";
  262. }
  263. }
  264. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  265. void in_asm_used_var_warning_killer()
  266. {
  267. volatile int i= bF8+bFC+w10+
  268. bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
  269. M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
  270. if(i) i=0;
  271. }
  272. #endif
  273. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  274. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  275. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  276. {
  277. //FIXME Optimize (just quickly writen not opti..)
  278. int i;
  279. for(i=0; i<dstW; i++)
  280. {
  281. int val=1<<18;
  282. int j;
  283. for(j=0; j<lumFilterSize; j++)
  284. val += lumSrc[j][i] * lumFilter[j];
  285. dest[i]= clip_uint8(val>>19);
  286. }
  287. if(uDest != NULL)
  288. for(i=0; i<chrDstW; i++)
  289. {
  290. int u=1<<18;
  291. int v=1<<18;
  292. int j;
  293. for(j=0; j<chrFilterSize; j++)
  294. {
  295. u += chrSrc[j][i] * chrFilter[j];
  296. v += chrSrc[j][i + 2048] * chrFilter[j];
  297. }
  298. uDest[i]= clip_uint8(u>>19);
  299. vDest[i]= clip_uint8(v>>19);
  300. }
  301. }
  302. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  303. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  304. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  305. {
  306. //FIXME Optimize (just quickly writen not opti..)
  307. int i;
  308. for(i=0; i<dstW; i++)
  309. {
  310. int val=1<<18;
  311. int j;
  312. for(j=0; j<lumFilterSize; j++)
  313. val += lumSrc[j][i] * lumFilter[j];
  314. dest[i]= clip_uint8(val>>19);
  315. }
  316. if(uDest == NULL)
  317. return;
  318. if(dstFormat == PIX_FMT_NV12)
  319. for(i=0; i<chrDstW; i++)
  320. {
  321. int u=1<<18;
  322. int v=1<<18;
  323. int j;
  324. for(j=0; j<chrFilterSize; j++)
  325. {
  326. u += chrSrc[j][i] * chrFilter[j];
  327. v += chrSrc[j][i + 2048] * chrFilter[j];
  328. }
  329. uDest[2*i]= clip_uint8(u>>19);
  330. uDest[2*i+1]= clip_uint8(v>>19);
  331. }
  332. else
  333. for(i=0; i<chrDstW; i++)
  334. {
  335. int u=1<<18;
  336. int v=1<<18;
  337. int j;
  338. for(j=0; j<chrFilterSize; j++)
  339. {
  340. u += chrSrc[j][i] * chrFilter[j];
  341. v += chrSrc[j][i + 2048] * chrFilter[j];
  342. }
  343. uDest[2*i]= clip_uint8(v>>19);
  344. uDest[2*i+1]= clip_uint8(u>>19);
  345. }
  346. }
  347. #define YSCALE_YUV_2_PACKEDX_C(type) \
  348. for(i=0; i<(dstW>>1); i++){\
  349. int j;\
  350. int Y1=1<<18;\
  351. int Y2=1<<18;\
  352. int U=1<<18;\
  353. int V=1<<18;\
  354. type attribute_unused *r, *b, *g;\
  355. const int i2= 2*i;\
  356. \
  357. for(j=0; j<lumFilterSize; j++)\
  358. {\
  359. Y1 += lumSrc[j][i2] * lumFilter[j];\
  360. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  361. }\
  362. for(j=0; j<chrFilterSize; j++)\
  363. {\
  364. U += chrSrc[j][i] * chrFilter[j];\
  365. V += chrSrc[j][i+2048] * chrFilter[j];\
  366. }\
  367. Y1>>=19;\
  368. Y2>>=19;\
  369. U >>=19;\
  370. V >>=19;\
  371. if((Y1|Y2|U|V)&256)\
  372. {\
  373. if(Y1>255) Y1=255;\
  374. else if(Y1<0)Y1=0;\
  375. if(Y2>255) Y2=255;\
  376. else if(Y2<0)Y2=0;\
  377. if(U>255) U=255;\
  378. else if(U<0) U=0;\
  379. if(V>255) V=255;\
  380. else if(V<0) V=0;\
  381. }
  382. #define YSCALE_YUV_2_RGBX_C(type) \
  383. YSCALE_YUV_2_PACKEDX_C(type)\
  384. r = (type *)c->table_rV[V];\
  385. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  386. b = (type *)c->table_bU[U];\
  387. #define YSCALE_YUV_2_PACKED2_C \
  388. for(i=0; i<(dstW>>1); i++){\
  389. const int i2= 2*i;\
  390. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
  391. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
  392. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
  393. int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
  394. #define YSCALE_YUV_2_RGB2_C(type) \
  395. YSCALE_YUV_2_PACKED2_C\
  396. type *r, *b, *g;\
  397. r = (type *)c->table_rV[V];\
  398. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  399. b = (type *)c->table_bU[U];\
  400. #define YSCALE_YUV_2_PACKED1_C \
  401. for(i=0; i<(dstW>>1); i++){\
  402. const int i2= 2*i;\
  403. int Y1= buf0[i2 ]>>7;\
  404. int Y2= buf0[i2+1]>>7;\
  405. int U= (uvbuf1[i ])>>7;\
  406. int V= (uvbuf1[i+2048])>>7;\
  407. #define YSCALE_YUV_2_RGB1_C(type) \
  408. YSCALE_YUV_2_PACKED1_C\
  409. type *r, *b, *g;\
  410. r = (type *)c->table_rV[V];\
  411. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  412. b = (type *)c->table_bU[U];\
  413. #define YSCALE_YUV_2_PACKED1B_C \
  414. for(i=0; i<(dstW>>1); i++){\
  415. const int i2= 2*i;\
  416. int Y1= buf0[i2 ]>>7;\
  417. int Y2= buf0[i2+1]>>7;\
  418. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  419. int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
  420. #define YSCALE_YUV_2_RGB1B_C(type) \
  421. YSCALE_YUV_2_PACKED1B_C\
  422. type *r, *b, *g;\
  423. r = (type *)c->table_rV[V];\
  424. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  425. b = (type *)c->table_bU[U];\
  426. #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
  427. switch(c->dstFormat)\
  428. {\
  429. case PIX_FMT_RGB32:\
  430. case PIX_FMT_BGR32:\
  431. func(uint32_t)\
  432. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  433. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  434. } \
  435. break;\
  436. case PIX_FMT_RGB24:\
  437. func(uint8_t)\
  438. ((uint8_t*)dest)[0]= r[Y1];\
  439. ((uint8_t*)dest)[1]= g[Y1];\
  440. ((uint8_t*)dest)[2]= b[Y1];\
  441. ((uint8_t*)dest)[3]= r[Y2];\
  442. ((uint8_t*)dest)[4]= g[Y2];\
  443. ((uint8_t*)dest)[5]= b[Y2];\
  444. dest+=6;\
  445. }\
  446. break;\
  447. case PIX_FMT_BGR24:\
  448. func(uint8_t)\
  449. ((uint8_t*)dest)[0]= b[Y1];\
  450. ((uint8_t*)dest)[1]= g[Y1];\
  451. ((uint8_t*)dest)[2]= r[Y1];\
  452. ((uint8_t*)dest)[3]= b[Y2];\
  453. ((uint8_t*)dest)[4]= g[Y2];\
  454. ((uint8_t*)dest)[5]= r[Y2];\
  455. dest+=6;\
  456. }\
  457. break;\
  458. case PIX_FMT_RGB565:\
  459. case PIX_FMT_BGR565:\
  460. {\
  461. const int dr1= dither_2x2_8[y&1 ][0];\
  462. const int dg1= dither_2x2_4[y&1 ][0];\
  463. const int db1= dither_2x2_8[(y&1)^1][0];\
  464. const int dr2= dither_2x2_8[y&1 ][1];\
  465. const int dg2= dither_2x2_4[y&1 ][1];\
  466. const int db2= dither_2x2_8[(y&1)^1][1];\
  467. func(uint16_t)\
  468. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  469. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  470. }\
  471. }\
  472. break;\
  473. case PIX_FMT_RGB555:\
  474. case PIX_FMT_BGR555:\
  475. {\
  476. const int dr1= dither_2x2_8[y&1 ][0];\
  477. const int dg1= dither_2x2_8[y&1 ][1];\
  478. const int db1= dither_2x2_8[(y&1)^1][0];\
  479. const int dr2= dither_2x2_8[y&1 ][1];\
  480. const int dg2= dither_2x2_8[y&1 ][0];\
  481. const int db2= dither_2x2_8[(y&1)^1][1];\
  482. func(uint16_t)\
  483. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  484. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  485. }\
  486. }\
  487. break;\
  488. case PIX_FMT_RGB8:\
  489. case PIX_FMT_BGR8:\
  490. {\
  491. const uint8_t * const d64= dither_8x8_73[y&7];\
  492. const uint8_t * const d32= dither_8x8_32[y&7];\
  493. func(uint8_t)\
  494. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  495. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  496. }\
  497. }\
  498. break;\
  499. case PIX_FMT_RGB4:\
  500. case PIX_FMT_BGR4:\
  501. {\
  502. const uint8_t * const d64= dither_8x8_73 [y&7];\
  503. const uint8_t * const d128=dither_8x8_220[y&7];\
  504. func(uint8_t)\
  505. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  506. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  507. }\
  508. }\
  509. break;\
  510. case PIX_FMT_RGB4_BYTE:\
  511. case PIX_FMT_BGR4_BYTE:\
  512. {\
  513. const uint8_t * const d64= dither_8x8_73 [y&7];\
  514. const uint8_t * const d128=dither_8x8_220[y&7];\
  515. func(uint8_t)\
  516. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  517. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  518. }\
  519. }\
  520. break;\
  521. case PIX_FMT_MONOBLACK:\
  522. {\
  523. const uint8_t * const d128=dither_8x8_220[y&7];\
  524. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  525. for(i=0; i<dstW-7; i+=8){\
  526. int acc;\
  527. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  528. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  529. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  530. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  531. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  532. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  533. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  534. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  535. ((uint8_t*)dest)[0]= acc;\
  536. dest++;\
  537. }\
  538. \
  539. /*\
  540. ((uint8_t*)dest)-= dstW>>4;\
  541. {\
  542. int acc=0;\
  543. int left=0;\
  544. static int top[1024];\
  545. static int last_new[1024][1024];\
  546. static int last_in3[1024][1024];\
  547. static int drift[1024][1024];\
  548. int topLeft=0;\
  549. int shift=0;\
  550. int count=0;\
  551. const uint8_t * const d128=dither_8x8_220[y&7];\
  552. int error_new=0;\
  553. int error_in3=0;\
  554. int f=0;\
  555. \
  556. for(i=dstW>>1; i<dstW; i++){\
  557. int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
  558. int in2 = (76309 * (in - 16) + 32768) >> 16;\
  559. int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
  560. int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
  561. + (last_new[y][i] - in3)*f/256;\
  562. int new= old> 128 ? 255 : 0;\
  563. \
  564. error_new+= FFABS(last_new[y][i] - new);\
  565. error_in3+= FFABS(last_in3[y][i] - in3);\
  566. f= error_new - error_in3*4;\
  567. if(f<0) f=0;\
  568. if(f>256) f=256;\
  569. \
  570. topLeft= top[i];\
  571. left= top[i]= old - new;\
  572. last_new[y][i]= new;\
  573. last_in3[y][i]= in3;\
  574. \
  575. acc+= acc + (new&1);\
  576. if((i&7)==6){\
  577. ((uint8_t*)dest)[0]= acc;\
  578. ((uint8_t*)dest)++;\
  579. }\
  580. }\
  581. }\
  582. */\
  583. }\
  584. break;\
  585. case PIX_FMT_YUYV422:\
  586. func2\
  587. ((uint8_t*)dest)[2*i2+0]= Y1;\
  588. ((uint8_t*)dest)[2*i2+1]= U;\
  589. ((uint8_t*)dest)[2*i2+2]= Y2;\
  590. ((uint8_t*)dest)[2*i2+3]= V;\
  591. } \
  592. break;\
  593. case PIX_FMT_UYVY422:\
  594. func2\
  595. ((uint8_t*)dest)[2*i2+0]= U;\
  596. ((uint8_t*)dest)[2*i2+1]= Y1;\
  597. ((uint8_t*)dest)[2*i2+2]= V;\
  598. ((uint8_t*)dest)[2*i2+3]= Y2;\
  599. } \
  600. break;\
  601. }\
  602. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  603. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  604. uint8_t *dest, int dstW, int y)
  605. {
  606. int i;
  607. switch(c->dstFormat)
  608. {
  609. case PIX_FMT_BGR32:
  610. case PIX_FMT_RGB32:
  611. YSCALE_YUV_2_RGBX_C(uint32_t)
  612. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
  613. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
  614. }
  615. break;
  616. case PIX_FMT_RGB24:
  617. YSCALE_YUV_2_RGBX_C(uint8_t)
  618. ((uint8_t*)dest)[0]= r[Y1];
  619. ((uint8_t*)dest)[1]= g[Y1];
  620. ((uint8_t*)dest)[2]= b[Y1];
  621. ((uint8_t*)dest)[3]= r[Y2];
  622. ((uint8_t*)dest)[4]= g[Y2];
  623. ((uint8_t*)dest)[5]= b[Y2];
  624. dest+=6;
  625. }
  626. break;
  627. case PIX_FMT_BGR24:
  628. YSCALE_YUV_2_RGBX_C(uint8_t)
  629. ((uint8_t*)dest)[0]= b[Y1];
  630. ((uint8_t*)dest)[1]= g[Y1];
  631. ((uint8_t*)dest)[2]= r[Y1];
  632. ((uint8_t*)dest)[3]= b[Y2];
  633. ((uint8_t*)dest)[4]= g[Y2];
  634. ((uint8_t*)dest)[5]= r[Y2];
  635. dest+=6;
  636. }
  637. break;
  638. case PIX_FMT_RGB565:
  639. case PIX_FMT_BGR565:
  640. {
  641. const int dr1= dither_2x2_8[y&1 ][0];
  642. const int dg1= dither_2x2_4[y&1 ][0];
  643. const int db1= dither_2x2_8[(y&1)^1][0];
  644. const int dr2= dither_2x2_8[y&1 ][1];
  645. const int dg2= dither_2x2_4[y&1 ][1];
  646. const int db2= dither_2x2_8[(y&1)^1][1];
  647. YSCALE_YUV_2_RGBX_C(uint16_t)
  648. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  649. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  650. }
  651. }
  652. break;
  653. case PIX_FMT_RGB555:
  654. case PIX_FMT_BGR555:
  655. {
  656. const int dr1= dither_2x2_8[y&1 ][0];
  657. const int dg1= dither_2x2_8[y&1 ][1];
  658. const int db1= dither_2x2_8[(y&1)^1][0];
  659. const int dr2= dither_2x2_8[y&1 ][1];
  660. const int dg2= dither_2x2_8[y&1 ][0];
  661. const int db2= dither_2x2_8[(y&1)^1][1];
  662. YSCALE_YUV_2_RGBX_C(uint16_t)
  663. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  664. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  665. }
  666. }
  667. break;
  668. case PIX_FMT_RGB8:
  669. case PIX_FMT_BGR8:
  670. {
  671. const uint8_t * const d64= dither_8x8_73[y&7];
  672. const uint8_t * const d32= dither_8x8_32[y&7];
  673. YSCALE_YUV_2_RGBX_C(uint8_t)
  674. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
  675. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
  676. }
  677. }
  678. break;
  679. case PIX_FMT_RGB4:
  680. case PIX_FMT_BGR4:
  681. {
  682. const uint8_t * const d64= dither_8x8_73 [y&7];
  683. const uint8_t * const d128=dither_8x8_220[y&7];
  684. YSCALE_YUV_2_RGBX_C(uint8_t)
  685. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
  686. +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
  687. }
  688. }
  689. break;
  690. case PIX_FMT_RGB4_BYTE:
  691. case PIX_FMT_BGR4_BYTE:
  692. {
  693. const uint8_t * const d64= dither_8x8_73 [y&7];
  694. const uint8_t * const d128=dither_8x8_220[y&7];
  695. YSCALE_YUV_2_RGBX_C(uint8_t)
  696. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
  697. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
  698. }
  699. }
  700. break;
  701. case PIX_FMT_MONOBLACK:
  702. {
  703. const uint8_t * const d128=dither_8x8_220[y&7];
  704. uint8_t *g= c->table_gU[128] + c->table_gV[128];
  705. int acc=0;
  706. for(i=0; i<dstW-1; i+=2){
  707. int j;
  708. int Y1=1<<18;
  709. int Y2=1<<18;
  710. for(j=0; j<lumFilterSize; j++)
  711. {
  712. Y1 += lumSrc[j][i] * lumFilter[j];
  713. Y2 += lumSrc[j][i+1] * lumFilter[j];
  714. }
  715. Y1>>=19;
  716. Y2>>=19;
  717. if((Y1|Y2)&256)
  718. {
  719. if(Y1>255) Y1=255;
  720. else if(Y1<0)Y1=0;
  721. if(Y2>255) Y2=255;
  722. else if(Y2<0)Y2=0;
  723. }
  724. acc+= acc + g[Y1+d128[(i+0)&7]];
  725. acc+= acc + g[Y2+d128[(i+1)&7]];
  726. if((i&7)==6){
  727. ((uint8_t*)dest)[0]= acc;
  728. dest++;
  729. }
  730. }
  731. }
  732. break;
  733. case PIX_FMT_YUYV422:
  734. YSCALE_YUV_2_PACKEDX_C(void)
  735. ((uint8_t*)dest)[2*i2+0]= Y1;
  736. ((uint8_t*)dest)[2*i2+1]= U;
  737. ((uint8_t*)dest)[2*i2+2]= Y2;
  738. ((uint8_t*)dest)[2*i2+3]= V;
  739. }
  740. break;
  741. case PIX_FMT_UYVY422:
  742. YSCALE_YUV_2_PACKEDX_C(void)
  743. ((uint8_t*)dest)[2*i2+0]= U;
  744. ((uint8_t*)dest)[2*i2+1]= Y1;
  745. ((uint8_t*)dest)[2*i2+2]= V;
  746. ((uint8_t*)dest)[2*i2+3]= Y2;
  747. }
  748. break;
  749. }
  750. }
  751. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  752. //Plain C versions
  753. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  754. #define COMPILE_C
  755. #endif
  756. #ifdef ARCH_POWERPC
  757. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  758. #define COMPILE_ALTIVEC
  759. #endif //HAVE_ALTIVEC
  760. #endif //ARCH_POWERPC
  761. #if defined(ARCH_X86)
  762. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  763. #define COMPILE_MMX
  764. #endif
  765. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  766. #define COMPILE_MMX2
  767. #endif
  768. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  769. #define COMPILE_3DNOW
  770. #endif
  771. #endif //ARCH_X86 || ARCH_X86_64
  772. #undef HAVE_MMX
  773. #undef HAVE_MMX2
  774. #undef HAVE_3DNOW
  775. #ifdef COMPILE_C
  776. #undef HAVE_MMX
  777. #undef HAVE_MMX2
  778. #undef HAVE_3DNOW
  779. #undef HAVE_ALTIVEC
  780. #define RENAME(a) a ## _C
  781. #include "swscale_template.c"
  782. #endif
  783. #ifdef ARCH_POWERPC
  784. #ifdef COMPILE_ALTIVEC
  785. #undef RENAME
  786. #define HAVE_ALTIVEC
  787. #define RENAME(a) a ## _altivec
  788. #include "swscale_template.c"
  789. #endif
  790. #endif //ARCH_POWERPC
  791. #if defined(ARCH_X86)
  792. //X86 versions
  793. /*
  794. #undef RENAME
  795. #undef HAVE_MMX
  796. #undef HAVE_MMX2
  797. #undef HAVE_3DNOW
  798. #define ARCH_X86
  799. #define RENAME(a) a ## _X86
  800. #include "swscale_template.c"
  801. */
  802. //MMX versions
  803. #ifdef COMPILE_MMX
  804. #undef RENAME
  805. #define HAVE_MMX
  806. #undef HAVE_MMX2
  807. #undef HAVE_3DNOW
  808. #define RENAME(a) a ## _MMX
  809. #include "swscale_template.c"
  810. #endif
  811. //MMX2 versions
  812. #ifdef COMPILE_MMX2
  813. #undef RENAME
  814. #define HAVE_MMX
  815. #define HAVE_MMX2
  816. #undef HAVE_3DNOW
  817. #define RENAME(a) a ## _MMX2
  818. #include "swscale_template.c"
  819. #endif
  820. //3DNOW versions
  821. #ifdef COMPILE_3DNOW
  822. #undef RENAME
  823. #define HAVE_MMX
  824. #undef HAVE_MMX2
  825. #define HAVE_3DNOW
  826. #define RENAME(a) a ## _3DNow
  827. #include "swscale_template.c"
  828. #endif
  829. #endif //ARCH_X86 || ARCH_X86_64
  830. // minor note: the HAVE_xyz is messed up after that line so don't use it
  831. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  832. {
  833. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  834. if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  835. else return getSplineCoeff( 0.0,
  836. b+ 2.0*c + 3.0*d,
  837. c + 3.0*d,
  838. -b- 3.0*c - 6.0*d,
  839. dist-1.0);
  840. }
  841. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  842. int srcW, int dstW, int filterAlign, int one, int flags,
  843. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  844. {
  845. int i;
  846. int filterSize;
  847. int filter2Size;
  848. int minFilterSize;
  849. double *filter=NULL;
  850. double *filter2=NULL;
  851. #if defined(ARCH_X86)
  852. if(flags & SWS_CPU_CAPS_MMX)
  853. asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
  854. #endif
  855. // Note the +1 is for the MMXscaler which reads over the end
  856. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  857. if(FFABS(xInc - 0x10000) <10) // unscaled
  858. {
  859. int i;
  860. filterSize= 1;
  861. filter= av_malloc(dstW*sizeof(double)*filterSize);
  862. for(i=0; i<dstW*filterSize; i++) filter[i]=0;
  863. for(i=0; i<dstW; i++)
  864. {
  865. filter[i*filterSize]=1;
  866. (*filterPos)[i]=i;
  867. }
  868. }
  869. else if(flags&SWS_POINT) // lame looking point sampling mode
  870. {
  871. int i;
  872. int xDstInSrc;
  873. filterSize= 1;
  874. filter= av_malloc(dstW*sizeof(double)*filterSize);
  875. xDstInSrc= xInc/2 - 0x8000;
  876. for(i=0; i<dstW; i++)
  877. {
  878. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  879. (*filterPos)[i]= xx;
  880. filter[i]= 1.0;
  881. xDstInSrc+= xInc;
  882. }
  883. }
  884. else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  885. {
  886. int i;
  887. int xDstInSrc;
  888. if (flags&SWS_BICUBIC) filterSize= 4;
  889. else if(flags&SWS_X ) filterSize= 4;
  890. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  891. filter= av_malloc(dstW*sizeof(double)*filterSize);
  892. xDstInSrc= xInc/2 - 0x8000;
  893. for(i=0; i<dstW; i++)
  894. {
  895. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  896. int j;
  897. (*filterPos)[i]= xx;
  898. //Bilinear upscale / linear interpolate / Area averaging
  899. for(j=0; j<filterSize; j++)
  900. {
  901. double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  902. double coeff= 1.0 - d;
  903. if(coeff<0) coeff=0;
  904. filter[i*filterSize + j]= coeff;
  905. xx++;
  906. }
  907. xDstInSrc+= xInc;
  908. }
  909. }
  910. else
  911. {
  912. double xDstInSrc;
  913. double sizeFactor, filterSizeInSrc;
  914. const double xInc1= (double)xInc / (double)(1<<16);
  915. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  916. else if(flags&SWS_X) sizeFactor= 8.0;
  917. else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  918. else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  919. else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
  920. else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  921. else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  922. else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
  923. else {
  924. sizeFactor= 0.0; //GCC warning killer
  925. ASSERT(0)
  926. }
  927. if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  928. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  929. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  930. if(filterSize > srcW-2) filterSize=srcW-2;
  931. filter= av_malloc(dstW*sizeof(double)*filterSize);
  932. xDstInSrc= xInc1 / 2.0 - 0.5;
  933. for(i=0; i<dstW; i++)
  934. {
  935. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  936. int j;
  937. (*filterPos)[i]= xx;
  938. for(j=0; j<filterSize; j++)
  939. {
  940. double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  941. double coeff;
  942. if(flags & SWS_BICUBIC)
  943. {
  944. double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
  945. double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
  946. if(d<1.0)
  947. coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
  948. else if(d<2.0)
  949. coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
  950. else
  951. coeff=0.0;
  952. }
  953. /* else if(flags & SWS_X)
  954. {
  955. double p= param ? param*0.01 : 0.3;
  956. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  957. coeff*= pow(2.0, - p*d*d);
  958. }*/
  959. else if(flags & SWS_X)
  960. {
  961. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  962. if(d<1.0)
  963. coeff = cos(d*PI);
  964. else
  965. coeff=-1.0;
  966. if(coeff<0.0) coeff= -pow(-coeff, A);
  967. else coeff= pow( coeff, A);
  968. coeff= coeff*0.5 + 0.5;
  969. }
  970. else if(flags & SWS_AREA)
  971. {
  972. double srcPixelSize= 1.0/xInc1;
  973. if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
  974. else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  975. else coeff=0.0;
  976. }
  977. else if(flags & SWS_GAUSS)
  978. {
  979. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  980. coeff = pow(2.0, - p*d*d);
  981. }
  982. else if(flags & SWS_SINC)
  983. {
  984. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  985. }
  986. else if(flags & SWS_LANCZOS)
  987. {
  988. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  989. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  990. if(d>p) coeff=0;
  991. }
  992. else if(flags & SWS_BILINEAR)
  993. {
  994. coeff= 1.0 - d;
  995. if(coeff<0) coeff=0;
  996. }
  997. else if(flags & SWS_SPLINE)
  998. {
  999. double p=-2.196152422706632;
  1000. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  1001. }
  1002. else {
  1003. coeff= 0.0; //GCC warning killer
  1004. ASSERT(0)
  1005. }
  1006. filter[i*filterSize + j]= coeff;
  1007. xx++;
  1008. }
  1009. xDstInSrc+= xInc1;
  1010. }
  1011. }
  1012. /* apply src & dst Filter to filter -> filter2
  1013. av_free(filter);
  1014. */
  1015. ASSERT(filterSize>0)
  1016. filter2Size= filterSize;
  1017. if(srcFilter) filter2Size+= srcFilter->length - 1;
  1018. if(dstFilter) filter2Size+= dstFilter->length - 1;
  1019. ASSERT(filter2Size>0)
  1020. filter2= av_malloc(filter2Size*dstW*sizeof(double));
  1021. for(i=0; i<dstW; i++)
  1022. {
  1023. int j;
  1024. SwsVector scaleFilter;
  1025. SwsVector *outVec;
  1026. scaleFilter.coeff= filter + i*filterSize;
  1027. scaleFilter.length= filterSize;
  1028. if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  1029. else outVec= &scaleFilter;
  1030. ASSERT(outVec->length == filter2Size)
  1031. //FIXME dstFilter
  1032. for(j=0; j<outVec->length; j++)
  1033. {
  1034. filter2[i*filter2Size + j]= outVec->coeff[j];
  1035. }
  1036. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1037. if(outVec != &scaleFilter) sws_freeVec(outVec);
  1038. }
  1039. av_free(filter); filter=NULL;
  1040. /* try to reduce the filter-size (step1 find size and shift left) */
  1041. // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
  1042. minFilterSize= 0;
  1043. for(i=dstW-1; i>=0; i--)
  1044. {
  1045. int min= filter2Size;
  1046. int j;
  1047. double cutOff=0.0;
  1048. /* get rid off near zero elements on the left by shifting left */
  1049. for(j=0; j<filter2Size; j++)
  1050. {
  1051. int k;
  1052. cutOff += FFABS(filter2[i*filter2Size]);
  1053. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1054. /* preserve Monotonicity because the core can't handle the filter otherwise */
  1055. if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1056. // Move filter coeffs left
  1057. for(k=1; k<filter2Size; k++)
  1058. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1059. filter2[i*filter2Size + k - 1]= 0.0;
  1060. (*filterPos)[i]++;
  1061. }
  1062. cutOff=0.0;
  1063. /* count near zeros on the right */
  1064. for(j=filter2Size-1; j>0; j--)
  1065. {
  1066. cutOff += FFABS(filter2[i*filter2Size + j]);
  1067. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1068. min--;
  1069. }
  1070. if(min>minFilterSize) minFilterSize= min;
  1071. }
  1072. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1073. // we can handle the special case 4,
  1074. // so we don't want to go to the full 8
  1075. if (minFilterSize < 5)
  1076. filterAlign = 4;
  1077. // we really don't want to waste our time
  1078. // doing useless computation, so fall-back on
  1079. // the scalar C code for very small filter.
  1080. // vectorizing is worth it only if you have
  1081. // decent-sized vector.
  1082. if (minFilterSize < 3)
  1083. filterAlign = 1;
  1084. }
  1085. if (flags & SWS_CPU_CAPS_MMX) {
  1086. // special case for unscaled vertical filtering
  1087. if(minFilterSize == 1 && filterAlign == 2)
  1088. filterAlign= 1;
  1089. }
  1090. ASSERT(minFilterSize > 0)
  1091. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1092. ASSERT(filterSize > 0)
  1093. filter= av_malloc(filterSize*dstW*sizeof(double));
  1094. if(filterSize >= MAX_FILTER_SIZE)
  1095. return -1;
  1096. *outFilterSize= filterSize;
  1097. if(flags&SWS_PRINT_INFO)
  1098. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1099. /* try to reduce the filter-size (step2 reduce it) */
  1100. for(i=0; i<dstW; i++)
  1101. {
  1102. int j;
  1103. for(j=0; j<filterSize; j++)
  1104. {
  1105. if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
  1106. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1107. }
  1108. }
  1109. av_free(filter2); filter2=NULL;
  1110. //FIXME try to align filterpos if possible
  1111. //fix borders
  1112. for(i=0; i<dstW; i++)
  1113. {
  1114. int j;
  1115. if((*filterPos)[i] < 0)
  1116. {
  1117. // Move filter coeffs left to compensate for filterPos
  1118. for(j=1; j<filterSize; j++)
  1119. {
  1120. int left= FFMAX(j + (*filterPos)[i], 0);
  1121. filter[i*filterSize + left] += filter[i*filterSize + j];
  1122. filter[i*filterSize + j]=0;
  1123. }
  1124. (*filterPos)[i]= 0;
  1125. }
  1126. if((*filterPos)[i] + filterSize > srcW)
  1127. {
  1128. int shift= (*filterPos)[i] + filterSize - srcW;
  1129. // Move filter coeffs right to compensate for filterPos
  1130. for(j=filterSize-2; j>=0; j--)
  1131. {
  1132. int right= FFMIN(j + shift, filterSize-1);
  1133. filter[i*filterSize +right] += filter[i*filterSize +j];
  1134. filter[i*filterSize +j]=0;
  1135. }
  1136. (*filterPos)[i]= srcW - filterSize;
  1137. }
  1138. }
  1139. // Note the +1 is for the MMXscaler which reads over the end
  1140. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1141. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1142. /* Normalize & Store in outFilter */
  1143. for(i=0; i<dstW; i++)
  1144. {
  1145. int j;
  1146. double error=0;
  1147. double sum=0;
  1148. double scale= one;
  1149. for(j=0; j<filterSize; j++)
  1150. {
  1151. sum+= filter[i*filterSize + j];
  1152. }
  1153. scale/= sum;
  1154. for(j=0; j<*outFilterSize; j++)
  1155. {
  1156. double v= filter[i*filterSize + j]*scale + error;
  1157. int intV= floor(v + 0.5);
  1158. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1159. error = v - intV;
  1160. }
  1161. }
  1162. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1163. for(i=0; i<*outFilterSize; i++)
  1164. {
  1165. int j= dstW*(*outFilterSize);
  1166. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1167. }
  1168. av_free(filter);
  1169. return 0;
  1170. }
  1171. #ifdef COMPILE_MMX2
  1172. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1173. {
  1174. uint8_t *fragmentA;
  1175. long imm8OfPShufW1A;
  1176. long imm8OfPShufW2A;
  1177. long fragmentLengthA;
  1178. uint8_t *fragmentB;
  1179. long imm8OfPShufW1B;
  1180. long imm8OfPShufW2B;
  1181. long fragmentLengthB;
  1182. int fragmentPos;
  1183. int xpos, i;
  1184. // create an optimized horizontal scaling routine
  1185. //code fragment
  1186. asm volatile(
  1187. "jmp 9f \n\t"
  1188. // Begin
  1189. "0: \n\t"
  1190. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1191. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1192. "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
  1193. "punpcklbw %%mm7, %%mm1 \n\t"
  1194. "punpcklbw %%mm7, %%mm0 \n\t"
  1195. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1196. "1: \n\t"
  1197. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1198. "2: \n\t"
  1199. "psubw %%mm1, %%mm0 \n\t"
  1200. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1201. "pmullw %%mm3, %%mm0 \n\t"
  1202. "psllw $7, %%mm1 \n\t"
  1203. "paddw %%mm1, %%mm0 \n\t"
  1204. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1205. "add $8, %%"REG_a" \n\t"
  1206. // End
  1207. "9: \n\t"
  1208. // "int $3\n\t"
  1209. "lea 0b, %0 \n\t"
  1210. "lea 1b, %1 \n\t"
  1211. "lea 2b, %2 \n\t"
  1212. "dec %1 \n\t"
  1213. "dec %2 \n\t"
  1214. "sub %0, %1 \n\t"
  1215. "sub %0, %2 \n\t"
  1216. "lea 9b, %3 \n\t"
  1217. "sub %0, %3 \n\t"
  1218. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1219. "=r" (fragmentLengthA)
  1220. );
  1221. asm volatile(
  1222. "jmp 9f \n\t"
  1223. // Begin
  1224. "0: \n\t"
  1225. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1226. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1227. "punpcklbw %%mm7, %%mm0 \n\t"
  1228. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1229. "1: \n\t"
  1230. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1231. "2: \n\t"
  1232. "psubw %%mm1, %%mm0 \n\t"
  1233. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1234. "pmullw %%mm3, %%mm0 \n\t"
  1235. "psllw $7, %%mm1 \n\t"
  1236. "paddw %%mm1, %%mm0 \n\t"
  1237. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1238. "add $8, %%"REG_a" \n\t"
  1239. // End
  1240. "9: \n\t"
  1241. // "int $3\n\t"
  1242. "lea 0b, %0 \n\t"
  1243. "lea 1b, %1 \n\t"
  1244. "lea 2b, %2 \n\t"
  1245. "dec %1 \n\t"
  1246. "dec %2 \n\t"
  1247. "sub %0, %1 \n\t"
  1248. "sub %0, %2 \n\t"
  1249. "lea 9b, %3 \n\t"
  1250. "sub %0, %3 \n\t"
  1251. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1252. "=r" (fragmentLengthB)
  1253. );
  1254. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1255. fragmentPos=0;
  1256. for(i=0; i<dstW/numSplits; i++)
  1257. {
  1258. int xx=xpos>>16;
  1259. if((i&3) == 0)
  1260. {
  1261. int a=0;
  1262. int b=((xpos+xInc)>>16) - xx;
  1263. int c=((xpos+xInc*2)>>16) - xx;
  1264. int d=((xpos+xInc*3)>>16) - xx;
  1265. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1266. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1267. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1268. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1269. filterPos[i/2]= xx;
  1270. if(d+1<4)
  1271. {
  1272. int maxShift= 3-(d+1);
  1273. int shift=0;
  1274. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1275. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1276. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1277. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1278. a | (b<<2) | (c<<4) | (d<<6);
  1279. if(i+3>=dstW) shift=maxShift; //avoid overread
  1280. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1281. if(shift && i>=shift)
  1282. {
  1283. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1284. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1285. filterPos[i/2]-=shift;
  1286. }
  1287. fragmentPos+= fragmentLengthB;
  1288. }
  1289. else
  1290. {
  1291. int maxShift= 3-d;
  1292. int shift=0;
  1293. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1294. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1295. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1296. a | (b<<2) | (c<<4) | (d<<6);
  1297. if(i+4>=dstW) shift=maxShift; //avoid overread
  1298. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1299. if(shift && i>=shift)
  1300. {
  1301. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1302. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1303. filterPos[i/2]-=shift;
  1304. }
  1305. fragmentPos+= fragmentLengthA;
  1306. }
  1307. funnyCode[fragmentPos]= RET;
  1308. }
  1309. xpos+=xInc;
  1310. }
  1311. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1312. }
  1313. #endif /* COMPILE_MMX2 */
  1314. static void globalInit(void){
  1315. // generating tables:
  1316. int i;
  1317. for(i=0; i<768; i++){
  1318. int c= clip_uint8(i-256);
  1319. clip_table[i]=c;
  1320. }
  1321. }
  1322. static SwsFunc getSwsFunc(int flags){
  1323. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1324. #if defined(ARCH_X86)
  1325. // ordered per speed fasterst first
  1326. if(flags & SWS_CPU_CAPS_MMX2)
  1327. return swScale_MMX2;
  1328. else if(flags & SWS_CPU_CAPS_3DNOW)
  1329. return swScale_3DNow;
  1330. else if(flags & SWS_CPU_CAPS_MMX)
  1331. return swScale_MMX;
  1332. else
  1333. return swScale_C;
  1334. #else
  1335. #ifdef ARCH_POWERPC
  1336. if(flags & SWS_CPU_CAPS_ALTIVEC)
  1337. return swScale_altivec;
  1338. else
  1339. return swScale_C;
  1340. #endif
  1341. return swScale_C;
  1342. #endif /* defined(ARCH_X86) */
  1343. #else //RUNTIME_CPUDETECT
  1344. #ifdef HAVE_MMX2
  1345. return swScale_MMX2;
  1346. #elif defined (HAVE_3DNOW)
  1347. return swScale_3DNow;
  1348. #elif defined (HAVE_MMX)
  1349. return swScale_MMX;
  1350. #elif defined (HAVE_ALTIVEC)
  1351. return swScale_altivec;
  1352. #else
  1353. return swScale_C;
  1354. #endif
  1355. #endif //!RUNTIME_CPUDETECT
  1356. }
  1357. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1358. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1359. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1360. /* Copy Y plane */
  1361. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1362. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1363. else
  1364. {
  1365. int i;
  1366. uint8_t *srcPtr= src[0];
  1367. uint8_t *dstPtr= dst;
  1368. for(i=0; i<srcSliceH; i++)
  1369. {
  1370. memcpy(dstPtr, srcPtr, c->srcW);
  1371. srcPtr+= srcStride[0];
  1372. dstPtr+= dstStride[0];
  1373. }
  1374. }
  1375. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1376. if (c->dstFormat == PIX_FMT_NV12)
  1377. interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
  1378. else
  1379. interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
  1380. return srcSliceH;
  1381. }
  1382. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1383. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1384. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1385. yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1386. return srcSliceH;
  1387. }
  1388. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1389. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1390. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1391. yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1392. return srcSliceH;
  1393. }
  1394. /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
  1395. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1396. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1397. const int srcFormat= c->srcFormat;
  1398. const int dstFormat= c->dstFormat;
  1399. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1400. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1401. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1402. const int dstId= fmt_depth(dstFormat) >> 2;
  1403. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1404. /* BGR -> BGR */
  1405. if( (isBGR(srcFormat) && isBGR(dstFormat))
  1406. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1407. switch(srcId | (dstId<<4)){
  1408. case 0x34: conv= rgb16to15; break;
  1409. case 0x36: conv= rgb24to15; break;
  1410. case 0x38: conv= rgb32to15; break;
  1411. case 0x43: conv= rgb15to16; break;
  1412. case 0x46: conv= rgb24to16; break;
  1413. case 0x48: conv= rgb32to16; break;
  1414. case 0x63: conv= rgb15to24; break;
  1415. case 0x64: conv= rgb16to24; break;
  1416. case 0x68: conv= rgb32to24; break;
  1417. case 0x83: conv= rgb15to32; break;
  1418. case 0x84: conv= rgb16to32; break;
  1419. case 0x86: conv= rgb24to32; break;
  1420. default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1421. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1422. }
  1423. }else if( (isBGR(srcFormat) && isRGB(dstFormat))
  1424. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1425. switch(srcId | (dstId<<4)){
  1426. case 0x33: conv= rgb15tobgr15; break;
  1427. case 0x34: conv= rgb16tobgr15; break;
  1428. case 0x36: conv= rgb24tobgr15; break;
  1429. case 0x38: conv= rgb32tobgr15; break;
  1430. case 0x43: conv= rgb15tobgr16; break;
  1431. case 0x44: conv= rgb16tobgr16; break;
  1432. case 0x46: conv= rgb24tobgr16; break;
  1433. case 0x48: conv= rgb32tobgr16; break;
  1434. case 0x63: conv= rgb15tobgr24; break;
  1435. case 0x64: conv= rgb16tobgr24; break;
  1436. case 0x66: conv= rgb24tobgr24; break;
  1437. case 0x68: conv= rgb32tobgr24; break;
  1438. case 0x83: conv= rgb15tobgr32; break;
  1439. case 0x84: conv= rgb16tobgr32; break;
  1440. case 0x86: conv= rgb24tobgr32; break;
  1441. case 0x88: conv= rgb32tobgr32; break;
  1442. default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1443. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1444. }
  1445. }else{
  1446. av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1447. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1448. }
  1449. if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
  1450. conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1451. else
  1452. {
  1453. int i;
  1454. uint8_t *srcPtr= src[0];
  1455. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1456. for(i=0; i<srcSliceH; i++)
  1457. {
  1458. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1459. srcPtr+= srcStride[0];
  1460. dstPtr+= dstStride[0];
  1461. }
  1462. }
  1463. return srcSliceH;
  1464. }
  1465. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1466. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1467. rgb24toyv12(
  1468. src[0],
  1469. dst[0]+ srcSliceY *dstStride[0],
  1470. dst[1]+(srcSliceY>>1)*dstStride[1],
  1471. dst[2]+(srcSliceY>>1)*dstStride[2],
  1472. c->srcW, srcSliceH,
  1473. dstStride[0], dstStride[1], srcStride[0]);
  1474. return srcSliceH;
  1475. }
  1476. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1477. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1478. int i;
  1479. /* copy Y */
  1480. if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1481. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1482. else{
  1483. uint8_t *srcPtr= src[0];
  1484. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1485. for(i=0; i<srcSliceH; i++)
  1486. {
  1487. memcpy(dstPtr, srcPtr, c->srcW);
  1488. srcPtr+= srcStride[0];
  1489. dstPtr+= dstStride[0];
  1490. }
  1491. }
  1492. if(c->dstFormat==PIX_FMT_YUV420P){
  1493. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1494. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1495. }else{
  1496. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1497. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1498. }
  1499. return srcSliceH;
  1500. }
  1501. /* unscaled copy like stuff (assumes nearly identical formats) */
  1502. static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1503. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1504. if(isPacked(c->srcFormat))
  1505. {
  1506. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1507. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1508. else
  1509. {
  1510. int i;
  1511. uint8_t *srcPtr= src[0];
  1512. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1513. int length=0;
  1514. /* universal length finder */
  1515. while(length+c->srcW <= FFABS(dstStride[0])
  1516. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1517. ASSERT(length!=0);
  1518. for(i=0; i<srcSliceH; i++)
  1519. {
  1520. memcpy(dstPtr, srcPtr, length);
  1521. srcPtr+= srcStride[0];
  1522. dstPtr+= dstStride[0];
  1523. }
  1524. }
  1525. }
  1526. else
  1527. { /* Planar YUV or gray */
  1528. int plane;
  1529. for(plane=0; plane<3; plane++)
  1530. {
  1531. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1532. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1533. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1534. if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1535. {
  1536. if(!isGray(c->dstFormat))
  1537. memset(dst[plane], 128, dstStride[plane]*height);
  1538. }
  1539. else
  1540. {
  1541. if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1542. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1543. else
  1544. {
  1545. int i;
  1546. uint8_t *srcPtr= src[plane];
  1547. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1548. for(i=0; i<height; i++)
  1549. {
  1550. memcpy(dstPtr, srcPtr, length);
  1551. srcPtr+= srcStride[plane];
  1552. dstPtr+= dstStride[plane];
  1553. }
  1554. }
  1555. }
  1556. }
  1557. }
  1558. return srcSliceH;
  1559. }
  1560. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1561. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1562. int length= c->srcW;
  1563. int y= srcSliceY;
  1564. int height= srcSliceH;
  1565. int i, j;
  1566. uint8_t *srcPtr= src[0];
  1567. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1568. if(!isGray(c->dstFormat)){
  1569. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1570. memset(dst[1], 128, dstStride[1]*height);
  1571. memset(dst[2], 128, dstStride[2]*height);
  1572. }
  1573. if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1574. for(i=0; i<height; i++)
  1575. {
  1576. for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1577. srcPtr+= srcStride[0];
  1578. dstPtr+= dstStride[0];
  1579. }
  1580. return srcSliceH;
  1581. }
  1582. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1583. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1584. int length= c->srcW;
  1585. int y= srcSliceY;
  1586. int height= srcSliceH;
  1587. int i, j;
  1588. uint8_t *srcPtr= src[0];
  1589. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1590. for(i=0; i<height; i++)
  1591. {
  1592. for(j=0; j<length; j++)
  1593. {
  1594. dstPtr[j<<1] = srcPtr[j];
  1595. dstPtr[(j<<1)+1] = srcPtr[j];
  1596. }
  1597. srcPtr+= srcStride[0];
  1598. dstPtr+= dstStride[0];
  1599. }
  1600. return srcSliceH;
  1601. }
  1602. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1603. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1604. int length= c->srcW;
  1605. int y= srcSliceY;
  1606. int height= srcSliceH;
  1607. int i, j;
  1608. uint16_t *srcPtr= src[0];
  1609. uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
  1610. for(i=0; i<height; i++)
  1611. {
  1612. for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1613. srcPtr+= srcStride[0]/2;
  1614. dstPtr+= dstStride[0]/2;
  1615. }
  1616. return srcSliceH;
  1617. }
  1618. static void getSubSampleFactors(int *h, int *v, int format){
  1619. switch(format){
  1620. case PIX_FMT_UYVY422:
  1621. case PIX_FMT_YUYV422:
  1622. *h=1;
  1623. *v=0;
  1624. break;
  1625. case PIX_FMT_YUV420P:
  1626. case PIX_FMT_GRAY16BE:
  1627. case PIX_FMT_GRAY16LE:
  1628. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1629. case PIX_FMT_NV12:
  1630. case PIX_FMT_NV21:
  1631. *h=1;
  1632. *v=1;
  1633. break;
  1634. case PIX_FMT_YUV410P:
  1635. *h=2;
  1636. *v=2;
  1637. break;
  1638. case PIX_FMT_YUV444P:
  1639. *h=0;
  1640. *v=0;
  1641. break;
  1642. case PIX_FMT_YUV422P:
  1643. *h=1;
  1644. *v=0;
  1645. break;
  1646. case PIX_FMT_YUV411P:
  1647. *h=2;
  1648. *v=0;
  1649. break;
  1650. default:
  1651. *h=0;
  1652. *v=0;
  1653. break;
  1654. }
  1655. }
  1656. static uint16_t roundToInt16(int64_t f){
  1657. int r= (f + (1<<15))>>16;
  1658. if(r<-0x7FFF) return 0x8000;
  1659. else if(r> 0x7FFF) return 0x7FFF;
  1660. else return r;
  1661. }
  1662. /**
  1663. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1664. * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
  1665. * @return -1 if not supported
  1666. */
  1667. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1668. int64_t crv = inv_table[0];
  1669. int64_t cbu = inv_table[1];
  1670. int64_t cgu = -inv_table[2];
  1671. int64_t cgv = -inv_table[3];
  1672. int64_t cy = 1<<16;
  1673. int64_t oy = 0;
  1674. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1675. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1676. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1677. c->brightness= brightness;
  1678. c->contrast = contrast;
  1679. c->saturation= saturation;
  1680. c->srcRange = srcRange;
  1681. c->dstRange = dstRange;
  1682. c->uOffset= 0x0400040004000400LL;
  1683. c->vOffset= 0x0400040004000400LL;
  1684. if(!srcRange){
  1685. cy= (cy*255) / 219;
  1686. oy= 16<<16;
  1687. }
  1688. cy = (cy *contrast )>>16;
  1689. crv= (crv*contrast * saturation)>>32;
  1690. cbu= (cbu*contrast * saturation)>>32;
  1691. cgu= (cgu*contrast * saturation)>>32;
  1692. cgv= (cgv*contrast * saturation)>>32;
  1693. oy -= 256*brightness;
  1694. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1695. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1696. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1697. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1698. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1699. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1700. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1701. //FIXME factorize
  1702. #ifdef COMPILE_ALTIVEC
  1703. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1704. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1705. #endif
  1706. return 0;
  1707. }
  1708. /**
  1709. * @return -1 if not supported
  1710. */
  1711. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1712. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1713. *inv_table = c->srcColorspaceTable;
  1714. *table = c->dstColorspaceTable;
  1715. *srcRange = c->srcRange;
  1716. *dstRange = c->dstRange;
  1717. *brightness= c->brightness;
  1718. *contrast = c->contrast;
  1719. *saturation= c->saturation;
  1720. return 0;
  1721. }
  1722. static int handle_jpeg(int *format)
  1723. {
  1724. switch (*format) {
  1725. case PIX_FMT_YUVJ420P:
  1726. *format = PIX_FMT_YUV420P;
  1727. return 1;
  1728. case PIX_FMT_YUVJ422P:
  1729. *format = PIX_FMT_YUV422P;
  1730. return 1;
  1731. case PIX_FMT_YUVJ444P:
  1732. *format = PIX_FMT_YUV444P;
  1733. return 1;
  1734. default:
  1735. return 0;
  1736. }
  1737. }
  1738. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1739. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1740. SwsContext *c;
  1741. int i;
  1742. int usesVFilter, usesHFilter;
  1743. int unscaled, needsDither;
  1744. int srcRange, dstRange;
  1745. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1746. #if defined(ARCH_X86)
  1747. if(flags & SWS_CPU_CAPS_MMX)
  1748. asm volatile("emms\n\t"::: "memory");
  1749. #endif
  1750. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1751. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
  1752. #ifdef HAVE_MMX2
  1753. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1754. #elif defined (HAVE_3DNOW)
  1755. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1756. #elif defined (HAVE_MMX)
  1757. flags |= SWS_CPU_CAPS_MMX;
  1758. #elif defined (HAVE_ALTIVEC)
  1759. flags |= SWS_CPU_CAPS_ALTIVEC;
  1760. #endif
  1761. #endif /* RUNTIME_CPUDETECT */
  1762. if(clip_table[512] != 255) globalInit();
  1763. if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
  1764. unscaled = (srcW == dstW && srcH == dstH);
  1765. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1766. && (fmt_depth(dstFormat))<24
  1767. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1768. srcRange = handle_jpeg(&srcFormat);
  1769. dstRange = handle_jpeg(&dstFormat);
  1770. if(!isSupportedIn(srcFormat))
  1771. {
  1772. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
  1773. return NULL;
  1774. }
  1775. if(!isSupportedOut(dstFormat))
  1776. {
  1777. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
  1778. return NULL;
  1779. }
  1780. /* sanity check */
  1781. if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1782. {
  1783. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1784. srcW, srcH, dstW, dstH);
  1785. return NULL;
  1786. }
  1787. if(!dstFilter) dstFilter= &dummyFilter;
  1788. if(!srcFilter) srcFilter= &dummyFilter;
  1789. c= av_mallocz(sizeof(SwsContext));
  1790. c->av_class = &sws_context_class;
  1791. c->srcW= srcW;
  1792. c->srcH= srcH;
  1793. c->dstW= dstW;
  1794. c->dstH= dstH;
  1795. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1796. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1797. c->flags= flags;
  1798. c->dstFormat= dstFormat;
  1799. c->srcFormat= srcFormat;
  1800. c->vRounder= 4* 0x0001000100010001ULL;
  1801. usesHFilter= usesVFilter= 0;
  1802. if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
  1803. if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
  1804. if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
  1805. if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
  1806. if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
  1807. if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
  1808. if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
  1809. if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
  1810. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1811. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1812. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1813. if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1814. // drop some chroma lines if the user wants it
  1815. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1816. c->chrSrcVSubSample+= c->vChrDrop;
  1817. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1818. if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
  1819. c->chrSrcHSubSample=1;
  1820. if(param){
  1821. c->param[0] = param[0];
  1822. c->param[1] = param[1];
  1823. }else{
  1824. c->param[0] =
  1825. c->param[1] = SWS_PARAM_DEFAULT;
  1826. }
  1827. c->chrIntHSubSample= c->chrDstHSubSample;
  1828. c->chrIntVSubSample= c->chrSrcVSubSample;
  1829. // note the -((-x)>>y) is so that we allways round toward +inf
  1830. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  1831. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  1832. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  1833. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  1834. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  1835. /* unscaled special Cases */
  1836. if(unscaled && !usesHFilter && !usesVFilter)
  1837. {
  1838. /* yv12_to_nv12 */
  1839. if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  1840. {
  1841. c->swScale= PlanarToNV12Wrapper;
  1842. }
  1843. #ifdef CONFIG_GPL
  1844. /* yuv2bgr */
  1845. if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
  1846. {
  1847. c->swScale= yuv2rgb_get_func_ptr(c);
  1848. }
  1849. #endif
  1850. if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
  1851. {
  1852. c->swScale= yvu9toyv12Wrapper;
  1853. }
  1854. /* bgr24toYV12 */
  1855. if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
  1856. c->swScale= bgr24toyv12Wrapper;
  1857. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  1858. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1859. && (isBGR(dstFormat) || isRGB(dstFormat))
  1860. && !needsDither)
  1861. c->swScale= rgb2rgbWrapper;
  1862. /* LQ converters if -sws 0 or -sws 4*/
  1863. if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  1864. /* rgb/bgr -> rgb/bgr (dither needed forms) */
  1865. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1866. && (isBGR(dstFormat) || isRGB(dstFormat))
  1867. && needsDither)
  1868. c->swScale= rgb2rgbWrapper;
  1869. /* yv12_to_yuy2 */
  1870. if(srcFormat == PIX_FMT_YUV420P &&
  1871. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
  1872. {
  1873. if (dstFormat == PIX_FMT_YUYV422)
  1874. c->swScale= PlanarToYuy2Wrapper;
  1875. else
  1876. c->swScale= PlanarToUyvyWrapper;
  1877. }
  1878. }
  1879. #ifdef COMPILE_ALTIVEC
  1880. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  1881. ((srcFormat == PIX_FMT_YUV420P &&
  1882. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
  1883. // unscaled YV12 -> packed YUV, we want speed
  1884. if (dstFormat == PIX_FMT_YUYV422)
  1885. c->swScale= yv12toyuy2_unscaled_altivec;
  1886. else
  1887. c->swScale= yv12touyvy_unscaled_altivec;
  1888. }
  1889. #endif
  1890. /* simple copy */
  1891. if( srcFormat == dstFormat
  1892. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  1893. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  1894. )
  1895. {
  1896. c->swScale= simpleCopy;
  1897. }
  1898. /* gray16{le,be} conversions */
  1899. if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  1900. {
  1901. c->swScale= gray16togray;
  1902. }
  1903. if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  1904. {
  1905. c->swScale= graytogray16;
  1906. }
  1907. if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  1908. {
  1909. c->swScale= gray16swap;
  1910. }
  1911. if(c->swScale){
  1912. if(flags&SWS_PRINT_INFO)
  1913. av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
  1914. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1915. return c;
  1916. }
  1917. }
  1918. if(flags & SWS_CPU_CAPS_MMX2)
  1919. {
  1920. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  1921. if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  1922. {
  1923. if(flags&SWS_PRINT_INFO)
  1924. av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
  1925. }
  1926. if(usesHFilter) c->canMMX2BeUsed=0;
  1927. }
  1928. else
  1929. c->canMMX2BeUsed=0;
  1930. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  1931. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  1932. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  1933. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  1934. // n-2 is the last chrominance sample available
  1935. // this is not perfect, but noone shuld notice the difference, the more correct variant
  1936. // would be like the vertical one, but that would require some special code for the
  1937. // first and last pixel
  1938. if(flags&SWS_FAST_BILINEAR)
  1939. {
  1940. if(c->canMMX2BeUsed)
  1941. {
  1942. c->lumXInc+= 20;
  1943. c->chrXInc+= 20;
  1944. }
  1945. //we don't use the x86asm scaler if mmx is available
  1946. else if(flags & SWS_CPU_CAPS_MMX)
  1947. {
  1948. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  1949. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  1950. }
  1951. }
  1952. /* precalculate horizontal scaler filter coefficients */
  1953. {
  1954. const int filterAlign=
  1955. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  1956. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1957. 1;
  1958. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  1959. srcW , dstW, filterAlign, 1<<14,
  1960. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1961. srcFilter->lumH, dstFilter->lumH, c->param);
  1962. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  1963. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  1964. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1965. srcFilter->chrH, dstFilter->chrH, c->param);
  1966. #define MAX_FUNNY_CODE_SIZE 10000
  1967. #if defined(COMPILE_MMX2)
  1968. // can't downscale !!!
  1969. if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  1970. {
  1971. #ifdef MAP_ANONYMOUS
  1972. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1973. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1974. #else
  1975. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1976. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1977. #endif
  1978. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  1979. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  1980. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  1981. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  1982. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  1983. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  1984. }
  1985. #endif /* defined(COMPILE_MMX2) */
  1986. } // Init Horizontal stuff
  1987. /* precalculate vertical scaler filter coefficients */
  1988. {
  1989. const int filterAlign=
  1990. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  1991. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1992. 1;
  1993. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  1994. srcH , dstH, filterAlign, (1<<12)-4,
  1995. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1996. srcFilter->lumV, dstFilter->lumV, c->param);
  1997. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  1998. c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
  1999. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2000. srcFilter->chrV, dstFilter->chrV, c->param);
  2001. #ifdef HAVE_ALTIVEC
  2002. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2003. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2004. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2005. int j;
  2006. short *p = (short *)&c->vYCoeffsBank[i];
  2007. for (j=0;j<8;j++)
  2008. p[j] = c->vLumFilter[i];
  2009. }
  2010. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2011. int j;
  2012. short *p = (short *)&c->vCCoeffsBank[i];
  2013. for (j=0;j<8;j++)
  2014. p[j] = c->vChrFilter[i];
  2015. }
  2016. #endif
  2017. }
  2018. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2019. c->vLumBufSize= c->vLumFilterSize;
  2020. c->vChrBufSize= c->vChrFilterSize;
  2021. for(i=0; i<dstH; i++)
  2022. {
  2023. int chrI= i*c->chrDstH / dstH;
  2024. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2025. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2026. nextSlice>>= c->chrSrcVSubSample;
  2027. nextSlice<<= c->chrSrcVSubSample;
  2028. if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2029. c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
  2030. if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2031. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2032. }
  2033. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2034. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2035. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2036. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2037. /* align at 16 bytes for AltiVec */
  2038. for(i=0; i<c->vLumBufSize; i++)
  2039. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
  2040. for(i=0; i<c->vChrBufSize; i++)
  2041. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
  2042. //try to avoid drawing green stuff between the right end and the stride end
  2043. for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
  2044. ASSERT(c->chrDstH <= dstH)
  2045. if(flags&SWS_PRINT_INFO)
  2046. {
  2047. #ifdef DITHER1XBPP
  2048. char *dither= " dithered";
  2049. #else
  2050. char *dither= "";
  2051. #endif
  2052. if(flags&SWS_FAST_BILINEAR)
  2053. av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
  2054. else if(flags&SWS_BILINEAR)
  2055. av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
  2056. else if(flags&SWS_BICUBIC)
  2057. av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
  2058. else if(flags&SWS_X)
  2059. av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
  2060. else if(flags&SWS_POINT)
  2061. av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
  2062. else if(flags&SWS_AREA)
  2063. av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
  2064. else if(flags&SWS_BICUBLIN)
  2065. av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
  2066. else if(flags&SWS_GAUSS)
  2067. av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
  2068. else if(flags&SWS_SINC)
  2069. av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
  2070. else if(flags&SWS_LANCZOS)
  2071. av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
  2072. else if(flags&SWS_SPLINE)
  2073. av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
  2074. else
  2075. av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
  2076. if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2077. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2078. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2079. else
  2080. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2081. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2082. if(flags & SWS_CPU_CAPS_MMX2)
  2083. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2084. else if(flags & SWS_CPU_CAPS_3DNOW)
  2085. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2086. else if(flags & SWS_CPU_CAPS_MMX)
  2087. av_log(c, AV_LOG_INFO, "using MMX\n");
  2088. else if(flags & SWS_CPU_CAPS_ALTIVEC)
  2089. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2090. else
  2091. av_log(c, AV_LOG_INFO, "using C\n");
  2092. }
  2093. if(flags & SWS_PRINT_INFO)
  2094. {
  2095. if(flags & SWS_CPU_CAPS_MMX)
  2096. {
  2097. if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2098. av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2099. else
  2100. {
  2101. if(c->hLumFilterSize==4)
  2102. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
  2103. else if(c->hLumFilterSize==8)
  2104. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
  2105. else
  2106. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
  2107. if(c->hChrFilterSize==4)
  2108. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2109. else if(c->hChrFilterSize==8)
  2110. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2111. else
  2112. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
  2113. }
  2114. }
  2115. else
  2116. {
  2117. #if defined(ARCH_X86)
  2118. av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
  2119. #else
  2120. if(flags & SWS_FAST_BILINEAR)
  2121. av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
  2122. else
  2123. av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
  2124. #endif
  2125. }
  2126. if(isPlanarYUV(dstFormat))
  2127. {
  2128. if(c->vLumFilterSize==1)
  2129. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2130. else
  2131. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2132. }
  2133. else
  2134. {
  2135. if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2136. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2137. "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2138. else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2139. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2140. else
  2141. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2142. }
  2143. if(dstFormat==PIX_FMT_BGR24)
  2144. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
  2145. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2146. else if(dstFormat==PIX_FMT_RGB32)
  2147. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2148. else if(dstFormat==PIX_FMT_BGR565)
  2149. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2150. else if(dstFormat==PIX_FMT_BGR555)
  2151. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2152. av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2153. }
  2154. if(flags & SWS_PRINT_INFO)
  2155. {
  2156. av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2157. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2158. av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2159. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2160. }
  2161. c->swScale= getSwsFunc(flags);
  2162. return c;
  2163. }
  2164. /**
  2165. * swscale warper, so we don't need to export the SwsContext.
  2166. * assumes planar YUV to be in YUV order instead of YVU
  2167. */
  2168. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2169. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2170. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2171. av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
  2172. return 0;
  2173. }
  2174. if (c->sliceDir == 0) {
  2175. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2176. }
  2177. // copy strides, so they can safely be modified
  2178. if (c->sliceDir == 1) {
  2179. // slices go from top to bottom
  2180. int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
  2181. int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
  2182. return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2183. } else {
  2184. // slices go from bottom to top => we flip the image internally
  2185. uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
  2186. src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
  2187. src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
  2188. };
  2189. uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
  2190. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2191. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2192. int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2193. int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2194. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2195. }
  2196. }
  2197. /**
  2198. * swscale warper, so we don't need to export the SwsContext
  2199. */
  2200. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2201. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2202. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2203. }
  2204. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2205. float lumaSharpen, float chromaSharpen,
  2206. float chromaHShift, float chromaVShift,
  2207. int verbose)
  2208. {
  2209. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2210. if(lumaGBlur!=0.0){
  2211. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2212. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2213. }else{
  2214. filter->lumH= sws_getIdentityVec();
  2215. filter->lumV= sws_getIdentityVec();
  2216. }
  2217. if(chromaGBlur!=0.0){
  2218. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2219. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2220. }else{
  2221. filter->chrH= sws_getIdentityVec();
  2222. filter->chrV= sws_getIdentityVec();
  2223. }
  2224. if(chromaSharpen!=0.0){
  2225. SwsVector *id= sws_getIdentityVec();
  2226. sws_scaleVec(filter->chrH, -chromaSharpen);
  2227. sws_scaleVec(filter->chrV, -chromaSharpen);
  2228. sws_addVec(filter->chrH, id);
  2229. sws_addVec(filter->chrV, id);
  2230. sws_freeVec(id);
  2231. }
  2232. if(lumaSharpen!=0.0){
  2233. SwsVector *id= sws_getIdentityVec();
  2234. sws_scaleVec(filter->lumH, -lumaSharpen);
  2235. sws_scaleVec(filter->lumV, -lumaSharpen);
  2236. sws_addVec(filter->lumH, id);
  2237. sws_addVec(filter->lumV, id);
  2238. sws_freeVec(id);
  2239. }
  2240. if(chromaHShift != 0.0)
  2241. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2242. if(chromaVShift != 0.0)
  2243. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2244. sws_normalizeVec(filter->chrH, 1.0);
  2245. sws_normalizeVec(filter->chrV, 1.0);
  2246. sws_normalizeVec(filter->lumH, 1.0);
  2247. sws_normalizeVec(filter->lumV, 1.0);
  2248. if(verbose) sws_printVec(filter->chrH);
  2249. if(verbose) sws_printVec(filter->lumH);
  2250. return filter;
  2251. }
  2252. /**
  2253. * returns a normalized gaussian curve used to filter stuff
  2254. * quality=3 is high quality, lowwer is lowwer quality
  2255. */
  2256. SwsVector *sws_getGaussianVec(double variance, double quality){
  2257. const int length= (int)(variance*quality + 0.5) | 1;
  2258. int i;
  2259. double *coeff= av_malloc(length*sizeof(double));
  2260. double middle= (length-1)*0.5;
  2261. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2262. vec->coeff= coeff;
  2263. vec->length= length;
  2264. for(i=0; i<length; i++)
  2265. {
  2266. double dist= i-middle;
  2267. coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
  2268. }
  2269. sws_normalizeVec(vec, 1.0);
  2270. return vec;
  2271. }
  2272. SwsVector *sws_getConstVec(double c, int length){
  2273. int i;
  2274. double *coeff= av_malloc(length*sizeof(double));
  2275. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2276. vec->coeff= coeff;
  2277. vec->length= length;
  2278. for(i=0; i<length; i++)
  2279. coeff[i]= c;
  2280. return vec;
  2281. }
  2282. SwsVector *sws_getIdentityVec(void){
  2283. return sws_getConstVec(1.0, 1);
  2284. }
  2285. double sws_dcVec(SwsVector *a){
  2286. int i;
  2287. double sum=0;
  2288. for(i=0; i<a->length; i++)
  2289. sum+= a->coeff[i];
  2290. return sum;
  2291. }
  2292. void sws_scaleVec(SwsVector *a, double scalar){
  2293. int i;
  2294. for(i=0; i<a->length; i++)
  2295. a->coeff[i]*= scalar;
  2296. }
  2297. void sws_normalizeVec(SwsVector *a, double height){
  2298. sws_scaleVec(a, height/sws_dcVec(a));
  2299. }
  2300. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2301. int length= a->length + b->length - 1;
  2302. double *coeff= av_malloc(length*sizeof(double));
  2303. int i, j;
  2304. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2305. vec->coeff= coeff;
  2306. vec->length= length;
  2307. for(i=0; i<length; i++) coeff[i]= 0.0;
  2308. for(i=0; i<a->length; i++)
  2309. {
  2310. for(j=0; j<b->length; j++)
  2311. {
  2312. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2313. }
  2314. }
  2315. return vec;
  2316. }
  2317. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2318. int length= FFMAX(a->length, b->length);
  2319. double *coeff= av_malloc(length*sizeof(double));
  2320. int i;
  2321. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2322. vec->coeff= coeff;
  2323. vec->length= length;
  2324. for(i=0; i<length; i++) coeff[i]= 0.0;
  2325. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2326. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2327. return vec;
  2328. }
  2329. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2330. int length= FFMAX(a->length, b->length);
  2331. double *coeff= av_malloc(length*sizeof(double));
  2332. int i;
  2333. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2334. vec->coeff= coeff;
  2335. vec->length= length;
  2336. for(i=0; i<length; i++) coeff[i]= 0.0;
  2337. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2338. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2339. return vec;
  2340. }
  2341. /* shift left / or right if "shift" is negative */
  2342. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2343. int length= a->length + FFABS(shift)*2;
  2344. double *coeff= av_malloc(length*sizeof(double));
  2345. int i;
  2346. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2347. vec->coeff= coeff;
  2348. vec->length= length;
  2349. for(i=0; i<length; i++) coeff[i]= 0.0;
  2350. for(i=0; i<a->length; i++)
  2351. {
  2352. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2353. }
  2354. return vec;
  2355. }
  2356. void sws_shiftVec(SwsVector *a, int shift){
  2357. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2358. av_free(a->coeff);
  2359. a->coeff= shifted->coeff;
  2360. a->length= shifted->length;
  2361. av_free(shifted);
  2362. }
  2363. void sws_addVec(SwsVector *a, SwsVector *b){
  2364. SwsVector *sum= sws_sumVec(a, b);
  2365. av_free(a->coeff);
  2366. a->coeff= sum->coeff;
  2367. a->length= sum->length;
  2368. av_free(sum);
  2369. }
  2370. void sws_subVec(SwsVector *a, SwsVector *b){
  2371. SwsVector *diff= sws_diffVec(a, b);
  2372. av_free(a->coeff);
  2373. a->coeff= diff->coeff;
  2374. a->length= diff->length;
  2375. av_free(diff);
  2376. }
  2377. void sws_convVec(SwsVector *a, SwsVector *b){
  2378. SwsVector *conv= sws_getConvVec(a, b);
  2379. av_free(a->coeff);
  2380. a->coeff= conv->coeff;
  2381. a->length= conv->length;
  2382. av_free(conv);
  2383. }
  2384. SwsVector *sws_cloneVec(SwsVector *a){
  2385. double *coeff= av_malloc(a->length*sizeof(double));
  2386. int i;
  2387. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2388. vec->coeff= coeff;
  2389. vec->length= a->length;
  2390. for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2391. return vec;
  2392. }
  2393. void sws_printVec(SwsVector *a){
  2394. int i;
  2395. double max=0;
  2396. double min=0;
  2397. double range;
  2398. for(i=0; i<a->length; i++)
  2399. if(a->coeff[i]>max) max= a->coeff[i];
  2400. for(i=0; i<a->length; i++)
  2401. if(a->coeff[i]<min) min= a->coeff[i];
  2402. range= max - min;
  2403. for(i=0; i<a->length; i++)
  2404. {
  2405. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2406. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2407. for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2408. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2409. }
  2410. }
  2411. void sws_freeVec(SwsVector *a){
  2412. if(!a) return;
  2413. av_free(a->coeff);
  2414. a->coeff=NULL;
  2415. a->length=0;
  2416. av_free(a);
  2417. }
  2418. void sws_freeFilter(SwsFilter *filter){
  2419. if(!filter) return;
  2420. if(filter->lumH) sws_freeVec(filter->lumH);
  2421. if(filter->lumV) sws_freeVec(filter->lumV);
  2422. if(filter->chrH) sws_freeVec(filter->chrH);
  2423. if(filter->chrV) sws_freeVec(filter->chrV);
  2424. av_free(filter);
  2425. }
  2426. void sws_freeContext(SwsContext *c){
  2427. int i;
  2428. if(!c) return;
  2429. if(c->lumPixBuf)
  2430. {
  2431. for(i=0; i<c->vLumBufSize; i++)
  2432. {
  2433. av_free(c->lumPixBuf[i]);
  2434. c->lumPixBuf[i]=NULL;
  2435. }
  2436. av_free(c->lumPixBuf);
  2437. c->lumPixBuf=NULL;
  2438. }
  2439. if(c->chrPixBuf)
  2440. {
  2441. for(i=0; i<c->vChrBufSize; i++)
  2442. {
  2443. av_free(c->chrPixBuf[i]);
  2444. c->chrPixBuf[i]=NULL;
  2445. }
  2446. av_free(c->chrPixBuf);
  2447. c->chrPixBuf=NULL;
  2448. }
  2449. av_free(c->vLumFilter);
  2450. c->vLumFilter = NULL;
  2451. av_free(c->vChrFilter);
  2452. c->vChrFilter = NULL;
  2453. av_free(c->hLumFilter);
  2454. c->hLumFilter = NULL;
  2455. av_free(c->hChrFilter);
  2456. c->hChrFilter = NULL;
  2457. #ifdef HAVE_ALTIVEC
  2458. av_free(c->vYCoeffsBank);
  2459. c->vYCoeffsBank = NULL;
  2460. av_free(c->vCCoeffsBank);
  2461. c->vCCoeffsBank = NULL;
  2462. #endif
  2463. av_free(c->vLumFilterPos);
  2464. c->vLumFilterPos = NULL;
  2465. av_free(c->vChrFilterPos);
  2466. c->vChrFilterPos = NULL;
  2467. av_free(c->hLumFilterPos);
  2468. c->hLumFilterPos = NULL;
  2469. av_free(c->hChrFilterPos);
  2470. c->hChrFilterPos = NULL;
  2471. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2472. #ifdef MAP_ANONYMOUS
  2473. if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2474. if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2475. #else
  2476. av_free(c->funnyYCode);
  2477. av_free(c->funnyUVCode);
  2478. #endif
  2479. c->funnyYCode=NULL;
  2480. c->funnyUVCode=NULL;
  2481. #endif /* defined(ARCH_X86) */
  2482. av_free(c->lumMmx2Filter);
  2483. c->lumMmx2Filter=NULL;
  2484. av_free(c->chrMmx2Filter);
  2485. c->chrMmx2Filter=NULL;
  2486. av_free(c->lumMmx2FilterPos);
  2487. c->lumMmx2FilterPos=NULL;
  2488. av_free(c->chrMmx2FilterPos);
  2489. c->chrMmx2FilterPos=NULL;
  2490. av_free(c->yuvTable);
  2491. c->yuvTable=NULL;
  2492. av_free(c);
  2493. }
  2494. /**
  2495. * Checks if context is valid or reallocs a new one instead.
  2496. * If context is NULL, just calls sws_getContext() to get a new one.
  2497. * Otherwise, checks if the parameters are the same already saved in context.
  2498. * If that is the case, returns the current context.
  2499. * Otherwise, frees context and gets a new one.
  2500. *
  2501. * Be warned that srcFilter, dstFilter are not checked, they are
  2502. * asumed to remain valid.
  2503. */
  2504. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2505. int srcW, int srcH, int srcFormat,
  2506. int dstW, int dstH, int dstFormat, int flags,
  2507. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2508. {
  2509. if (context != NULL) {
  2510. if ((context->srcW != srcW) || (context->srcH != srcH) ||
  2511. (context->srcFormat != srcFormat) ||
  2512. (context->dstW != dstW) || (context->dstH != dstH) ||
  2513. (context->dstFormat != dstFormat) || (context->flags != flags) ||
  2514. (context->param != param))
  2515. {
  2516. sws_freeContext(context);
  2517. context = NULL;
  2518. }
  2519. }
  2520. if (context == NULL) {
  2521. return sws_getContext(srcW, srcH, srcFormat,
  2522. dstW, dstH, dstFormat, flags,
  2523. srcFilter, dstFilter, param);
  2524. }
  2525. return context;
  2526. }