You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4389 lines
148KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Available Profiles */
  46. //@{
  47. enum Profile {
  48. PROFILE_SIMPLE,
  49. PROFILE_MAIN,
  50. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  51. PROFILE_ADVANCED
  52. };
  53. //@}
  54. /** Sequence quantizer mode */
  55. //@{
  56. enum QuantMode {
  57. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  58. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  59. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  60. QUANT_UNIFORM ///< Uniform quant used for all frames
  61. };
  62. //@}
  63. /** Where quant can be changed */
  64. //@{
  65. enum DQProfile {
  66. DQPROFILE_FOUR_EDGES,
  67. DQPROFILE_DOUBLE_EDGES,
  68. DQPROFILE_SINGLE_EDGE,
  69. DQPROFILE_ALL_MBS
  70. };
  71. //@}
  72. /** @name Where quant can be changed
  73. */
  74. //@{
  75. enum DQSingleEdge {
  76. DQSINGLE_BEDGE_LEFT,
  77. DQSINGLE_BEDGE_TOP,
  78. DQSINGLE_BEDGE_RIGHT,
  79. DQSINGLE_BEDGE_BOTTOM
  80. };
  81. //@}
  82. /** Which pair of edges is quantized with ALTPQUANT */
  83. //@{
  84. enum DQDoubleEdge {
  85. DQDOUBLE_BEDGE_TOPLEFT,
  86. DQDOUBLE_BEDGE_TOPRIGHT,
  87. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  88. DQDOUBLE_BEDGE_BOTTOMLEFT
  89. };
  90. //@}
  91. /** MV modes for P frames */
  92. //@{
  93. enum MVModes {
  94. MV_PMODE_1MV_HPEL_BILIN,
  95. MV_PMODE_1MV,
  96. MV_PMODE_1MV_HPEL,
  97. MV_PMODE_MIXED_MV,
  98. MV_PMODE_INTENSITY_COMP
  99. };
  100. //@}
  101. /** @name MV types for B frames */
  102. //@{
  103. enum BMVTypes {
  104. BMV_TYPE_BACKWARD,
  105. BMV_TYPE_FORWARD,
  106. BMV_TYPE_INTERPOLATED
  107. };
  108. //@}
  109. /** @name Block types for P/B frames */
  110. //@{
  111. enum TransformTypes {
  112. TT_8X8,
  113. TT_8X4_BOTTOM,
  114. TT_8X4_TOP,
  115. TT_8X4, //Both halves
  116. TT_4X8_RIGHT,
  117. TT_4X8_LEFT,
  118. TT_4X8, //Both halves
  119. TT_4X4
  120. };
  121. //@}
  122. /** Table for conversion between TTBLK and TTMB */
  123. static const int ttblk_to_tt[3][8] = {
  124. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  125. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  126. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  127. };
  128. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  129. /** MV P mode - the 5th element is only used for mode 1 */
  130. static const uint8_t mv_pmode_table[2][5] = {
  131. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  132. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  133. };
  134. static const uint8_t mv_pmode_table2[2][4] = {
  135. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  136. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  137. };
  138. /** One more frame type */
  139. #define BI_TYPE 7
  140. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  141. fps_dr[2] = { 1000, 1001 };
  142. static const uint8_t pquant_table[3][32] = {
  143. { /* Implicit quantizer */
  144. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  145. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  146. },
  147. { /* Explicit quantizer, pquantizer uniform */
  148. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  149. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  150. },
  151. { /* Explicit quantizer, pquantizer non-uniform */
  152. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  153. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  154. }
  155. };
  156. /** @name VC-1 VLC tables and defines
  157. * @todo TODO move this into the context
  158. */
  159. //@{
  160. #define VC1_BFRACTION_VLC_BITS 7
  161. static VLC vc1_bfraction_vlc;
  162. #define VC1_IMODE_VLC_BITS 4
  163. static VLC vc1_imode_vlc;
  164. #define VC1_NORM2_VLC_BITS 3
  165. static VLC vc1_norm2_vlc;
  166. #define VC1_NORM6_VLC_BITS 9
  167. static VLC vc1_norm6_vlc;
  168. /* Could be optimized, one table only needs 8 bits */
  169. #define VC1_TTMB_VLC_BITS 9 //12
  170. static VLC vc1_ttmb_vlc[3];
  171. #define VC1_MV_DIFF_VLC_BITS 9 //15
  172. static VLC vc1_mv_diff_vlc[4];
  173. #define VC1_CBPCY_P_VLC_BITS 9 //14
  174. static VLC vc1_cbpcy_p_vlc[4];
  175. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  176. static VLC vc1_4mv_block_pattern_vlc[4];
  177. #define VC1_TTBLK_VLC_BITS 5
  178. static VLC vc1_ttblk_vlc[3];
  179. #define VC1_SUBBLKPAT_VLC_BITS 6
  180. static VLC vc1_subblkpat_vlc[3];
  181. static VLC vc1_ac_coeff_table[8];
  182. //@}
  183. enum CodingSet {
  184. CS_HIGH_MOT_INTRA = 0,
  185. CS_HIGH_MOT_INTER,
  186. CS_LOW_MOT_INTRA,
  187. CS_LOW_MOT_INTER,
  188. CS_MID_RATE_INTRA,
  189. CS_MID_RATE_INTER,
  190. CS_HIGH_RATE_INTRA,
  191. CS_HIGH_RATE_INTER
  192. };
  193. /** @name Overlap conditions for Advanced Profile */
  194. //@{
  195. enum COTypes {
  196. CONDOVER_NONE = 0,
  197. CONDOVER_ALL,
  198. CONDOVER_SELECT
  199. };
  200. //@}
  201. /** The VC1 Context
  202. * @fixme Change size wherever another size is more efficient
  203. * Many members are only used for Advanced Profile
  204. */
  205. typedef struct VC1Context{
  206. MpegEncContext s;
  207. int bits;
  208. /** Simple/Main Profile sequence header */
  209. //@{
  210. int res_sm; ///< reserved, 2b
  211. int res_x8; ///< reserved
  212. int multires; ///< frame-level RESPIC syntax element present
  213. int res_fasttx; ///< reserved, always 1
  214. int res_transtab; ///< reserved, always 0
  215. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  216. ///< at frame level
  217. int res_rtm_flag; ///< reserved, set to 1
  218. int reserved; ///< reserved
  219. //@}
  220. /** Advanced Profile */
  221. //@{
  222. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  223. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  224. int postprocflag; ///< Per-frame processing suggestion flag present
  225. int broadcast; ///< TFF/RFF present
  226. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  227. int tfcntrflag; ///< TFCNTR present
  228. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  229. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  230. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  231. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  232. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  233. int hrd_param_flag; ///< Presence of Hypothetical Reference
  234. ///< Decoder parameters
  235. int psf; ///< Progressive Segmented Frame
  236. //@}
  237. /** Sequence header data for all Profiles
  238. * TODO: choose between ints, uint8_ts and monobit flags
  239. */
  240. //@{
  241. int profile; ///< 2bits, Profile
  242. int frmrtq_postproc; ///< 3bits,
  243. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  244. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  245. int extended_mv; ///< Ext MV in P/B (not in Simple)
  246. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  247. int vstransform; ///< variable-size [48]x[48] transform type + info
  248. int overlap; ///< overlapped transforms in use
  249. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  250. int finterpflag; ///< INTERPFRM present
  251. //@}
  252. /** Frame decoding info for all profiles */
  253. //@{
  254. uint8_t mv_mode; ///< MV coding monde
  255. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  256. int k_x; ///< Number of bits for MVs (depends on MV range)
  257. int k_y; ///< Number of bits for MVs (depends on MV range)
  258. int range_x, range_y; ///< MV range
  259. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  260. /** pquant parameters */
  261. //@{
  262. uint8_t dquantfrm;
  263. uint8_t dqprofile;
  264. uint8_t dqsbedge;
  265. uint8_t dqbilevel;
  266. //@}
  267. /** AC coding set indexes
  268. * @see 8.1.1.10, p(1)10
  269. */
  270. //@{
  271. int c_ac_table_index; ///< Chroma index from ACFRM element
  272. int y_ac_table_index; ///< Luma index from AC2FRM element
  273. //@}
  274. int ttfrm; ///< Transform type info present at frame level
  275. uint8_t ttmbf; ///< Transform type flag
  276. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  277. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  278. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  279. int pqindex; ///< raw pqindex used in coding set selection
  280. int a_avail, c_avail;
  281. uint8_t *mb_type_base, *mb_type[3];
  282. /** Luma compensation parameters */
  283. //@{
  284. uint8_t lumscale;
  285. uint8_t lumshift;
  286. //@}
  287. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  288. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  289. uint8_t respic; ///< Frame-level flag for resized images
  290. int buffer_fullness; ///< HRD info
  291. /** Ranges:
  292. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  293. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  294. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  295. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  296. */
  297. uint8_t mvrange;
  298. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  299. VLC *cbpcy_vlc; ///< CBPCY VLC table
  300. int tt_index; ///< Index for Transform Type tables
  301. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  302. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  303. int mv_type_is_raw; ///< mv type mb plane is not coded
  304. int dmb_is_raw; ///< direct mb plane is raw
  305. int skip_is_raw; ///< skip mb plane is not coded
  306. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  307. int use_ic; ///< use intensity compensation in B-frames
  308. int rnd; ///< rounding control
  309. /** Frame decoding info for S/M profiles only */
  310. //@{
  311. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  312. uint8_t interpfrm;
  313. //@}
  314. /** Frame decoding info for Advanced profile */
  315. //@{
  316. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  317. uint8_t numpanscanwin;
  318. uint8_t tfcntr;
  319. uint8_t rptfrm, tff, rff;
  320. uint16_t topleftx;
  321. uint16_t toplefty;
  322. uint16_t bottomrightx;
  323. uint16_t bottomrighty;
  324. uint8_t uvsamp;
  325. uint8_t postproc;
  326. int hrd_num_leaky_buckets;
  327. uint8_t bit_rate_exponent;
  328. uint8_t buffer_size_exponent;
  329. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  330. int acpred_is_raw;
  331. uint8_t* over_flags_plane; ///< Overflags bitplane
  332. int overflg_is_raw;
  333. uint8_t condover;
  334. uint16_t *hrd_rate, *hrd_buffer;
  335. uint8_t *hrd_fullness;
  336. uint8_t range_mapy_flag;
  337. uint8_t range_mapuv_flag;
  338. uint8_t range_mapy;
  339. uint8_t range_mapuv;
  340. //@}
  341. int p_frame_skipped;
  342. int bi_type;
  343. } VC1Context;
  344. /**
  345. * Get unary code of limited length
  346. * @fixme FIXME Slow and ugly
  347. * @param gb GetBitContext
  348. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  349. * @param[in] len Maximum length
  350. * @return Unary length/index
  351. */
  352. static int get_prefix(GetBitContext *gb, int stop, int len)
  353. {
  354. #if 1
  355. int i;
  356. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  357. return i;
  358. /* int i = 0, tmp = !stop;
  359. while (i != len && tmp != stop)
  360. {
  361. tmp = get_bits(gb, 1);
  362. i++;
  363. }
  364. if (i == len && tmp != stop) return len+1;
  365. return i;*/
  366. #else
  367. unsigned int buf;
  368. int log;
  369. OPEN_READER(re, gb);
  370. UPDATE_CACHE(re, gb);
  371. buf=GET_CACHE(re, gb); //Still not sure
  372. if (stop) buf = ~buf;
  373. log= av_log2(-buf); //FIXME: -?
  374. if (log < limit){
  375. LAST_SKIP_BITS(re, gb, log+1);
  376. CLOSE_READER(re, gb);
  377. return log;
  378. }
  379. LAST_SKIP_BITS(re, gb, limit);
  380. CLOSE_READER(re, gb);
  381. return limit;
  382. #endif
  383. }
  384. static inline int decode210(GetBitContext *gb){
  385. int n;
  386. n = get_bits1(gb);
  387. if (n == 1)
  388. return 0;
  389. else
  390. return 2 - get_bits1(gb);
  391. }
  392. /**
  393. * Init VC-1 specific tables and VC1Context members
  394. * @param v The VC1Context to initialize
  395. * @return Status
  396. */
  397. static int vc1_init_common(VC1Context *v)
  398. {
  399. static int done = 0;
  400. int i = 0;
  401. v->hrd_rate = v->hrd_buffer = NULL;
  402. /* VLC tables */
  403. if(!done)
  404. {
  405. done = 1;
  406. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  407. vc1_bfraction_bits, 1, 1,
  408. vc1_bfraction_codes, 1, 1, 1);
  409. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  410. vc1_norm2_bits, 1, 1,
  411. vc1_norm2_codes, 1, 1, 1);
  412. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  413. vc1_norm6_bits, 1, 1,
  414. vc1_norm6_codes, 2, 2, 1);
  415. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  416. vc1_imode_bits, 1, 1,
  417. vc1_imode_codes, 1, 1, 1);
  418. for (i=0; i<3; i++)
  419. {
  420. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  421. vc1_ttmb_bits[i], 1, 1,
  422. vc1_ttmb_codes[i], 2, 2, 1);
  423. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  424. vc1_ttblk_bits[i], 1, 1,
  425. vc1_ttblk_codes[i], 1, 1, 1);
  426. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  427. vc1_subblkpat_bits[i], 1, 1,
  428. vc1_subblkpat_codes[i], 1, 1, 1);
  429. }
  430. for(i=0; i<4; i++)
  431. {
  432. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  433. vc1_4mv_block_pattern_bits[i], 1, 1,
  434. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  435. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  436. vc1_cbpcy_p_bits[i], 1, 1,
  437. vc1_cbpcy_p_codes[i], 2, 2, 1);
  438. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  439. vc1_mv_diff_bits[i], 1, 1,
  440. vc1_mv_diff_codes[i], 2, 2, 1);
  441. }
  442. for(i=0; i<8; i++)
  443. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  444. &vc1_ac_tables[i][0][1], 8, 4,
  445. &vc1_ac_tables[i][0][0], 8, 4, 1);
  446. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  447. &ff_msmp4_mb_i_table[0][1], 4, 2,
  448. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  449. }
  450. /* Other defaults */
  451. v->pq = -1;
  452. v->mvrange = 0; /* 7.1.1.18, p80 */
  453. return 0;
  454. }
  455. /***********************************************************************/
  456. /**
  457. * @defgroup bitplane VC9 Bitplane decoding
  458. * @see 8.7, p56
  459. * @{
  460. */
  461. /** @addtogroup bitplane
  462. * Imode types
  463. * @{
  464. */
  465. enum Imode {
  466. IMODE_RAW,
  467. IMODE_NORM2,
  468. IMODE_DIFF2,
  469. IMODE_NORM6,
  470. IMODE_DIFF6,
  471. IMODE_ROWSKIP,
  472. IMODE_COLSKIP
  473. };
  474. /** @} */ //imode defines
  475. /** Decode rows by checking if they are skipped
  476. * @param plane Buffer to store decoded bits
  477. * @param[in] width Width of this buffer
  478. * @param[in] height Height of this buffer
  479. * @param[in] stride of this buffer
  480. */
  481. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  482. int x, y;
  483. for (y=0; y<height; y++){
  484. if (!get_bits(gb, 1)) //rowskip
  485. memset(plane, 0, width);
  486. else
  487. for (x=0; x<width; x++)
  488. plane[x] = get_bits(gb, 1);
  489. plane += stride;
  490. }
  491. }
  492. /** Decode columns by checking if they are skipped
  493. * @param plane Buffer to store decoded bits
  494. * @param[in] width Width of this buffer
  495. * @param[in] height Height of this buffer
  496. * @param[in] stride of this buffer
  497. * @fixme FIXME: Optimize
  498. */
  499. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  500. int x, y;
  501. for (x=0; x<width; x++){
  502. if (!get_bits(gb, 1)) //colskip
  503. for (y=0; y<height; y++)
  504. plane[y*stride] = 0;
  505. else
  506. for (y=0; y<height; y++)
  507. plane[y*stride] = get_bits(gb, 1);
  508. plane ++;
  509. }
  510. }
  511. /** Decode a bitplane's bits
  512. * @param bp Bitplane where to store the decode bits
  513. * @param v VC-1 context for bit reading and logging
  514. * @return Status
  515. * @fixme FIXME: Optimize
  516. */
  517. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  518. {
  519. GetBitContext *gb = &v->s.gb;
  520. int imode, x, y, code, offset;
  521. uint8_t invert, *planep = data;
  522. int width, height, stride;
  523. width = v->s.mb_width;
  524. height = v->s.mb_height;
  525. stride = v->s.mb_stride;
  526. invert = get_bits(gb, 1);
  527. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  528. *raw_flag = 0;
  529. switch (imode)
  530. {
  531. case IMODE_RAW:
  532. //Data is actually read in the MB layer (same for all tests == "raw")
  533. *raw_flag = 1; //invert ignored
  534. return invert;
  535. case IMODE_DIFF2:
  536. case IMODE_NORM2:
  537. if ((height * width) & 1)
  538. {
  539. *planep++ = get_bits(gb, 1);
  540. offset = 1;
  541. }
  542. else offset = 0;
  543. // decode bitplane as one long line
  544. for (y = offset; y < height * width; y += 2) {
  545. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  546. *planep++ = code & 1;
  547. offset++;
  548. if(offset == width) {
  549. offset = 0;
  550. planep += stride - width;
  551. }
  552. *planep++ = code >> 1;
  553. offset++;
  554. if(offset == width) {
  555. offset = 0;
  556. planep += stride - width;
  557. }
  558. }
  559. break;
  560. case IMODE_DIFF6:
  561. case IMODE_NORM6:
  562. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  563. for(y = 0; y < height; y+= 3) {
  564. for(x = width & 1; x < width; x += 2) {
  565. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  566. if(code < 0){
  567. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  568. return -1;
  569. }
  570. planep[x + 0] = (code >> 0) & 1;
  571. planep[x + 1] = (code >> 1) & 1;
  572. planep[x + 0 + stride] = (code >> 2) & 1;
  573. planep[x + 1 + stride] = (code >> 3) & 1;
  574. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  575. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  576. }
  577. planep += stride * 3;
  578. }
  579. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  580. } else { // 3x2
  581. planep += (height & 1) * stride;
  582. for(y = height & 1; y < height; y += 2) {
  583. for(x = width % 3; x < width; x += 3) {
  584. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  585. if(code < 0){
  586. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  587. return -1;
  588. }
  589. planep[x + 0] = (code >> 0) & 1;
  590. planep[x + 1] = (code >> 1) & 1;
  591. planep[x + 2] = (code >> 2) & 1;
  592. planep[x + 0 + stride] = (code >> 3) & 1;
  593. planep[x + 1 + stride] = (code >> 4) & 1;
  594. planep[x + 2 + stride] = (code >> 5) & 1;
  595. }
  596. planep += stride * 2;
  597. }
  598. x = width % 3;
  599. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  600. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  601. }
  602. break;
  603. case IMODE_ROWSKIP:
  604. decode_rowskip(data, width, height, stride, &v->s.gb);
  605. break;
  606. case IMODE_COLSKIP:
  607. decode_colskip(data, width, height, stride, &v->s.gb);
  608. break;
  609. default: break;
  610. }
  611. /* Applying diff operator */
  612. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  613. {
  614. planep = data;
  615. planep[0] ^= invert;
  616. for (x=1; x<width; x++)
  617. planep[x] ^= planep[x-1];
  618. for (y=1; y<height; y++)
  619. {
  620. planep += stride;
  621. planep[0] ^= planep[-stride];
  622. for (x=1; x<width; x++)
  623. {
  624. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  625. else planep[x] ^= planep[x-1];
  626. }
  627. }
  628. }
  629. else if (invert)
  630. {
  631. planep = data;
  632. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  633. }
  634. return (imode<<1) + invert;
  635. }
  636. /** @} */ //Bitplane group
  637. /***********************************************************************/
  638. /** VOP Dquant decoding
  639. * @param v VC-1 Context
  640. */
  641. static int vop_dquant_decoding(VC1Context *v)
  642. {
  643. GetBitContext *gb = &v->s.gb;
  644. int pqdiff;
  645. //variable size
  646. if (v->dquant == 2)
  647. {
  648. pqdiff = get_bits(gb, 3);
  649. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  650. else v->altpq = v->pq + pqdiff + 1;
  651. }
  652. else
  653. {
  654. v->dquantfrm = get_bits(gb, 1);
  655. if ( v->dquantfrm )
  656. {
  657. v->dqprofile = get_bits(gb, 2);
  658. switch (v->dqprofile)
  659. {
  660. case DQPROFILE_SINGLE_EDGE:
  661. case DQPROFILE_DOUBLE_EDGES:
  662. v->dqsbedge = get_bits(gb, 2);
  663. break;
  664. case DQPROFILE_ALL_MBS:
  665. v->dqbilevel = get_bits(gb, 1);
  666. default: break; //Forbidden ?
  667. }
  668. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  669. {
  670. pqdiff = get_bits(gb, 3);
  671. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  672. else v->altpq = v->pq + pqdiff + 1;
  673. }
  674. }
  675. }
  676. return 0;
  677. }
  678. /** Put block onto picture
  679. */
  680. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  681. {
  682. uint8_t *Y;
  683. int ys, us, vs;
  684. DSPContext *dsp = &v->s.dsp;
  685. if(v->rangeredfrm) {
  686. int i, j, k;
  687. for(k = 0; k < 6; k++)
  688. for(j = 0; j < 8; j++)
  689. for(i = 0; i < 8; i++)
  690. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  691. }
  692. ys = v->s.current_picture.linesize[0];
  693. us = v->s.current_picture.linesize[1];
  694. vs = v->s.current_picture.linesize[2];
  695. Y = v->s.dest[0];
  696. dsp->put_pixels_clamped(block[0], Y, ys);
  697. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  698. Y += ys * 8;
  699. dsp->put_pixels_clamped(block[2], Y, ys);
  700. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  701. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  702. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  703. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  704. }
  705. }
  706. /** Do motion compensation over 1 macroblock
  707. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  708. */
  709. static void vc1_mc_1mv(VC1Context *v, int dir)
  710. {
  711. MpegEncContext *s = &v->s;
  712. DSPContext *dsp = &v->s.dsp;
  713. uint8_t *srcY, *srcU, *srcV;
  714. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  715. if(!v->s.last_picture.data[0])return;
  716. mx = s->mv[dir][0][0];
  717. my = s->mv[dir][0][1];
  718. // store motion vectors for further use in B frames
  719. if(s->pict_type == P_TYPE) {
  720. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  721. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  722. }
  723. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  724. uvmy = (my + ((my & 3) == 3)) >> 1;
  725. if(v->fastuvmc) {
  726. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  727. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  728. }
  729. if(!dir) {
  730. srcY = s->last_picture.data[0];
  731. srcU = s->last_picture.data[1];
  732. srcV = s->last_picture.data[2];
  733. } else {
  734. srcY = s->next_picture.data[0];
  735. srcU = s->next_picture.data[1];
  736. srcV = s->next_picture.data[2];
  737. }
  738. src_x = s->mb_x * 16 + (mx >> 2);
  739. src_y = s->mb_y * 16 + (my >> 2);
  740. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  741. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  742. src_x = clip( src_x, -16, s->mb_width * 16);
  743. src_y = clip( src_y, -16, s->mb_height * 16);
  744. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  745. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  746. srcY += src_y * s->linesize + src_x;
  747. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  748. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  749. /* for grayscale we should not try to read from unknown area */
  750. if(s->flags & CODEC_FLAG_GRAY) {
  751. srcU = s->edge_emu_buffer + 18 * s->linesize;
  752. srcV = s->edge_emu_buffer + 18 * s->linesize;
  753. }
  754. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  755. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  756. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  757. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  758. srcY -= s->mspel * (1 + s->linesize);
  759. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  760. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  761. srcY = s->edge_emu_buffer;
  762. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  763. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  764. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  765. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  766. srcU = uvbuf;
  767. srcV = uvbuf + 16;
  768. /* if we deal with range reduction we need to scale source blocks */
  769. if(v->rangeredfrm) {
  770. int i, j;
  771. uint8_t *src, *src2;
  772. src = srcY;
  773. for(j = 0; j < 17 + s->mspel*2; j++) {
  774. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  775. src += s->linesize;
  776. }
  777. src = srcU; src2 = srcV;
  778. for(j = 0; j < 9; j++) {
  779. for(i = 0; i < 9; i++) {
  780. src[i] = ((src[i] - 128) >> 1) + 128;
  781. src2[i] = ((src2[i] - 128) >> 1) + 128;
  782. }
  783. src += s->uvlinesize;
  784. src2 += s->uvlinesize;
  785. }
  786. }
  787. /* if we deal with intensity compensation we need to scale source blocks */
  788. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = v->lutuv[src[i]];
  800. src2[i] = v->lutuv[src2[i]];
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. srcY += s->mspel * (1 + s->linesize);
  807. }
  808. if(s->mspel) {
  809. dxy = ((my & 3) << 2) | (mx & 3);
  810. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  811. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  812. srcY += s->linesize * 8;
  813. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  814. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  815. } else { // hpel mc - always used for luma
  816. dxy = (my & 2) | ((mx & 2) >> 1);
  817. if(!v->rnd)
  818. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  819. else
  820. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  821. }
  822. if(s->flags & CODEC_FLAG_GRAY) return;
  823. /* Chroma MC always uses qpel bilinear */
  824. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  825. uvmx = (uvmx&3)<<1;
  826. uvmy = (uvmy&3)<<1;
  827. if(!v->rnd){
  828. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  829. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  830. }else{
  831. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  832. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  833. }
  834. }
  835. /** Do motion compensation for 4-MV macroblock - luminance block
  836. */
  837. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  838. {
  839. MpegEncContext *s = &v->s;
  840. DSPContext *dsp = &v->s.dsp;
  841. uint8_t *srcY;
  842. int dxy, mx, my, src_x, src_y;
  843. int off;
  844. if(!v->s.last_picture.data[0])return;
  845. mx = s->mv[0][n][0];
  846. my = s->mv[0][n][1];
  847. srcY = s->last_picture.data[0];
  848. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  849. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  850. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  851. src_x = clip( src_x, -16, s->mb_width * 16);
  852. src_y = clip( src_y, -16, s->mb_height * 16);
  853. srcY += src_y * s->linesize + src_x;
  854. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  855. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  856. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  857. srcY -= s->mspel * (1 + s->linesize);
  858. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  859. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  860. srcY = s->edge_emu_buffer;
  861. /* if we deal with range reduction we need to scale source blocks */
  862. if(v->rangeredfrm) {
  863. int i, j;
  864. uint8_t *src;
  865. src = srcY;
  866. for(j = 0; j < 9 + s->mspel*2; j++) {
  867. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  868. src += s->linesize;
  869. }
  870. }
  871. /* if we deal with intensity compensation we need to scale source blocks */
  872. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  873. int i, j;
  874. uint8_t *src;
  875. src = srcY;
  876. for(j = 0; j < 9 + s->mspel*2; j++) {
  877. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  878. src += s->linesize;
  879. }
  880. }
  881. srcY += s->mspel * (1 + s->linesize);
  882. }
  883. if(s->mspel) {
  884. dxy = ((my & 3) << 2) | (mx & 3);
  885. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  886. } else { // hpel mc - always used for luma
  887. dxy = (my & 2) | ((mx & 2) >> 1);
  888. if(!v->rnd)
  889. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  890. else
  891. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  892. }
  893. }
  894. static inline int median4(int a, int b, int c, int d)
  895. {
  896. if(a < b) {
  897. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  898. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  899. } else {
  900. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  901. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  902. }
  903. }
  904. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  905. */
  906. static void vc1_mc_4mv_chroma(VC1Context *v)
  907. {
  908. MpegEncContext *s = &v->s;
  909. DSPContext *dsp = &v->s.dsp;
  910. uint8_t *srcU, *srcV;
  911. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  912. int i, idx, tx = 0, ty = 0;
  913. int mvx[4], mvy[4], intra[4];
  914. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  915. if(!v->s.last_picture.data[0])return;
  916. if(s->flags & CODEC_FLAG_GRAY) return;
  917. for(i = 0; i < 4; i++) {
  918. mvx[i] = s->mv[0][i][0];
  919. mvy[i] = s->mv[0][i][1];
  920. intra[i] = v->mb_type[0][s->block_index[i]];
  921. }
  922. /* calculate chroma MV vector from four luma MVs */
  923. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  924. if(!idx) { // all blocks are inter
  925. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  926. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  927. } else if(count[idx] == 1) { // 3 inter blocks
  928. switch(idx) {
  929. case 0x1:
  930. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  931. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  932. break;
  933. case 0x2:
  934. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  935. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  936. break;
  937. case 0x4:
  938. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  939. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  940. break;
  941. case 0x8:
  942. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  943. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  944. break;
  945. }
  946. } else if(count[idx] == 2) {
  947. int t1 = 0, t2 = 0;
  948. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  949. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  950. tx = (mvx[t1] + mvx[t2]) / 2;
  951. ty = (mvy[t1] + mvy[t2]) / 2;
  952. } else
  953. return; //no need to do MC for inter blocks
  954. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  955. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  956. uvmx = (tx + ((tx&3) == 3)) >> 1;
  957. uvmy = (ty + ((ty&3) == 3)) >> 1;
  958. if(v->fastuvmc) {
  959. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  960. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  961. }
  962. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  963. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  964. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  965. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  966. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  967. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  968. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  969. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  970. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  971. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  972. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  973. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  974. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  975. srcU = s->edge_emu_buffer;
  976. srcV = s->edge_emu_buffer + 16;
  977. /* if we deal with range reduction we need to scale source blocks */
  978. if(v->rangeredfrm) {
  979. int i, j;
  980. uint8_t *src, *src2;
  981. src = srcU; src2 = srcV;
  982. for(j = 0; j < 9; j++) {
  983. for(i = 0; i < 9; i++) {
  984. src[i] = ((src[i] - 128) >> 1) + 128;
  985. src2[i] = ((src2[i] - 128) >> 1) + 128;
  986. }
  987. src += s->uvlinesize;
  988. src2 += s->uvlinesize;
  989. }
  990. }
  991. /* if we deal with intensity compensation we need to scale source blocks */
  992. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  993. int i, j;
  994. uint8_t *src, *src2;
  995. src = srcU; src2 = srcV;
  996. for(j = 0; j < 9; j++) {
  997. for(i = 0; i < 9; i++) {
  998. src[i] = v->lutuv[src[i]];
  999. src2[i] = v->lutuv[src2[i]];
  1000. }
  1001. src += s->uvlinesize;
  1002. src2 += s->uvlinesize;
  1003. }
  1004. }
  1005. }
  1006. /* Chroma MC always uses qpel bilinear */
  1007. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1008. uvmx = (uvmx&3)<<1;
  1009. uvmy = (uvmy&3)<<1;
  1010. if(!v->rnd){
  1011. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1012. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1013. }else{
  1014. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1015. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1016. }
  1017. }
  1018. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1019. /**
  1020. * Decode Simple/Main Profiles sequence header
  1021. * @see Figure 7-8, p16-17
  1022. * @param avctx Codec context
  1023. * @param gb GetBit context initialized from Codec context extra_data
  1024. * @return Status
  1025. */
  1026. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1027. {
  1028. VC1Context *v = avctx->priv_data;
  1029. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1030. v->profile = get_bits(gb, 2);
  1031. if (v->profile == 2)
  1032. {
  1033. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1034. return -1;
  1035. }
  1036. if (v->profile == PROFILE_ADVANCED)
  1037. {
  1038. return decode_sequence_header_adv(v, gb);
  1039. }
  1040. else
  1041. {
  1042. v->res_sm = get_bits(gb, 2); //reserved
  1043. if (v->res_sm)
  1044. {
  1045. av_log(avctx, AV_LOG_ERROR,
  1046. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1047. return -1;
  1048. }
  1049. }
  1050. // (fps-2)/4 (->30)
  1051. v->frmrtq_postproc = get_bits(gb, 3); //common
  1052. // (bitrate-32kbps)/64kbps
  1053. v->bitrtq_postproc = get_bits(gb, 5); //common
  1054. v->s.loop_filter = get_bits(gb, 1); //common
  1055. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1056. {
  1057. av_log(avctx, AV_LOG_ERROR,
  1058. "LOOPFILTER shell not be enabled in simple profile\n");
  1059. }
  1060. v->res_x8 = get_bits(gb, 1); //reserved
  1061. if (v->res_x8)
  1062. {
  1063. av_log(avctx, AV_LOG_ERROR,
  1064. "1 for reserved RES_X8 is forbidden\n");
  1065. //return -1;
  1066. }
  1067. v->multires = get_bits(gb, 1);
  1068. v->res_fasttx = get_bits(gb, 1);
  1069. if (!v->res_fasttx)
  1070. {
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "0 for reserved RES_FASTTX is forbidden\n");
  1073. //return -1;
  1074. }
  1075. v->fastuvmc = get_bits(gb, 1); //common
  1076. if (!v->profile && !v->fastuvmc)
  1077. {
  1078. av_log(avctx, AV_LOG_ERROR,
  1079. "FASTUVMC unavailable in Simple Profile\n");
  1080. return -1;
  1081. }
  1082. v->extended_mv = get_bits(gb, 1); //common
  1083. if (!v->profile && v->extended_mv)
  1084. {
  1085. av_log(avctx, AV_LOG_ERROR,
  1086. "Extended MVs unavailable in Simple Profile\n");
  1087. return -1;
  1088. }
  1089. v->dquant = get_bits(gb, 2); //common
  1090. v->vstransform = get_bits(gb, 1); //common
  1091. v->res_transtab = get_bits(gb, 1);
  1092. if (v->res_transtab)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_TRANSTAB is forbidden\n");
  1096. return -1;
  1097. }
  1098. v->overlap = get_bits(gb, 1); //common
  1099. v->s.resync_marker = get_bits(gb, 1);
  1100. v->rangered = get_bits(gb, 1);
  1101. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1102. {
  1103. av_log(avctx, AV_LOG_INFO,
  1104. "RANGERED should be set to 0 in simple profile\n");
  1105. }
  1106. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1107. v->quantizer_mode = get_bits(gb, 2); //common
  1108. v->finterpflag = get_bits(gb, 1); //common
  1109. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1110. if (!v->res_rtm_flag)
  1111. {
  1112. // av_log(avctx, AV_LOG_ERROR,
  1113. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1114. av_log(avctx, AV_LOG_ERROR,
  1115. "Old WMV3 version detected, only I-frames will be decoded\n");
  1116. //return -1;
  1117. }
  1118. av_log(avctx, AV_LOG_DEBUG,
  1119. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1120. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1121. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1122. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1123. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1124. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1125. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1126. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1127. );
  1128. return 0;
  1129. }
  1130. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1131. {
  1132. v->res_rtm_flag = 1;
  1133. v->level = get_bits(gb, 3);
  1134. if(v->level >= 5)
  1135. {
  1136. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1137. }
  1138. v->chromaformat = get_bits(gb, 2);
  1139. if (v->chromaformat != 1)
  1140. {
  1141. av_log(v->s.avctx, AV_LOG_ERROR,
  1142. "Only 4:2:0 chroma format supported\n");
  1143. return -1;
  1144. }
  1145. // (fps-2)/4 (->30)
  1146. v->frmrtq_postproc = get_bits(gb, 3); //common
  1147. // (bitrate-32kbps)/64kbps
  1148. v->bitrtq_postproc = get_bits(gb, 5); //common
  1149. v->postprocflag = get_bits(gb, 1); //common
  1150. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1151. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1152. v->broadcast = get_bits1(gb);
  1153. v->interlace = get_bits1(gb);
  1154. if(v->interlace){
  1155. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced mode not supported (yet)\n");
  1156. return -1;
  1157. }
  1158. v->tfcntrflag = get_bits1(gb);
  1159. v->finterpflag = get_bits1(gb);
  1160. get_bits1(gb); // reserved
  1161. av_log(v->s.avctx, AV_LOG_DEBUG,
  1162. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1163. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1164. "TFCTRflag=%i, FINTERPflag=%i\n",
  1165. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1166. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1167. v->tfcntrflag, v->finterpflag
  1168. );
  1169. v->psf = get_bits1(gb);
  1170. if(v->psf) { //PsF, 6.1.13
  1171. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1172. return -1;
  1173. }
  1174. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1175. int w, h, ar = 0;
  1176. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1177. w = get_bits(gb, 14) + 1;
  1178. h = get_bits(gb, 14) + 1;
  1179. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1180. //TODO: store aspect ratio in AVCodecContext
  1181. if(get_bits1(gb))
  1182. ar = get_bits(gb, 4);
  1183. if(ar == 15) {
  1184. w = get_bits(gb, 8);
  1185. h = get_bits(gb, 8);
  1186. }
  1187. if(get_bits1(gb)){ //framerate stuff
  1188. if(get_bits1(gb)) {
  1189. get_bits(gb, 16);
  1190. } else {
  1191. get_bits(gb, 8);
  1192. get_bits(gb, 4);
  1193. }
  1194. }
  1195. if(get_bits1(gb)){
  1196. v->color_prim = get_bits(gb, 8);
  1197. v->transfer_char = get_bits(gb, 8);
  1198. v->matrix_coef = get_bits(gb, 8);
  1199. }
  1200. }
  1201. v->hrd_param_flag = get_bits1(gb);
  1202. if(v->hrd_param_flag) {
  1203. int i;
  1204. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1205. get_bits(gb, 4); //bitrate exponent
  1206. get_bits(gb, 4); //buffer size exponent
  1207. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1208. get_bits(gb, 16); //hrd_rate[n]
  1209. get_bits(gb, 16); //hrd_buffer[n]
  1210. }
  1211. }
  1212. return 0;
  1213. }
  1214. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1215. {
  1216. VC1Context *v = avctx->priv_data;
  1217. int i, blink, refdist;
  1218. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1219. blink = get_bits1(gb); // broken link
  1220. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1221. v->panscanflag = get_bits1(gb);
  1222. refdist = get_bits1(gb); // refdist flag
  1223. v->s.loop_filter = get_bits1(gb);
  1224. v->fastuvmc = get_bits1(gb);
  1225. v->extended_mv = get_bits1(gb);
  1226. v->dquant = get_bits(gb, 2);
  1227. v->vstransform = get_bits1(gb);
  1228. v->overlap = get_bits1(gb);
  1229. v->quantizer_mode = get_bits(gb, 2);
  1230. if(v->hrd_param_flag){
  1231. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1232. get_bits(gb, 8); //hrd_full[n]
  1233. }
  1234. }
  1235. if(get_bits1(gb)){
  1236. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1237. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1238. }
  1239. if(v->extended_mv)
  1240. v->extended_dmv = get_bits1(gb);
  1241. if(get_bits1(gb)) {
  1242. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1243. skip_bits(gb, 3); // Y range, ignored for now
  1244. }
  1245. if(get_bits1(gb)) {
  1246. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1247. skip_bits(gb, 3); // UV range, ignored for now
  1248. }
  1249. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1250. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1251. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1252. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1253. blink, 1 - avctx->max_b_frames, v->panscanflag, refdist, v->s.loop_filter,
  1254. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1255. return 0;
  1256. }
  1257. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1258. {
  1259. int pqindex, lowquant, status;
  1260. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1261. skip_bits(gb, 2); //framecnt unused
  1262. v->rangeredfrm = 0;
  1263. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1264. v->s.pict_type = get_bits(gb, 1);
  1265. if (v->s.avctx->max_b_frames) {
  1266. if (!v->s.pict_type) {
  1267. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1268. else v->s.pict_type = B_TYPE;
  1269. } else v->s.pict_type = P_TYPE;
  1270. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1271. v->bi_type = 0;
  1272. if(v->s.pict_type == B_TYPE) {
  1273. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1274. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1275. if(v->bfraction == 0) {
  1276. v->s.pict_type = BI_TYPE;
  1277. }
  1278. }
  1279. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1280. get_bits(gb, 7); // skip buffer fullness
  1281. /* calculate RND */
  1282. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1283. v->rnd = 1;
  1284. if(v->s.pict_type == P_TYPE)
  1285. v->rnd ^= 1;
  1286. /* Quantizer stuff */
  1287. pqindex = get_bits(gb, 5);
  1288. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1289. v->pq = pquant_table[0][pqindex];
  1290. else
  1291. v->pq = pquant_table[1][pqindex];
  1292. v->pquantizer = 1;
  1293. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1294. v->pquantizer = pqindex < 9;
  1295. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1296. v->pquantizer = 0;
  1297. v->pqindex = pqindex;
  1298. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1299. else v->halfpq = 0;
  1300. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1301. v->pquantizer = get_bits(gb, 1);
  1302. v->dquantfrm = 0;
  1303. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1304. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1305. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1306. v->range_x = 1 << (v->k_x - 1);
  1307. v->range_y = 1 << (v->k_y - 1);
  1308. if (v->profile == PROFILE_ADVANCED)
  1309. {
  1310. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1311. }
  1312. else
  1313. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1314. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1315. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1316. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1317. switch(v->s.pict_type) {
  1318. case P_TYPE:
  1319. if (v->pq < 5) v->tt_index = 0;
  1320. else if(v->pq < 13) v->tt_index = 1;
  1321. else v->tt_index = 2;
  1322. lowquant = (v->pq > 12) ? 0 : 1;
  1323. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1324. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1325. {
  1326. int scale, shift, i;
  1327. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1328. v->lumscale = get_bits(gb, 6);
  1329. v->lumshift = get_bits(gb, 6);
  1330. v->use_ic = 1;
  1331. /* fill lookup tables for intensity compensation */
  1332. if(!v->lumscale) {
  1333. scale = -64;
  1334. shift = (255 - v->lumshift * 2) << 6;
  1335. if(v->lumshift > 31)
  1336. shift += 128 << 6;
  1337. } else {
  1338. scale = v->lumscale + 32;
  1339. if(v->lumshift > 31)
  1340. shift = (v->lumshift - 64) << 6;
  1341. else
  1342. shift = v->lumshift << 6;
  1343. }
  1344. for(i = 0; i < 256; i++) {
  1345. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1346. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1347. }
  1348. }
  1349. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1350. v->s.quarter_sample = 0;
  1351. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1352. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1353. v->s.quarter_sample = 0;
  1354. else
  1355. v->s.quarter_sample = 1;
  1356. } else
  1357. v->s.quarter_sample = 1;
  1358. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1359. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1360. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1361. || v->mv_mode == MV_PMODE_MIXED_MV)
  1362. {
  1363. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1364. if (status < 0) return -1;
  1365. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1366. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1367. } else {
  1368. v->mv_type_is_raw = 0;
  1369. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1370. }
  1371. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1372. if (status < 0) return -1;
  1373. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1374. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1375. /* Hopefully this is correct for P frames */
  1376. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1377. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1378. if (v->dquant)
  1379. {
  1380. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1381. vop_dquant_decoding(v);
  1382. }
  1383. v->ttfrm = 0; //FIXME Is that so ?
  1384. if (v->vstransform)
  1385. {
  1386. v->ttmbf = get_bits(gb, 1);
  1387. if (v->ttmbf)
  1388. {
  1389. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1390. }
  1391. } else {
  1392. v->ttmbf = 1;
  1393. v->ttfrm = TT_8X8;
  1394. }
  1395. break;
  1396. case B_TYPE:
  1397. if (v->pq < 5) v->tt_index = 0;
  1398. else if(v->pq < 13) v->tt_index = 1;
  1399. else v->tt_index = 2;
  1400. lowquant = (v->pq > 12) ? 0 : 1;
  1401. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1402. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1403. v->s.mspel = v->s.quarter_sample;
  1404. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1405. if (status < 0) return -1;
  1406. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1407. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1408. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1409. if (status < 0) return -1;
  1410. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1411. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1412. v->s.mv_table_index = get_bits(gb, 2);
  1413. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1414. if (v->dquant)
  1415. {
  1416. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1417. vop_dquant_decoding(v);
  1418. }
  1419. v->ttfrm = 0;
  1420. if (v->vstransform)
  1421. {
  1422. v->ttmbf = get_bits(gb, 1);
  1423. if (v->ttmbf)
  1424. {
  1425. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1426. }
  1427. } else {
  1428. v->ttmbf = 1;
  1429. v->ttfrm = TT_8X8;
  1430. }
  1431. break;
  1432. }
  1433. /* AC Syntax */
  1434. v->c_ac_table_index = decode012(gb);
  1435. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1436. {
  1437. v->y_ac_table_index = decode012(gb);
  1438. }
  1439. /* DC Syntax */
  1440. v->s.dc_table_index = get_bits(gb, 1);
  1441. if(v->s.pict_type == BI_TYPE) {
  1442. v->s.pict_type = B_TYPE;
  1443. v->bi_type = 1;
  1444. }
  1445. return 0;
  1446. }
  1447. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1448. {
  1449. int fcm;
  1450. int pqindex, lowquant;
  1451. int status;
  1452. v->p_frame_skipped = 0;
  1453. if(v->interlace)
  1454. fcm = decode012(gb);
  1455. switch(get_prefix(gb, 0, 4)) {
  1456. case 0:
  1457. v->s.pict_type = P_TYPE;
  1458. break;
  1459. case 1:
  1460. v->s.pict_type = B_TYPE;
  1461. break;
  1462. case 2:
  1463. v->s.pict_type = I_TYPE;
  1464. break;
  1465. case 3:
  1466. v->s.pict_type = BI_TYPE;
  1467. break;
  1468. case 4:
  1469. v->s.pict_type = P_TYPE; // skipped pic
  1470. v->p_frame_skipped = 1;
  1471. return 0;
  1472. }
  1473. if(v->tfcntrflag)
  1474. get_bits(gb, 8);
  1475. if(v->broadcast) {
  1476. if(!v->interlace || v->panscanflag) {
  1477. get_bits(gb, 2);
  1478. } else {
  1479. get_bits1(gb);
  1480. get_bits1(gb);
  1481. }
  1482. }
  1483. if(v->panscanflag) {
  1484. //...
  1485. }
  1486. v->rnd = get_bits1(gb);
  1487. if(v->interlace)
  1488. v->uvsamp = get_bits1(gb);
  1489. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1490. if(v->s.pict_type == B_TYPE) {
  1491. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1492. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1493. if(v->bfraction == 0) {
  1494. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1495. }
  1496. }
  1497. pqindex = get_bits(gb, 5);
  1498. v->pqindex = pqindex;
  1499. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1500. v->pq = pquant_table[0][pqindex];
  1501. else
  1502. v->pq = pquant_table[1][pqindex];
  1503. v->pquantizer = 1;
  1504. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1505. v->pquantizer = pqindex < 9;
  1506. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1507. v->pquantizer = 0;
  1508. v->pqindex = pqindex;
  1509. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1510. else v->halfpq = 0;
  1511. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1512. v->pquantizer = get_bits(gb, 1);
  1513. switch(v->s.pict_type) {
  1514. case I_TYPE:
  1515. case BI_TYPE:
  1516. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1517. if (status < 0) return -1;
  1518. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1519. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1520. v->condover = CONDOVER_NONE;
  1521. if(v->overlap && v->pq <= 8) {
  1522. v->condover = decode012(gb);
  1523. if(v->condover == CONDOVER_SELECT) {
  1524. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1525. if (status < 0) return -1;
  1526. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1527. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1528. }
  1529. }
  1530. break;
  1531. case P_TYPE:
  1532. if(v->postprocflag)
  1533. v->postproc = get_bits1(gb);
  1534. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1535. else v->mvrange = 0;
  1536. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1537. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1538. v->range_x = 1 << (v->k_x - 1);
  1539. v->range_y = 1 << (v->k_y - 1);
  1540. if (v->pq < 5) v->tt_index = 0;
  1541. else if(v->pq < 13) v->tt_index = 1;
  1542. else v->tt_index = 2;
  1543. lowquant = (v->pq > 12) ? 0 : 1;
  1544. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1545. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1546. {
  1547. int scale, shift, i;
  1548. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1549. v->lumscale = get_bits(gb, 6);
  1550. v->lumshift = get_bits(gb, 6);
  1551. /* fill lookup tables for intensity compensation */
  1552. if(!v->lumscale) {
  1553. scale = -64;
  1554. shift = (255 - v->lumshift * 2) << 6;
  1555. if(v->lumshift > 31)
  1556. shift += 128 << 6;
  1557. } else {
  1558. scale = v->lumscale + 32;
  1559. if(v->lumshift > 31)
  1560. shift = (v->lumshift - 64) << 6;
  1561. else
  1562. shift = v->lumshift << 6;
  1563. }
  1564. for(i = 0; i < 256; i++) {
  1565. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1566. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1567. }
  1568. }
  1569. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1570. v->s.quarter_sample = 0;
  1571. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1572. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1573. v->s.quarter_sample = 0;
  1574. else
  1575. v->s.quarter_sample = 1;
  1576. } else
  1577. v->s.quarter_sample = 1;
  1578. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1579. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1580. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1581. || v->mv_mode == MV_PMODE_MIXED_MV)
  1582. {
  1583. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1584. if (status < 0) return -1;
  1585. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1586. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1587. } else {
  1588. v->mv_type_is_raw = 0;
  1589. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1590. }
  1591. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1592. if (status < 0) return -1;
  1593. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1594. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1595. /* Hopefully this is correct for P frames */
  1596. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1597. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1598. if (v->dquant)
  1599. {
  1600. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1601. vop_dquant_decoding(v);
  1602. }
  1603. v->ttfrm = 0; //FIXME Is that so ?
  1604. if (v->vstransform)
  1605. {
  1606. v->ttmbf = get_bits(gb, 1);
  1607. if (v->ttmbf)
  1608. {
  1609. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1610. }
  1611. } else {
  1612. v->ttmbf = 1;
  1613. v->ttfrm = TT_8X8;
  1614. }
  1615. break;
  1616. case B_TYPE:
  1617. if(v->postprocflag)
  1618. v->postproc = get_bits1(gb);
  1619. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1620. else v->mvrange = 0;
  1621. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1622. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1623. v->range_x = 1 << (v->k_x - 1);
  1624. v->range_y = 1 << (v->k_y - 1);
  1625. if (v->pq < 5) v->tt_index = 0;
  1626. else if(v->pq < 13) v->tt_index = 1;
  1627. else v->tt_index = 2;
  1628. lowquant = (v->pq > 12) ? 0 : 1;
  1629. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1630. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1631. v->s.mspel = v->s.quarter_sample;
  1632. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1633. if (status < 0) return -1;
  1634. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1635. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1636. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1637. if (status < 0) return -1;
  1638. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1639. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1640. v->s.mv_table_index = get_bits(gb, 2);
  1641. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1642. if (v->dquant)
  1643. {
  1644. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1645. vop_dquant_decoding(v);
  1646. }
  1647. v->ttfrm = 0;
  1648. if (v->vstransform)
  1649. {
  1650. v->ttmbf = get_bits(gb, 1);
  1651. if (v->ttmbf)
  1652. {
  1653. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1654. }
  1655. } else {
  1656. v->ttmbf = 1;
  1657. v->ttfrm = TT_8X8;
  1658. }
  1659. break;
  1660. }
  1661. /* AC Syntax */
  1662. v->c_ac_table_index = decode012(gb);
  1663. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1664. {
  1665. v->y_ac_table_index = decode012(gb);
  1666. }
  1667. /* DC Syntax */
  1668. v->s.dc_table_index = get_bits(gb, 1);
  1669. if (v->s.pict_type == I_TYPE && v->dquant) {
  1670. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1671. vop_dquant_decoding(v);
  1672. }
  1673. v->bi_type = 0;
  1674. if(v->s.pict_type == BI_TYPE) {
  1675. v->s.pict_type = B_TYPE;
  1676. v->bi_type = 1;
  1677. }
  1678. return 0;
  1679. }
  1680. /***********************************************************************/
  1681. /**
  1682. * @defgroup block VC-1 Block-level functions
  1683. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1684. * @{
  1685. */
  1686. /**
  1687. * @def GET_MQUANT
  1688. * @brief Get macroblock-level quantizer scale
  1689. */
  1690. #define GET_MQUANT() \
  1691. if (v->dquantfrm) \
  1692. { \
  1693. int edges = 0; \
  1694. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1695. { \
  1696. if (v->dqbilevel) \
  1697. { \
  1698. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1699. } \
  1700. else \
  1701. { \
  1702. mqdiff = get_bits(gb, 3); \
  1703. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1704. else mquant = get_bits(gb, 5); \
  1705. } \
  1706. } \
  1707. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1708. edges = 1 << v->dqsbedge; \
  1709. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1710. edges = (3 << v->dqsbedge) % 15; \
  1711. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1712. edges = 15; \
  1713. if((edges&1) && !s->mb_x) \
  1714. mquant = v->altpq; \
  1715. if((edges&2) && s->first_slice_line) \
  1716. mquant = v->altpq; \
  1717. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1718. mquant = v->altpq; \
  1719. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1720. mquant = v->altpq; \
  1721. }
  1722. /**
  1723. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1724. * @brief Get MV differentials
  1725. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1726. * @param _dmv_x Horizontal differential for decoded MV
  1727. * @param _dmv_y Vertical differential for decoded MV
  1728. */
  1729. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1730. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1731. VC1_MV_DIFF_VLC_BITS, 2); \
  1732. if (index > 36) \
  1733. { \
  1734. mb_has_coeffs = 1; \
  1735. index -= 37; \
  1736. } \
  1737. else mb_has_coeffs = 0; \
  1738. s->mb_intra = 0; \
  1739. if (!index) { _dmv_x = _dmv_y = 0; } \
  1740. else if (index == 35) \
  1741. { \
  1742. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1743. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1744. } \
  1745. else if (index == 36) \
  1746. { \
  1747. _dmv_x = 0; \
  1748. _dmv_y = 0; \
  1749. s->mb_intra = 1; \
  1750. } \
  1751. else \
  1752. { \
  1753. index1 = index%6; \
  1754. if (!s->quarter_sample && index1 == 5) val = 1; \
  1755. else val = 0; \
  1756. if(size_table[index1] - val > 0) \
  1757. val = get_bits(gb, size_table[index1] - val); \
  1758. else val = 0; \
  1759. sign = 0 - (val&1); \
  1760. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1761. \
  1762. index1 = index/6; \
  1763. if (!s->quarter_sample && index1 == 5) val = 1; \
  1764. else val = 0; \
  1765. if(size_table[index1] - val > 0) \
  1766. val = get_bits(gb, size_table[index1] - val); \
  1767. else val = 0; \
  1768. sign = 0 - (val&1); \
  1769. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1770. }
  1771. /** Predict and set motion vector
  1772. */
  1773. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1774. {
  1775. int xy, wrap, off = 0;
  1776. int16_t *A, *B, *C;
  1777. int px, py;
  1778. int sum;
  1779. /* scale MV difference to be quad-pel */
  1780. dmv_x <<= 1 - s->quarter_sample;
  1781. dmv_y <<= 1 - s->quarter_sample;
  1782. wrap = s->b8_stride;
  1783. xy = s->block_index[n];
  1784. if(s->mb_intra){
  1785. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1786. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1787. if(mv1) { /* duplicate motion data for 1-MV block */
  1788. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1789. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1790. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1791. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1792. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1793. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1794. }
  1795. return;
  1796. }
  1797. C = s->current_picture.motion_val[0][xy - 1];
  1798. A = s->current_picture.motion_val[0][xy - wrap];
  1799. if(mv1)
  1800. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1801. else {
  1802. //in 4-MV mode different blocks have different B predictor position
  1803. switch(n){
  1804. case 0:
  1805. off = (s->mb_x > 0) ? -1 : 1;
  1806. break;
  1807. case 1:
  1808. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1809. break;
  1810. case 2:
  1811. off = 1;
  1812. break;
  1813. case 3:
  1814. off = -1;
  1815. }
  1816. }
  1817. B = s->current_picture.motion_val[0][xy - wrap + off];
  1818. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1819. if(s->mb_width == 1) {
  1820. px = A[0];
  1821. py = A[1];
  1822. } else {
  1823. px = mid_pred(A[0], B[0], C[0]);
  1824. py = mid_pred(A[1], B[1], C[1]);
  1825. }
  1826. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1827. px = C[0];
  1828. py = C[1];
  1829. } else {
  1830. px = py = 0;
  1831. }
  1832. /* Pullback MV as specified in 8.3.5.3.4 */
  1833. {
  1834. int qx, qy, X, Y;
  1835. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1836. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1837. X = (s->mb_width << 6) - 4;
  1838. Y = (s->mb_height << 6) - 4;
  1839. if(mv1) {
  1840. if(qx + px < -60) px = -60 - qx;
  1841. if(qy + py < -60) py = -60 - qy;
  1842. } else {
  1843. if(qx + px < -28) px = -28 - qx;
  1844. if(qy + py < -28) py = -28 - qy;
  1845. }
  1846. if(qx + px > X) px = X - qx;
  1847. if(qy + py > Y) py = Y - qy;
  1848. }
  1849. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1850. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1851. if(is_intra[xy - wrap])
  1852. sum = FFABS(px) + FFABS(py);
  1853. else
  1854. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1855. if(sum > 32) {
  1856. if(get_bits1(&s->gb)) {
  1857. px = A[0];
  1858. py = A[1];
  1859. } else {
  1860. px = C[0];
  1861. py = C[1];
  1862. }
  1863. } else {
  1864. if(is_intra[xy - 1])
  1865. sum = FFABS(px) + FFABS(py);
  1866. else
  1867. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1868. if(sum > 32) {
  1869. if(get_bits1(&s->gb)) {
  1870. px = A[0];
  1871. py = A[1];
  1872. } else {
  1873. px = C[0];
  1874. py = C[1];
  1875. }
  1876. }
  1877. }
  1878. }
  1879. /* store MV using signed modulus of MV range defined in 4.11 */
  1880. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1881. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1882. if(mv1) { /* duplicate motion data for 1-MV block */
  1883. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1884. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1885. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1886. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1887. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1888. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1889. }
  1890. }
  1891. /** Motion compensation for direct or interpolated blocks in B-frames
  1892. */
  1893. static void vc1_interp_mc(VC1Context *v)
  1894. {
  1895. MpegEncContext *s = &v->s;
  1896. DSPContext *dsp = &v->s.dsp;
  1897. uint8_t *srcY, *srcU, *srcV;
  1898. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1899. if(!v->s.next_picture.data[0])return;
  1900. mx = s->mv[1][0][0];
  1901. my = s->mv[1][0][1];
  1902. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1903. uvmy = (my + ((my & 3) == 3)) >> 1;
  1904. if(v->fastuvmc) {
  1905. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1906. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1907. }
  1908. srcY = s->next_picture.data[0];
  1909. srcU = s->next_picture.data[1];
  1910. srcV = s->next_picture.data[2];
  1911. src_x = s->mb_x * 16 + (mx >> 2);
  1912. src_y = s->mb_y * 16 + (my >> 2);
  1913. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1914. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1915. src_x = clip( src_x, -16, s->mb_width * 16);
  1916. src_y = clip( src_y, -16, s->mb_height * 16);
  1917. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1918. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1919. srcY += src_y * s->linesize + src_x;
  1920. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1921. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1922. /* for grayscale we should not try to read from unknown area */
  1923. if(s->flags & CODEC_FLAG_GRAY) {
  1924. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1925. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1926. }
  1927. if(v->rangeredfrm
  1928. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1929. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1930. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1931. srcY -= s->mspel * (1 + s->linesize);
  1932. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1933. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1934. srcY = s->edge_emu_buffer;
  1935. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1936. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1937. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1938. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1939. srcU = uvbuf;
  1940. srcV = uvbuf + 16;
  1941. /* if we deal with range reduction we need to scale source blocks */
  1942. if(v->rangeredfrm) {
  1943. int i, j;
  1944. uint8_t *src, *src2;
  1945. src = srcY;
  1946. for(j = 0; j < 17 + s->mspel*2; j++) {
  1947. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1948. src += s->linesize;
  1949. }
  1950. src = srcU; src2 = srcV;
  1951. for(j = 0; j < 9; j++) {
  1952. for(i = 0; i < 9; i++) {
  1953. src[i] = ((src[i] - 128) >> 1) + 128;
  1954. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1955. }
  1956. src += s->uvlinesize;
  1957. src2 += s->uvlinesize;
  1958. }
  1959. }
  1960. srcY += s->mspel * (1 + s->linesize);
  1961. }
  1962. mx >>= 1;
  1963. my >>= 1;
  1964. dxy = ((my & 1) << 1) | (mx & 1);
  1965. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1966. if(s->flags & CODEC_FLAG_GRAY) return;
  1967. /* Chroma MC always uses qpel blilinear */
  1968. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1969. uvmx = (uvmx&3)<<1;
  1970. uvmy = (uvmy&3)<<1;
  1971. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1972. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1973. }
  1974. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1975. {
  1976. int n = bfrac;
  1977. #if B_FRACTION_DEN==256
  1978. if(inv)
  1979. n -= 256;
  1980. if(!qs)
  1981. return 2 * ((value * n + 255) >> 9);
  1982. return (value * n + 128) >> 8;
  1983. #else
  1984. if(inv)
  1985. n -= B_FRACTION_DEN;
  1986. if(!qs)
  1987. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1988. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1989. #endif
  1990. }
  1991. /** Reconstruct motion vector for B-frame and do motion compensation
  1992. */
  1993. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1994. {
  1995. if(v->use_ic) {
  1996. v->mv_mode2 = v->mv_mode;
  1997. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1998. }
  1999. if(direct) {
  2000. vc1_mc_1mv(v, 0);
  2001. vc1_interp_mc(v);
  2002. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2003. return;
  2004. }
  2005. if(mode == BMV_TYPE_INTERPOLATED) {
  2006. vc1_mc_1mv(v, 0);
  2007. vc1_interp_mc(v);
  2008. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2009. return;
  2010. }
  2011. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2012. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2013. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2014. }
  2015. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2016. {
  2017. MpegEncContext *s = &v->s;
  2018. int xy, wrap, off = 0;
  2019. int16_t *A, *B, *C;
  2020. int px, py;
  2021. int sum;
  2022. int r_x, r_y;
  2023. const uint8_t *is_intra = v->mb_type[0];
  2024. r_x = v->range_x;
  2025. r_y = v->range_y;
  2026. /* scale MV difference to be quad-pel */
  2027. dmv_x[0] <<= 1 - s->quarter_sample;
  2028. dmv_y[0] <<= 1 - s->quarter_sample;
  2029. dmv_x[1] <<= 1 - s->quarter_sample;
  2030. dmv_y[1] <<= 1 - s->quarter_sample;
  2031. wrap = s->b8_stride;
  2032. xy = s->block_index[0];
  2033. if(s->mb_intra) {
  2034. s->current_picture.motion_val[0][xy][0] =
  2035. s->current_picture.motion_val[0][xy][1] =
  2036. s->current_picture.motion_val[1][xy][0] =
  2037. s->current_picture.motion_val[1][xy][1] = 0;
  2038. return;
  2039. }
  2040. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2041. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2042. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2043. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2044. if(direct) {
  2045. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2046. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2047. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2048. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2049. return;
  2050. }
  2051. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2052. C = s->current_picture.motion_val[0][xy - 2];
  2053. A = s->current_picture.motion_val[0][xy - wrap*2];
  2054. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2055. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2056. if(!s->first_slice_line) { // predictor A is not out of bounds
  2057. if(s->mb_width == 1) {
  2058. px = A[0];
  2059. py = A[1];
  2060. } else {
  2061. px = mid_pred(A[0], B[0], C[0]);
  2062. py = mid_pred(A[1], B[1], C[1]);
  2063. }
  2064. } else if(s->mb_x) { // predictor C is not out of bounds
  2065. px = C[0];
  2066. py = C[1];
  2067. } else {
  2068. px = py = 0;
  2069. }
  2070. /* Pullback MV as specified in 8.3.5.3.4 */
  2071. {
  2072. int qx, qy, X, Y;
  2073. if(v->profile < PROFILE_ADVANCED) {
  2074. qx = (s->mb_x << 5);
  2075. qy = (s->mb_y << 5);
  2076. X = (s->mb_width << 5) - 4;
  2077. Y = (s->mb_height << 5) - 4;
  2078. if(qx + px < -28) px = -28 - qx;
  2079. if(qy + py < -28) py = -28 - qy;
  2080. if(qx + px > X) px = X - qx;
  2081. if(qy + py > Y) py = Y - qy;
  2082. } else {
  2083. qx = (s->mb_x << 6);
  2084. qy = (s->mb_y << 6);
  2085. X = (s->mb_width << 6) - 4;
  2086. Y = (s->mb_height << 6) - 4;
  2087. if(qx + px < -60) px = -60 - qx;
  2088. if(qy + py < -60) py = -60 - qy;
  2089. if(qx + px > X) px = X - qx;
  2090. if(qy + py > Y) py = Y - qy;
  2091. }
  2092. }
  2093. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2094. if(0 && !s->first_slice_line && s->mb_x) {
  2095. if(is_intra[xy - wrap])
  2096. sum = FFABS(px) + FFABS(py);
  2097. else
  2098. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2099. if(sum > 32) {
  2100. if(get_bits1(&s->gb)) {
  2101. px = A[0];
  2102. py = A[1];
  2103. } else {
  2104. px = C[0];
  2105. py = C[1];
  2106. }
  2107. } else {
  2108. if(is_intra[xy - 2])
  2109. sum = FFABS(px) + FFABS(py);
  2110. else
  2111. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2112. if(sum > 32) {
  2113. if(get_bits1(&s->gb)) {
  2114. px = A[0];
  2115. py = A[1];
  2116. } else {
  2117. px = C[0];
  2118. py = C[1];
  2119. }
  2120. }
  2121. }
  2122. }
  2123. /* store MV using signed modulus of MV range defined in 4.11 */
  2124. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2125. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2126. }
  2127. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2128. C = s->current_picture.motion_val[1][xy - 2];
  2129. A = s->current_picture.motion_val[1][xy - wrap*2];
  2130. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2131. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2132. if(!s->first_slice_line) { // predictor A is not out of bounds
  2133. if(s->mb_width == 1) {
  2134. px = A[0];
  2135. py = A[1];
  2136. } else {
  2137. px = mid_pred(A[0], B[0], C[0]);
  2138. py = mid_pred(A[1], B[1], C[1]);
  2139. }
  2140. } else if(s->mb_x) { // predictor C is not out of bounds
  2141. px = C[0];
  2142. py = C[1];
  2143. } else {
  2144. px = py = 0;
  2145. }
  2146. /* Pullback MV as specified in 8.3.5.3.4 */
  2147. {
  2148. int qx, qy, X, Y;
  2149. if(v->profile < PROFILE_ADVANCED) {
  2150. qx = (s->mb_x << 5);
  2151. qy = (s->mb_y << 5);
  2152. X = (s->mb_width << 5) - 4;
  2153. Y = (s->mb_height << 5) - 4;
  2154. if(qx + px < -28) px = -28 - qx;
  2155. if(qy + py < -28) py = -28 - qy;
  2156. if(qx + px > X) px = X - qx;
  2157. if(qy + py > Y) py = Y - qy;
  2158. } else {
  2159. qx = (s->mb_x << 6);
  2160. qy = (s->mb_y << 6);
  2161. X = (s->mb_width << 6) - 4;
  2162. Y = (s->mb_height << 6) - 4;
  2163. if(qx + px < -60) px = -60 - qx;
  2164. if(qy + py < -60) py = -60 - qy;
  2165. if(qx + px > X) px = X - qx;
  2166. if(qy + py > Y) py = Y - qy;
  2167. }
  2168. }
  2169. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2170. if(0 && !s->first_slice_line && s->mb_x) {
  2171. if(is_intra[xy - wrap])
  2172. sum = FFABS(px) + FFABS(py);
  2173. else
  2174. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2175. if(sum > 32) {
  2176. if(get_bits1(&s->gb)) {
  2177. px = A[0];
  2178. py = A[1];
  2179. } else {
  2180. px = C[0];
  2181. py = C[1];
  2182. }
  2183. } else {
  2184. if(is_intra[xy - 2])
  2185. sum = FFABS(px) + FFABS(py);
  2186. else
  2187. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2188. if(sum > 32) {
  2189. if(get_bits1(&s->gb)) {
  2190. px = A[0];
  2191. py = A[1];
  2192. } else {
  2193. px = C[0];
  2194. py = C[1];
  2195. }
  2196. }
  2197. }
  2198. }
  2199. /* store MV using signed modulus of MV range defined in 4.11 */
  2200. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2201. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2202. }
  2203. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2204. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2205. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2206. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2207. }
  2208. /** Get predicted DC value for I-frames only
  2209. * prediction dir: left=0, top=1
  2210. * @param s MpegEncContext
  2211. * @param[in] n block index in the current MB
  2212. * @param dc_val_ptr Pointer to DC predictor
  2213. * @param dir_ptr Prediction direction for use in AC prediction
  2214. */
  2215. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2216. int16_t **dc_val_ptr, int *dir_ptr)
  2217. {
  2218. int a, b, c, wrap, pred, scale;
  2219. int16_t *dc_val;
  2220. static const uint16_t dcpred[32] = {
  2221. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2222. 114, 102, 93, 85, 79, 73, 68, 64,
  2223. 60, 57, 54, 51, 49, 47, 45, 43,
  2224. 41, 39, 38, 37, 35, 34, 33
  2225. };
  2226. /* find prediction - wmv3_dc_scale always used here in fact */
  2227. if (n < 4) scale = s->y_dc_scale;
  2228. else scale = s->c_dc_scale;
  2229. wrap = s->block_wrap[n];
  2230. dc_val= s->dc_val[0] + s->block_index[n];
  2231. /* B A
  2232. * C X
  2233. */
  2234. c = dc_val[ - 1];
  2235. b = dc_val[ - 1 - wrap];
  2236. a = dc_val[ - wrap];
  2237. if (pq < 9 || !overlap)
  2238. {
  2239. /* Set outer values */
  2240. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2241. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2242. }
  2243. else
  2244. {
  2245. /* Set outer values */
  2246. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2247. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2248. }
  2249. if (abs(a - b) <= abs(b - c)) {
  2250. pred = c;
  2251. *dir_ptr = 1;//left
  2252. } else {
  2253. pred = a;
  2254. *dir_ptr = 0;//top
  2255. }
  2256. /* update predictor */
  2257. *dc_val_ptr = &dc_val[0];
  2258. return pred;
  2259. }
  2260. /** Get predicted DC value
  2261. * prediction dir: left=0, top=1
  2262. * @param s MpegEncContext
  2263. * @param[in] n block index in the current MB
  2264. * @param dc_val_ptr Pointer to DC predictor
  2265. * @param dir_ptr Prediction direction for use in AC prediction
  2266. */
  2267. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2268. int a_avail, int c_avail,
  2269. int16_t **dc_val_ptr, int *dir_ptr)
  2270. {
  2271. int a, b, c, wrap, pred, scale;
  2272. int16_t *dc_val;
  2273. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2274. int q1, q2 = 0;
  2275. /* find prediction - wmv3_dc_scale always used here in fact */
  2276. if (n < 4) scale = s->y_dc_scale;
  2277. else scale = s->c_dc_scale;
  2278. wrap = s->block_wrap[n];
  2279. dc_val= s->dc_val[0] + s->block_index[n];
  2280. /* B A
  2281. * C X
  2282. */
  2283. c = dc_val[ - 1];
  2284. b = dc_val[ - 1 - wrap];
  2285. a = dc_val[ - wrap];
  2286. /* scale predictors if needed */
  2287. q1 = s->current_picture.qscale_table[mb_pos];
  2288. if(c_avail && (n!= 1 && n!=3)) {
  2289. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2290. if(q2 && q2 != q1)
  2291. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2292. }
  2293. if(a_avail && (n!= 2 && n!=3)) {
  2294. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2295. if(q2 && q2 != q1)
  2296. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2297. }
  2298. if(a_avail && c_avail && (n!=3)) {
  2299. int off = mb_pos;
  2300. if(n != 1) off--;
  2301. if(n != 2) off -= s->mb_stride;
  2302. q2 = s->current_picture.qscale_table[off];
  2303. if(q2 && q2 != q1)
  2304. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2305. }
  2306. if(a_avail && c_avail) {
  2307. if(abs(a - b) <= abs(b - c)) {
  2308. pred = c;
  2309. *dir_ptr = 1;//left
  2310. } else {
  2311. pred = a;
  2312. *dir_ptr = 0;//top
  2313. }
  2314. } else if(a_avail) {
  2315. pred = a;
  2316. *dir_ptr = 0;//top
  2317. } else if(c_avail) {
  2318. pred = c;
  2319. *dir_ptr = 1;//left
  2320. } else {
  2321. pred = 0;
  2322. *dir_ptr = 1;//left
  2323. }
  2324. /* update predictor */
  2325. *dc_val_ptr = &dc_val[0];
  2326. return pred;
  2327. }
  2328. /**
  2329. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2330. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2331. * @{
  2332. */
  2333. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2334. {
  2335. int xy, wrap, pred, a, b, c;
  2336. xy = s->block_index[n];
  2337. wrap = s->b8_stride;
  2338. /* B C
  2339. * A X
  2340. */
  2341. a = s->coded_block[xy - 1 ];
  2342. b = s->coded_block[xy - 1 - wrap];
  2343. c = s->coded_block[xy - wrap];
  2344. if (b == c) {
  2345. pred = a;
  2346. } else {
  2347. pred = c;
  2348. }
  2349. /* store value */
  2350. *coded_block_ptr = &s->coded_block[xy];
  2351. return pred;
  2352. }
  2353. /**
  2354. * Decode one AC coefficient
  2355. * @param v The VC1 context
  2356. * @param last Last coefficient
  2357. * @param skip How much zero coefficients to skip
  2358. * @param value Decoded AC coefficient value
  2359. * @see 8.1.3.4
  2360. */
  2361. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2362. {
  2363. GetBitContext *gb = &v->s.gb;
  2364. int index, escape, run = 0, level = 0, lst = 0;
  2365. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2366. if (index != vc1_ac_sizes[codingset] - 1) {
  2367. run = vc1_index_decode_table[codingset][index][0];
  2368. level = vc1_index_decode_table[codingset][index][1];
  2369. lst = index >= vc1_last_decode_table[codingset];
  2370. if(get_bits(gb, 1))
  2371. level = -level;
  2372. } else {
  2373. escape = decode210(gb);
  2374. if (escape != 2) {
  2375. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2376. run = vc1_index_decode_table[codingset][index][0];
  2377. level = vc1_index_decode_table[codingset][index][1];
  2378. lst = index >= vc1_last_decode_table[codingset];
  2379. if(escape == 0) {
  2380. if(lst)
  2381. level += vc1_last_delta_level_table[codingset][run];
  2382. else
  2383. level += vc1_delta_level_table[codingset][run];
  2384. } else {
  2385. if(lst)
  2386. run += vc1_last_delta_run_table[codingset][level] + 1;
  2387. else
  2388. run += vc1_delta_run_table[codingset][level] + 1;
  2389. }
  2390. if(get_bits(gb, 1))
  2391. level = -level;
  2392. } else {
  2393. int sign;
  2394. lst = get_bits(gb, 1);
  2395. if(v->s.esc3_level_length == 0) {
  2396. if(v->pq < 8 || v->dquantfrm) { // table 59
  2397. v->s.esc3_level_length = get_bits(gb, 3);
  2398. if(!v->s.esc3_level_length)
  2399. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2400. } else { //table 60
  2401. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2402. }
  2403. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2404. }
  2405. run = get_bits(gb, v->s.esc3_run_length);
  2406. sign = get_bits(gb, 1);
  2407. level = get_bits(gb, v->s.esc3_level_length);
  2408. if(sign)
  2409. level = -level;
  2410. }
  2411. }
  2412. *last = lst;
  2413. *skip = run;
  2414. *value = level;
  2415. }
  2416. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2417. * @param v VC1Context
  2418. * @param block block to decode
  2419. * @param coded are AC coeffs present or not
  2420. * @param codingset set of VLC to decode data
  2421. */
  2422. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2423. {
  2424. GetBitContext *gb = &v->s.gb;
  2425. MpegEncContext *s = &v->s;
  2426. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2427. int run_diff, i;
  2428. int16_t *dc_val;
  2429. int16_t *ac_val, *ac_val2;
  2430. int dcdiff;
  2431. /* Get DC differential */
  2432. if (n < 4) {
  2433. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2434. } else {
  2435. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2436. }
  2437. if (dcdiff < 0){
  2438. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2439. return -1;
  2440. }
  2441. if (dcdiff)
  2442. {
  2443. if (dcdiff == 119 /* ESC index value */)
  2444. {
  2445. /* TODO: Optimize */
  2446. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2447. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2448. else dcdiff = get_bits(gb, 8);
  2449. }
  2450. else
  2451. {
  2452. if (v->pq == 1)
  2453. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2454. else if (v->pq == 2)
  2455. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2456. }
  2457. if (get_bits(gb, 1))
  2458. dcdiff = -dcdiff;
  2459. }
  2460. /* Prediction */
  2461. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2462. *dc_val = dcdiff;
  2463. /* Store the quantized DC coeff, used for prediction */
  2464. if (n < 4) {
  2465. block[0] = dcdiff * s->y_dc_scale;
  2466. } else {
  2467. block[0] = dcdiff * s->c_dc_scale;
  2468. }
  2469. /* Skip ? */
  2470. run_diff = 0;
  2471. i = 0;
  2472. if (!coded) {
  2473. goto not_coded;
  2474. }
  2475. //AC Decoding
  2476. i = 1;
  2477. {
  2478. int last = 0, skip, value;
  2479. const int8_t *zz_table;
  2480. int scale;
  2481. int k;
  2482. scale = v->pq * 2 + v->halfpq;
  2483. if(v->s.ac_pred) {
  2484. if(!dc_pred_dir)
  2485. zz_table = vc1_horizontal_zz;
  2486. else
  2487. zz_table = vc1_vertical_zz;
  2488. } else
  2489. zz_table = vc1_normal_zz;
  2490. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2491. ac_val2 = ac_val;
  2492. if(dc_pred_dir) //left
  2493. ac_val -= 16;
  2494. else //top
  2495. ac_val -= 16 * s->block_wrap[n];
  2496. while (!last) {
  2497. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2498. i += skip;
  2499. if(i > 63)
  2500. break;
  2501. block[zz_table[i++]] = value;
  2502. }
  2503. /* apply AC prediction if needed */
  2504. if(s->ac_pred) {
  2505. if(dc_pred_dir) { //left
  2506. for(k = 1; k < 8; k++)
  2507. block[k << 3] += ac_val[k];
  2508. } else { //top
  2509. for(k = 1; k < 8; k++)
  2510. block[k] += ac_val[k + 8];
  2511. }
  2512. }
  2513. /* save AC coeffs for further prediction */
  2514. for(k = 1; k < 8; k++) {
  2515. ac_val2[k] = block[k << 3];
  2516. ac_val2[k + 8] = block[k];
  2517. }
  2518. /* scale AC coeffs */
  2519. for(k = 1; k < 64; k++)
  2520. if(block[k]) {
  2521. block[k] *= scale;
  2522. if(!v->pquantizer)
  2523. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2524. }
  2525. if(s->ac_pred) i = 63;
  2526. }
  2527. not_coded:
  2528. if(!coded) {
  2529. int k, scale;
  2530. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2531. ac_val2 = ac_val;
  2532. scale = v->pq * 2 + v->halfpq;
  2533. memset(ac_val2, 0, 16 * 2);
  2534. if(dc_pred_dir) {//left
  2535. ac_val -= 16;
  2536. if(s->ac_pred)
  2537. memcpy(ac_val2, ac_val, 8 * 2);
  2538. } else {//top
  2539. ac_val -= 16 * s->block_wrap[n];
  2540. if(s->ac_pred)
  2541. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2542. }
  2543. /* apply AC prediction if needed */
  2544. if(s->ac_pred) {
  2545. if(dc_pred_dir) { //left
  2546. for(k = 1; k < 8; k++) {
  2547. block[k << 3] = ac_val[k] * scale;
  2548. if(!v->pquantizer && block[k << 3])
  2549. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2550. }
  2551. } else { //top
  2552. for(k = 1; k < 8; k++) {
  2553. block[k] = ac_val[k + 8] * scale;
  2554. if(!v->pquantizer && block[k])
  2555. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2556. }
  2557. }
  2558. i = 63;
  2559. }
  2560. }
  2561. s->block_last_index[n] = i;
  2562. return 0;
  2563. }
  2564. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2565. * @param v VC1Context
  2566. * @param block block to decode
  2567. * @param coded are AC coeffs present or not
  2568. * @param codingset set of VLC to decode data
  2569. */
  2570. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2571. {
  2572. GetBitContext *gb = &v->s.gb;
  2573. MpegEncContext *s = &v->s;
  2574. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2575. int run_diff, i;
  2576. int16_t *dc_val;
  2577. int16_t *ac_val, *ac_val2;
  2578. int dcdiff;
  2579. int a_avail = v->a_avail, c_avail = v->c_avail;
  2580. int use_pred = s->ac_pred;
  2581. int scale;
  2582. int q1, q2 = 0;
  2583. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2584. /* Get DC differential */
  2585. if (n < 4) {
  2586. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2587. } else {
  2588. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2589. }
  2590. if (dcdiff < 0){
  2591. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2592. return -1;
  2593. }
  2594. if (dcdiff)
  2595. {
  2596. if (dcdiff == 119 /* ESC index value */)
  2597. {
  2598. /* TODO: Optimize */
  2599. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2600. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2601. else dcdiff = get_bits(gb, 8);
  2602. }
  2603. else
  2604. {
  2605. if (mquant == 1)
  2606. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2607. else if (mquant == 2)
  2608. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2609. }
  2610. if (get_bits(gb, 1))
  2611. dcdiff = -dcdiff;
  2612. }
  2613. /* Prediction */
  2614. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2615. *dc_val = dcdiff;
  2616. /* Store the quantized DC coeff, used for prediction */
  2617. if (n < 4) {
  2618. block[0] = dcdiff * s->y_dc_scale;
  2619. } else {
  2620. block[0] = dcdiff * s->c_dc_scale;
  2621. }
  2622. /* Skip ? */
  2623. run_diff = 0;
  2624. i = 0;
  2625. //AC Decoding
  2626. i = 1;
  2627. /* check if AC is needed at all and adjust direction if needed */
  2628. if(!a_avail) dc_pred_dir = 1;
  2629. if(!c_avail) dc_pred_dir = 0;
  2630. if(!a_avail && !c_avail) use_pred = 0;
  2631. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2632. ac_val2 = ac_val;
  2633. scale = mquant * 2 + v->halfpq;
  2634. if(dc_pred_dir) //left
  2635. ac_val -= 16;
  2636. else //top
  2637. ac_val -= 16 * s->block_wrap[n];
  2638. q1 = s->current_picture.qscale_table[mb_pos];
  2639. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2640. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2641. if(n && n<4) q2 = q1;
  2642. if(coded) {
  2643. int last = 0, skip, value;
  2644. const int8_t *zz_table;
  2645. int k;
  2646. if(v->s.ac_pred) {
  2647. if(!dc_pred_dir)
  2648. zz_table = vc1_horizontal_zz;
  2649. else
  2650. zz_table = vc1_vertical_zz;
  2651. } else
  2652. zz_table = vc1_normal_zz;
  2653. while (!last) {
  2654. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2655. i += skip;
  2656. if(i > 63)
  2657. break;
  2658. block[zz_table[i++]] = value;
  2659. }
  2660. /* apply AC prediction if needed */
  2661. if(use_pred) {
  2662. /* scale predictors if needed*/
  2663. if(q2 && q1!=q2) {
  2664. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2665. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2666. if(dc_pred_dir) { //left
  2667. for(k = 1; k < 8; k++)
  2668. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2669. } else { //top
  2670. for(k = 1; k < 8; k++)
  2671. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2672. }
  2673. } else {
  2674. if(dc_pred_dir) { //left
  2675. for(k = 1; k < 8; k++)
  2676. block[k << 3] += ac_val[k];
  2677. } else { //top
  2678. for(k = 1; k < 8; k++)
  2679. block[k] += ac_val[k + 8];
  2680. }
  2681. }
  2682. }
  2683. /* save AC coeffs for further prediction */
  2684. for(k = 1; k < 8; k++) {
  2685. ac_val2[k] = block[k << 3];
  2686. ac_val2[k + 8] = block[k];
  2687. }
  2688. /* scale AC coeffs */
  2689. for(k = 1; k < 64; k++)
  2690. if(block[k]) {
  2691. block[k] *= scale;
  2692. if(!v->pquantizer)
  2693. block[k] += (block[k] < 0) ? -mquant : mquant;
  2694. }
  2695. if(use_pred) i = 63;
  2696. } else { // no AC coeffs
  2697. int k;
  2698. memset(ac_val2, 0, 16 * 2);
  2699. if(dc_pred_dir) {//left
  2700. if(use_pred) {
  2701. memcpy(ac_val2, ac_val, 8 * 2);
  2702. if(q2 && q1!=q2) {
  2703. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2704. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2705. for(k = 1; k < 8; k++)
  2706. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2707. }
  2708. }
  2709. } else {//top
  2710. if(use_pred) {
  2711. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2712. if(q2 && q1!=q2) {
  2713. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2714. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2715. for(k = 1; k < 8; k++)
  2716. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2717. }
  2718. }
  2719. }
  2720. /* apply AC prediction if needed */
  2721. if(use_pred) {
  2722. if(dc_pred_dir) { //left
  2723. for(k = 1; k < 8; k++) {
  2724. block[k << 3] = ac_val2[k] * scale;
  2725. if(!v->pquantizer && block[k << 3])
  2726. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2727. }
  2728. } else { //top
  2729. for(k = 1; k < 8; k++) {
  2730. block[k] = ac_val2[k + 8] * scale;
  2731. if(!v->pquantizer && block[k])
  2732. block[k] += (block[k] < 0) ? -mquant : mquant;
  2733. }
  2734. }
  2735. i = 63;
  2736. }
  2737. }
  2738. s->block_last_index[n] = i;
  2739. return 0;
  2740. }
  2741. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2742. * @param v VC1Context
  2743. * @param block block to decode
  2744. * @param coded are AC coeffs present or not
  2745. * @param mquant block quantizer
  2746. * @param codingset set of VLC to decode data
  2747. */
  2748. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2749. {
  2750. GetBitContext *gb = &v->s.gb;
  2751. MpegEncContext *s = &v->s;
  2752. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2753. int run_diff, i;
  2754. int16_t *dc_val;
  2755. int16_t *ac_val, *ac_val2;
  2756. int dcdiff;
  2757. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2758. int a_avail = v->a_avail, c_avail = v->c_avail;
  2759. int use_pred = s->ac_pred;
  2760. int scale;
  2761. int q1, q2 = 0;
  2762. /* XXX: Guard against dumb values of mquant */
  2763. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2764. /* Set DC scale - y and c use the same */
  2765. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2766. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2767. /* Get DC differential */
  2768. if (n < 4) {
  2769. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2770. } else {
  2771. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2772. }
  2773. if (dcdiff < 0){
  2774. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2775. return -1;
  2776. }
  2777. if (dcdiff)
  2778. {
  2779. if (dcdiff == 119 /* ESC index value */)
  2780. {
  2781. /* TODO: Optimize */
  2782. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2783. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2784. else dcdiff = get_bits(gb, 8);
  2785. }
  2786. else
  2787. {
  2788. if (mquant == 1)
  2789. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2790. else if (mquant == 2)
  2791. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2792. }
  2793. if (get_bits(gb, 1))
  2794. dcdiff = -dcdiff;
  2795. }
  2796. /* Prediction */
  2797. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2798. *dc_val = dcdiff;
  2799. /* Store the quantized DC coeff, used for prediction */
  2800. if (n < 4) {
  2801. block[0] = dcdiff * s->y_dc_scale;
  2802. } else {
  2803. block[0] = dcdiff * s->c_dc_scale;
  2804. }
  2805. /* Skip ? */
  2806. run_diff = 0;
  2807. i = 0;
  2808. //AC Decoding
  2809. i = 1;
  2810. /* check if AC is needed at all and adjust direction if needed */
  2811. if(!a_avail) dc_pred_dir = 1;
  2812. if(!c_avail) dc_pred_dir = 0;
  2813. if(!a_avail && !c_avail) use_pred = 0;
  2814. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2815. ac_val2 = ac_val;
  2816. scale = mquant * 2 + v->halfpq;
  2817. if(dc_pred_dir) //left
  2818. ac_val -= 16;
  2819. else //top
  2820. ac_val -= 16 * s->block_wrap[n];
  2821. q1 = s->current_picture.qscale_table[mb_pos];
  2822. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2823. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2824. if(n && n<4) q2 = q1;
  2825. if(coded) {
  2826. int last = 0, skip, value;
  2827. const int8_t *zz_table;
  2828. int k;
  2829. zz_table = vc1_simple_progressive_8x8_zz;
  2830. while (!last) {
  2831. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2832. i += skip;
  2833. if(i > 63)
  2834. break;
  2835. block[zz_table[i++]] = value;
  2836. }
  2837. /* apply AC prediction if needed */
  2838. if(use_pred) {
  2839. /* scale predictors if needed*/
  2840. if(q2 && q1!=q2) {
  2841. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2842. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2843. if(dc_pred_dir) { //left
  2844. for(k = 1; k < 8; k++)
  2845. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2846. } else { //top
  2847. for(k = 1; k < 8; k++)
  2848. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2849. }
  2850. } else {
  2851. if(dc_pred_dir) { //left
  2852. for(k = 1; k < 8; k++)
  2853. block[k << 3] += ac_val[k];
  2854. } else { //top
  2855. for(k = 1; k < 8; k++)
  2856. block[k] += ac_val[k + 8];
  2857. }
  2858. }
  2859. }
  2860. /* save AC coeffs for further prediction */
  2861. for(k = 1; k < 8; k++) {
  2862. ac_val2[k] = block[k << 3];
  2863. ac_val2[k + 8] = block[k];
  2864. }
  2865. /* scale AC coeffs */
  2866. for(k = 1; k < 64; k++)
  2867. if(block[k]) {
  2868. block[k] *= scale;
  2869. if(!v->pquantizer)
  2870. block[k] += (block[k] < 0) ? -mquant : mquant;
  2871. }
  2872. if(use_pred) i = 63;
  2873. } else { // no AC coeffs
  2874. int k;
  2875. memset(ac_val2, 0, 16 * 2);
  2876. if(dc_pred_dir) {//left
  2877. if(use_pred) {
  2878. memcpy(ac_val2, ac_val, 8 * 2);
  2879. if(q2 && q1!=q2) {
  2880. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2881. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2882. for(k = 1; k < 8; k++)
  2883. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2884. }
  2885. }
  2886. } else {//top
  2887. if(use_pred) {
  2888. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2889. if(q2 && q1!=q2) {
  2890. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2891. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2892. for(k = 1; k < 8; k++)
  2893. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2894. }
  2895. }
  2896. }
  2897. /* apply AC prediction if needed */
  2898. if(use_pred) {
  2899. if(dc_pred_dir) { //left
  2900. for(k = 1; k < 8; k++) {
  2901. block[k << 3] = ac_val2[k] * scale;
  2902. if(!v->pquantizer && block[k << 3])
  2903. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2904. }
  2905. } else { //top
  2906. for(k = 1; k < 8; k++) {
  2907. block[k] = ac_val2[k + 8] * scale;
  2908. if(!v->pquantizer && block[k])
  2909. block[k] += (block[k] < 0) ? -mquant : mquant;
  2910. }
  2911. }
  2912. i = 63;
  2913. }
  2914. }
  2915. s->block_last_index[n] = i;
  2916. return 0;
  2917. }
  2918. /** Decode P block
  2919. */
  2920. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2921. {
  2922. MpegEncContext *s = &v->s;
  2923. GetBitContext *gb = &s->gb;
  2924. int i, j;
  2925. int subblkpat = 0;
  2926. int scale, off, idx, last, skip, value;
  2927. int ttblk = ttmb & 7;
  2928. if(ttmb == -1) {
  2929. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2930. }
  2931. if(ttblk == TT_4X4) {
  2932. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2933. }
  2934. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2935. subblkpat = decode012(gb);
  2936. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2937. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2938. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2939. }
  2940. scale = 2 * mquant + v->halfpq;
  2941. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2942. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2943. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2944. ttblk = TT_8X4;
  2945. }
  2946. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2947. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2948. ttblk = TT_4X8;
  2949. }
  2950. switch(ttblk) {
  2951. case TT_8X8:
  2952. i = 0;
  2953. last = 0;
  2954. while (!last) {
  2955. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2956. i += skip;
  2957. if(i > 63)
  2958. break;
  2959. idx = vc1_simple_progressive_8x8_zz[i++];
  2960. block[idx] = value * scale;
  2961. if(!v->pquantizer)
  2962. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2963. }
  2964. s->dsp.vc1_inv_trans_8x8(block);
  2965. break;
  2966. case TT_4X4:
  2967. for(j = 0; j < 4; j++) {
  2968. last = subblkpat & (1 << (3 - j));
  2969. i = 0;
  2970. off = (j & 1) * 4 + (j & 2) * 16;
  2971. while (!last) {
  2972. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2973. i += skip;
  2974. if(i > 15)
  2975. break;
  2976. idx = vc1_simple_progressive_4x4_zz[i++];
  2977. block[idx + off] = value * scale;
  2978. if(!v->pquantizer)
  2979. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2980. }
  2981. if(!(subblkpat & (1 << (3 - j))))
  2982. s->dsp.vc1_inv_trans_4x4(block, j);
  2983. }
  2984. break;
  2985. case TT_8X4:
  2986. for(j = 0; j < 2; j++) {
  2987. last = subblkpat & (1 << (1 - j));
  2988. i = 0;
  2989. off = j * 32;
  2990. while (!last) {
  2991. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2992. i += skip;
  2993. if(i > 31)
  2994. break;
  2995. if(v->profile < PROFILE_ADVANCED)
  2996. idx = vc1_simple_progressive_8x4_zz[i++];
  2997. else
  2998. idx = vc1_adv_progressive_8x4_zz[i++];
  2999. block[idx + off] = value * scale;
  3000. if(!v->pquantizer)
  3001. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3002. }
  3003. if(!(subblkpat & (1 << (1 - j))))
  3004. s->dsp.vc1_inv_trans_8x4(block, j);
  3005. }
  3006. break;
  3007. case TT_4X8:
  3008. for(j = 0; j < 2; j++) {
  3009. last = subblkpat & (1 << (1 - j));
  3010. i = 0;
  3011. off = j * 4;
  3012. while (!last) {
  3013. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3014. i += skip;
  3015. if(i > 31)
  3016. break;
  3017. if(v->profile < PROFILE_ADVANCED)
  3018. idx = vc1_simple_progressive_4x8_zz[i++];
  3019. else
  3020. idx = vc1_adv_progressive_4x8_zz[i++];
  3021. block[idx + off] = value * scale;
  3022. if(!v->pquantizer)
  3023. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3024. }
  3025. if(!(subblkpat & (1 << (1 - j))))
  3026. s->dsp.vc1_inv_trans_4x8(block, j);
  3027. }
  3028. break;
  3029. }
  3030. return 0;
  3031. }
  3032. /** Decode one P-frame MB (in Simple/Main profile)
  3033. */
  3034. static int vc1_decode_p_mb(VC1Context *v)
  3035. {
  3036. MpegEncContext *s = &v->s;
  3037. GetBitContext *gb = &s->gb;
  3038. int i, j;
  3039. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3040. int cbp; /* cbp decoding stuff */
  3041. int mqdiff, mquant; /* MB quantization */
  3042. int ttmb = v->ttfrm; /* MB Transform type */
  3043. int status;
  3044. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3045. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3046. int mb_has_coeffs = 1; /* last_flag */
  3047. int dmv_x, dmv_y; /* Differential MV components */
  3048. int index, index1; /* LUT indices */
  3049. int val, sign; /* temp values */
  3050. int first_block = 1;
  3051. int dst_idx, off;
  3052. int skipped, fourmv;
  3053. mquant = v->pq; /* Loosy initialization */
  3054. if (v->mv_type_is_raw)
  3055. fourmv = get_bits1(gb);
  3056. else
  3057. fourmv = v->mv_type_mb_plane[mb_pos];
  3058. if (v->skip_is_raw)
  3059. skipped = get_bits1(gb);
  3060. else
  3061. skipped = v->s.mbskip_table[mb_pos];
  3062. s->dsp.clear_blocks(s->block[0]);
  3063. if (!fourmv) /* 1MV mode */
  3064. {
  3065. if (!skipped)
  3066. {
  3067. GET_MVDATA(dmv_x, dmv_y);
  3068. if (s->mb_intra) {
  3069. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3070. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3071. }
  3072. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3073. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3074. /* FIXME Set DC val for inter block ? */
  3075. if (s->mb_intra && !mb_has_coeffs)
  3076. {
  3077. GET_MQUANT();
  3078. s->ac_pred = get_bits(gb, 1);
  3079. cbp = 0;
  3080. }
  3081. else if (mb_has_coeffs)
  3082. {
  3083. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3084. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3085. GET_MQUANT();
  3086. }
  3087. else
  3088. {
  3089. mquant = v->pq;
  3090. cbp = 0;
  3091. }
  3092. s->current_picture.qscale_table[mb_pos] = mquant;
  3093. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3094. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3095. VC1_TTMB_VLC_BITS, 2);
  3096. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3097. dst_idx = 0;
  3098. for (i=0; i<6; i++)
  3099. {
  3100. s->dc_val[0][s->block_index[i]] = 0;
  3101. dst_idx += i >> 2;
  3102. val = ((cbp >> (5 - i)) & 1);
  3103. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3104. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3105. if(s->mb_intra) {
  3106. /* check if prediction blocks A and C are available */
  3107. v->a_avail = v->c_avail = 0;
  3108. if(i == 2 || i == 3 || !s->first_slice_line)
  3109. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3110. if(i == 1 || i == 3 || s->mb_x)
  3111. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3112. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3113. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3114. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3115. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3116. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3117. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3118. if(v->pq >= 9 && v->overlap) {
  3119. if(v->c_avail)
  3120. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3121. if(v->a_avail)
  3122. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3123. }
  3124. } else if(val) {
  3125. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3126. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3127. first_block = 0;
  3128. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3129. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3130. }
  3131. }
  3132. }
  3133. else //Skipped
  3134. {
  3135. s->mb_intra = 0;
  3136. for(i = 0; i < 6; i++) {
  3137. v->mb_type[0][s->block_index[i]] = 0;
  3138. s->dc_val[0][s->block_index[i]] = 0;
  3139. }
  3140. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3141. s->current_picture.qscale_table[mb_pos] = 0;
  3142. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3143. vc1_mc_1mv(v, 0);
  3144. return 0;
  3145. }
  3146. } //1MV mode
  3147. else //4MV mode
  3148. {
  3149. if (!skipped /* unskipped MB */)
  3150. {
  3151. int intra_count = 0, coded_inter = 0;
  3152. int is_intra[6], is_coded[6];
  3153. /* Get CBPCY */
  3154. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3155. for (i=0; i<6; i++)
  3156. {
  3157. val = ((cbp >> (5 - i)) & 1);
  3158. s->dc_val[0][s->block_index[i]] = 0;
  3159. s->mb_intra = 0;
  3160. if(i < 4) {
  3161. dmv_x = dmv_y = 0;
  3162. s->mb_intra = 0;
  3163. mb_has_coeffs = 0;
  3164. if(val) {
  3165. GET_MVDATA(dmv_x, dmv_y);
  3166. }
  3167. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3168. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3169. intra_count += s->mb_intra;
  3170. is_intra[i] = s->mb_intra;
  3171. is_coded[i] = mb_has_coeffs;
  3172. }
  3173. if(i&4){
  3174. is_intra[i] = (intra_count >= 3);
  3175. is_coded[i] = val;
  3176. }
  3177. if(i == 4) vc1_mc_4mv_chroma(v);
  3178. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3179. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3180. }
  3181. // if there are no coded blocks then don't do anything more
  3182. if(!intra_count && !coded_inter) return 0;
  3183. dst_idx = 0;
  3184. GET_MQUANT();
  3185. s->current_picture.qscale_table[mb_pos] = mquant;
  3186. /* test if block is intra and has pred */
  3187. {
  3188. int intrapred = 0;
  3189. for(i=0; i<6; i++)
  3190. if(is_intra[i]) {
  3191. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3192. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3193. intrapred = 1;
  3194. break;
  3195. }
  3196. }
  3197. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3198. else s->ac_pred = 0;
  3199. }
  3200. if (!v->ttmbf && coded_inter)
  3201. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3202. for (i=0; i<6; i++)
  3203. {
  3204. dst_idx += i >> 2;
  3205. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3206. s->mb_intra = is_intra[i];
  3207. if (is_intra[i]) {
  3208. /* check if prediction blocks A and C are available */
  3209. v->a_avail = v->c_avail = 0;
  3210. if(i == 2 || i == 3 || !s->first_slice_line)
  3211. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3212. if(i == 1 || i == 3 || s->mb_x)
  3213. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3214. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3215. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3216. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3217. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3218. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3219. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3220. if(v->pq >= 9 && v->overlap) {
  3221. if(v->c_avail)
  3222. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3223. if(v->a_avail)
  3224. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3225. }
  3226. } else if(is_coded[i]) {
  3227. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3228. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3229. first_block = 0;
  3230. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3231. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3232. }
  3233. }
  3234. return status;
  3235. }
  3236. else //Skipped MB
  3237. {
  3238. s->mb_intra = 0;
  3239. s->current_picture.qscale_table[mb_pos] = 0;
  3240. for (i=0; i<6; i++) {
  3241. v->mb_type[0][s->block_index[i]] = 0;
  3242. s->dc_val[0][s->block_index[i]] = 0;
  3243. }
  3244. for (i=0; i<4; i++)
  3245. {
  3246. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3247. vc1_mc_4mv_luma(v, i);
  3248. }
  3249. vc1_mc_4mv_chroma(v);
  3250. s->current_picture.qscale_table[mb_pos] = 0;
  3251. return 0;
  3252. }
  3253. }
  3254. /* Should never happen */
  3255. return -1;
  3256. }
  3257. /** Decode one B-frame MB (in Main profile)
  3258. */
  3259. static void vc1_decode_b_mb(VC1Context *v)
  3260. {
  3261. MpegEncContext *s = &v->s;
  3262. GetBitContext *gb = &s->gb;
  3263. int i, j;
  3264. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3265. int cbp = 0; /* cbp decoding stuff */
  3266. int mqdiff, mquant; /* MB quantization */
  3267. int ttmb = v->ttfrm; /* MB Transform type */
  3268. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3269. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3270. int mb_has_coeffs = 0; /* last_flag */
  3271. int index, index1; /* LUT indices */
  3272. int val, sign; /* temp values */
  3273. int first_block = 1;
  3274. int dst_idx, off;
  3275. int skipped, direct;
  3276. int dmv_x[2], dmv_y[2];
  3277. int bmvtype = BMV_TYPE_BACKWARD;
  3278. mquant = v->pq; /* Loosy initialization */
  3279. s->mb_intra = 0;
  3280. if (v->dmb_is_raw)
  3281. direct = get_bits1(gb);
  3282. else
  3283. direct = v->direct_mb_plane[mb_pos];
  3284. if (v->skip_is_raw)
  3285. skipped = get_bits1(gb);
  3286. else
  3287. skipped = v->s.mbskip_table[mb_pos];
  3288. s->dsp.clear_blocks(s->block[0]);
  3289. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3290. for(i = 0; i < 6; i++) {
  3291. v->mb_type[0][s->block_index[i]] = 0;
  3292. s->dc_val[0][s->block_index[i]] = 0;
  3293. }
  3294. s->current_picture.qscale_table[mb_pos] = 0;
  3295. if (!direct) {
  3296. if (!skipped) {
  3297. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3298. dmv_x[1] = dmv_x[0];
  3299. dmv_y[1] = dmv_y[0];
  3300. }
  3301. if(skipped || !s->mb_intra) {
  3302. bmvtype = decode012(gb);
  3303. switch(bmvtype) {
  3304. case 0:
  3305. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3306. break;
  3307. case 1:
  3308. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3309. break;
  3310. case 2:
  3311. bmvtype = BMV_TYPE_INTERPOLATED;
  3312. dmv_x[0] = dmv_y[0] = 0;
  3313. }
  3314. }
  3315. }
  3316. for(i = 0; i < 6; i++)
  3317. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3318. if (skipped) {
  3319. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3320. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3321. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3322. return;
  3323. }
  3324. if (direct) {
  3325. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3326. GET_MQUANT();
  3327. s->mb_intra = 0;
  3328. mb_has_coeffs = 0;
  3329. s->current_picture.qscale_table[mb_pos] = mquant;
  3330. if(!v->ttmbf)
  3331. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3332. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3333. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3334. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3335. } else {
  3336. if(!mb_has_coeffs && !s->mb_intra) {
  3337. /* no coded blocks - effectively skipped */
  3338. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3339. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3340. return;
  3341. }
  3342. if(s->mb_intra && !mb_has_coeffs) {
  3343. GET_MQUANT();
  3344. s->current_picture.qscale_table[mb_pos] = mquant;
  3345. s->ac_pred = get_bits1(gb);
  3346. cbp = 0;
  3347. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3348. } else {
  3349. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3350. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3351. if(!mb_has_coeffs) {
  3352. /* interpolated skipped block */
  3353. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3354. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3355. return;
  3356. }
  3357. }
  3358. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3359. if(!s->mb_intra) {
  3360. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3361. }
  3362. if(s->mb_intra)
  3363. s->ac_pred = get_bits1(gb);
  3364. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3365. GET_MQUANT();
  3366. s->current_picture.qscale_table[mb_pos] = mquant;
  3367. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3368. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3369. }
  3370. }
  3371. dst_idx = 0;
  3372. for (i=0; i<6; i++)
  3373. {
  3374. s->dc_val[0][s->block_index[i]] = 0;
  3375. dst_idx += i >> 2;
  3376. val = ((cbp >> (5 - i)) & 1);
  3377. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3378. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3379. if(s->mb_intra) {
  3380. /* check if prediction blocks A and C are available */
  3381. v->a_avail = v->c_avail = 0;
  3382. if(i == 2 || i == 3 || !s->first_slice_line)
  3383. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3384. if(i == 1 || i == 3 || s->mb_x)
  3385. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3386. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3387. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3388. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3389. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3390. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3391. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3392. } else if(val) {
  3393. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3394. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3395. first_block = 0;
  3396. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3397. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3398. }
  3399. }
  3400. }
  3401. /** Decode blocks of I-frame
  3402. */
  3403. static void vc1_decode_i_blocks(VC1Context *v)
  3404. {
  3405. int k, j;
  3406. MpegEncContext *s = &v->s;
  3407. int cbp, val;
  3408. uint8_t *coded_val;
  3409. int mb_pos;
  3410. /* select codingmode used for VLC tables selection */
  3411. switch(v->y_ac_table_index){
  3412. case 0:
  3413. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3414. break;
  3415. case 1:
  3416. v->codingset = CS_HIGH_MOT_INTRA;
  3417. break;
  3418. case 2:
  3419. v->codingset = CS_MID_RATE_INTRA;
  3420. break;
  3421. }
  3422. switch(v->c_ac_table_index){
  3423. case 0:
  3424. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3425. break;
  3426. case 1:
  3427. v->codingset2 = CS_HIGH_MOT_INTER;
  3428. break;
  3429. case 2:
  3430. v->codingset2 = CS_MID_RATE_INTER;
  3431. break;
  3432. }
  3433. /* Set DC scale - y and c use the same */
  3434. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3435. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3436. //do frame decode
  3437. s->mb_x = s->mb_y = 0;
  3438. s->mb_intra = 1;
  3439. s->first_slice_line = 1;
  3440. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3441. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3442. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3443. ff_init_block_index(s);
  3444. ff_update_block_index(s);
  3445. s->dsp.clear_blocks(s->block[0]);
  3446. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3447. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3448. s->current_picture.qscale_table[mb_pos] = v->pq;
  3449. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3450. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3451. // do actual MB decoding and displaying
  3452. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3453. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3454. for(k = 0; k < 6; k++) {
  3455. val = ((cbp >> (5 - k)) & 1);
  3456. if (k < 4) {
  3457. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3458. val = val ^ pred;
  3459. *coded_val = val;
  3460. }
  3461. cbp |= val << (5 - k);
  3462. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3463. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3464. if(v->pq >= 9 && v->overlap) {
  3465. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3466. }
  3467. }
  3468. vc1_put_block(v, s->block);
  3469. if(v->pq >= 9 && v->overlap) {
  3470. if(s->mb_x) {
  3471. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3472. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3473. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3474. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3475. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3476. }
  3477. }
  3478. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3479. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3480. if(!s->first_slice_line) {
  3481. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3482. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3483. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3484. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3485. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3486. }
  3487. }
  3488. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3489. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3490. }
  3491. if(get_bits_count(&s->gb) > v->bits) {
  3492. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3493. return;
  3494. }
  3495. }
  3496. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3497. s->first_slice_line = 0;
  3498. }
  3499. }
  3500. /** Decode blocks of I-frame for advanced profile
  3501. */
  3502. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3503. {
  3504. int k, j;
  3505. MpegEncContext *s = &v->s;
  3506. int cbp, val;
  3507. uint8_t *coded_val;
  3508. int mb_pos;
  3509. int mquant = v->pq;
  3510. int mqdiff;
  3511. int overlap;
  3512. GetBitContext *gb = &s->gb;
  3513. /* select codingmode used for VLC tables selection */
  3514. switch(v->y_ac_table_index){
  3515. case 0:
  3516. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3517. break;
  3518. case 1:
  3519. v->codingset = CS_HIGH_MOT_INTRA;
  3520. break;
  3521. case 2:
  3522. v->codingset = CS_MID_RATE_INTRA;
  3523. break;
  3524. }
  3525. switch(v->c_ac_table_index){
  3526. case 0:
  3527. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3528. break;
  3529. case 1:
  3530. v->codingset2 = CS_HIGH_MOT_INTER;
  3531. break;
  3532. case 2:
  3533. v->codingset2 = CS_MID_RATE_INTER;
  3534. break;
  3535. }
  3536. //do frame decode
  3537. s->mb_x = s->mb_y = 0;
  3538. s->mb_intra = 1;
  3539. s->first_slice_line = 1;
  3540. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3541. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3542. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3543. ff_init_block_index(s);
  3544. ff_update_block_index(s);
  3545. s->dsp.clear_blocks(s->block[0]);
  3546. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3547. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3548. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3549. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3550. // do actual MB decoding and displaying
  3551. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3552. if(v->acpred_is_raw)
  3553. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3554. else
  3555. v->s.ac_pred = v->acpred_plane[mb_pos];
  3556. if(v->condover == CONDOVER_SELECT) {
  3557. if(v->overflg_is_raw)
  3558. overlap = get_bits(&v->s.gb, 1);
  3559. else
  3560. overlap = v->over_flags_plane[mb_pos];
  3561. } else
  3562. overlap = (v->condover == CONDOVER_ALL);
  3563. GET_MQUANT();
  3564. s->current_picture.qscale_table[mb_pos] = mquant;
  3565. /* Set DC scale - y and c use the same */
  3566. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3567. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3568. for(k = 0; k < 6; k++) {
  3569. val = ((cbp >> (5 - k)) & 1);
  3570. if (k < 4) {
  3571. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3572. val = val ^ pred;
  3573. *coded_val = val;
  3574. }
  3575. cbp |= val << (5 - k);
  3576. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3577. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3578. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3579. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3580. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3581. }
  3582. vc1_put_block(v, s->block);
  3583. if(overlap) {
  3584. if(s->mb_x) {
  3585. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3586. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3587. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3588. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3589. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3590. }
  3591. }
  3592. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3593. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3594. if(!s->first_slice_line) {
  3595. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3596. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3597. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3598. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3599. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3600. }
  3601. }
  3602. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3603. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3604. }
  3605. if(get_bits_count(&s->gb) > v->bits) {
  3606. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3607. return;
  3608. }
  3609. }
  3610. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3611. s->first_slice_line = 0;
  3612. }
  3613. }
  3614. static void vc1_decode_p_blocks(VC1Context *v)
  3615. {
  3616. MpegEncContext *s = &v->s;
  3617. /* select codingmode used for VLC tables selection */
  3618. switch(v->c_ac_table_index){
  3619. case 0:
  3620. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3621. break;
  3622. case 1:
  3623. v->codingset = CS_HIGH_MOT_INTRA;
  3624. break;
  3625. case 2:
  3626. v->codingset = CS_MID_RATE_INTRA;
  3627. break;
  3628. }
  3629. switch(v->c_ac_table_index){
  3630. case 0:
  3631. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3632. break;
  3633. case 1:
  3634. v->codingset2 = CS_HIGH_MOT_INTER;
  3635. break;
  3636. case 2:
  3637. v->codingset2 = CS_MID_RATE_INTER;
  3638. break;
  3639. }
  3640. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3641. s->first_slice_line = 1;
  3642. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3643. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3644. ff_init_block_index(s);
  3645. ff_update_block_index(s);
  3646. s->dsp.clear_blocks(s->block[0]);
  3647. vc1_decode_p_mb(v);
  3648. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3649. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3650. return;
  3651. }
  3652. }
  3653. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3654. s->first_slice_line = 0;
  3655. }
  3656. }
  3657. static void vc1_decode_b_blocks(VC1Context *v)
  3658. {
  3659. MpegEncContext *s = &v->s;
  3660. /* select codingmode used for VLC tables selection */
  3661. switch(v->c_ac_table_index){
  3662. case 0:
  3663. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3664. break;
  3665. case 1:
  3666. v->codingset = CS_HIGH_MOT_INTRA;
  3667. break;
  3668. case 2:
  3669. v->codingset = CS_MID_RATE_INTRA;
  3670. break;
  3671. }
  3672. switch(v->c_ac_table_index){
  3673. case 0:
  3674. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3675. break;
  3676. case 1:
  3677. v->codingset2 = CS_HIGH_MOT_INTER;
  3678. break;
  3679. case 2:
  3680. v->codingset2 = CS_MID_RATE_INTER;
  3681. break;
  3682. }
  3683. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3684. s->first_slice_line = 1;
  3685. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3686. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3687. ff_init_block_index(s);
  3688. ff_update_block_index(s);
  3689. s->dsp.clear_blocks(s->block[0]);
  3690. vc1_decode_b_mb(v);
  3691. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3692. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3693. return;
  3694. }
  3695. }
  3696. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3697. s->first_slice_line = 0;
  3698. }
  3699. }
  3700. static void vc1_decode_skip_blocks(VC1Context *v)
  3701. {
  3702. MpegEncContext *s = &v->s;
  3703. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3704. s->first_slice_line = 1;
  3705. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3706. s->mb_x = 0;
  3707. ff_init_block_index(s);
  3708. ff_update_block_index(s);
  3709. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3710. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3711. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3712. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3713. s->first_slice_line = 0;
  3714. }
  3715. s->pict_type = P_TYPE;
  3716. }
  3717. static void vc1_decode_blocks(VC1Context *v)
  3718. {
  3719. v->s.esc3_level_length = 0;
  3720. switch(v->s.pict_type) {
  3721. case I_TYPE:
  3722. if(v->profile == PROFILE_ADVANCED)
  3723. vc1_decode_i_blocks_adv(v);
  3724. else
  3725. vc1_decode_i_blocks(v);
  3726. break;
  3727. case P_TYPE:
  3728. if(v->p_frame_skipped)
  3729. vc1_decode_skip_blocks(v);
  3730. else
  3731. vc1_decode_p_blocks(v);
  3732. break;
  3733. case B_TYPE:
  3734. if(v->bi_type)
  3735. vc1_decode_i_blocks(v);
  3736. else
  3737. vc1_decode_b_blocks(v);
  3738. break;
  3739. }
  3740. }
  3741. /** Initialize a VC1/WMV3 decoder
  3742. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3743. * @todo TODO: Decypher remaining bits in extra_data
  3744. */
  3745. static int vc1_decode_init(AVCodecContext *avctx)
  3746. {
  3747. VC1Context *v = avctx->priv_data;
  3748. MpegEncContext *s = &v->s;
  3749. GetBitContext gb;
  3750. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3751. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3752. avctx->pix_fmt = PIX_FMT_YUV420P;
  3753. else
  3754. avctx->pix_fmt = PIX_FMT_GRAY8;
  3755. v->s.avctx = avctx;
  3756. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3757. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3758. if(ff_h263_decode_init(avctx) < 0)
  3759. return -1;
  3760. if (vc1_init_common(v) < 0) return -1;
  3761. avctx->coded_width = avctx->width;
  3762. avctx->coded_height = avctx->height;
  3763. if (avctx->codec_id == CODEC_ID_WMV3)
  3764. {
  3765. int count = 0;
  3766. // looks like WMV3 has a sequence header stored in the extradata
  3767. // advanced sequence header may be before the first frame
  3768. // the last byte of the extradata is a version number, 1 for the
  3769. // samples we can decode
  3770. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3771. if (decode_sequence_header(avctx, &gb) < 0)
  3772. return -1;
  3773. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3774. if (count>0)
  3775. {
  3776. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3777. count, get_bits(&gb, count));
  3778. }
  3779. else if (count < 0)
  3780. {
  3781. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3782. }
  3783. } else { // VC1/WVC1
  3784. int edata_size = avctx->extradata_size;
  3785. uint8_t *edata = avctx->extradata;
  3786. if(avctx->extradata_size < 16) {
  3787. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
  3788. return -1;
  3789. }
  3790. while(edata_size > 8) {
  3791. // test if we've found header
  3792. if(AV_RB32(edata) == 0x0000010F) {
  3793. edata += 4;
  3794. edata_size -= 4;
  3795. break;
  3796. }
  3797. edata_size--;
  3798. edata++;
  3799. }
  3800. init_get_bits(&gb, edata, edata_size*8);
  3801. if (decode_sequence_header(avctx, &gb) < 0)
  3802. return -1;
  3803. while(edata_size > 8) {
  3804. // test if we've found entry point
  3805. if(AV_RB32(edata) == 0x0000010E) {
  3806. edata += 4;
  3807. edata_size -= 4;
  3808. break;
  3809. }
  3810. edata_size--;
  3811. edata++;
  3812. }
  3813. init_get_bits(&gb, edata, edata_size*8);
  3814. if (decode_entry_point(avctx, &gb) < 0)
  3815. return -1;
  3816. }
  3817. avctx->has_b_frames= !!(avctx->max_b_frames);
  3818. s->low_delay = !avctx->has_b_frames;
  3819. s->mb_width = (avctx->coded_width+15)>>4;
  3820. s->mb_height = (avctx->coded_height+15)>>4;
  3821. /* Allocate mb bitplanes */
  3822. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3823. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3824. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3825. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3826. /* allocate block type info in that way so it could be used with s->block_index[] */
  3827. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3828. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3829. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3830. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3831. /* Init coded blocks info */
  3832. if (v->profile == PROFILE_ADVANCED)
  3833. {
  3834. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3835. // return -1;
  3836. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3837. // return -1;
  3838. }
  3839. return 0;
  3840. }
  3841. /** Decode a VC1/WMV3 frame
  3842. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3843. */
  3844. static int vc1_decode_frame(AVCodecContext *avctx,
  3845. void *data, int *data_size,
  3846. uint8_t *buf, int buf_size)
  3847. {
  3848. VC1Context *v = avctx->priv_data;
  3849. MpegEncContext *s = &v->s;
  3850. AVFrame *pict = data;
  3851. uint8_t *buf2 = NULL;
  3852. /* no supplementary picture */
  3853. if (buf_size == 0) {
  3854. /* special case for last picture */
  3855. if (s->low_delay==0 && s->next_picture_ptr) {
  3856. *pict= *(AVFrame*)s->next_picture_ptr;
  3857. s->next_picture_ptr= NULL;
  3858. *data_size = sizeof(AVFrame);
  3859. }
  3860. return 0;
  3861. }
  3862. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3863. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3864. int i= ff_find_unused_picture(s, 0);
  3865. s->current_picture_ptr= &s->picture[i];
  3866. }
  3867. //for advanced profile we need to unescape buffer
  3868. if (avctx->codec_id == CODEC_ID_VC1) {
  3869. int i, buf_size2;
  3870. buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3871. buf_size2 = 0;
  3872. for(i = 0; i < buf_size; i++) {
  3873. if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
  3874. buf2[buf_size2++] = buf[i+1];
  3875. i++;
  3876. } else
  3877. buf2[buf_size2++] = buf[i];
  3878. }
  3879. init_get_bits(&s->gb, buf2, buf_size2*8);
  3880. } else
  3881. init_get_bits(&s->gb, buf, buf_size*8);
  3882. // do parse frame header
  3883. if(v->profile < PROFILE_ADVANCED) {
  3884. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3885. av_free(buf2);
  3886. return -1;
  3887. }
  3888. } else {
  3889. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3890. av_free(buf2);
  3891. return -1;
  3892. }
  3893. }
  3894. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3895. av_free(buf2);
  3896. return -1;
  3897. }
  3898. // for hurry_up==5
  3899. s->current_picture.pict_type= s->pict_type;
  3900. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3901. /* skip B-frames if we don't have reference frames */
  3902. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3903. av_free(buf2);
  3904. return -1;//buf_size;
  3905. }
  3906. /* skip b frames if we are in a hurry */
  3907. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3908. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3909. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3910. || avctx->skip_frame >= AVDISCARD_ALL) {
  3911. av_free(buf2);
  3912. return buf_size;
  3913. }
  3914. /* skip everything if we are in a hurry>=5 */
  3915. if(avctx->hurry_up>=5) {
  3916. av_free(buf2);
  3917. return -1;//buf_size;
  3918. }
  3919. if(s->next_p_frame_damaged){
  3920. if(s->pict_type==B_TYPE)
  3921. return buf_size;
  3922. else
  3923. s->next_p_frame_damaged=0;
  3924. }
  3925. if(MPV_frame_start(s, avctx) < 0) {
  3926. av_free(buf2);
  3927. return -1;
  3928. }
  3929. ff_er_frame_start(s);
  3930. v->bits = buf_size * 8;
  3931. vc1_decode_blocks(v);
  3932. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3933. // if(get_bits_count(&s->gb) > buf_size * 8)
  3934. // return -1;
  3935. ff_er_frame_end(s);
  3936. MPV_frame_end(s);
  3937. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3938. assert(s->current_picture.pict_type == s->pict_type);
  3939. if (s->pict_type == B_TYPE || s->low_delay) {
  3940. *pict= *(AVFrame*)s->current_picture_ptr;
  3941. } else if (s->last_picture_ptr != NULL) {
  3942. *pict= *(AVFrame*)s->last_picture_ptr;
  3943. }
  3944. if(s->last_picture_ptr || s->low_delay){
  3945. *data_size = sizeof(AVFrame);
  3946. ff_print_debug_info(s, pict);
  3947. }
  3948. /* Return the Picture timestamp as the frame number */
  3949. /* we substract 1 because it is added on utils.c */
  3950. avctx->frame_number = s->picture_number - 1;
  3951. av_free(buf2);
  3952. return buf_size;
  3953. }
  3954. /** Close a VC1/WMV3 decoder
  3955. * @warning Initial try at using MpegEncContext stuff
  3956. */
  3957. static int vc1_decode_end(AVCodecContext *avctx)
  3958. {
  3959. VC1Context *v = avctx->priv_data;
  3960. av_freep(&v->hrd_rate);
  3961. av_freep(&v->hrd_buffer);
  3962. MPV_common_end(&v->s);
  3963. av_freep(&v->mv_type_mb_plane);
  3964. av_freep(&v->direct_mb_plane);
  3965. av_freep(&v->acpred_plane);
  3966. av_freep(&v->over_flags_plane);
  3967. av_freep(&v->mb_type_base);
  3968. return 0;
  3969. }
  3970. AVCodec vc1_decoder = {
  3971. "vc1",
  3972. CODEC_TYPE_VIDEO,
  3973. CODEC_ID_VC1,
  3974. sizeof(VC1Context),
  3975. vc1_decode_init,
  3976. NULL,
  3977. vc1_decode_end,
  3978. vc1_decode_frame,
  3979. CODEC_CAP_DELAY,
  3980. NULL
  3981. };
  3982. AVCodec wmv3_decoder = {
  3983. "wmv3",
  3984. CODEC_TYPE_VIDEO,
  3985. CODEC_ID_WMV3,
  3986. sizeof(VC1Context),
  3987. vc1_decode_init,
  3988. NULL,
  3989. vc1_decode_end,
  3990. vc1_decode_frame,
  3991. CODEC_CAP_DELAY,
  3992. NULL
  3993. };